TLV5624IDRG4 [TI]

2.7-V TO 5.5-V LOW POWER 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN; ? 2.7 V至5.5 V低功耗的8位数字 - 模拟转换器,具有内部基准和掉电
TLV5624IDRG4
型号: TLV5624IDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7-V TO 5.5-V LOW POWER 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
? 2.7 V至5.5 V低功耗的8位数字 - 模拟转换器,具有内部基准和掉电

转换器 数模转换器 光电二极管
文件: 总22页 (文件大小:941K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃꢄ ꢅꢆ  
ꢅ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂ ꢍ ꢎꢀ ꢍꢎ ꢋ ꢑꢀ ꢗ ꢑꢕ ꢀꢍ ꢎꢕꢔꢁ ꢎꢍꢘ ꢍ ꢎꢍꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
D OR DGK PACKAGE  
(TOP VIEW)  
features  
D
D
D
8-Bit Voltage Output DAC  
DIN  
V
DD  
OUT  
1
2
3
4
8
7
6
5
Programmable Internal Reference  
SCLK  
CS  
Programmable Settling Time:  
1 µs in Fast Mode,  
REF  
FS  
AGND  
3.5 µs in Slow Mode  
D
Compatible With TMS320 and SPISerial  
Ports  
D
Differential Nonlinearity . . . <0.2 LSB  
Monotonic Over Temperature  
D
applications  
D
D
D
D
D
Digital Servo Control Loops  
Digital Offset and Gain Adjustment  
Industrial Process Control  
Machine and Motion Control Devices  
Mass Storage Devices  
description  
The TLV5624 is a 8-bit voltage output DAC with a flexible 4-wire serial interface. The serial interface allows  
glueless interface to TMS320 and SPI, QSPI, and Microwireserial ports. It is programmed with a 16-bit  
serial string containing 4 control and 8 data bits.  
The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The programmable settling  
time of the DAC allows the designer to optimize speed vs power dissipation. With its on-chip programmable  
precision voltage reference, the TLV5624 simplifies overall system design.  
Because of its ability to source up to 1 mA, the reference can also be used as a system reference. Implemented  
with a CMOS process, the device is designed for single supply operation from 2.7 V to 5.5 V. It is available in  
an 8-pin SOIC and 8-pin MSOP package to reduce board space in standard commercial and industrial  
temperature ranges.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SOIC  
(D)  
MSOP  
(DGK)  
0°C to 70°C  
TLV5624CD  
TLV5624ID  
TLV5624CDGK  
TLV5624IDGK  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SPI and QSPI are trademarks of Motorola, Inc.  
Microwire is a trademark of National Semiconductor Corporation.  
ꢀꢥ  
Copyright 2002−2004, Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢮ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢇ  
1
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
ꢅꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓ ꢑꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢋ ꢑ ꢀꢗ ꢑ ꢕꢀ ꢍ ꢎꢕꢔ ꢁ ꢎꢍ ꢘꢍ ꢎꢍ ꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
functional block diagram  
REF  
PGA With  
Output Enable  
Voltage  
Bandgap  
Power  
and Speed  
Control  
Power-On  
Reset  
2
2
2-Bit  
Control  
Latch  
DIN  
Serial  
SCLK  
CS  
Interface  
and  
Control  
8
8
x2  
OUT  
8-Bit  
DAC  
Latch  
FS  
Terminal Functions  
TERMINAL  
I/O/P  
DESCRIPTION  
NAME  
NO.  
5
AGND  
CS  
P
I
Ground  
3
Chip select. Digital input active low, used to enable/disable inputs  
Digital serial data input  
DIN  
1
I
FS  
4
I
Frame sync input  
OUT  
REF  
SCLK  
7
O
I/O  
I
DAC A analog voltage output  
Analog reference voltage input/output  
Digital serial clock input  
6
2
V
DD  
8
P
Positive power supply  
2
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢆ  
ꢅ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂ ꢍ ꢎꢀ ꢍꢎ ꢋ ꢑꢀ ꢗ ꢑꢕ ꢀꢍ ꢎꢕꢔꢁ ꢎꢍꢘ ꢍ ꢎꢍꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (V  
