TMP175AQDGKRQ1 [TI]

具有27 个 I2C/SMBus 地址、采用业界通用 LM75 外形尺寸和引脚排列的汽车类温度传感器 | DGK | 8 | -40 to 125;
TMP175AQDGKRQ1
型号: TMP175AQDGKRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有27 个 I2C/SMBus 地址、采用业界通用 LM75 外形尺寸和引脚排列的汽车类温度传感器 | DGK | 8 | -40 to 125

温度传感 输出元件 传感器 换能器 温度传感器
文件: 总33页 (文件大小:836K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
TMPx75-Q1 具有 I2C SMBus 接口的汽车级温度传感器,采用行业标准  
LM75 尺寸和引脚  
1 特性  
3 说明  
1
具有符合 AEC-Q100 标准的以下结果:  
TMP75-Q1 TMP175-Q1 器件属于数字温度传感  
器,是负温度系数 (NTC) 和正温度系数 (PTC) 热敏电  
阻的理想替代产品。该器件无需校准或外部组件信号调  
节即可提供典型值为 ±1°C 的精度。器件温度传感器为  
高度线性化产品,无需复杂计算或查表即可得知温度。  
片上 12 位模数转换器 (ADC) 提供低至 0.0625°C 的分  
辨率。这两款器件采用行业标准 LM75 8 引脚 SOIC  
VSSOP 封装。  
温度 1 级:-40°C +125°C 的工作环境温度范  
人体放电模式 (HBM) 静电放电 (ESD) 分类等级  
2
组件充电模式 (CDM) ESD 分类等级 C6  
TMP175-Q1 精度:  
–40°C 125°C 范围内为 ±1°C(典型值)  
–40°C +125°C 范围内为 ±2°C(最大值)  
TMP175-Q1 TMP75-Q1 SMBus、两线制和 I2C  
接口兼容。TMP175-Q1 器件允许一条总线上最多连接  
27 个器件。TMP75-Q1 允许一条总线上最多连接 8 个  
器件。TMP175-Q1 TMP75-Q1 均具备 SMBus 报  
警功能。  
TMP75-Q1 精度:  
–40°C 125°C 范围内为 ±1°C(典型值)  
–40°C +125°C 范围内为 ±3°C(最大值)  
TMP175-Q127 个地址  
TMP75-Q18 个地址,美国国家标准与技术研究  
(NIST) 可追溯  
数字输出: SMBus™、两线制和 I2C 接口兼容性  
TMP175-Q1 TMP75-Q1 器件是各种通信、计算  
机、消费类产品、环境、工业和仪器应用中扩展温度测  
量的理想选择。TMP75-Q1 生产单元已完全通过可追  
NIST 的传感器测试,并且已借助可追溯 NIST 的设  
备使用 ISO/IEC 17025 标准认可的校准进行验证。  
分辨率:9 12 位,用户可选  
低静态电流:50μA0.1μA 待机电流  
宽电源电压范围:2.7V 5.5V  
小型 8 引脚超薄小外形尺寸 (VSSOP) 封装和 8 引  
脚小外形集成电路 (SOIC) 封装  
TMP175-Q1 TMP75-Q1 器件的额定工作温度范围  
为 -40℃ 至 +125℃。  
2 应用  
器件信息(1)  
汽车空调  
器件型号  
TMPx75-Q1  
封装  
SOIC (8)  
VSSOP (8)  
封装尺寸(标称值)  
4.90mm x 3.91mm  
3.00mm x 3.00mm  
信息娱乐处理器管理  
空气流量传感器  
电池控制单元  
引擎控制单元  
UREA 传感器  
抽水机  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
TMP175-Q1 TMP75-Q1 内部框图  
Temperature  
Diode  
Temp.  
1
2
Control  
Logic  
8
7
V+  
A0  
SDA  
SCL  
HID 灯  
Sensor  
安全气囊控制单元  
ΔΣ  
简化电路原理图  
Serial  
ADC  
Interface  
2.7-V to 5.5-V  
Supply Voltage  
3
4
6
5
ALERT  
GND  
A1  
A2  
0.01-µF  
Supply Bypass  
Capacitor  
Config.  
and Temp.  
Register  
5-k  
Pullup Resistors  
OSC  
1
8
Two-Wire  
Host  
Controller  
V+  
A0  
A1  
A2  
SDA  
2
7
SCL  
3
6
5
ALERT  
4
GND  
TMP175-Q1,  
TMP75-Q1  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS759  
 
 
 
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 15  
7.5 Programming .......................................................... 16  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Application .................................................. 21  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 9  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 相关链接................................................................ 24  
11.2 社区资源................................................................ 24  
11.3 ....................................................................... 24  
11.4 静电放电警告......................................................... 24  
11.5 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 11 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
5 Pin Configuration and Functions  
DGK, D Packages  
8-Pin VSSOP, SOIC  
Top View  
1
2
3
4
8
7
6
5
SDA  
SCL  
V+  
A0  
A1  
A2  
ALERT  
GND  
NOTE: Pin 1 is determined by orienting the package marking as indicated in the diagram.  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
SDA  
SCL  
ALERT  
GND  
A2  
1
2
3
4
5
6
7
8
I/O  
I
Serial data. Open-drain output; requires a pullup resistor.  
Serial clock. Open-drain output; requires a pullup resistor.  
Overtemperature alert. Open-drain output; requires a pullup resistor.  
Ground  
O
A1  
I
I
Address select. Connect to GND, V+, or (for the TMP175-Q1 device only) leave these pins floating.  
Supply voltage, 2.7 V to 5.5 V  
A0  
V+  
Copyright © 2015, Texas Instruments Incorporated  
3
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–55  
–60  
MAX  
7
UNIT  
V
Power supply, V+  
Input voltage(2)  
7
V
Input current  
10  
mA  
°C  
°C  
°C  
Operating temperature  
Junction temperature, TJ  
Storage temperature, Tstg  
127  
150  
130  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input voltage rating applies to all TMP175-Q1 and TMP75-Q1 input voltages.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
5.5  
UNIT  
Supply voltage  
V
Operating free-air temperature, TA  
–40  
125  
°C  
6.4 Thermal Information  
TMP175-Q1, TMP75-Q1  
THERMAL METRIC(1)  
DGK (SOIC), D (VSSOP)  
UNIT  
8 PINS  
185  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
76.1  
106.4  
14.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
104.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
6.5 Electrical Characteristics  
at TA = –40°C to +125°C and V+ = 2.7 V to 5.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE INPUT  
Range  
–40  
125  
°C  
TMP175-Q1  
±0.5  
±0.5  
±1  
±1.5  
±2  
–25°C to +85°C  
TMP75-Q1  
TMP175-Q1  
TMP75-Q1  
Accuracy (temperature error)  
°C  
±2  
–40°C to +125°C  
Selectable  
±1  
±3  
Accuracy (temperature error) vs supply  
Resolution(1)  
0.2  
±0.5  
°C/V  
°C  
0.0625  
DIGITAL INPUT/OUTPUT  
Input capacitance  
3
pF  
V
VIH  
VIL  
IIN  
High-level input logic  
Low-level input logic  
Leakage input current  
Input voltage hysteresis  
0.7 (V+)  
–0.5  
6
0.3 (V+)  
1
V
0 V VIN 6 V  
SCL and SDA pins  
IOL = 3 mA  
IOL = 4 mA  
Selectable  
9 bits  
µA  
mV  
500  
0.15  
0.15  
9 to 12  
27.5  
55  
SDA  
0
0
0.4  
0.4  
VOL  
Low-level output logic  
Resolution  
V
ALERT  
Bits  
37.5  
75  
10 bits  
Conversion time  
ms  
11 bits  
110  
150  
300  
74  
12 bits  
220  
Timeout time  
25  
54  
ms  
V
POWER SUPPLY  
Operating range  
2.7  
5.5  
85  
Serial bus inactive  
50  
100  
410  
0.1  
IQ  
Quiescent current  
Shutdown current  
Serial bus active, SCL frequency = 400 kHz  
Serial bus active, SCL frequency = 3.4 MHz  
Serial bus inactive  
µA  
3
ISD  
Serial bus active, SCL frequency = 400 kHz  
Serial bus active, SCL frequency = 3.4 MHz  
60  
µA  
380  
TEMPERATURE RANGE  
Specified range  
–40  
–55  
125  
127  
°C  
°C  
Operating range  
(1) Specified for 12-bit resolution.  
Copyright © 2015, Texas Instruments Incorporated  
5
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
6.6 Timing Requirements  
see the Timing Diagrams and Two-Wire Timing Diagrams sections for additional information(1)  
HIGH-SPEED  
MODE  
FAST MODE  
UNIT  
MIN  
MAX  
MIN  
MAX  
ƒ(SCL)  
t(BUF)  
SCL operating frequency  
V+  
0.001  
0.4  
0.001  
160  
2.38  
MHz  
ns  
Bus-free time between STOP and START  
condition  
1300  
600  
Hold time after repeated START condition.  
After this period, the first clock is generated.  
t(HDSTA)  
160  
ns  
See the Timing Diagrams section  
t(SUSTA)  
t(SUSTO)  
t(HDDAT)  
t(SUDAT)  
t(LOW)  
Repeated START condition setup time  
STOP condition setup time  
Data hold time  
600  
600  
4
160  
160  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
900  
120  
Data setup time  
100  
1300  
600  
10  
SCL clock low period  
SCL clock high period  
Data fall time  
V+ , see the Timing Diagrams section  
See the Timing Diagrams section  
280  
60  
t(HIGH)  
tFD  
See the Timing Diagrams section  
300  
300  
150  
40  
See the Two-Wire Timing Diagrams section  
tRC  
tFC  
Clock rise time  
Clock fall time  
SCLK 100 kHz, see the Timing Diagrams  
section  
1000  
300  
ns  
ns  
See the Two-Wire Timing Diagrams section  
40  
(1) Values are based on a statistical analysis of a one-time sample of devices. Minimum and maximum values are not specified and are not  
production tested.  
6
Copyright © 2015, Texas Instruments Incorporated  
 
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
6.7 Typical Characteristics  
at TA = 25°C and V+ = 5 V (unless otherwise noted)  
85  
75  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
65  
V+ = 5 V  
55  
45  
V+ = 2..7V  
35  
−0.1  
25  
55  
15  
35  
5
25  
45  
65  
85 105 125 130  
55  
35  
15  
5
25  
45  
65  
85 105 125 130  
Temperature (°C)  
Temperature (°C)  
Serial bus inactive  
Figure 1. Quiescent Current vs Temperature  
Figure 2. Shutdown Current vs Temperature  
2
1.5  
1
300  
V+ = 5 V  
250  
200  
150  
100  
0.5  
0
V+ = 2.7 V  
−0.5  
−1  
−1.5  
−2  
35  
15  
55  
5
25  
45  
65  
85 105 125 130  
55  
35  
15  
5
25  
45  
65  
85  
105 125 130  
Temperature (°C)  
Temperature (°C)  
3 typical units, 12-bit resolution  
12-bit resolution  
Figure 4. Temperature Error vs Temperature  
Figure 3. Conversion Time vs Temperature  
500  
Hs Mode  
Fast Mode  
450  
400  
350  
300  
250  
200  
150  
100  
50  
125°C  
25°C  
55°C  
0
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Figure 5. Quiescent Current With Bus Activity vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
7
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TMP175-Q1 and TMP75-Q1 devices are digital temperature sensors that are optimal for thermal  
management and thermal protection applications. The TMP175-Q1 and TMP75-Q1 are two-wire, SMBus, and  
I2C interface compatible. The devices are specified over a temperature range of –40°C to +125°C. The  
Functional Block Diagram section shows the internal block diagram of the TMP175-Q1 and TMP75-Q1 devices.  
The temperature sensor in the TMP175-Q1 and TMP75-Q1 devices is the chip itself. Thermal paths run through  
the package leads as well as the plastic package. The package leads provide the primary thermal path because  
of the lower thermal resistance of the metal.  
7.2 Functional Block Diagram  
Temperature  
Diode  
Temp.  
1
2
Control  
Logic  
8
7
V+  
A0  
SDA  
SCL  
Sensor  
ΔΣ  
Serial  
ADC  
Interface  
3
4
6
5
ALERT  
GND  
A1  
A2  
Config.  
and Temp.  
Register  
OSC  
8
Copyright © 2015, Texas Instruments Incorporated  
 
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
7.3 Feature Description  
7.3.1 Digital Temperature Output  
The digital output from each temperature measurement conversion is stored in the read-only Temperature  
register. The Temperature register of the TMP175-Q1 or TMP75-Q1 is a 12-bit, read-only register that stores the  
output of the most recent conversion. Two bytes must be read to obtain data and are listed in Table 6 and  
Table 7. The first 12 bits are used to indicate temperature with all remaining bits equal to zero. The data format  
for temperature is listed in Table 1. Negative numbers are represented in binary twos complement format.  
Following power-up or reset, the Temperature register reads 0°C until the first conversion is complete.  
The user can obtain 9, 10, 11, or 12 bits of resolution by addressing the Configuration register and setting the  
resolution bits accordingly. For 9-, 10-, or 11-bit resolution, the most significant bits (MSBs) in the Temperature  
register are used with the unused least significant bits (LSBs) set to zero.  
Table 1. Temperature Data Format  
DIGITAL OUTPUT  
BINARY  
TEMPERATURE  
(°C)  
HEX  
7FF  
7FF  
640  
500  
4B0  
320  
190  
004  
000  
FFC  
E70  
C90  
128  
127.9375  
100  
80  
0111 1111 1111  
0111 1111 1111  
0110 0100 0000  
0101 0000 0000  
0100 1011 0000  
0011 0010 0000  
0001 1001 0000  
0000 0000 0100  
0000 0000 0000  
1111 1111 1100  
1110 0111 0000  
1100 1001 0000  
75  
50  
25  
0.25  
0
–0.25  
–25  
–55  
7.3.2 Serial Interface  
The TMP175-Q1 and TMP75-Q1 operate only as slave devices on the SMBus, two-wire, and I2C interface-  
compatible bus. Connections to the bus are made through the open-drain I/O lines SDA and SCL. The SDA and  
SCL pins feature integrated spike-suppression filters and Schmitt triggers to minimize the effects of input spikes  
and bus noise. The TMP175-Q1 and TMP75-Q1 support the transmission protocol for fast (up to 400 kHz) and  
high-speed (up to 2.38-MHz) modes. All data bytes are transmitted MSB first.  
7.3.2.1 Bus Overview  
The device that initiates the transfer is called a master, and the devices controlled by the master are slaves. The  
bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and  
generates the START and STOP conditions.  
To address a specific device a START condition is initiated, indicated by pulling the data line (SDA) from a high  
to a low logic level when SCL is high. All slaves on the bus shift in the slave address byte, with the last bit  
indicating whether a read or write operation is intended. During the ninth clock pulse, the slave being addressed  
responds to the master by generating an Acknowledge bit and pulling SDA low.  
Data transfer is then initiated and sent over eight clock pulses followed by an Acknowledge bit. During data  
transfer, SDA must remain stable when SCL is high because any change in SDA when SCL is high is interpreted  
as a control signal.  
When all data are transferred, the master generates a STOP condition indicated by pulling SDA from low to high  
when SCL is high.  
Copyright © 2015, Texas Instruments Incorporated  
9
 
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
7.3.2.2 Serial Bus Address  
To communicate with the TMP175-Q1 and TMP75-Q1, the master must first address slave devices through a  
slave address byte. The slave address byte consists of seven address bits and a direction bit indicating the intent  
of executing a read or write operation.  
The TMP175-Q1 features three address pins to allow up to 27 devices to be addressed on a single bus interface.  
Table 2 describes the pin logic levels used to properly connect up to 27 devices. A 1 indicates that the pin is  
connected to the supply (VCC) and a 0 indicates that the pin is connected to GND; float indicates that the pin is  
left unconnected. The state of the A0, A1, and A2 pins is sampled on every bus communication and must be set  
prior to any activity on the interface.  
Table 2. Address Pins and Slave Addresses for the TMP175-Q1  
A2  
A1  
A0  
SLAVE ADDRESS  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110101  
0110110  
0110111  
0
0
0
0
0
1
0
1
0
0
1
1
1
1
0
0
0
1
1
1
0
1
1
1
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
0
0
0
0
Float  
1
0
1
0
1
Float  
1
1
Float  
Float  
Float  
Float  
Float  
Float  
0
0
1
0
0
1
1
0
1
1
0
Float  
Float  
Float  
Float  
Float  
Float  
Float  
0
1
1
0
1
1
0
Float  
Float  
Float  
1
Float  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
The TMP75-Q1 features three address pins, allowing up to eight devices to be connected per bus. Pin logic  
levels are described in Table 3. The address pins of the TMP175-Q1 and TMP75-Q1 are read after reset, at start  
of communication, or in response to a two-wire address acquire request. After the state of the pins are read, the  
address is latched to minimize power dissipation associated with detection.  
Table 3. Address Pins and Slave Addresses for the TMP75-Q1  
A2  
0
A1  
0
A0  
0
SLAVE ADDRESS  
1001000  
0
0
1
1001001  
0
1
0
1001010  
0
1
1
1001011  
1
0
0
1001100  
1
0
1
1001101  
1
1
0
1001110  
1
1
1
1001111  
7.3.2.3 Writing and Reading to the TMP175-Q1 and TMP75-Q1  
Accessing a particular register on the TMP175-Q1 and TMP75-Q1 devices is accomplished by writing the  
appropriate value to the Pointer register. The value for the Pointer register is the first byte transferred after the  
slave address byte with the R/W bit low. Every write operation to the TMP175-Q1 and TMP75-Q1 requires a  
value for the Pointer register (see Figure 7).  
When reading from the TMP175-Q1 and TMP75-Q1 devices, the last value stored in the Pointer register by a  
write operation is used to determine which register is read by a read operation. To change the register pointer for  
a read operation, a new value must be written to the Pointer register. This action is accomplished by issuing a  
slave address byte with the R/W bit low, followed by the Pointer register byte. No additional data are required.  
The master can then generate a START condition and send the slave address byte with the R/W bit high to  
initiate the read command; see Figure 9 for details of this sequence. If repeated reads from the same register are  
desired, the Pointer register bytes do not have to be continually sent because the TMP175-Q1 and TMP75-Q1  
remember the Pointer register value until it is changed by the next write operation.  
Register bytes are sent MSB first, followed by the LSB.  
7.3.2.4 Slave Mode Operations  
The TMP175-Q1 and TMP75-Q1 can operate as a slave receiver or slave transmitter.  
7.3.2.4.1 Slave Receiver Mode  
The first byte transmitted by the master is the slave address, with the R/W bit low. The TMP175-Q1 or TMP75-  
Q1 then acknowledges reception of a valid address. The next byte transmitted by the master is the Pointer  
register. The TMP175-Q1 or TMP75-Q1 then acknowledges reception of the Pointer register byte. The next byte  
or bytes are written to the register addressed by the Pointer register. The TMP175-Q1 and TMP75-Q1  
acknowledge reception of each data byte. The master can terminate data transfer by generating a START or  
STOP condition.  
7.3.2.4.2 Slave Transmitter Mode  
The first byte is transmitted by the master and is the slave address, with the R/W bit high. The slave  
acknowledges reception of a valid slave address. The next byte is transmitted by the slave and is the most  
significant byte of the register indicated by the Pointer register. The master acknowledges reception of the data  
byte. The next byte transmitted by the slave is the least significant byte. The master acknowledges reception of  
the data byte. The master can terminate data transfer by generating a Not-Acknowledge bit on reception of any  
data byte, or by generating a START or STOP condition.  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
7.3.2.5 SMBus Alert Function  
The TMP175-Q1 and TMP75-Q1 support the SMBus alert function. When the TMP75-Q1 and TMP175-Q1 are  
operating in interrupt mode (TM = 1), the ALERT pin of the TMP75-Q1 or TMP175-Q1 can be connected as an  
SMBus alert signal. When a master senses that an ALERT condition is present on the ALERT line, the master  
sends an SMBus Alert command (00011001) on the bus. If the ALERT pin of the TMP75-Q1 or TMP175-Q1 is  
active, the devices acknowledge the SMBus Alert command and respond by returning its slave address on the  
SDA line. The eighth bit (LSB) of the slave address byte indicates if the temperature exceeding THIGH or falling  
below TLOW caused the ALERT condition. This bit is high if the temperature is greater than or equal to THIGH. This  
bit is low if the temperature is less than TLOW; see Figure 10 for details of this sequence.  
If multiple devices on the bus respond to the SMBus Alert command, arbitration during the slave address portion  
of the SMBus Alert command determines which device clears its ALERT status. If the TMP75-Q1 or TMP175-Q1  
wins the arbitration, its ALERT pin becomes inactive at the completion of the SMBus Alert command. If the  
TMP75-Q1 or TMP175-Q1 loses the arbitration, its ALERT pin remains active.  
7.3.2.6 General Call  
The TMP175-Q1 and TMP75-Q1 respond to a two-wire, general-call address (0000000) if the eighth bit is 0. The  
device acknowledges the general call address and responds to commands in the second byte. If the second byte  
is 00000100, the TMP175-Q1 and TMP75-Q1 latches the status of their address pins, but do not reset. If the  
second byte is 00000110, the TMP175-Q1 and TMP75-Q1 latches the status of their address pins and resets  
their internal registers to their power-up values.  
7.3.2.7 High-Speed Mode  
In order for the two-wire bus to operate at frequencies above 400 kHz, the master device must issue an Hs-mode  
master code (00001XXX) as the first byte after a START condition to switch the bus to high-speed operation.  
The TMP175-Q1 and TMP75-Q1 devices do not acknowledge this byte, but do switch their input filters on SDA  
and SCL and their output filters on SDA to operate in Hs-mode, allowing transfers at up to 2.38 MHz. After the  
Hs-mode master code is issued, the master transmits a two-wire slave address to initiate a data transfer  
operation. The bus continues to operate in Hs-mode until a STOP condition occurs on the bus. Upon receiving  
the STOP condition, the TMP175-Q1 and TMP75-Q1 switch the input and output filter back to fast-mode  
operation.  
7.3.2.8 Time-out Function  
The TMP175-Q1 resets the serial interface if either SCL or SDA is held low for 54 ms (typical) between a START  
and STOP condition. The TMP175-Q1 releases the bus if it is pulled low and waits for a START condition. To  
avoid activating the time-out function, a communication speed of at least 1 kHz must be maintained for the SCL  
operating frequency.  
7.3.3 Timing Diagrams  
The TMP175-Q1 and TMP75-Q1 devices are two-wire, SMBus, and I2C interface compatible. Figure 6 to  
Figure 10 describe the various operations on the TMP175-Q1. The following list provides bus definitions.  
Parameters for Figure 6 are defined in the Timing Requirements table.  
Bus Idle: Both the SDA and SCL lines remain high.  
Start Data Transfer: A change in the state of the SDA line from high to low when the SCL line is high defines a  
START condition. Each data transfer is initiated with a START condition.  
Stop Data Transfer: A change in the state of the SDA line from low to high when the SCL line is high defines a  
STOP condition. Each data transfer is terminated with a repeated START or STOP condition.  
Data Transfer: The number of data bytes transferred between a START and a STOP condition is not limited and  
is determined by the master device. The receiver acknowledges the transfer of data.  
Acknowledge: Each receiving device, when addressed, is obliged to generate an Acknowledge bit. A device  
that acknowledges must pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA  
line is stable low during the high period of the Acknowledge clock pulse. Setup and hold times must be taken into  
account. On a master receive, the termination of the data transfer can be signaled by the master generating a  
Not-Acknowledge bit on the last byte that is transmitted by the slave.  
12  
Copyright © 2015, Texas Instruments Incorporated  
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
7.3.3.1 Two-Wire Timing Diagrams  
t(LOW)  
tF  
tR  
t(HDSTA)  
SCL  
t(SUSTO)  
t(HDSTA)  
t(HIGH) t(SUSTA)  
t(HDDAT)  
t(SUDAT)  
SDA  
t(BUF)  
P
S
S
P
Figure 6. Two-Wire Timing Diagram  
1
9
1
9
SCL  
SDA  
1
0
0
1
-
A2  
A1  
A0  
R/W  
0
0
0
0
0
0
P1  
P0  
Start By  
Master  
ACK By  
Device  
ACK By  
Device  
Frame 2Pointer Register Byte  
Wire Slave Address Byte  
Frame 1Two  
1
9
1
9
SCL  
(Continued)  
SDA  
(Continued)  
D7 D6  
D5  
D4 D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3 D2  
D1 D0  
ACK By  
Device  
ACK By  
Device  
Stop By  
Master  
Frame 3Data Byte 1  
Frame 4Data Byte 2  
Figure 7. Two-Wire Timing Diagram for the TMP75-Q1 Write Word Format  
1
9
1
9
SCL  
SDA  
A6  
A5  
A4 A3 A2  
A1  
A0  
R/W  
0
0
0
0
0
0
P1  
P0  
Start By  
Master  
ACK By  
Device  
ACK By  
Device  
Frame 1 Two-Wire Slave Address Byte  
Frame 2 Pointer Register Byte  
1
9
1
9
SCL  
(Continued)  
SDA  
(Continued)  
D7 D6  
D5  
D4  
D3 D2 D1  
D0  
D7  
D6  
D5  
D4  
D3 D2  
D1 D0  
ACK By  
Device  
ACK By  
Device  
Stop By  
Master  
Frame 3 Data Byte 1  
Frame 4 Data Byte 2  
Figure 8. Two-Wire Timing Diagram for the TMP175-Q1 Write Word Format  
Copyright © 2015, Texas Instruments Incorporated  
13  
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
1
9
1
9
SCL  
SDA  
1
0
0
1
R/W  
0
0
0
0
0
0
P1  
P0  
0
0
0
Start By  
Master  
ACK By  
ACK By  
Device  
Device  
Frame 1 Two-Wire Slave Address Byte  
Frame 2 Pointer Register Byte  
1
9
1
9
SCL  
(Continued)  
SDA  
0
0
0
1
0
0
1
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D0  
(Continued)  
Start By  
Master  
ACK By  
From  
Device  
ACK By  
Master  
Device  
y
Frame 3 Two-Wire Slave Address B te  
Frame 4 Data Byte 1Read Register  
1
9
SCL  
(Continued)  
SDA  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
(Continued)  
From  
Device  
ACK By  
Master  
Stop By  
Master  
Frame 5 Data Byte 2 Read Register  
NOTE: Address pins A0, A1, and A2 = 0.  
Figure 9. Two-Wire Timing Diagram for Read Word Format  
ALERT  
SCL  
1
9
1
9
SDA  
Sta tus  
0
0
0
1
1
0
0
R/W  
1
0
0
1
0
0
0
Start By  
Master  
ACK By  
From  
NACK By Stop By  
Master Master  
Device  
Device  
Frame 1 SMBus ALERT Response Address Byte  
Frame 2 Slave Address Byte  
NOTE: Address pins A0, A1, and A2 = 0.  
Figure 10. Timing Diagram for SMBus ALERT  
14  
Copyright © 2015, Texas Instruments Incorporated  
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode (SD)  
The shutdown mode of the TMP175-Q1 and TMP75-Q1 devices lets the user save maximum power by shutting  
down all device circuitry other than the serial interface, thus reducing current consumption to typically less than  
0.1 μA. Shutdown mode is enabled when the SD bit is 1; the device shuts down when the current conversion is  
completed. When SD is equal to 0, the device maintains a continuous conversion state.  
7.4.2 One-Shot (OS)  
The TMP175-Q1 and TMP75-Q1 feature a one-shot temperature measurement mode. When the device is in  
shutdown mode, writing 1 to the OS bit starts a single temperature conversion. The device returns to the  
shutdown state at the completion of the single conversion. This feature is useful to reduce power consumption in  
the TMP175-Q1 and TMP75-Q1 when continuous temperature monitoring is not required. When the configuration  
register is read, OS always reads zero.  
7.4.3 Thermostat Mode (TM)  
The thermostat mode bit of the TMP175-Q1 and TMP75-Q1 indicates to the device whether to operate in  
comparator mode (TM = 0) or interrupt mode (TM = 1). For more information on comparator and interrupt modes,  
see the High- and Low-Limit Registers section.  
7.4.3.1 Comparator Mode (TM = 0)  
In comparator mode (TM = 0), the ALERT pin is activated when the temperature equals or exceeds the value in  
the T(HIGH) register and remains active until the temperature falls below the value in the T(LOW) register. For more  
information on the comparator mode, see the High- and Low-Limit Registers section.  
7.4.3.2 Interrupt Mode (TM = 1)  
In interrupt mode (TM = 1), the ALERT pin is activated when the temperature exceeds T(HIGH) or goes below the  
T(LOW) registers. The ALERT pin is cleared when the host controller reads the Temperature register. For more  
information on the interrupt mode, see the High- and Low-Limit Registers section.  
Copyright © 2015, Texas Instruments Incorporated  
15  
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
7.5 Programming  
7.5.1 Pointer Register  
Figure 11 shows the internal register structure of the TMP175-Q1 and TMP75-Q1. The 8-bit Pointer register of  
the devices is used to address a given data register. The Pointer register uses the two LSBs to identify which of  
the data registers must respond to a read or write command. Table 4 identifies the bits of the Pointer register  
byte. Table 5 describes the pointer address of the registers available in the TMP175-Q1 and TMP75-Q1. The  
power-up reset value of P1/P0 is 00.  
Pointer  
Register  
Temperature  
Register  
SCL  
Configuration  
Register  
I/O  
Control  
Interface  
TLOW  
Register  
SDA  
THIGH  
Register  
Figure 11. Internal Register Structure of the TMP175-Q1 and TMP75-Q1  
Table 4. Pointer Register Byte (pointer = N/A) [reset = 00h]  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
0
0
0
0
0
0
Register Bits  
Table 5. Pointer Addresses of the TMP175-Q1 and TMP75-Q1  
P1  
0
P0  
0
TYPE  
R only, default  
R/W  
REGISTER  
Temperature register  
Configuration register  
TLOW register  
0
1
1
0
R/W  
1
1
R/W  
THIGH register  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
7.5.2 Temperature Register  
The Temperature register of the TMP175-Q1 or TMP75-Q1 is a 12-bit, read-only register that stores the output of  
the most recent conversion. Two bytes must be read to obtain data and are described in Table 6 and Table 7.  
Byte 1 is the most significant byte and is followed by byte 2, the least significant byte. The first 12 bits are used  
to indicate temperature, with all remaining bits equal to zero. The least significant byte does not have to be read  
if that information is not needed. Following the power-up or reset value, the Temperature register reads 0°C until  
the first conversion is complete.  
Table 6. Byte 1 of the Temperature Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
T11  
T10  
T9  
T8  
T7  
T6  
T5  
T4  
Table 7. Byte 2 of the Temperature Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
T3  
T2  
T1  
T0  
0
0
0
0
7.5.3 Configuration Register  
The Configuration register is an 8-bit read/write register used to store bits that control the operational modes of  
the temperature sensor. Read and write operations are performed MSB first. The format of the Configuration  
register for the TMP175-Q1 and TMP75-Q1 is shown in Table 8, followed by a breakdown of the register bits.  
The power-up or reset value of the Configuration register are all bits equal to 0.  
Table 8. Configuration Register Format  
BYTE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
OS  
R1  
R0  
F1  
F0  
POL  
TM  
SD  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
 
 
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
7.5.3.1 Polarity (POL)  
The Polarity bit of the TMP175-Q1 lets the user adjust the polarity of the ALERT pin output. If the POL bit is set  
to 0 (default), the ALERT pin becomes active low. When the POL bit is set to 1, the ALERT pin becomes active  
high and the state of the ALERT pin is inverted. The operation of the ALERT pin in various modes is shown in  
Figure 12.  
THIGH  
Measured  
Temperature  
TLOW  
Device ALERT Pin  
(Comparator Mode)  
POL =0  
Device ALERT Pin  
(Interrupt Mode)  
POL =0  
Device ALERT Pin  
(Comparator Mode)  
POL =1  
Device ALERT Pin  
(Interrupt Mode)  
POL =1  
Read  
Read  
Time  
Read  
Figure 12. Output Transfer Function Diagrams  
7.5.3.2 Fault Queue (F1/F0)  
A fault condition is defined as when the measured temperature exceeds the user-defined limits set in the THIGH  
and TLOW registers. Additionally, the number of fault conditions required to generate an alert can be programmed  
using the fault queue. The fault queue is provided to prevent a false alert resulting from environmental noise. The  
fault queue requires consecutive fault measurements in order to trigger the Alert function. Table 9 defines the  
number of measured faults that can be programmed to trigger an Alert condition in the device. For the THIGH and  
TLOW register format and byte order, see the High- and Low-Limit Registers section.  
Table 9. Fault Settings of the TMP175-Q1 and TMP75-Q1  
F1  
0
F0  
0
CONSECUTIVE FAULTS  
1
2
4
6
0
1
1
0
1
1
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
7.5.3.3 Converter Resolution (R1/R0)  
The Converter Resolution bits control the resolution of the internal analog-to-digital (ADC) converter. This control  
allows the user to maximize efficiency by programming for higher resolution or faster conversion time. Table 10  
identifies the resolution bits and the relationship between resolution and conversion time.  
Table 10. Resolution of the TMP175-Q1 and TMP75-Q1  
CONVERSION TIME  
R1  
R0  
RESOLUTION  
(Typical)  
27.5 ms  
55 ms  
0
0
1
1
0
1
0
1
9 bits (0.5°C)  
10 bits (0.25°C)  
11 bits (0.125°C)  
12 bits (0.0625°C)  
110 ms  
220 ms  
7.5.4 High- and Low-Limit Registers  
In comparator mode (TM = 0), the ALERT pin of the TMP175-Q1 and TMP75-Q1 becomes active when the  
temperature equals or exceeds the value in THIGH and generates a consecutive number of faults according to  
fault bits F1 and F0. The ALERT pin remains active until the temperature falls below the indicated TLOW value for  
the same number of faults.  
In interrupt mode (TM = 1), the ALERT pin becomes active when the temperature equals or exceeds THIGH for a  
consecutive number of fault conditions. The ALERT pin remains active until a read operation of any register  
occurs, or the device successfully responds to the SMBus alert response address. The ALERT pin is also  
cleared if the device is placed in shutdown mode. When cleared, the ALERT pin only becomes active again by  
the temperature falling below TLOW. When the temperature falls below TLOW, the ALERT pin becomes active and  
remains active until cleared by a read operation of any register or a successful response to the SMBus alert  
response address. When the ALERT pin is cleared, the above cycle repeats, with the ALERT pin becoming  
active when the temperature equals or exceeds THIGH. The ALERT pin can also be cleared by resetting the  
device with the General-Call Reset command. This action also clears the state of the internal registers in the  
device, returning the device to comparator mode (TM = 0).  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
Both operational modes are represented in Figure 12. Table 11, Table 12, Table 13, and Table 14 describe the  
format for the THIGH and TLOW registers. The most significant byte is sent first, followed by the least significant  
byte. Power-up reset values for THIGH and TLOW are:  
THIGH = 80°C and TLOW = 75°C  
The format of the data for THIGH and TLOW is the same as for the Temperature register.  
Table 11. Byte 1 of the THIGH Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
H11  
H10  
H9  
H8  
H7  
H6  
H5  
H4  
Table 12. Byte 2 of the THIGH Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
H3  
H2  
H1  
H0  
0
0
0
0
Table 13. Byte 1 of the TLOW Register  
BYTE  
D7  
L11  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
L4  
1
L10  
L9  
L8  
L7  
L6  
L5  
Table 14. Byte 2 of the TLOW Register  
D7  
D6  
L2  
D5  
D4  
D3  
D2  
D1  
D0  
L3  
L1  
L0  
0
0
0
0
All 12 bits for the Temperature, THIGH, and TLOW registers are used in the comparisons for the Alert function for  
all converter resolutions. The three LSBs in THIGH and TLOW can affect the Alert output even if the converter is  
configured for 9-bit resolution.  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TMP175-Q1 and TMP75-Q1 devices are used to measure the printed circuit board (PCB) temperature of  
where the device is mounted. The TMP175-Q1 and TMP75-Q1 feature SMBus, two-wire, and I2C interface  
compatibility, with the TMP175-Q1 allowing up to 27 devices on one bus and the TMP75-Q1 allowing up to eight  
devices on one bus. The TMP175-Q1 and TMP75-Q1 both feature a SMBus Alert function. The TMP175-Q1 and  
TMP75-Q1 require no external components for operation except for pullup resistors on SCL, SDA, and ALERT,  
although a 0.1-μF bypass capacitor is recommended.  
The sensing device of the TMP175-Q1 and TMP75-Q1 devices is the device itself. Thermal paths run through  
the package leads as well as the plastic package. The lower thermal resistance of metal causes the leads to  
provide the primary thermal path.  
8.2 Typical Application  
2.7-V to 5.5-V  
Supply Voltage  
0.01-µF  
Supply Bypass Capacitor  
5-k  
Pullup Resistors  
TMP175-Q1,  
TMP75-Q1  
1
2
3
4
8
V+  
A0  
A1  
A2  
SDA  
SCL  
Two-Wire  
Host Controller  
7
6
5
ALERT  
GND  
Figure 13. Typical Connections of the TMP175-Q1 and TMP75-Q1  
8.2.1 Design Requirements  
The TMP175-Q1 and TMP75-Q1 devices requires pullup resistors on the SCL, SDA, and ALERT pins. The  
recommended value for the pullup resistor is 5 kΩ. In some applications the pullup resistor can be lower or  
higher than 5 kΩ, but must not exceed 3 mA of current on the SCL and SDA pins and must not exceed 4 mA on  
the ALERT pin. A 0.1-μF bypass capacitor is recommended, as shown in Figure 13. The SCL, SDA, and ALERT  
lines can be pulled up to a supply that is equal to or higher than VS through the pullup resistors. For the TMP175-  
Q1, to configure one of 27 different addresses on the bus, connect A0, A1, and A2 to either the GND or the V+  
pin or float these pins. Float indicates that the pin is left unconnected. For the TMP75-Q1, to configure one of  
eight different addresses on the bus, connect A0, A1, and A2 to either the GND or V+ pin.  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.2 Detailed Design Procedure  
Place the TMP175-Q1 and TMP75-Q1 devices in close proximity to the heat source that must be monitored, with  
a proper layout for good thermal coupling. This placement ensures that temperature changes are captured within  
the shortest possible time interval. To maintain accuracy in applications that require air or surface temperature  
measurement, take care to isolate the package and leads from ambient air temperature. A thermally-conductive  
adhesive is helpful in achieving accurate surface temperature measurement.  
8.2.3 Application Curve  
Figure 14 shows the step response of the TMP175-Q1 and TMP75-Q1 devices to a submersion in an oil bath of  
100ºC from room temperature (27ºC). The time-constant, or the time for the output to reach 63% of the input  
step, is 1.5 s. The time-constant result depends on the PCB where the TMPx175 devices are mounted. For this  
test, the TMP175-Q1 and TMP75-Q1 devices were soldered to a two-layer PCB that measured 0.375 inches ×  
0.437 inches.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
-1  
1
3
5
7
9
11 13 15 17 19  
Time (s)  
Figure 14. Temperature Step Response  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
TMP175-Q1, TMP75-Q1  
www.ti.com.cn  
ZHCSEE7 NOVEMBER 2015  
9 Power Supply Recommendations  
The TMP175-Q1 and TMP75-Q1 devices operate with power supplies in the range of 2.7 V to 5.5 V. A power-  
supply bypass capacitor is required for stability; place this capacitor as close as possible to the supply and  
ground pins of the device. A typical value for this supply bypass capacitor is 0.01 μF. Applications with noisy or  
high-impedance power supplies can require additional decoupling capacitors to reject power-supply noise.  
10 Layout  
10.1 Layout Guidelines  
Place the power-supply bypass capacitor as close as possible to the supply and ground pins. The recommended  
value of this bypass capacitor is 0.01 μF. Additional decoupling capacitance can be added to compensate for  
noisy or high-impedance power supplies. Pull up the open-drain output pins SDA, SCL, and ALERT through 5-kΩ  
pullup resistors.  
10.2 Layout Example  
Via to Power or Ground Plane  
Via to Internal Layer  
Pull-Up Resistors  
Supply Bypass  
Capacitor  
Supply Voltage  
SDA  
VS  
A0  
A1  
A2  
SCL  
ALERT  
GND  
Ground Plane for  
Thermal Coupling  
to Heat Source  
Serial Bus Traces  
Heat Source  
Figure 15. Layout Example  
版权 © 2015, Texas Instruments Incorporated  
23  
TMP175-Q1, TMP75-Q1  
ZHCSEE7 NOVEMBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访  
问。  
15. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TMP175-Q1  
TMP75-Q1  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
SMBus is a trademark of Intel Corporation.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMP175AQDGKRQ1  
TMP175AQDRQ1  
TMP75AQDGKRQ1  
TMP75AQDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
175Q  
NIPDAU  
NIPDAUAG  
NIPDAU  
T175Q1  
75Q1  
VSSOP  
SOIC  
DGK  
D
T75Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TMP175AQDRQ1

具有27 个 I2C/SMBus 地址、采用业界通用 LM75 外形尺寸和引脚排列的汽车类温度传感器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP175_12

Digital Temperature Sensor with Two-Wire Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP17FS

Low Cost, Current Output Temperature Transducer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADI

TMP17FSZ

Low Cost, Current Output Temperature Transducer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADI

TMP17FSZ-RL

Low Cost, Current Output Temperature Transducer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADI

TMP17GS

Low Cost, Current Output Temperature Transducer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADI

TMP17GSZ

Low Cost, Current Output Temperature Transducer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADI

TMP17GSZ-REEL

Analog Temperature Sensor, ANALOG TEMP SENSOR-VOLTAGE, 3.50Cel, RECTANGULAR, THROUGH HOLE MOUNT, MS-012AA, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADI

TMP17GSZ-RL

Low Cost, Current Output Temperature Transducer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADI

TMP1826

具有 2kbit EEPROM 的 1-Wire®、±0.2°C 精度数字温度传感器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP1826DGKR

具有 2kbit EEPROM 的 1-Wire®、±0.2°C 精度数字温度传感器 | DGK | 8 | -55 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP1827

1-Wire®, ±0.2°C accurate digital temperature sensor with authentication, 2-Kbit EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI