TLV61046A [TI]

具有功率二极管和隔离开关的 28V 输出电压升压转换器;
TLV61046A
型号: TLV61046A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有功率二极管和隔离开关的 28V 输出电压升压转换器

升压转换器 开关 二极管
文件: 总27页 (文件大小:2159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
具有功率二极管和隔离开关TLV61046A 28V 输出电压升压转换器  
1 特性  
3 说明  
• 输入电压范围1.8V 5.5V启动后低1.6V  
• 输出电压高28V  
• 集成式功率二极管和隔离开关  
• 开关电流980mA典型值)  
• 输入电压3.6V、输出电压12V 效率高达  
85%  
TLV61046A 一款高度集成的升压转换器为  
PMOLED 面板、LCD 偏置电源和传感器模块等应用设  
计。TLV61046A 集成了 30V 电源开关、输入至输出的  
隔离开关以及整流器二极管。该器件可将来自一节锂离  
子电池或两节碱性电池串联的输入电压转换成高达  
28V 的输出电压。  
±2.5% 的输出电压精度  
• 在轻负载状态下进入节能工作模式  
• 内7ms 软启动时间  
• 在关断期间真正断开输入与输出之间的连接  
• 输出短路保护  
• 输出过压保护  
TLV61046A 的工作开关频率为 1.0MHz。该器件支持  
使用小型外部组件。通过将 TLV61046A FB 引脚和  
VIN 引脚相连可将其默认内部输出电压设置12V。  
因此只需要三个外部组件即可获得 12V 输出电压。  
TLV61046A 开关限流典型值为 980mA它具有  
7ms 置软启动时间而能够降低浪涌电流。  
TLV61046A 处于关断模式时隔离开关会将输出与输  
入断开以最大限度降低泄漏电流。TLV61046A 还具有  
输出短路保护、输出过压保护和热关断功能。  
• 热关断保护  
3mm × 3mm SOT23-6 封装  
• 使TLV61046A 并借WEBENCH® Power  
Designer 创建定制设计方案  
TLV61046A 6 3mm x 3mm SOT23-6 封装。  
2 应用  
器件信息(1)  
PMOLED 电源  
LCD 面板  
封装尺寸标称值)  
器件型号  
封装  
TLV61046A  
SOT23-6 (6)  
2.9mm x 1.6mm  
可穿戴设备  
便携式医疗设备  
• 传感器电源  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
L1  
1.8 V ~ 5.5 V  
C1  
VIN  
SW  
4.5 V ~ 28 V  
GND  
VOUT  
C2  
ON  
R1  
OFF  
FB  
EN  
R2  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD82  
 
 
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation.................................. 11  
8.1 Application Information..............................................11  
8.2 Typical Application - 12-V Output Boost Converter...11  
8.3 System Examples..................................................... 16  
9 Power Supply Recommendations................................17  
10 Layout...........................................................................18  
10.1 Layout Guidelines................................................... 18  
10.2 Layout Example...................................................... 18  
11 Device and Documentation Support..........................19  
11.1 Device Support........................................................19  
11.2 接收文档更新通知................................................... 19  
11.3 支持资源..................................................................19  
11.4 Trademarks............................................................. 19  
11.5 静电放电警告...........................................................19  
11.6 术语表..................................................................... 19  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description........................................................8  
7.1 Overview.....................................................................8  
7.2 Functional Block Diagram...........................................8  
7.3 Feature Description.....................................................8  
7.4 Device Functional Modes............................................9  
Information.................................................................... 19  
4 Revision History  
Changes from Revision A (April 2017) to Revision B (February 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1  
• 更正了语法和计算格式........................................................................................................................................1  
• 添加WEBENCH 链接..................................................................................................................................... 1  
Changes from Revision * (April 2017) to Revision A (April 2017)  
Page  
• 已更改为“量产数据”........................................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV61046A  
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
SW  
GND  
FB  
VIN  
VOUT  
EN  
5-1. DBV Package 6-Pin SOT23 Top View  
5-1. Pin Functions  
PIN  
NUMBER  
TYPE  
DESCRIPTION  
NAME  
SW  
1
2
PWR The switch pin of the converter. It is connected to the drain of the internal power MOSFET.  
PWR Ground  
GND  
Voltage feedback of adjustable output voltage. Connected to the center tap of a resistor divider to  
FB  
EN  
3
4
I
I
program the output voltage. When it is connected to the VIN pin, the output voltage is set to 12 V by an  
internal feedback.  
Enable logic input. Logic high voltage enables the device. Logic low voltage disables the device and  
turns it into shutdown mode.  
VOUT  
VIN  
5
6
PWR Output of the boost converter  
IC power supply input  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV61046A  
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
40  
65  
MAX  
6
UNIT  
V
VIN, EN, FB  
Voltage range at terminals (2)  
SW, VOUT  
32  
V
Operating junction temperature range, TJ  
Storage temperature range, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(2)  
±2000  
V
(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(3)  
±500  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
in to the device.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
TYP  
MAX UNIT  
VIN  
VOUT  
L
Input voltage range  
5.5  
28  
V
V
Output voltage range  
3.3  
Effective inductance range  
Effective input capacitance range  
Effective output capacitance range  
Operating junction temperature  
2.2×0.7  
0.22  
10 22×1.3  
1.0  
µH  
µF  
µF  
°C  
CIN  
COUT  
TJ  
0.22  
1.0  
10  
125  
40  
6.4 Thermal Information  
TLV61046A  
DBV (SOT23)  
6 PINS  
177.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
RθJC(top)  
RθJB  
120.6  
Junction-to-board thermal resistance  
33.2  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
21.5  
ψJT  
32.6  
ψJB  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV61046A  
 
 
 
 
 
 
 
 
 
 
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
TA = 40°C to 85°C, VIN = 3.6 V and VOUT = 12 V. Typical values are at TA = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
1.8  
5.5  
1.8  
1.6  
V
V
VIN rising  
VIN falling  
1.75  
1.55  
200  
VIN_UVLO  
Under voltage lockout threshold  
VIN_HYS  
IQ_VIN  
VIN UVLO hysteresis  
mV  
µA  
µA  
IC enabled, no load, no switching, VIN = 1.8 V to 5.5 V,  
VOUT = 12 V  
Quiescent current into VIN pin  
Shutdown current into VIN pin  
110  
0.1  
200  
1.0  
ISD  
IC disabled, VIN = 1.8 V to 5.5 V, TA = 25°C  
OUTPUT  
VOUT  
Output voltage range  
3.3  
11.7  
28  
12.4  
V
V
VOUT_12V  
12-V output voltage accuracy  
FB pin connected to VIN pin, TJ=0°C to 125°C  
PWM mode, TA=25°C  
12.1  
0.795  
0.795  
0.803  
29.2  
0.783  
0.775  
0.807  
0.815  
V
VREF  
Feedback voltage  
PWM mode, TJ=-40°C to 125°C  
PFM mode, TA=25°C  
V
V
VOVP  
Output overvoltage protection threshold  
28  
30.4  
V
VOVP_HYS Over voltage protection hysteresis  
0.9  
V
IFB_LKG  
ISW_LKG  
Leakage current into FB pin  
Leakage current into SW pin  
TA = 25°C  
200  
500  
nA  
nA  
IC disabled, TA = 25°C  
POWER SWITCH  
Isolation MOSFET on resistance  
VOUT = 12 V  
850  
450  
RDS(on)  
mΩ  
Low-side MOSFET on resistance  
Switching frequency  
VOUT = 12 V  
fSW  
VIN = 3.6 V, VOUT = 12 V, PWM mode  
850  
1050  
150  
1250  
250  
kHz  
ns  
tON_min  
Minimal switch on time  
VIN = 3.6 V, VOUT = 12 V  
680  
20  
980  
1250  
mA  
mA  
mA  
ms  
ILIM_SW  
Peak switch current limit  
VIN = 2.4 V, VOUT = 3.3 V  
ILIM_CHG  
tSTARTUP  
Pre-charge current  
Startup time  
VIN = 3.6 V, VOUT = 0 V  
30  
5
50  
VOUT from VIN to 12 V, COUT_effective = 2.2 µF, IOUT = 0 A  
2
LOGIC INTERFACE  
VEN_H EN Logic high threshold  
VEN_L EN Logic Low threshold  
PROTECTION  
1.2  
V
V
0.4  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV61046A  
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 12 V, TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
VIN = 1.8 V  
VIN = 3 V  
VIN = 3.6 V  
VIN = 4.2 V  
20  
VOUT = 5 V  
VOUT = 12 V  
VOUT = 24 V  
10  
0
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
D001  
D002  
VOUT = 12 V  
6-1. Efficiency vs Output Current  
VIN = 3.6 V  
6-2. Efficiency vs Output Current  
12.2  
810  
805  
800  
795  
790  
785  
780  
12.15  
12.1  
12.05  
12  
11.95  
11.9  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D003  
D004  
VIN = 3.6 V, VOUT = 12 V, FB pin connected to VIN pin, PWM  
mode  
VIN = 3.6 V, VOUT = 12 V, PWM mode  
6-4. FB Reference Voltage vs Temperature  
6-3. 12-V Fixed Output Voltage vs Temperature  
150  
140  
130  
120  
110  
100  
90  
150  
140  
130  
120  
110  
100  
90  
80  
80  
70  
70  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
1.8  
2.4  
3
3.6 4.2  
Input Voltage (V)  
4.8  
5.4  
6
Temperature (èC)  
D005  
D001  
VIN = 3.6 V, VOUT = 12 V, No switching  
VIN = 1.8 V ~ 6 V, VOUT = 12 V, No switching  
6-5. Quiescent Current into VIN vs Temperature  
6-6. Quiescent Current into VIN vs Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV61046A  
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 3.6 V, VOUT = 12 V, TA = 25°C, unless otherwise noted.  
0.3  
1100  
1000  
900  
800  
700  
600  
500  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40  
-20  
0
20  
40  
60  
80  
Temperature (èC)  
D007  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
VIN = 3.6 V  
D008  
VIN = 3.6 V, VOUT = 12 V  
6-8. Current Limit vs Temperature  
6-7. Shutdown Current vs Temperature  
1100  
1000  
900  
800  
700  
600  
500  
1.8  
2.4  
3
3.6 4.2  
Input Voltage (V)  
4.8  
5.4  
6
D009  
VIN = 1.8 V ~ 6 V, VOUT = 12 V  
6-9. Current Limit vs Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV61046A  
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV61046A is a highly-integrated boost converter designed for applications requiring high voltage and small  
solution size such as PMOLED panel power supply and sensor module. The TLV61046A integrates a 30-V  
power switch, an input to output isolation switch, and a rectifier diode. It can output up to 28 V from input of a Li+  
battery or two-cell alkaline batteries in series.  
One common issue with conventional boost regulators is the conduction path from input to output even when the  
power switch is turned off. It creates three problems, which are inrush current during start-up, output leakage  
current during shutdown, and excessive over load current. In the TLV61046A, the isolation switch is turned off  
under shutdown mode and over load conditions, thereby opening the current path. Thus, the TLV61046A can  
truely disconnect the load from the input voltage and minimize the leakage current during shutdown mode.  
The TLV61046A operates with a switching frequency at 1.0 MHz. This allows the use of small external  
components. The TLV61046A has an internal default 12-V output voltage setting by connecting the FB pin to the  
VIN pin. Thus, it only needs three external components to get 12-V output voltage. The TLV61046A has typical  
980-mA switch current limit. It has 7-ms built-in soft start time to minimize the inrush current. The TLV61046A  
also implements output short circuit protection, output overvoltage protection, and thermal shutdown.  
7.2 Functional Block Diagram  
VIN  
SW  
1
6
VIN  
VOUT  
UVLO  
5
VOUT  
Thermal  
shutdown  
Gate driver  
Gate driver  
Pre-charge &  
short circuit  
EN  
4
Logic  
EN  
protection & on/off  
control  
PWM / PFM control  
œ
1.2 V  
FB  
+
œ
+
œ
Soft start &  
current limit control  
3
FB  
EA  
GND  
2
OVP REF  
VOUT  
+
REF  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
An undervoltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below  
the typical UVLO threshold of 1.55 V. A hysteresis of 200 mV is added so that the device cannot be enabled  
again until the input voltage goes up to 1.75 V. This function is implemented in order to prevent malfunctioning of  
the device when the input voltage is between 1.55 V and 1.75 V.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV61046A  
 
 
 
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.3.2 Enable and Disable  
When the input voltage is above the maximal UVLO rising threshold of 1.8 V and the EN pin is pulled high, the  
TLV61046A is enabled. When the EN pin is pulled low, the TLV61046A goes into shutdown mode. The device  
stops switching and the isolation switch is turned off, providing the isolation between input and output. In  
shutdown mode, less than 1-µA input current is consumed.  
7.3.3 Soft Start  
The TLV61046A begins soft start when the EN pin is pulled high. At the beginning of the soft start period, the  
isolation FET is turned on slowly to charge the output capacitor with 30-mA current for about 2 ms. This is called  
the pre-charge phase. After the pre-charge phase, the TLV61046A starts switching. This is called switching soft-  
start phase. An internal soft start circuit limits the peak inductor current according to the output voltage. When  
the output voltage is below 3 V, the peak inductor current is limited to 140 mA. Along with the output voltage  
going up from 3 V to 5 V, the peak current limit is gradually increased to the normal value of 980 mA. The  
switching soft start phase is about 5 ms typically. The soft start funciton reduces the inrush current during start-  
up.  
7.3.4 Overvoltage Protection  
The TLV61046A has internal output overvoltage protection (OVP) function. When the output voltage exceeds the  
OVP threshold of 29.2 V, the device stops switching. Once the output voltage falls 0.9 V below the OVP  
threshold, the device resumes operation again.  
7.3.5 Output Short Circuit Protection  
The TLV61046A starts to limit the output current whenever the output voltage drops below 4 V. The lower output  
voltage, the smaller output current limit. When the VOUT pin is shorted to ground, the output current is limited to  
less than 200 mA. This function protects the device from being damaged when the output is shorted to ground.  
7.3.6 Thermal Shutdown  
The TLV61046A goes into thermal shutdown once the junction temperature exceeds the thermal shutdown  
termperature threshold of 150°C typically. When the junction temperature drops below 130°C typically, the  
device starts operating again.  
7.4 Device Functional Modes  
The TLV61046A has two operation modes, PWM mode and power save mode.  
7.4.1 PWM Mode  
The TLV61046A uses a quasi-constant 1.0-MHz frequency pulse width modulation (PWM) at moderate to heavy  
load current. Based on the input voltage-to-output votlage ratio, a circuit predicts the required off-time. At the  
beginning of the switching cycle, the NMOS switching FET, shown in the functional block diagram, is turned on.  
The input voltage is applied across the inductor and the inductor current ramps up. In this phase, the output  
capacitor is discharged by the load current. When the inductor current hits the current threshold that is set by the  
output of the error amplifier, the PWM switch is turned off, and the power diode is forward-biased. The inductor  
transfers its stored energy to replenish the output capacitor and supply the load. When the off-time is expired,  
the next switching cycle starts again. The error amplifier compares the FB pin voltage with an internal reference  
votlage, and its output determines the inductor peak current.  
The TLV61046A has a built-in compensation circuit that can accommodate a wide range of input voltage, output  
voltage, inductor value, and output capacitor value for stable operation.  
7.4.2 Power Save Mode  
The TLV61046A implements a power save mode with pulse frequency modulation (PFM) to improve efficiency at  
light load. When the load current decreases, the inductor peak current set by the output of the error amplifier  
declines to regulate the output voltage. When the inductor peak current hits the low limit of 200 mA, the output  
voltage will exceed the setting voltage as the load current decreases further. When the FB voltage hits the PFM  
reference voltage, the TLV61046A goes into power save mode. In power save mode, when the FB voltage rises  
and hits the PFM reference voltage, the device continues switching for several cycles because of the delay time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV61046A  
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
of the internal comparator, then it stops switching. The load is supplied by the output capacitor and the output  
voltage declines. When the FB voltage falls below the PFM reference voltage, after the delay time of the  
comparator, the device starts switching again to ramp up the output voltage.  
Output  
Voltage  
PFM mode at light load  
1.01 x VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
7-1. Output Voltage in PWM Mode and PFM Mode  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV61046A  
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TLV61046A is a boost DC-DC converter integrating a power switch, an input to output isolation switch, and  
a rectifier diode. The device supports up to 28-V output with the input voltage ranging from 1.8 V to 5.5 V. The  
TLV61046A adopts the current-mode control with adaptive constant off-time. The switching frequency is quasi-  
constant at 1.0 MHz. The isolation switch disconnects the output from the input during shutdown to minimize  
leakage current.  
The following design procedure can be used to select component values for the TLV61046A.  
8.2 Typical Application - 12-V Output Boost Converter  
spacing  
L1  
2.7 V ~ 4.2 V  
10 µH  
C1  
1.0 µF  
VIN  
SW  
VOUT  
FB  
12 V  
GND  
C2  
TLV61046A  
ON  
4.7 µF  
R1  
OFF  
1.0 M  
EN  
R2  
71.5 kꢀ  
8-1. 12-V Boost Converter  
8-1. Design Requirements  
8.2.1 Design Requirements  
PARAMETERS  
VALUES  
Input Voltage  
Output Voltage  
2.7 V ~ 4.2 V  
12 V  
Output Current  
50 mA  
Output Voltage Ripple  
±50 mV  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV61046A device with the WEBENCH® Power Designer.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV61046A  
 
 
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Programming the Output Voltage  
There are two ways to set the output voltage of the TLV61046A. When the FB pin is connected to the input  
voltage, the output voltage is fixed to 12 V. This function makes the TLV61046A only need three external  
components to minimize the solution size. The second way is to use an external resistor divider to set the  
desired output voltage.  
By selecting the external resistor divider R1 and R2, as shown in 方程式 1, the output voltage is programmed to  
the desired value. When the output voltage is regulated, the typical voltage at the FB pin is VREF of 795 mV.  
«
VOUT  
VREF  
R1=  
-1 ìR2  
÷
(1)  
where  
VOUT is the desired output voltage  
VREF is the internal reference voltage at the FB pin  
For best accuracy, R2 should be kept smaller than 80 kΩ to ensure the current flowing through R2 is at least  
100 times larger than the FB pin leakage current. Changing R2 towards a lower value increases the immunity  
against noise injection. Changing the R2 towards a higher value reduces the quiescent current for achieving  
higher efficiency at low load currents.  
8.2.2.3 Inductor Selection  
Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications, inductor value, saturation current, and dc resistance (DCR).  
The TLV61046A is designed to work with inductor values between 2.2 µH and 22 µH. Follow 方程式 2 to 方程式  
4 to calculate the peak current of the inductor for the application. To calculate the peak current in the worst case,  
use the minimum input voltage, maximum output voltage, and maximum load current of the application. To have  
enough design margin, choose the inductor value with -30% tolerance, and a low power-conversion efficiency for  
the calculation.  
In a boost regulator, the inductor dc current can be calculated with 方程2.  
VOUT ìIOUT  
IL(DC)  
=
V ì h  
IN  
(2)  
where  
VOUT is output voltage  
IOUT is output current  
VIN is input voltage  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV61046A  
 
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
ηis power conversion efficiency, use 80% for most applications  
The inductor ripple current is calculated with 方程式 3 for an asynchronous boost converter in continuous  
conduction mode (CCM).  
V
ì V  
+ 0.8V - V  
(
)
IN  
OUT IN  
DIL(P-P)  
=
L ì fSW ì V  
+ 0.8V  
(
)
OUT  
(3)  
where  
• ΔIL(P-P) is inductor ripple current  
L is inductor value  
f SW is switching frequency  
VOUT is output voltage  
VIN is input voltage  
Therefore, the inductor peak current is calculated with 方程4.  
DIL P-P  
(
)
IL P = IL DC  
+
(
)
(
)
2
(4)  
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI. But in the same way, load transient response time is increased.  
Because the TLV61046A is for relatively small output current application, the inductor peak-to-peak current can  
be as high as 200% of the average current with a small inductor value, which means the TLV61046A always  
works in DCM mode. 8-2 lists the recommended inductors for the TLV61046A.  
8-2. Recommended Inductors for the TLV61046A  
PART NUMBER  
FDSD0420-H-100M  
CDRH3D23/HP  
74438336100  
L(µH)  
10  
SATURATION CURRENT (A)  
SIZE (LxWxH)  
4.2x4.2x2.0  
4.0x4.0x2.5  
3.2x3.2x2.0  
4.0x4.0x1.2  
VENDOR(1)  
Toko  
DCR MAX (mΩ)  
200  
198  
322  
132  
2.5  
1.02  
2.35  
1.1  
10  
Sumida  
Wurth  
10  
VLS4012-4R7M  
4.7  
TDK  
(1) See Third-party Products Disclaimer  
8.2.2.4 Input and Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. This ripple  
voltage is related to the capacitance of the capacitor and its equivalent series resistance (ESR). Assuming a  
ceramic capacitor with zero ESR, the minimum capacitance needed for a given ripple can be calculated by:  
IOUT ìDMAX  
fSW ì VRIPPLE  
COUT  
=
(5)  
where  
DMAX is maximum switching duty cycle  
VRIPPLE is peak to peak output voltage ripple  
The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are  
used.  
Care must be taken when evaluating a ceramic capacitors derating under dc bias, aging, and ac signal. For  
example, the dc bias can significantly reduce capacitance. A ceramic capacitor can lose more than 50% of its  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV61046A  
 
 
 
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to ensure adequate  
capacitance at the required output voltage.  
It is recommended to use the output capacitor with effective capacitance in the range of 0.47 μF to 10 μF. The  
output capacitor affects loop stability of the boost regulator. If the output capacitor is below the range, the boost  
regulator can potentially become unstable. Increasing the output capacitor makes the output voltage ripple  
smaller in PWM mode.  
For input capacitor, a ceramic capacitor with more than 1.0 µF is enough for most applications.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV61046A  
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
8.2.3 Application Performance Curves  
SW  
10 V / div  
SW  
10 V / div  
VOUT (AC)  
10 mV / div  
VOUT (AC)  
30 mV / div  
Inductor  
Current  
100 mA / div  
Inductor  
Current  
100 mA / div  
VIN = 3.6 V, VOUT = 12 V, IOUT = 18 mA  
VIN = 3.6 V, VOUT = 12 V, IOUT = 50 mA  
8-3. Switching Waveforms in PWM DCM Mode  
8-2. Switching Waveforms in PWM CCM Mode  
SW  
10 V / div  
EN  
1 V / div  
VOUT (AC)  
50 mV / div  
Inductor  
Current  
100 mA / div  
VOUT  
3 V / div  
Inductor  
Current  
100 mA / div  
VIN = 3.6 V, VOUT = 12 V, IOUT = 3 mA  
VIN = 3.6 V, VOUT = 12 V, IOUT = 50 mA  
8-4. Switching Waveforms in Power Save Mode  
8-5. Soft Start-up Waveforms  
EN  
1 V / div  
VOUT (AC)  
200 mV / div  
VOUT (AC)  
3 V / div  
Inductor  
Current  
100 mA / div  
Output Current  
50 mA / div  
VIN = 3.6 V, VOUT = 12 V  
VIN = 3.6 V, VOUT = 12 V, IOUT = 50 mA  
8-7. 30-mA to 70-mA Load Transient Response  
8-6. Shutdown Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV61046A  
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
VOUT (AC)  
200 mV / div  
VIN (3.3 V offset)  
500 mV / div  
VOUT = 12 V, IOUT = 50 mA  
8-8. Input Voltage from 3.3-V to 4.2-V Line Transient Response  
8.3 System Examples  
8.3.1 Fixed 12-V Output Voltage with Three External Components  
The TLV61046A can output fixed 12-V voltage by connecting the FB pin to the VIN pin to save the external  
resistor divider. The 8-9 shows the application circuit.  
L1  
1.8 V ~ 5.5 V  
10 µH  
C1  
2.2mF  
VIN  
FB  
SW  
VOUT  
GND  
12 V  
C2  
ON  
10 µF  
OFF  
EN  
8-9. Fixed 12-V Output Voltage by Connecting the FB Pin to VIN Pin  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV61046A  
 
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 1.8 V to 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance can be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or  
tantalum capacitor with a value of 47 µF. The output current of the input power supply needs to be rated  
according to the supply voltage, output voltage, and output current of the TLV61046A.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV61046A  
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If the layout is not carefully done, the regulator could suffer from instability  
and noise problems. To maximize efficiency, switch rise and fall time are very fast. To prevent radiation of high  
frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the  
length and area of all traces connected to the SW pin, and always use a ground plane under the switching  
regulator to minimize interplane coupling. The input capacitor needs not only to be close to the VIN pin, but also  
to the GND pin in order to reduce input supply ripple.  
The most critical current path for all boost converters is from the switching FET, through the rectifier diode, then  
the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise  
and fall time and should be kept as short as possible. Therefore, the output capacitors need not only to be close  
to the VOUT pin, but also to the GND pin to reduce the overshoot at the SW pin and VOUT pin.  
10.2 Layout Example  
A large ground plane on the bottom layer connects the ground pins of the components on the top layer through  
vias.  
GND  
VIN  
VOUT  
VIN  
VOUT  
EN  
GND  
SW  
GND  
FB  
10-1. PCB Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV61046A  
 
 
 
TLV61046A  
ZHCSGJ6B APRIL 2017 REVISED FEBRUARY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV61046A device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV61046A  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV61046ADBVR  
TLV61046ADBVT  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1C4F  
1C4F  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jan-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV61046ADBVR  
TLV61046ADBVT  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000  
250  
180.0  
180.0  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV61046ADBVR  
TLV61046ADBVT  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV61046ADBVR

具有功率二极管和隔离开关的 28V 输出电压升压转换器 | DBV | 6 | -40 to 125
TI

TLV61046ADBVT

具有功率二极管和隔离开关的 28V 输出电压升压转换器 | DBV | 6 | -40 to 125
TI

TLV61048

采用 SOT-23 封装的 14V 输出电压非同步升压转换器
TI

TLV61048DBVR

采用 SOT-23 封装的 14V 输出电压非同步升压转换器 | DBV | 6 | -40 to 125
TI

TLV61048DBVT

采用 SOT-23 封装的 14V 输出电压非同步升压转换器 | DBV | 6 | -40 to 125
TI

TLV61070A

具有 0.5V 超低输入电压的 5V、2A 升压转换器
TI

TLV61070ADBVR

具有 0.5V 超低输入电压的 5V、2A 升压转换器 | DBV | 6 | -40 to 125
TI

TLV61220

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61220DBVR

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61220DBVT

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61224

Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package
TI

TLV61224DCK

BATTERY CHARGE CONTROLLER, PDSO6, PLASTIC, SC-70, 6 PIN
TI