to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Operating free-air temperature range, T : TLV5624C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV5624I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
4.5  
2.7  
0.55  
2
NOM  
MAX  
5.5  
3.3  
2
UNIT  
V
V
= 5 V  
= 3 V  
5
3
DD  
Supply voltage, V  
DD  
V
V
DD  
Power on reset, POR  
DV  
DV  
DV  
DV  
= 2.7 V  
DD  
DD  
DD  
DD  
High-level digital input voltage, V  
V
V
IH  
= 5.5 V  
= 2.7 V  
= 5.5 V  
2.4  
0.6  
1
Low-level digital input voltage, V  
IL  
Reference voltage, V to REF terminal  
ref  
V
= 5 V (see Note 1)  
= 3 V (see Note 1)  
AGND  
AGND  
2
2.048  
1.024  
V
V
−1.5  
1.5  
V
V
DD  
DD  
DD  
Reference voltage, V to REF terminal  
ref  
V
DD  
Load resistance, R  
kΩ  
pF  
L
Load capacitance, C  
100  
20  
L
Clock frequency, f  
MHz  
CLK  
TLV5624C  
TLV5624I  
0
70  
Operating free-air temperature, T  
°C  
A
−40  
85  
NOTE 1: Due to the x2 output buffer, a reference input voltage (V −0.4 V)/2 causes clipping of the transfer function. The output buffer of the  
DD  
internal reference must be disabled, if an external reference is used.  
3
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
ꢅꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓ ꢑꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢋ ꢑ ꢀꢗ ꢑ ꢕꢀ ꢍ ꢎꢕꢔ ꢁ ꢎꢍ ꢘꢍ ꢎꢍ ꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
No load,  
Fast  
2.3  
3.3  
All inputs = AGND or V  
DAC latch = 0x800  
,
I
Power supply current  
mA  
DD  
DD  
Slow  
1.5  
1.9  
10  
Power down supply current  
Power supply rejection ratio  
See Figure 8  
0.01  
−65  
−65  
µA  
Zero scale, See Note 2  
Full scale, See Note 3  
PSRR  
dB  
NOTES: 2. Power supply rejection ratio at zero scale is measured by varying V  
and is given by:  
DD  
PSRR = 20 log [(E (V max) − E (V min))/V max]  
ZS DD ZS DD DD  
3. Power supply rejection ratio at full scale is measured by varying V  
and is given by:  
DD  
PSRR = 20 log [(E (V max) − E (V min))/V max]  
DD DD DD  
G
G
static DAC specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bits  
Resolution  
8
INL  
Integral nonlinearity, end point adjusted  
Differential nonlinearity  
See Note 4  
See Note 5  
See Note 6  
See Note 7  
0.3  
0.5  
0.2  
20  
LSB  
DNL  
0.07  
LSB  
E
Zero-scale error (offset error at zero scale)  
TC Zero-scale-error temperature coefficient  
mV  
ZS  
ZS  
E
10  
ppm/°C  
% full  
scale V  
E
G
Gain error  
See Note 8  
0.6  
E
G
T
C
Gain error temperature coefficient  
See Note 9  
10  
ppm/°C  
NOTES: 4. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output  
from the line between zero and full scale excluding the effects of zero code and full-scale errors. Tested from code 10 to code 255.  
5. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1  
LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains  
constant) as a change in the digital input code. Tested from code 10 to code 255.  
6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.  
6
7. Zero-scale-error temperature coefficient is given by: E  
TC = [E  
(T  
) − E  
(T  
)]/V × 10 /(T  
ref max  
− T ).  
min  
ZS  
ZS max  
ZS min  
8. Gain error is the deviation from the ideal output (2V − 1 LSB) with an output load of 10 kexcluding the effects of the zero-error.  
ref  
G
6
9. Gain temperature coefficient is given by: E TC = [E (T  
) − E (T  
)]/V × 10 /(T  
− T ).  
min  
G
max  
G
min  
ref  
max  
output specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.10  
MAX  
UNIT  
V
O
Output voltage  
R
= 10 kΩ  
0
V
DD  
−0.4  
V
L
% full  
scale V  
Output load regulation accuracy  
V
O
= 4.096 V, 2.048 V  
R = 2 kΩ  
L
0.25  
reference pin configured as output (REF)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
Low reference voltage  
High reference voltage  
Output source current  
Output sink current  
1.003 1.024 1.045  
ref(OUTL)  
V
V
DD  
> 4.75 V  
2.027 2.048 2.069  
V
ref(OUTH)  
I
1
mA  
mA  
ωF  
dB  
ref(source)  
ref(sink)  
I
−1  
Load capacitance  
1
10  
PSRR  
Power supply rejection ratio  
−65  
4
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢆ  
ꢅ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂ ꢍ ꢎꢀ ꢍꢎ ꢋ ꢑꢀ ꢗ ꢑꢕ ꢀꢍ ꢎꢕꢔꢁ ꢎꢍꢘ ꢍ ꢎꢍꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
(Continued)  
reference pin configured as input (REF)  
PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
0
V
DD−1.5  
R
C
Input resistance  
10  
5
MΩ  
pF  
I
I
Input capacitance  
Fast  
1.3  
MHz  
Reference input bandwidth  
Reference feedthrough  
REF = 0.2 V + 1.024 V dc  
pp  
Slow  
525  
80  
kHz  
dB  
REF = 1 V at 1 kHz + 1.024 V dc (see Note 10)  
pp  
NOTE 10: Reference feedthrough is measured at the DAC output with an input code = 0x000.  
digital inputs  
PARAMETER  
High-level digital input current  
TEST CONDITIONS  
V = V  
MIN  
TYP  
MAX  
UNIT  
µA  
I
I
1
IH  
I
DD  
Low-level digital input current  
Input capacitance  
V = 0 V  
I
−1  
µA  
IL  
C
8
pF  
i
analog output dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
3
UNIT  
Fast  
Slow  
Fast  
Slow  
Fast  
Slow  
R
= 10 k,  
See Note 11  
C
C
C
= 100 pF,  
= 100 pF,  
= 100 pF,  
L
L
t
t
Output settling time, full scale  
Output settling time, code to code  
Slew rate  
µs  
s(FS)  
3.5  
0.5  
1
7
1.5  
2
R
= 10 k,  
See Note 12  
L
L
µs  
s(CC)  
8
R
= 10 k,  
L
L
SR  
V/µs  
See Note 13  
1.5  
DIN = 0 to 1,  
CS = V  
DD  
f
= 100 kHz,  
CLK  
Glitch energy  
5
nV−S  
SNR  
Signal-to-noise ratio  
53  
48  
57  
47  
S/(N+D) Signal-to-noise + distortion  
f
R
= 480 kSPS,  
f
C
= 1 kHz,  
= 100 pF  
L
s
out  
dB  
= 10 k,  
THD  
Total harmonic distortion  
−50  
62  
−48  
L
Spurious free dynamic range  
50  
NOTES: 11. Settling time is the time for the output signal to remain within 0.5 LSB of the final measured value for a digital input code change  
of 0x020 to 0xFDFand 0xFDF to 0x020 respectively. Not tested, assured by design.  
12. Settling time is the time for the output signal to remain within 0.5 LSB of the final measured value for a digital input code change  
of one count. Not tested, assured by design.  
13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% full-scale voltage.  
5
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
ꢅꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓ ꢑꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢋ ꢑ ꢀꢗ ꢑ ꢕꢀ ꢍ ꢎꢕꢔ ꢁ ꢎꢍ ꢘꢍ ꢎꢍ ꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
digital input timing requirements  
MIN NOM  
MAX  
UNIT  
ns  
t
t
Setup time, CS low before FS falling edge  
Setup time, FS low before first negative SCLK edge  
10  
8
su(CS−FS)  
ns  
su(FS-CK)  
th  
Setup time, 16 negative SCLK edge after FS low on which bit D0 is sampled before rising  
edge of FS  
t
10  
ns  
su(C16-FS)  
su(C16-CS)  
th  
Setup time, 16 positive SCLK edge (first positive after D0 is sampled) before CS rising  
th  
t
edge. If FS is used instead of 16 positive edge to update DAC, then setup time between  
FS rising edge and CS rising edge.  
10  
ns  
t
t
t
t
t
SCLK pulse duration high  
25  
25  
8
ns  
ns  
ns  
ns  
ns  
wH  
SCLK pulse duration low  
wL  
Setup time, data ready before SCLK falling edge  
Hold time, data held valid after SCLK falling edge  
FS pulse duration high  
su(D)  
H(D)  
wH(FS)  
5
25  
PARAMETER MEASUREMENT INFORMATION  
t
t
wL  
wH  
SCLK  
DIN  
X
X
X
1
2
3
4
5 15  
16  
t
t
su(D) h(D)  
D15  
D14  
D13  
D12  
D1  
D0  
X
t
su(C16-CS)  
t
su(CS-FS)  
CS  
t
t
t
wH(FS)  
su(FS-CK)  
su(C16-FS)  
FS  
Figure 1. Timing Diagram  
6
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢆ  
ꢅ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂ ꢍ ꢎꢀ ꢍꢎ ꢋ ꢑꢀ ꢗ ꢑꢕ ꢀꢍ ꢎꢕꢔꢁ ꢎꢍꢘ ꢍ ꢎꢍꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
2.071  
2.0705  
2.07  
4.135  
4.134  
4.133  
4.132  
4.131  
4.13  
V
DD  
= 3 V, REF = Int. 1 V, Input Code = 255  
V
DD  
= 5 V, REF = Int. 2 V, Input Code = 255  
Fast  
2.0695  
2.0698  
2.0685  
2.068  
Fast  
Slow  
Slow  
2.0675  
2.067  
2.0665  
2.066  
4.129  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Source Current − mA  
Source Current − mA  
Figure 2  
Figure 3  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
LOAD CURRENT  
3
2.5  
2
5
V
= 3 V, REF = Int. 1 V,  
Input Code = 0  
DD  
V
= 5 V, REF = Int. 2 V,  
DD  
Input Code = 0  
4.5  
4
3.5  
3
Fast  
Fast  
1.5  
1
2.5  
2
1.5  
1
0.5  
0
0.5  
0
Slow  
3
Slow  
3.5  
0
0.5  
1
1.5  
2
2.5  
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
4
Sink Current − mA  
Sink Current − mA  
Figure 4  
Figure 5  
7
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
ꢅꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓ ꢑꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢋ ꢑ ꢀꢗ ꢑ ꢕꢀ ꢍ ꢎꢕꢔ ꢁ ꢎꢍ ꢘꢍ ꢎꢍ ꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
TEMPERATURE  
TEMPERATURE  
3
2.5  
2
3
2.5  
2
V
= 5 V, REF = 2 V,  
V
= 3 V, REF = 1 V,  
DD  
Input Code = 255  
DD  
Input Code = 255  
Fast Mode  
Fast Mode  
Slow Mode  
1.5  
1.5  
Slow Mode  
1
1
0.5  
0.5  
−4030 −2010 0 10 20 30 40 50 60 70 80 90  
−40−30−20 −10 0 10 20 30 40 50 60 70  
90  
80  
t − Temperature − °C  
t − Temperature − °C  
Figure 6  
Figure 7  
POWER DOWN SUPPLY CURRENT  
TOTAL HARMONIC DISTORTION AND NOISE  
vs  
TIME  
vs  
FREQUENCY  
2
1.8  
1.6  
1.4  
1.2  
1
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
V
= 5 V  
DD  
V
ref  
= 1 V dc + 1 V p/p Sinewave  
Output Full Scale  
0.8  
0.6  
0.4  
Slow Mode  
Fast Mode  
0.2  
0
−90  
−100  
0
10  
20  
30  
40  
50  
60  
70  
80  
100  
1000  
10000  
100000  
t − Time − µs  
f − Frequency − Hz  
Figure 8  
Figure 9  
8
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢆ  
ꢔꢁ  
ꢊꢓ  
ꢊꢋ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
vs  
FREQUENCY  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
V
= 5 V  
DD  
V
ref  
= 1 V dc + 1 V p/p Sinewave  
Output Full Scale  
Slow Mode  
Fast Mode  
−90  
−100  
100  
1000  
10000  
100000  
f − Frequency − Hz  
Figure 10  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.20  
0.15  
0.10  
0.05  
−0.00  
−0.05  
−0.10  
−0.15  
−0.20  
0
32  
64  
96  
128  
160  
192  
224  
256  
Digital Output Code  
Figure 11  
9
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
ꢅꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓ ꢑꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢋ ꢑ ꢀꢗ ꢑ ꢕꢀ ꢍ ꢎꢕꢔ ꢁ ꢎꢍ ꢘꢍ ꢎꢍ ꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.50  
0.25  
0.00  
−0.25  
−0.50  
0
32  
64  
96  
128  
160  
192  
224  
256  
Digital Output Code  
Figure 12  
APPLICATION INFORMATION  
general function  
The TLV5624 is an 8-bit, single supply DAC, based on a resistor string architecture. It consists of a serial  
interface, a speed and power-down control logic, a programmable internal reference, a resistor string, and a  
rail-to-rail output buffer.  
The output voltage (full scale determined by reference) is given by:  
CODE  
2 REF  
[V]  
n
2
n−1  
where REF is the reference voltage and CODE is the digital input value within the range 0 to 2 , where  
10  
n = 8 (bits). The 16-bit word, consisting of control bits and a new DAC value, is illustrated in the data format  
section. A power on reset initially resets the internal latches to a defined state (all bits zero).  
serial interface  
The device has to be enabled with CS set to low. A falling edge of FS starts shifting the data bit-per-bit (starting  
with the MSB) to the internal register on high-low transitions of SCLK. After 16 bits have been transferred or  
FS rises, the content of the shift register is moved to the DAC latch, which updates the voltage output to the new  
level.  
The serial interface of the TLV5624 can be used in two basic modes:  
D
D
Four wire (with chip select)  
Three wire (without chip select)  
Using chip select (four-wire mode), it is possible to have more than one device connected to the serial port of  
the data source (DSP or microcontroller). Figure 13 shows an example with two TLV5624s connected directly  
to a TMS320 DSP.  
10  
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢆ  
ꢅ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂ ꢍ ꢎꢀ ꢍꢎ ꢋ ꢑꢀ ꢗ ꢑꢕ ꢀꢍ ꢎꢕꢔꢁ ꢎꢍꢘ ꢍ ꢎꢍꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
serial interface (continued)  
TLV5624  
TLV5624  
CS  
FS DIN SCLK  
CS FS DIN SCLK  
TMS320  
XF0  
DSP  
XF1  
FSX  
DX  
CLKX  
Figure 13. TMS320 Interface  
If there is no need to have more than one device on the serial bus, then CS can be tied low. Figure 14 shows  
an example of how to connect the TLV5624 to TMS320, SPIor Microwireusing only three pins.  
TMS320  
DSP  
TLV5624  
SPI  
TLV5624  
Microwire  
I/O  
TLV5624  
FS  
FS  
FS  
FSX  
DX  
I/O  
MOSI  
SCK  
DIN  
DIN  
DIN  
SO  
SK  
CLKX  
SCLK  
SCLK  
SCLK  
CS  
CS  
CS  
Figure 14. Three-Wire Interface  
Notes on SPIand Microwire: Before the controller starts the data transfer, the software has to generate a  
falling edge on the I/O pin connected to FS. If the word width is 8 bits (SPIand Microwire), two write  
operations must be performed to program the TLV5624. After the write operation(s), the DAC output is updated  
th  
automatically on the next positive clock edge following the 16 falling clock edge.  
serial clock frequency and update rate  
The maximum serial clock frequency is given by:  
1
f
+
+ 20 MHz  
sclkmax  
t
) t  
whmin  
wlmin  
The maximum update rate is:  
1
f
+
+ 1.25 MHz  
updatemax  
16 ǒt  
Ǔ
wlmin  
) t  
whmin  
Note that the maximum update rate is just a theoretical value for the serial interface, as the settling time of the  
TLV5624 has to be considered, too.  
11  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
ꢅꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓ ꢑꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢋ ꢑ ꢀꢗ ꢑ ꢕꢀ ꢍ ꢎꢕꢔ ꢁ ꢎꢍ ꢘꢍ ꢎꢍ ꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
data format  
The 16-bit data word for the TLV5624 consists of two parts:  
D
D
Program bits  
New data  
(D15..D12)  
(D11..D0)  
D15  
R1  
D14  
D13  
D12  
R0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
SPD  
PWR  
8 Data bits  
SPD: Speed control bit  
PWR: Power control bit  
1 fast mode  
1 power down  
0 slow mode  
0 normal operation  
The following table lists the possible combination of the register select bits:  
register select bits  
R1  
0
R0  
0
REGISTER  
Write data to DAC  
Reserved  
0
1
1
0
Reserved  
1
1
Write data to control register  
The meaning of the 12 data bits depends on the selected register. For the DAC register, bits D11...D4 determine  
the new DAC output value:  
data bits: DAC  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC Value  
If the control register is selected, then D1, D0 of the 12 data bits are used to program the reference voltage:  
data bits: CONTROL  
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
D0  
REF1  
REF2  
X: don’t care  
REF1 and REF0 determine the reference source and, if internal reference is selected, the reference voltage.  
reference bits  
REF1  
REF0  
REFERENCE  
External  
0
0
1
1
0
1
0
1
1.024 V  
2.048 V  
External  
NOTE: A 0.1µF bypass capacitor must be installed on  
the reference pin (pin 6). If internal reference is used a  
10 µF capacitor must also be installed for reference  
voltage stability.  
CAUTION:  
If external reference voltage is applied to the REF pin, external reference MUST be selected.  
12  
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢆ  
ꢅ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂ ꢍ ꢎꢀ ꢍꢎ ꢋ ꢑꢀ ꢗ ꢑꢕ ꢀꢍ ꢎꢕꢔꢁ ꢎꢍꢘ ꢍ ꢎꢍꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
Example:  
D
Set DAC output, select fast mode, select internal reference at 2.048 V:  
1. Set reference voltage to 2.048 V (CONTROL register):  
D15  
1
D14  
1
D13  
0
D12  
1
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
0
2. Write new DAC value and update DAC output:  
D15  
0
D14  
1
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC output value  
The DAC output is updated on the rising clock edge after D0 is sampled.  
To output data consecutively using the same DAC configuration, it is not necessary to program the CONTROL  
register again.  
linearity, offset, and gain error using single ended supplies  
When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With  
a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage  
may not change with the first code, depending on the magnitude of the offset voltage.  
The output amplifier attempts to drive the output to a negative voltage. However, because the most negative  
supply rail is ground, the output cannot drive below ground and clamps the output at 0 V.  
The output voltage then remains at zero until the input code value produces a sufficient positive output voltage  
to overcome the negative offset voltage, resulting in the transfer function shown in Figure 15.  
Output  
Voltage  
0 V  
DAC Code  
Negative  
Offset  
Figure 15. Effect of Negative Offset (Single Supply)  
This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the  
dotted line if the output buffer could drive below the ground rail.  
For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code after offset and full  
scale are adjusted out or accounted for in some way. However, single supply operation does not allow for  
adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity is measured  
between full-scale code and the lowest code that produces a positive output voltage.  
13  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ  
ꢅꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢉꢐꢑ ꢀ ꢒꢑ ꢓ ꢑꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢋ ꢑ ꢀꢗ ꢑ ꢕꢀ ꢍ ꢎꢕꢔ ꢁ ꢎꢍ ꢘꢍ ꢎꢍ ꢕꢖꢍ ꢔꢕꢒ ꢌꢊ ꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS235B − JULY 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
power-supply bypassing and ground management  
Printed-circuit boards that use separate analog and digital ground planes offer the best system performance.  
Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected  
together at the low-impedance power-supply source. The best ground connection may be achieved by  
connecting the DAC AGND terminal to the system analog ground plane, making sure that analog ground  
currents are well managed and there are negligible voltage drops across the ground plane.  
A 0.1-µF ceramic-capacitor bypass should be connected between V and AGND and mounted with short leads  
DD  
as close as possible to the device. Use of ferrite beads may further isolate the system analog supply from the  
digital power supply.  
Figure 16 shows the ground plane layout and bypassing technique.  
Analog Ground Plane  
1
2
3
4
8
7
6
5
0.1 µF  
Figure 16. Power-Supply Bypassing  
definitions of specifications and terminology  
integral nonlinearity (INL)  
The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum  
deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale  
errors.  
differential nonlinearity (DNL)  
The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the  
measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage  
changes in the same direction (or remains constant) as a change in the digital input code.  
zero-scale error (E  
)
ZS  
Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0.  
gain error (E )  
G
Gain error is the error in slope of the DAC transfer function.  
total harmonic distortion (THD)  
THD is the ratio of the rms value of the first six harmonic components to the value of the fundamental signal.  
The value for THD is expressed in decibels.  
signal-to-noise ratio + distortion (S/N+D)  
S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below  
the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels.  
spurious free dynamic range (SFDR)  
Spurious free dynamic range is the difference between the rms value of the output signal and the rms value of  
the largest spurious signal within a specified bandwidth. The value for SFDR is expressed in decibels.  
14  
WWW.TI.COM  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
TLV5624CD  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
5624C  
TLV5624CDG4  
TLV5624CDGK  
TLV5624CDGKG4  
TLV5624CDGKR  
TLV5624CDGKRG4  
TLV5624ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
75  
80  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
0 to 70  
5624C  
ADR  
ADR  
ADR  
ADR  
5624I  
5624I  
ADS  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
0 to 70  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
0 to 70  
2500  
2500  
75  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
0 to 70  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLV5624IDG4  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TLV5624IDGK  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
TLV5624IDGKG4  
TLV5624IDGKR  
TLV5624IDGKRG4  
TLV5624IDR  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
ADS  
2500  
2500  
2500  
2500  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
ADS  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
ADS  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
5624I  
5624I  
TLV5624IDRG4  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV5624CDGKR  
TLV5624IDGKR  
TLV5624IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
3.4  
3.4  
5.2  
1.4  
1.4  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV5624CDGKR  
TLV5624IDGKR  
TLV5624IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
2500  
2500  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLV5625

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625CD

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 
TI

TLV5625CDG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 
TI

TLV5625CDR

暂无描述
TI

TLV5625CDRG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625D

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625ID

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 
TI

TLV5625IDG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625IDR

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625IDRG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5626

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626CD

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI