TLIN2022ADRQ1 [TI]

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器 | D | 14 | -40 to 125;
TLIN2022ADRQ1
型号: TLIN2022ADRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器 | D | 14 | -40 to 125

文件: 总43页 (文件大小:2413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
TLIN2022A-Q1 具有显性状态超时的双路本地互连网(LIN) 收发器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q1001 标准  
• 符LIN 2.0LIN 2.1LIN 2.2LIN 2.2 A 和  
ISO/DIS 179874 电气物理(EPL) 规格标准  
• 符合面向汽车应用SAE J2602-1 LIN 网络标准  
提供功能安全  
车身电子装置和照明  
混合动力电动汽车和动力总成系统  
信息娱乐系统与仪表组  
电器  
3 说明  
可帮助进行功能安全系统设计的文档  
• 支12V 24V 电池应用  
LIN 传输数据速率高20kbps  
LIN 接收数据速率高100kbps  
• 宽工作电源电压范围4V 48V  
• 休眠模式超低电流消耗允许以下类型的唤醒事  
:  
TLIN2022A-Q1 是一款双路本地互连网络 (LIN) 物理层  
收发器集成了唤醒和保护功能符合 LIN 2.0LIN  
2.1LIN 2.2LIN 2.2A ISO/DIS 179874 标准。  
LIN 是一根单线制双向总线通常用于低速车载网络,  
数据传输速率高达 20kbpsTLIN2022A-Q1 旨在为  
12V 24V 应用提供支持具有更宽的工作电压范围  
和额外的总线故障保护。  
LIN 总线  
LIN 接收器支持高达 100kbps 的数据传输速率从而  
更快速地执行内联编TLIN2022A-Q1 使用一个可降  
低电磁辐射 (EME) 的限流波形整形驱动器将 TXD 输入  
上的 LIN 协议数据流转化为 LIN 总线信号。接收器将  
数据流转化为逻辑电平信号此信号通过开漏 RXD 引  
脚发送到微处理器。休眠模式可实现超低电流消耗该  
模式允许通LIN 总线EN 引脚实现唤醒。  
– 通EN 引脚的本地唤醒  
LIN 总线RXD 输出上实现上电和断电无干扰  
运行  
• 保护特性:  
±60V LIN 总线容错  
VSUP 欠压保护  
TXD 显性超(DTO) 保护  
– 热关断保护  
器件信息  
封装(1)  
– 系统级未供电节点或接地断开失效防护。  
• 可提供具有可湿性侧面SOIC (14) 和无引线  
VSON (14) 封装  
封装尺寸标称值)  
5.00mm x 8.65mm  
3.00mm x 4.50mm  
器件型号  
SOIC (14) (D)  
TLIN2022A-Q1  
VSON (14) (DMT)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VBAT  
VSUP  
VBAT  
VSUP  
COMMANDER  
NODE  
VREG  
VSUP  
VREG  
VSUP  
RESPONDER  
NODE  
VDD  
VDD  
VSUP  
VSUP  
VDD  
VDD  
NC  
14  
NC  
14  
NC  
6
NC  
6
EN1  
Commander Node  
Pullup  
10  
10  
VDD  
I/O  
VDD  
I/O  
2
2
VDD I/O  
VDD I/O  
1 kΩ  
MCU w/o  
pullup(2)  
MCU w/o  
pullup(2)  
LIN1  
LIN1  
LIN Bus  
MCU  
MCU  
13  
13  
LIN Bus  
220 pF  
220 pF  
1
3
1
3
RXD1  
TXD1  
RXD1  
TXD1  
TLIN2022A  
TLIN2022A  
LIN Controller  
Or  
SCI/UART(1)  
LIN Controller  
Or  
SCI/UART(1)  
VDD I/O  
VDD I/O  
LIN Bus  
LIN Bus  
MCU w/o  
pullup(2)  
LIN2  
MCU w/o  
pullup(2)  
LIN2  
9
9
220 pF  
220 pF  
4
7
4
7
RXD2  
TXD2  
RXD2  
TXD2  
12 NC  
11 NC  
12 NC  
11 NC  
EN2  
EN2  
5
5
I/O  
I/O  
GND  
8
GND  
8
简化版原理图指挥官模式  
简化版原理图响应者模式  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFM6  
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram.........................................23  
9.3 Feature Description...................................................23  
9.4 Device Functional Modes..........................................26  
10 Application Information Disclaimer...........................29  
10.1 Application Information........................................... 29  
10.2 Typical Application.................................................. 29  
11 Layout...........................................................................32  
11.1 Layout Guidelines................................................... 32  
11.2 Layout Example...................................................... 33  
12 Device and Documentation Support..........................34  
12.1 Documentation Support.......................................... 34  
12.2 接收文档更新通知................................................... 34  
12.3 支持资源..................................................................34  
12.4 Trademarks.............................................................34  
12.5 Electrostatic Discharge Caution..............................35  
12.6 Glossary..................................................................35  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 说明.........................................................................3  
5 Revision History.............................................................. 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 ESD Ratings - IEC ..................................................... 5  
7.4 Thermal Information ...................................................6  
7.5 Recommended Operating Conditions ........................6  
7.6 Electrical Characteristics ............................................7  
7.7 Duty Cycle Characteristics .........................................9  
7.8 Switching Characteristics .........................................11  
7.9 Typical Characteristics..............................................12  
8 Parameter Measurement Information..........................14  
9 Detailed Description......................................................22  
9.1 Overview...................................................................22  
Information.................................................................... 35  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
4 说明)  
TLIN2022A-Q1 集成了一个用LIN 响应节点应用、ESD 保护和故障保护的电阻器可减少应用中的外部元件数  
量一旦发生接地漂移或电源电压断开该器件可防止反馈电流LIN 流向电源输入。器件还包含欠压保护、过热  
关断保护和接地失效保护功能。  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
June 2021  
*
Initial release  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
RXD1  
EN1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
RXD1  
EN1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
LIN1  
NC  
LIN1  
NC  
TXD1  
RXD2  
EN2  
TXD1  
RXD2  
EN2  
Thermal  
Pad  
NC  
NC  
VSUP  
LIN2  
GND  
VSUP  
LIN2  
GND  
NC  
NC  
TXD2  
8
TXD2  
8
Not to scale  
Not to scale  
6-2. DMT Package, 14-Pin (VSON), Top View  
6-1. D Package, 14-Pin (SOIC), Top View  
6-1. Pin Functions  
PIN  
NAME  
Type  
DESCRIPTION  
NO.  
1
RXD1  
EN1  
O
I
Channel 1 RXD Output (open-drain) interface reporting state of LIN bus voltage  
Channel 1 Enable Input- High puts the channel 1 in normal operation mode and low puts it in  
sleep mode  
2
3
4
TXD1  
RXD2  
I
Channel 1 TXD input interface to control state of LIN output  
O
Channel 2 RXD Output (open-drain) interface reporting state of LIN bus voltage  
Channel 2 Enable Input- High puts the channel 2 in normal operation mode and low puts it in  
sleep mode  
5
EN2  
I
7
8
TXD2  
GND  
LIN2  
VSUP  
LIN1  
I
Channel 2 TXD input interface to control state of LIN output  
Ground  
GND  
9
HV I/O  
Supply  
HV I/O  
Channel 2 High voltage LIN bus single-wire transmitter and receiver  
Device Supply Voltage (connected to battery in series with external reverse blocking diode)  
Channel 1 High voltage LIN bus single-wire transmitter and receiver  
10  
13  
6, 11, 12,  
14  
NC  
Not Connected  
Can be connected to the PCB ground plane to improve thermal coupling (DMT package  
only)  
Thermal Pad  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1) (2)  
Symbol  
Parameter  
MIN  
0.3  
60  
0.3  
MAX  
60  
60  
6
UNIT  
V
VSUP  
VLIN  
Supply voltage range (ISO/DIS 17987 Param 10)  
LIN bus input voltage (ISO/DIS 17987 Param 82)  
Logic pin voltage (RXD, TXD, EN)  
Logic pin output current  
V
VLOGIC  
IO  
V
8
mA  
°C  
TJ  
Junction temperature range  
150  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to ground terminal.  
7.2 ESD Ratings  
ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) classification level 3A: TXD, RXD,  
EN Pins, per AEC Q100-002(1)  
±4000  
Human body model (HBM) classification level 3B: LIN and VSUP  
Pin with respect to ground  
±8000  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM)  
classification level C5, per AEC All pins  
Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings - IEC  
ESD and Surge Protection Ratings  
VALUE  
UNIT  
IEC 62228-2 per ISO 10605  
Contact discharge  
R = 330 Ω, C = 150 pF  
Electrostatic discharge, LIN, VSUP to  
GND(1)  
V(ESD)  
±8000  
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN2022A-Q1  
 
 
 
 
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
UNIT  
7.3 ESD Ratings - IEC (continued)  
ESD and Surge Protection Ratings  
VALUE  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 1  
100  
IEC 62215-3  
24 V electrical systems (2)  
Pulse 1  
450  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
24 V electrical systems (2)  
Pulse 2  
75  
ISO 7637-2 and IEC 62228-2 per IEC  
62215-3 transients according to IBEE LIN IEC 62228-2 per IEC 62215-3  
VTRAN  
V
EMC test specifications (2) (LIN , VSUP to 12 V electrical systems  
150  
-225  
100  
GND )  
Pulse 3a  
IEC 62215-3  
24 V electrical systems (2)  
Pulse 3a  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 3b  
IEC 62215-3  
24 V electrical systems (2)  
Pulse 3b  
225  
(1) Results given here are specific to the IEC 62228-2 Integrated circuits EMC evaluation of transceivers Part 2: LIN transceivers.  
Testing performed by OEM approved independent 3rd party, EMC report available upon request.  
(2) Verified during characterization  
7.4 Thermal Information  
TLIN2022AD-Q1  
TLIN2022ADMT-Q1  
THERMAL METRIC(1)  
D (SOIC)  
14-PINS  
82.3  
DMT (VSON)  
14-PINS  
35.5  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
41.5  
18.1  
38.4  
13.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.9  
0.6  
ΨJT  
38.1  
13.1  
ΨJB  
RΘJC(bot)  
n/a  
2.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Recommended Operating Conditions  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER - DEFINITION  
MIN  
4
NOM  
MAX  
48  
UNIT  
V
VSUP  
VLIN  
Supply voltage  
LIN Bus input voltage  
0
48  
V
VLOGIC  
TA  
Logic Pin Voltage (RXD, TXD, EN)  
Ambient temperature range  
Thermal shutdown edge  
Thermal shutdown hysteresis  
0
5.25  
125  
V
-40  
165  
°C  
°C  
°C  
TSD  
TSD(HYS)  
15  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
 
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
7.6 Electrical Characteristics  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
MAX UNIT  
Power Supply  
Device is operational beyond the LIN  
defined nominal supply voltage range  
See Figure 8-1 and Figure 8-2  
Operational supply voltage (ISO/DIS  
17987 Param 10, 53)  
VSUP  
48  
48  
V
V
Normal and Standby Modes: ramp VSUP  
while LIN signal is a 10 kHZ square  
wave with 50 % duty cycle and 36V  
swing. See Figure 8-1 and Figure 8-2  
Nominal supply voltage (ISO/DIS 17987  
Param 10, 53)  
4
VSUP  
Sleep Mode  
4
48  
V
V
UVSUP  
UVHYS  
Undervoltage VSUP threshold  
2.9  
3.85  
Delta hysteresis voltage for VSUP  
undervoltage threshold  
0.2  
1.2  
V
Normal Mode: EN = High, bus  
dominant: total bus load where RLIN  
500 Ωand CLIN < 10 nF  
>
>
8.5  
mA  
ISUP  
Supply current  
Standby Mode: EN = Low, bus  
dominant: total bus load where RLIN  
500 Ωand CLIN < 10 nF  
1.1  
3.75  
mA  
Normal Mode: EN = High, Bus  
Recessive: LIN = VSUP  
670  
20  
1600  
40  
µA  
µA  
µA  
µA  
Standby Mode: EN = Low, Bus  
Recessive LIN = VSUP  
ISUP  
Supply current  
Sleep Mode: 4.0 V < VSUP < 14 V, LIN =  
VSUP, EN = 0 V, TXD and RXD Floating  
10  
20  
Sleep Mode: 14 V < VSUP < 36 V, LIN =  
VSUP, EN = 0 V, TXD and RXD floating  
30  
RXD1/RXD2 OUTPUT PIN (OPEN DRAIN)  
(4)  
VOL  
IOL  
Output Low voltage  
Based upon external pull-up to VCC  
0.6  
5
V
Low-level output current, open-drain  
Leakage current, high-level  
LIN = 0 V, RXD = 0.4 V  
LIN = VSUP, RXD = 5 V  
1.5  
mA  
µA  
IILG  
0
5  
TXD1/TXD2 INPUT PIN  
VIL  
VIH  
Low-level input voltage  
0.8  
V
V
0.3  
High-level input voltage  
2
5.25  
Input threshold voltage, normal modes&  
selective wake modes  
VHYS  
50  
500  
mV  
IILG  
Low-level input leakage current  
Internal pull-down resitor value  
TXD = Low  
0
5
µA  
5  
RTXD  
125  
350  
800  
kΩ  
EN1/EN2 INPUT PIN  
VIL  
Low-level input voltage  
0.8  
5.25  
500  
5
V
V
0.3  
VIH  
High-level input voltage  
Hysteresis voltage  
2
VHYS  
By design and characterization  
EN = Low  
50  
0
mV  
µA  
IILG  
Low-level input current  
Internal pull-down resistor  
5  
REN  
125  
350  
800  
kΩ  
LIN1/LIN2 PIN  
LIN recessive, TXD = high, IO = 0 mA, 7  
V VSUP 48 V  
VOH  
VOH  
HIGH level output voltage (3)  
0.85  
0.8  
VSUP  
VSUP  
LIN recessive high-level output voltage  
TXD = high, IO = 0 mA, 7 V VSUP  
(1) (2)  
18 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
7.6 Electrical Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LIN recessive, TXD = high, IO = 0 mA, 4  
V VSUP < 7 V  
VOH  
HIGH level output voltage(3)  
3
V
LIN dominant, TXD = low, 7 V VSUP  
48 V  
VOL  
LOW level output voltage(3)  
0.2 VSUP  
0.2 VSUP  
LIN dominant low- level output voltage  
VOL  
TXD = low, 7 V VSUP 18 V  
(1) (2)  
LIN dominant, TXD = low, 4 V ≤  
VSUP < 7 V  
VOL  
LOW level output voltage(3)  
1.2  
58  
V
VSUP where impact of recessive LIN  
bus < 5% (ISO/DIS 17987 Param 56)  
VSUP_NON_OP  
IBUS_LIM  
IBUS_PAS_dom  
IBUS_PAS_rec1  
IBUS_PAS_rec2  
IBUS_NO_GND  
TXD & RXD open LIN = 4 V to 58 V  
V
0.3  
75  
Limiting current (ISO/DIS 17987 Param  
57)  
TXD = 0 V, VLIN = 48 V, RMEAS = 440 Ω,  
VSUP = 48 V, VBUSdom < 4.518 V  
120  
300  
mA  
mA  
µA  
µA  
mA  
Receiver leakage current, dominant  
(ISO/DIS 17987 Param 58)  
LIN = 0 V, VSUP = 24 V Driver off/  
recessive; See Figure 8-6  
2  
Receiver leakage current, recessive  
(ISO/DIS 17987 Param 59)  
LIN > VSUP, 8 V VSUP 48 V Driver  
off; See Figure 8-7  
20  
5
Receiver leakage current, recessive  
(ISO/DIS 17987 Param 59)  
LIN = VSUP, Driver off; See Figure 8-7  
5  
2  
Leakage current, loss of ground  
(ISO/DIS 17987 Param 60)  
GND = VSUP, 0 V VLIN = 36 V, VSUP  
24 V; See Figure 8-8  
=
2
VSUP = 8 V, GND = open, VSUP = 18 V,  
GND = open  
RCommander = 1 kΩ, CL = 1 nF  
RResponder = 20 kΩ, CL = 1 nF  
LIN = dominant  
Ileak gnd(dom)  
Leakage current, loss of ground (5)  
Leakage current, loss of ground (5)  
-1  
1
mA  
VSUP = 8 V, GND = open, VSUP = 18 V,  
GND = open  
RCommander = 1 kΩ, CL = 1 nF  
RResponder = 20 kΩ, CL = 1 nF  
LIN = recessive  
Ileak gnd(rec)  
-100  
100  
5
µA  
µA  
Leakage current, loss of supply  
(ISO/DIS 17987 Param 61)  
0 V VLIN 48 V, VSUP = GND; See  
Figure 8-9  
IBUS_NO_BAT  
LIN dominant (including LIN dominant  
for wake up); See Figure 8-3 and Figure  
8-4  
Low-level input voltage (ISO/DIS 17987  
Param , 62)  
VBUSdom  
0.4 VSUP  
High-level input voltage (ISO/DIS 17987 LIN recessive; See Figure 8-3 and  
VBUSrec  
VIH  
0.6  
0.47  
0.4  
VSUP  
0.6 VSUP  
Param , 63)  
Figure 8-4  
LIN recessive high-level input voltage (1)  
7 V VSUP 18 V  
(2)  
LIN dominant low-level input voltage (1)  
VIL  
0.53 VSUP  
0.525 VSUP  
0.175 VSUP  
0.175 VSUP  
7 V VSUP 18 V  
(2)  
Receiver center threshold (ISO/DIS  
17987 Param , 64)  
VBUS_CNT = ( VBUSdom + VBUSrec )/2; See  
Figure 8-3 and Figure 8-4  
VBUS_CNT  
VHYS  
0.475  
0.5  
Hysteresis voltage (ISO/DIS 17987  
Param , 65)  
VHYS = (VBUSrec - VBUSdom); See Figure  
8-3 and Figure 8-4  
VHYS = VIH - VIL ; See Figure 8-3 and  
Figure 8-4  
VHYS  
Hysteresis voltage (SAE J2602)  
0.07  
0.4  
Serial diode LIN termination pullup path  
(ISO/DIS 17987 Param , 66)  
VSERIAL_DIODE  
0.7  
45  
1
V
ISERIAL_DIODE = 10 μA  
Pull-up resistor to VSUP (ISO/DIS 17987  
Param , 71)  
RPU  
Normal and Standby modes  
20  
60  
kΩ  
IRSLEEP  
Pull-up current source to VSUP  
Sleep mode, VSUP = 27 V, LIN = GND  
µA  
20  
2  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
7.6 Electrical Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
25 pF  
CLINPIN  
Capacitance of the LIN pin  
VSUP = 14 V  
(1) SAE 2602 commander node load conditions: 5.5 nF/4 kΩand 899 pF/20 kΩ  
(2) SAE 2602 responder node load conditions: 5.5 nF/875 Ωand 899 pF/900 Ω  
(3) ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.  
(4) RXD uses open drain output structure therefore VOL level is based upon microcontroller supply voltage VCC  
(5) Ileak gnd = (VBAT - VLIN)/RLoad  
.
7.7 Duty Cycle Characteristics  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MAX) = 0.744 x VSUP THDOM(MAX)  
= 0.581 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 50 µs (20 kbps), D1 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11 )  
Duty Cycle 1 (ISO/DIS 17987 Param  
27) (3)  
D112V  
0.396  
THREC(MAX) = 0.625 x VSUP, THDOM(MAX)  
Duty Cycle 1 (ISO/DIS 17987 Param  
27) (3) (4)  
= 0.581 x VSUP, VSUP = 4 V to 7 V, tBIT  
50 µs (20 kbps), D1 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11 )  
=
D112V  
0.396  
0.396  
THREC(MAX) = 0.744 x VSUP  
THDOM(MAX) = 0.581 x VSUP  
VSUP = 7 V to 18 V, tBIT = 52 μs  
,
,
D1  
Duty cycle 1 (1) (2) (4)  
D1 = tBUS_rec(min)/(2 x tBIT) (See Figure  
8-10, Figure 8-11 )  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 50 µs (20 kbps), D2 = tBUS_rec(MAX)/(2  
x tBIT) (See Figure 8-10, Figure 8-11 )  
Duty Cycle 2 (ISO/DIS 17987 Param  
28)(3)  
D212V  
0.581  
0.581  
THREC(MIN) = 0.546 x VSUP, THDOM(MIN)  
= 0.4 x VSUP, VSUP = 4 V to 7 V, tBIT  
=
D212V  
Duty Cycle 2 (3) (4)  
50 µs (20 kbps), D2 = tBUS_rec(MAX)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11 )  
THREC(MIN) = 0.422 x VSUP  
,
THDOM(MIN) = 0.284 x VSUP  
,
D2  
Duty Cycle 2 (1) (2) (4)  
0.581  
VSUP = 7 V to 18 V, tBIT = 52 μs  
D2 = tBUS_rec(MAX)/(2 x tBIT) (See Figure  
8-10, Figure 8-11 )  
THREC(MAX) = 0.778 x VSUP, THDOM(MAX)  
= 0.616 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2  
x tBIT) (See Figure 8-10, Figure 8-11 )  
Duty Cycle 3 (ISO/DIS 17987 Param  
29)(3)  
D312V  
0.417  
0.417  
THREC(MAX) = 0.645 x VSUP, THDOM(MAX)  
= 0.616 x VSUP, VSUP = 4 V to 7 V, tBIT  
=
D312V  
Duty Cycle 3(3) (4)  
96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11 )  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 μs  
D3 = tBUS_rec(min)/(2 x tBIT) (See Figure  
8-10, Figure 8-11 )  
D3  
Duty Cycle 3 (1) (2) (4)  
0.417  
THREC(MIN) = 0.389 x VSUP, THDOM(MIN)  
= 0.251 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11 )  
Duty Cycle 4 (ISO/DIS 17987 Param  
30)(3)  
D412V  
0.59  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN2022A-Q1  
 
 
 
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
7.7 Duty Cycle Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 4 V to 7 V, tBIT  
96 µs (10.4 kbps), D4 = tBUS_rec(MAX)/(2  
x tBIT) (See Figure 8-10, Figure 8-11 )  
=
D412V  
Duty Cycle 4(3) (4)  
0.59  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 μs  
D4 = tBUS_rec(MAX)/(2 x tBIT) (See Figure  
8-10, Figure 8-11 )  
D4  
Duty Cycle 4 (1) (2) (4)  
0.59  
THREC(MAX) = 0.710 x VSUP, THDOM(MAX)  
= 0.544 x VSUP, VSUP = 15 V to 36 V,  
tBIT = 50 µs (20 kbps), D1 =  
tBUS_rec(min)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11 )  
Duty Cycle 1 (ISO/DIS 17987 Param  
27)(1)  
D124V  
0.33  
THREC(MIN) = 0.446 x VSUP, THDOM(MIN)  
= 0.302 x VSUP, VSUP = 15.6 V to 36 V,  
tBIT = 50 µs (20 kbps), D2 =  
tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11 )  
Duty Cycle 2 (ISO/DIS 17987 Param  
28)  
D224V  
D324V  
D424V  
0.642  
THREC(MAX) = 0.744 x VSUP, THDOM(MAX)  
= 0.581 x VSUP, VSUP = 7 V to 36 V, tBIT  
= 96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2  
x tBIT) (See Figure 8-10, Figure 8-11 )  
Duty Cycle 3 (ISO/DIS 17987 Param  
29)  
0.386  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 7.6 V to 36 V,  
tBIT = 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11 )  
Duty Cycle 4 (ISO/DIS 17987 Param  
30) (4)  
0.591  
THREC(MAX) = 0.665 x VSUP  
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 52 μs  
,
,
D1LB  
D2LB  
D3LB  
D4LB  
Duty cycle 1 at low battery (1) (2) (4)  
Duty cycle 2 at low battery (1) (2) (4)  
Duty cycle 3 at low battery (1) (2) (4)  
Duty cycle 4 at low battery (1) (2) (4)  
0.396  
0.396  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 52 μs  
0.581  
0.581  
THREC(MAX) = 0.665 x VSUP  
,
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 96 μs  
,
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 96 μs  
THREC(MAX) = 0.744 x VSUP  
,
Transmitter propagation delay timings  
for  
THDOM(MAX) = 0.581 x VSUP  
7 V VSUP 18 V, tBIT = 52 μs  
tREC(MAX)_D1 - tDOM(MIN)_D1  
Tr-d max  
Td-r max  
Tr-d max  
Td-r max  
10.8  
8.4  
µs  
µs  
µs  
µs  
the duty cycle(1) (2) (4)  
Recessive to dominant  
THREC(MAX) = 0.422 x VSUP  
,
Transmitter propagation delay timings  
for  
THDOM(MAX) = 0.284 x VSUP  
7 V VSUP 18 V, tBIT = 52 μs  
tDOM(MAX)_D2 - tREC(MIN)_D2  
the duty cycle(1) (2) (4)  
Dominant to recessive  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
7 V VSUP 18 V, tBIT = 96 μs  
tREC(MAX)_D3 - tDOM(MIN)_D3  
Transmitter propagation delay timings  
for  
15.9  
17.28  
the duty cycle(1) (2) (4)  
Recessive to dominant  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
7 V VSUP 18 V, tBIT = 96 μs  
tDOM(MAX)_D4 - tREC(MIN)_D4  
Transmitter propagation delay timings  
for  
the duty cycle(1) (2) (4)  
Dominant to recessive  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
7.7 Duty Cycle Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MAX) = 0.665 x VSUP  
,
Low battery transmitter propagation  
delay  
THDOM(MAX) = 0.499 x VSUP  
5.5 V VSUP 7 V, tBIT = 52 μs  
tREC(MAX)_low - tDOM(MIN)_low  
Tr-d max_low  
Td-r max_low  
10.8  
8.4  
µs  
µs  
timings for the duty cycle(1) (2) (4)  
Recessive to dominant  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
6.1 V VSUP 7 V, tBIT = 52 μs  
tDOM(MAX)_low - tREC(MIN)_low  
Low battery transmitter propagation  
delay  
timings for the duty cycle(1) (2) (4)  
Dominant to recessive  
(1) SAE 2602 commander node load conditions: 5.5 nF/4 kΩand 899 pF/20 kΩ  
(2) SAE 2602 responder node load conditions: 5.5 nF/875 Ωand 899 pF/900 Ω  
(3) ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.  
(4) Specified by design  
7.8 Switching Characteristics  
parameters valid across -40TA 125(unless otherwise noted)  
SYMBOL  
DESCRIPTION  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Receiver rising propagation delay time  
(ISO/DIS 17987 Param 31)  
trx_pdr  
6
6
µs  
µs  
RRXD = 2.4 kΩ, CRXD = 20 pF (See  
Figure 8-12 and Figure 8-13 )  
Receiver falling propagation delay time  
(ISO/DIS 17987 Param 31)  
trx_pdf  
Rising edge with respect to falling edge,  
Symmetry of receiver propagation delay (trx_sym = trx_pdf trx_pdr), RRXD  
time  
=
2.4 kΩ, CRXD = 20 pF (See Figure 8-12  
and Figure 8-13 )  
trs_sym  
2
µs  
µs  
2  
LIN wakeup time (Minimum dominant  
time on LIN bus for wakeup)  
See Figure 8-16, Figure 9-2 and Figure  
9-3  
tLINBUS  
25  
100  
150  
Time to clear false wakeup prevention  
logic if LIN bus had a bus stuck  
dominant fault (recessive time on LIN  
bus to clear bus stuck dominant fault)  
tCLEAR  
See Figure 9-3  
8
20  
2
17  
34  
50  
80  
15  
µs  
ms  
µs  
tDST  
Dominant state time out  
Time to change from standby mode to  
normal mode or normal mode to sleep  
mode through EN pin; See Figure 8-14  
and Figure 9-4  
tMODE_CHANGE Mode change delay time  
Time for normal mode to initialize and  
data on RXD pin to be valid; See Figure  
8-14  
tNOMINT  
Normal mode initialization time  
Power up time  
35  
µs  
Upon power up time it takes for valid  
data on RXD  
tPWR  
1.5  
ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN2022A-Q1  
 
 
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
7.9 Typical Characteristics  
7-1. VOH vs VSUP and Temperature  
7-2. VOL vs VSUP and Temperature  
Normal Mode (Dominant)  
Normal Mode (Recessive)  
7-3. Supply Current vs Voltage Supply Across Temperature  
7-4. Supply Current vs Voltage Supply Across Temperature  
Standby Mode (Dominant)  
Standby Mode (Recessive)  
7-5. Supply Current vs Voltage Supply and Temperature  
7-6. Supply Current vs Voltage Supply and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
Sleep Mode  
7-7. Supply Current vs Voltage Supply and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN2022A-Q1  
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
8 Parameter Measurement Information  
1, 4  
NC 11, 12, 14  
10  
RXD1/2  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
5 V  
2, 5  
VSUP  
VPS  
EN1/2  
NC  
6
9, 13  
LIN1/2  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
TXD1/2  
3, 7  
8
GND  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-1. Test System: Operating Voltage Range with RX and TX Access: Parameters 9, 10  
Delta t = + 5 µs  
(tBIT = 50 µs)  
Trigger Point  
RX  
2 x tBIT = 100 µs (20 kBaud)  
Copyright © 2017, Texas Instruments Incorporated  
8-2. RX Response: Operating Voltage Range  
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
8-3. LIN Bus Input Signal  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
1, 4  
NC  
RXD1/2  
11, 12, 14  
10  
Power Supply  
Resolution: 10 mV / 1 mA  
Accuracy: 0.2%  
5 V  
2, 5  
6
VSUP  
VPS  
EN1/2  
NC  
9, 13  
8
LIN1/2  
GND  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40 ns  
Frequency: 20 ppm  
3, 7 TXD1/2  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-4. LIN Receiver Test with RX access Parameters 17, 18, 19, 20  
Power Supply 1  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
NC  
RXD1/2  
11, 12, 14  
10  
1, 4  
2, 5  
5 V  
VPS1  
VSUP  
EN1/2  
NC  
D
6
Power Supply 2  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
9, 13  
LIN1/2  
GND  
3, 7  
TXD1/2  
8
VPS2  
RBUS  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-5. VSUP_NON_OP Parameters 11  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
11, 12, 14  
10  
NC  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1, 4 RXD1/2  
VPS  
VSUP  
2, 5  
6
EN1/2  
NC  
RMEAS = 499  
9, 13  
8
LIN1/2  
GND  
TXD1/2  
3, 7  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-6. Test Circuit for IBUS_PAS_dom; TXD = Recessive State VBUS = 0 V, Parameters 13  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1, 4  
RXD1/2  
NC 11, 12, 14  
VPS1  
10  
2, 5 EN1/2  
VSUP  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
TLINx022  
1 kΩ  
6
NC  
9, 13  
VPS2  
LIN1/2  
GND  
VPS2 2 V/s ramp  
[8 V à 27 V]  
3, 7  
TXD1/2  
8
V Drop across resistor  
< 20 mV  
Measurement Tools  
O-scope:  
DMM  
8-7. Test Circuit for IBUS_PAS_rec Param 14  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
11, 12, 14  
10  
NC  
RXD1/2  
1, 4  
2, 5  
5 V  
VPS1  
VSUP  
EN1/2  
NC  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1 kΩ  
6
9, 13  
8
LIN1/2  
GND  
VPS2  
VPS2 2 V/s ramp  
[0 V à 27 V]  
3, 7 TXD1/2  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-8. Test Circuit for IBUS_NO_GND Loss of GND  
11, 12, 14  
NC  
RXD1/2  
1, 4  
5 V  
2, 5  
10  
VSUP  
EN1/2  
NC  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
10 kΩ  
6
9, 13  
VPS  
LIN1/2  
VPS 2 V/s ramp  
[0 V à 27 V]  
3, 7  
TXD1/2  
8
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-9. Test Circuit for IBUS_NO_BAT Loss of Battery  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
NC 11, 12, 14  
10  
RXD1/2  
1, 4  
2, 5  
5 V  
Power Supply 1  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
VSUP  
EN1/2  
NC  
VPS1  
RMEAS  
6
9, 13  
8
LIN1/2  
GND  
Power Supply 2  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
Pulse Generator  
VPS2  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40 ns  
Frequency: 20 ppm  
3, 7  
TXD1/2  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-10. Test Circuit Slope Control and Duty Cycle Parameters 27, 28, 29, 30  
TBIT  
D = 50%  
TXD (Input)  
D112: 0.744 * VSUP  
D312: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D112: 0.581 * VSUP  
D312: 0.616 * VSUP  
LIN Bus  
Signal  
D212: 0.422 * VSUP  
D412: 0.389 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D212: 0.284 * VSUP  
D412: 0.251 * VSUP  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
8-11. Definition of Bus Timing Parameters  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
VCC  
2.4 kΩ  
1, 4  
2, 5  
NC 11, 12, 14  
RXD1/2  
Power Supply  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
5 V  
20 pF  
10  
VSUP  
EN1/2  
NC  
VPS  
6
9, 13  
8
LIN1/2  
GND  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40 ns  
Frequency: 20 ppm  
3, 7  
TXD1/2  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-12. Propagation Delay Test Circuit; Parameters 31, 32  
D1: 0.744 * VSUP  
D3: 0.778 * VSUP  
THREC(MAX)  
Thresholds  
RX Node 1  
D1: 0.581 * VSUP  
D3: 0.616 * VSUP  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
LIN Bus  
Signal  
D2: 0.422 * VSUP  
D4: 0.389 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D2: 0.284 * VSUP  
D4: 0.251 * VSUP  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
trx_pdr(1)  
trx_pdf(1)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
8-13. Propagation Delay  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
Wake Event  
tMODE_CHANGE  
EN  
tMODE_CHANGE  
tNOMINT  
Transition  
Sleep  
Standby  
Transition  
Normal  
Normal  
MODE  
Indetermin  
ate Ignore  
Mirrors  
Bus  
Wake Request  
RXD = Low  
RXD  
Floating  
Indeterminate Ignore  
Mirrors Bus  
Copyright © 2017, Texas Instruments Incorporated  
8-14. Mode Transitions  
EN1/2  
Weak Internal Pulldown  
TXD1/2  
Weak Internal Pulldown  
VSUP  
LIN1/2  
RXD1/2  
MODE  
Floating  
Sleep  
Normal  
8-15. Wakeup Through EN  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
0.6 x  
VSUP  
0.6 x  
VSUP  
LIN1/2  
0.4 x VSUP  
VSUP  
0.4 x  
VSUP  
t < tLINBUS  
tLINBUS  
TXD1/2  
Weak Internal Pulldown  
EN1/2  
Floating  
Sleep  
RXD1/2  
MODE  
Standby  
Normal  
8-16. Wakeup through LIN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TLIN2022A-Q1 device is a Dual Local Interconnect Network (LIN) physical layer transceiver, compliant to  
LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A and ISO/DIS 179874 standards, with integrated wake-up and protection  
features. The LIN bus is a single wire bidirectional bus typically used for low speed in-vehicle networks. The  
device transmitter supports data rates from 2.4 kbps to 20 kbps. The device receiver works up to 100 kbps  
supporting in-line programming. The LIN protocol data stream on the TXD input is converted by the TLIN2022A-  
Q1 into a LIN bus signal using a current-limited wave-shaping driver as outlined by the LIN physical layer  
specification. The receiver converts the data stream to logic-level signals that are sent to the microprocessor  
through the open-drain RXD pin. The LIN bus has two states: dominant state (voltage near ground) and  
recessive state (voltage near battery). In the recessive state, the LIN bus is pulled high by the internal pull-up  
resistor (45 k) and a series diode. No external pull-up components are required for responder node  
applications. Commander node applications require an external pull-up resistor (1 k) plus a series diode per  
the LIN specification.  
The device is designed to support 12-V and 24-V applications with a wide input voltage operating range and also  
supports low-power sleep mode. The device also provides two methods to wake up: EN pin and from the LIN  
bus.  
The TLIN2022A-Q1 integrates ESD protection and fault protection which allow for a reduction in the required  
external components in end applications. In the event of a ground shift or supply voltage disconnection, the  
device prevents back-feed current through LIN to the supply input. The device also includes undervoltage  
detection, temperature shutdown protection, and loss-of-ground protection.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
9.2 Functional Block Diagram  
9.3 Feature Description  
9.3.1 LIN (Local Interconnect Network) Bus  
This high voltage input/output pin is a single wire LIN bus transmitter and receiver. The LIN pin can survive  
transient voltages up to 45 V. Reverse currents from the LIN to supply (VSUP) are minimized with blocking  
diodes, even in the event of a ground shift or loss of supply (VSUP).  
9.3.1.1 LIN Transmitter Characteristics  
The transmitter has thresholds and AC parameters according to the LIN specification. The transmitter is a low-  
side transistor with internal current limitation and thermal shutdown. During a thermal shut-down condition, the  
transmitter is disabled to protect the device. There is an internal pull-up resistor with a serial diode structure to  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
VSUP, so no external pull-up components are required for the LIN responder node applications. An external pull-  
up resistor and series diode to VSUP must be added when the device is used for a commander node application.  
9.3.1.2 LIN Receiver Characteristics  
The receiver characteristic thresholds are proportional to the device supply pin according to the LIN  
specification.  
The receiver is capable of receiving higher data rates (> 100 kbps) than supported by LIN or SAEJ2602  
specifications. This allows the TLIN2022A-Q1 to be used for high speed downloads at the end-of-line production  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system.  
9.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP, so no external pull-up components are  
required for the LIN responder node applications. An external pull-up resistor (1 k) and a series diode to VSUP  
must be added when the device is used for commander node applications as per the LIN specification.  
9-1 shows a commander node configuration and how the voltage levels are defined  
Voltage drop across the  
Simplified Transceiver  
VLIN_Bus  
diodes in the pullup path  
RXD  
VSUP  
VSUP  
VSUP/2  
VBattery  
VSUP  
VLIN_Recessive  
Receiver  
Filter  
1 kΩ  
45 kΩ  
LIN  
LIN  
Bus  
TXD  
350 kΩ  
GND  
Transmitter  
with slope control  
VLIN_Dominant  
t
Copyright © 2017, Texas Instruments Incorporated  
9-1. Commander Node Configuration with Voltage Levels  
9.3.2 TXD  
TXD is the interface to the MCUs LIN protocol controller or SCI / UART that is used to control the state of the LIN  
output. When TXD is low the LIN output is dominant (near ground). When TXD is high the LIN output is  
recessive (near VBattery). See 9-1. The TXD input structure is compatible with processors using 3.3 V and 5 V  
I/O. TXD has an internal pull-down resistor. The LIN bus is protected from being stuck dominant through a  
system failure driving TXD low through the dominant state timeout timer.  
9.3.3 RXD (Receive Output)  
RXD is the interface to the MCU's LIN protocol controller or SCI / UART, which reports the state of the LIN bus  
voltage. LIN recessive (near VBattery) is represented by a high level on the RXD and LIN dominant (near ground)  
is represented by a low level on the RXD pin. The RXD output structure is an open-drain output stage. This  
allows the device to be used with 3.3 V and 5 V I/O processors. If the microcontrollers RXD pin does not have  
an integrated pull-up, an external pull-up resistor to the processors I/O supply voltage is required. In standby  
mode the RXD pin is driven low to indicate a wake up request from the LIN bus.  
9.3.4 VSUP (Supply Voltage)  
VSUP is the power supply pin. VSUP is connected to the battery through an external reverse battery blocking  
diode (see 9-1). If there is a loss of power at the ECU level, the device has low leakage from the LIN pin,  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
which does not load the bus down. This is optimal for LIN systems in which some of the nodes are unpowered  
(ignition supplied) while the rest of the network remains powered (battery supplied).  
9.3.5 GND (Ground)  
GND is the device ground connection. The device can operate with a ground shift as long as the ground shift  
does not reduce the VSUP below the minimum operating voltage, as well as ensuring the input and output  
voltages are within their appropriate thresholds. If there is a loss of ground at the ECU level, the device has  
extremely low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN systems in  
which some of the nodes are unpowered (ignition supplied) while the rest of the network remains powered  
(battery supplied).  
9.3.6 EN (Enable Input)  
EN1 and EN2 control the operational modes of the respective LIN channel . When EN1/EN2 is high the LIN1/  
LIN2 channel is in normal operating mode allowing a transmission path from TXD to respective LIN bus and from  
LIN to RXD. When EN1/EN2 is low the LIN1/LIN2 channel is put into sleep mode and there is no transmission  
path available. The channel can enter normal mode only after wake up. EN has an internal pull-down resistor to  
ensure the channel remains in low power mode even if EN floats.  
9.3.7 Protection Features  
The TLIN2022A-Q1 has several protection features.  
9.3.8 TXD Dominant Time Out (DTO)  
During normal mode, if TXD is inadvertently driven permanently low by a hardware or software application  
failure, the LIN bus is protected by the dominant state timeout timer. This timer is triggered by a falling edge on  
the TXD pin. If the low signal remains on TXD for longer than tDST, the transmitter is disabled, thus allowing the  
LIN bus to return to recessive state and communication to resume on the bus. The protection is cleared and the  
tDST timer is reset by a rising edge on TXD. The TXD pin has an internal pull-down to ensure the LIN channel  
fails to a known state if TXD is disconnected. During this fault, the LIN channel remains in normal mode  
(assuming no change of state request on EN), the transmitter is disabled, the RXD pin reflects the LIN bus and  
the LIN bus pull-up termination remains on.  
9.3.9 Bus Stuck Dominant System Fault: False Wake-Up Lockout  
The TLIN2022A-Q1 contains logic to detect bus stuck dominant system faults and prevents the device from  
waking up falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus.  
If the bus is dominant, the wake-up logic is locked out until a valid recessive on the bus clearsthe bus stuck  
dominant, preventing excessive current use. 9-2 and 9-3 show the behavior of this protection.  
RXD  
EN  
LIN Bus  
tLINBUS  
< tLINBUS  
< tLINBUS  
9-2. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wake-up  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
RXD  
EN  
tLINBUS  
tLINBUS  
tLINBUS  
LIN Bus  
tCLEAR  
< tCLEAR  
9-3. Bus Fault: Entering Sleep Mode with Bus Stuck Dominant Fault, Clearing, and Wake-up  
9.3.10 Thermal Shutdown  
The LIN transmitter is protected by limiting the current; however if the junction temperature of the device  
exceeds the thermal shutdown threshold, the device puts the LIN transmitter into the recessive state. Once the  
over-temperature fault condition has been removed and the junction temperature has cooled beyond the  
hysteresis temperature, the transmitter is re-enabled, assuming the device remained in the normal operation  
mode. During this fault, the transceiver remains in normal mode (assuming no change of state request on EN),  
the transmitter is in recessive state, the RXD pin reflects the LIN bus and LIN bus pull-up termination remains  
on.  
9.3.11 Undervoltage on VSUP  
The TLIN2022A-Q1 contains a power on reset circuit to avoid false bus messages during undervoltage  
conditions when VSUP is less than UVSUP  
.
9.3.12 Unpowered Device and LIN Bus  
In automotive applications some LIN nodes in a system can be unpowered (ignition supplied) while others in the  
network remains powered by the battery. The TLIN2022A-Q1 has a low unpowered leakage current from the bus  
so an unpowered node does not affect the network or load it down.  
9.4 Device Functional Modes  
The TLIN2022A-Q1 has three functional modes of operation; normal, sleep, and standby. The next sections  
describe these modes as well as how the device moves between the different modes. 9-4 graphically shows  
the relationship while 9-1 shows the state of pins.  
9-1. Operating Modes  
LIN BUS  
TERMINATION  
MODE  
Sleep  
EN  
Low  
Low  
RXD  
Floating  
Low  
TRANSMITTER  
COMMENT  
Weak Current Pullup  
Off  
Off  
Wake up event detected,  
waiting on MCU to set EN  
Standby  
45 k(typical)  
45 k(typical)  
LIN Bus  
Data  
Normal  
High  
Off  
LIN transmission up to 20 kbps  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
Unpowered System  
VSUP < VSUP_UNDER  
VSUP < VSUP_UNDER  
VSUP > VSUP_UNDER  
EN = Low  
VSUP < VSUP_UNDER  
VSUP > VSUP_UNDER  
EN = High  
VSUP < VSUP_UNDER  
Standby Mode  
Driver: Off  
RXD: Low  
Termination: 45 k  
EN = High  
LIN Bus Wake up  
Normal Mode  
Driver: On  
RXD: LIN Bus Data  
Sleep Mode  
Driver: Off  
RXD: Floating  
Termination: Weak pullup  
EN = Low  
EN = High  
Termination: 45 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
9-4. Operating State Diagram  
9.4.1 Normal Mode  
If the EN1 or EN2 pin is high at power up, the channel powers up in normal mode. If EN1 or EN2 is low, the  
channel powers up in standby mode. The EN pin controls the mode of the channel. In normal operational mode,  
the receiver and transmitter are active and the LIN transmission up to the LIN specified maximum of 20 kbps is  
supported. The receiver detects the data stream on the LIN bus and outputs it on RXD for the LIN controller. A  
recessive signal on the LIN bus is a logic high and a dominant signal on the LIN bus is a logic low. The driver  
transmits input data from TXD to the LIN bus. Normal mode is entered as EN transitions high while the LIN  
channel is in sleep or standby mode for > tMODE_CHANGE plus tNOMINT  
.
9.4.2 Sleep Mode  
Sleep Mode is the power saving mode for the TLIN2022A-Q1. Even with extremely low current consumption in  
this mode, the LIN channel can still wake-up from LIN bus through a wake-up signal or if EN is set high for  
tMODE_CHANGE. The LIN bus is filtered to prevent false wake-up events. The wake-up events must be active for  
the respective time periods (tLINBUS).  
Sleep mode is entered by setting EN low for longer than tMODE_CHANGE  
While the channel is in sleep mode, the following conditions exist.  
.
The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if  
LIN is short circuited to ground). However, the weak current pull-up is active to prevent false wake-up events  
in case an external connection to the LIN bus is lost.  
The normal receiver is disabled.  
EN input and LIN wake-up receiver are active.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
9.4.3 Standby Mode  
This mode is entered whenever a wake-up event occurs through the LIN bus while the channel is in sleep mode.  
The LIN bus responder termination circuit is turned on when standby mode is entered. Standby mode is signaled  
through a low level on RXD. See Standby Mode Application Note for more application information.  
When EN is set high for longer than tMODE_CHANGE while the channel is in standby mode, the device returns to  
normal mode and the normal transmission paths from TXD to LIN bus and LIN bus to RXD are enabled.  
9.4.4 Wake-Up Events  
There are two ways to wake-up from sleep mode:  
Remote wake-up initiated by the falling edge of a recessive (high) to dominant (low) state transition on LIN  
bus where the dominant state is held for tLINBUS filter time. After this tLINBUS filter time has been met and a  
rising edge on the LIN bus going from dominant state to recessive state initiates a remote wake-up event,  
eliminating false wake-ups from disturbances on the LIN bus or if the bus is shorted to ground.  
Local wake-up through EN being set high for longer than tMODE_CHANGE  
.
9.4.4.1 Wake-Up Request (RXD)  
When the TLIN2022A-Q1 encounters a wake-up event from the LIN bus, RXD goes low and the channel  
transitions to standby mode until EN is reasserted high and the channel enters normal mode. Once the LIN  
channel enters normal mode, the RXD pin releases the wake-up request signal and the RXD pin then reflects  
the receiver output from the correponding LIN bus.  
9.4.4.2 Mode Transitions  
When any of the LIN channel of TLIN2022A-Q1 is transitioning between modes, the device needs the time,  
tMODE_CHANGE, to allow the change to fully propagate from the EN pin through the channel into the new state.  
When transitioning from sleep or standby mode to normal mode, the transition time is the sum of tMODE_CHANGE  
and tNOMINT  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
10 Application Information Disclaimer  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The TLIN2022A-Q1 can be used as both a responder node device and a commander node device in a LIN  
network. The device comes with the ability to support both remote wake-up request and local wake-up request.  
10.2 Typical Application  
The device comes with an integrated 45 kpull-up resistor and series diode for responder node applications.  
For commander node applications, an external 1 kpull-up resistor with series blocking diode can be used. 图  
10-1 shows the device being used in both commander mode and responder mode applications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN2022A-Q1  
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
COMMANDER NODE  
VBAT  
VSUP  
VREG  
VSUP  
VDD  
VSUP  
VDD  
NC NC NC  
11 12 14  
(4)  
Commander  
Node  
Pullup(3)  
1 kΩ  
EN1  
10  
VDD  
I/O  
2
VDD I/O  
MCU w/o  
pullup(2)  
LIN1  
MCU  
13  
1
3
220 pF  
RXD1  
TXD1  
TLIN2022A  
LIN Controller  
Or  
SCI/UART(1)  
VDD I/O  
LIN2  
MCU w/o  
pullup(2)  
9
220 pF  
4
7
RXD2  
TXD2  
EN2  
5
I/O  
GND  
6
8
NC  
RESPONDER NODE  
VBAT  
VSUP  
VREG  
VSUP  
VDD  
VSUP  
VDD  
NC NC NC  
11 12 14  
(4)  
EN1  
10  
VDD  
I/O  
2
VDD I/O  
MCU w/o  
pullup(2)  
LIN1  
MCU  
13  
220 pF  
1
3
RXD1  
TXD1  
TLIN2022A  
LIN Controller  
Or  
SCI/UART(1)  
VDD I/O  
LIN2  
MCU w/o  
pullup(2)  
9
220 pF  
4
7
RXD2  
TXD2  
EN2  
5
I/O  
GND  
6
8
NC  
A. If RXD on MCU or LIN responder has internal pullup; no external pullup resistor is needed.  
B. If RXD on MCU or LIN responder does not have an internal pullup requires external pullup resistor  
C. Commander node applications require and external 1 kpullup resistor and serial diode.  
D. Decoupling capacitor values are system dependent but usually have 100 nF, 1 µF and 10 µF  
10-1. Typical LIN Bus  
10.2.1 Design Requirements  
The RXD output structure is an open-drain output stage. This allows the TLIN2022A-Q1 to be used with 3.3-V  
and 5-V I/O processor. If the RXD pin of the processor does not have an integrated pull-up, an external pull-up  
resistor to the processor I/O supply voltage is required. The select external pull-up resistor value should be  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
between 1 kΩ to 10 kΩ, depending on supply used (See IOL in electrical characteristics). The VSUP pin of the  
device should be decoupled with a 100 nF capacitor by placing it close to the VSUP supply pin. The system  
should include additional decoupling on the VSUP line as needed per the application requirements.  
10.2.2 Detailed Design Procedures  
10.2.2.1 Normal Mode Application Note  
When using the TLIN2022A-Q1 in systems which are monitoring the RXD pin for a wake up request, special  
care should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition  
period between states as the receivers are switched. The application software should not look for an edge on the  
RXD pin indicating a wake up request until t when going from normal to sleep mode or tMODE_CHANGE plus  
tNOMINT when going from sleep or standby to normal mode. This is shown in 8-14.  
10.2.2.2 Standby Mode Application Note  
If the TLIN2022A-Q1 detects an undervoltage on VSUP the RXD pin transitions low, and signals to the software  
that the TLIN2022A-Q1 is in standby mode and should be returned to sleep mode for the lowest power state.  
10.2.2.3 TXD Dominant State Timeout Application Note  
The maximum dominant TXD time allowed by the TXD dominant state time out limits the minimum possible data  
rate of the device. The LIN protocol has different constraints for commander and responder applications thus  
there are different maximum consecutive dominant bits for each application case and thus different minimum  
data rates.  
10.2.3 Application Curves  
10-2 and 10-3 show the propagation delay from the TXD pin to the LIN pin for both dominant to recessive  
and recessive to dominant edges.  
10-2. Dominant to Recessive Propagation  
10-3. Recessive to Dominant Propagation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
Power Supply Recommendations  
The TLIN2022A-Q1 was designed to operate directly off a car battery, or any other DC supply ranging from 4 V  
to 48 V. A 100 nF decoupling capacitor should be placed as close to the VSUP pin of the device as possible. It is  
good practice for some applications with noisier supplies to include 1 μF and 10 μF decoupling capacitor.  
11 Layout  
In order for the PCB design to be successful, start with the design of the protection and filtering circuitry.  
Because ESD and EFT transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high  
frequency layout techniques must be applied during PCB design. Placement at the connector also prevents  
these noisy events from propagating further into the PCB and system.  
11.1 Layout Guidelines  
Pin 1, 4 (RXD1/2): The pin is an open-drain outputs and require an external pull-up resistor in the range of 1  
kand 10 kto function properly. If the microprocessor paired with the transceiver does not have an  
integrated pull-up, an external resistor should be placed between RXD and the regulated voltage supply for  
the microprocessor.  
Pin 2, 5 (EN1/2): EN is an input pin that is used to place the device in a low power sleep mode. If this feature  
is not used, the pin should be pulled high to the regulated voltage supply of the microprocessor through a  
series resistor, values between 1 kand 10 k. Additionally, a series resistor may be placed on the pin to  
limit current on the digital lines in the event of an over voltage fault.  
Pin 6 (NC): Not Connected.  
Pin 3, 7 (TXD1/2): The TXD pins are the transmitter input signals to the device from the processor. A series  
resistor can be placed to limit the input current to the device in the case of an over-voltage on this pin. A  
capacitor to ground can be placed close to the input pin of the device to filter noise.  
Pin 8 (GND): This is the ground connection for the device. This pin should be tied to the ground plane  
through a short trace with the use of two vias to limit total return inductance.  
Pin 9, 13 (LIN1/2): This pin connects to the LIN bus. For responder node applications, a 220 pF capacitor to  
ground is implemented. For commander node applications and additional series resistor, a blocking diode  
should be placed between the LIN pin and the VSUP pin. See 10-1.  
Pin 10 (VSUP): This is the supply pin for the device. A 100 nF decoupling capacitor should be placed as close  
to the device as possible.  
Pin 11, 12 and 14 (NC): Not Connected.  
Note  
All ground and power connections should be made as short as possible and use at least two vias to  
minimize the total loop inductance.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
11.2 Layout Example  
VDD  
VSUP  
RXD1  
NC 14  
1
2
3
4
5
6
7
RXD1  
Only needed for  
the Commander  
node  
U1  
VDD  
LIN1  
R2  
EN1  
LIN1 13  
EN1  
TXD1  
RXD2  
EN2  
GND  
GND  
R4  
TXD1  
RXD2  
EN2  
NC  
12  
VDD  
11  
NC  
VDD  
VSUP  
R6  
10  
C5  
VSUP  
LIN2  
GND  
GND  
Only needed for  
the Commander  
node  
D1  
LIN2  
NC  
9
GND  
GND  
TXD2  
8
TXD2  
R8  
GND  
11-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TLIN2022A-Q1  
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
12 Device and Documentation Support  
This device will conform to the following LIN standards. The core of what is needed is covered within this system  
spec, however reference should be made to these standards and any discrepancies pointed out and discussed.  
This document should provide all the basics of what is needed.  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
LIN Standards:  
ISO/DIS 17987-1: Road vehicles -- Local Interconnect Network (LIN) -- Part 1: General information and  
use case definition  
ISO/DIS 17987-4: Road vehicles -- Local Interconnect Network (LIN) -- Part 4: Electrical Physical Layer  
(EPL) specification 12V/24V  
SAEJ2602-1: LIN Network for Vehicle Applications  
LIN2.0, LIN2.1, LIN2.2 and LIN2.2A specification  
EMC requirements:  
SAEJ2962-1  
ISO 10605: Road vehicles - Test methods for electrical disturbances from electrostatic discharge  
ISO 11452-4:2011: Road vehicles - Component test methods for electrical disturbances from narrowband  
radiated electromagnetic energy - Part 4: Harness excitation methods  
ISO 7637-1:2015: Road vehicles - Electrical disturbances from conduction and coupling - Part 1:  
Definitions and general considerations  
ISO 7637-3: Road vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical  
transient transmission by capacitive and inductive coupling via lines other than supply lines  
IEC 62132-4:2006: Integrated circuits - Measurement of electromagnetic immunity 150 kHz to 1 GHz -  
Part 4: Direct RF power injection method  
IEC 61000-4-2  
IEC 61967-4  
CISPR25  
Conformance Test requirements:  
ISO/DIS 17987-7: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer  
(EPL) conformance test specification  
SAEJ2602-2: LIN Network for Vehicle Applications Conformance Test  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TLIN2022A-Q1  
 
 
 
 
 
TLIN2022A-Q1  
ZHCSNE3 JUNE 2021  
www.ti.com.cn  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TLIN2022A-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN2022ADMTRQ1  
TLIN2022ADRQ1  
ACTIVE  
ACTIVE  
VSON  
SOIC  
DMT  
D
14  
14  
3000 RoHS & Green  
2500 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
T022A  
TL022A  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Jun-2021  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DMT 14  
3 x 4.5, 0.65 mm pitch  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225088/A  
www.ti.com  
PACKAGE OUTLINE  
DMT0014A  
VSON - 0.9 mm max height  
SCALE 3.200  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
7
8
A
A
2X  
3.9  
15  
SYMM  
4.2 0.1  
14  
1
12X 0.65  
0.35  
0.25  
14X  
0.45  
0.35  
14X  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
4223033/B 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMT0014A  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
14X (0.6)  
14X (0.3)  
SYMM  
1
14  
2X  
(1.85)  
12X (0.65)  
SYMM  
15  
(4.2)  
(0.69)  
TYP  
(
0.2) VIA  
TYP  
8
7
(R0.05) TYP  
(0.55) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223033/B 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMT0014A  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.47)  
15  
14X (0.6)  
1
14  
14X (0.3)  
(1.18)  
12X (0.65)  
SYMM  
(1.38)  
(R0.05) TYP  
METAL  
TYP  
8
7
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15  
77.4% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4223033/B 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TLIN2024A-Q1

具有显性状态的汽车类四路本地互连网络 (LIN) 收发器
TI

TLIN2024ARGYRQ1

具有显性状态的汽车类四路本地互连网络 (LIN) 收发器 | RGY | 24 | -40 to 125
TI

TLIN2027-Q1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器
TI

TLIN2027DRBRQ1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器 | DRB | 8 | -40 to 125
TI

TLIN2027DRQ1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器 | D | 8 | -40 to 125
TI

TLIN2029A-Q1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029A-Q1_V01

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029ADRBRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029ADRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029AMDRBRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2441-Q1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器
TI

TLIN24413DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI