TMUX6219DGKRQ1 [TI]

具有 1.8V 逻辑的汽车类 36V、低 Ron、2:1 (SPDT) 开关 | DGK | 8 | -40 to 125;
TMUX6219DGKRQ1
型号: TMUX6219DGKRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 逻辑的汽车类 36V、低 Ron、2:1 (SPDT) 开关 | DGK | 8 | -40 to 125

开关 光电二极管
文件: 总42页 (文件大小:2627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
1.8V 逻辑电平TMUX6219-Q136VRon2:1 (SPDT) 开关  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TMUX6219-Q1 是一款互补金属氧化物半导(CMOS)  
开关采用单通道 2:1 (SPDT) 配置。此器件在单电源  
4.5V 36V、双电源±4.5V ±18V或非对称  
电源例如 VDD = 8VVSS = -12V供电时均能正常  
运行。TMUX6219-Q1 可在源极 (Sx) 和漏极 (D) 引脚  
上支持VSS VDD 范围的双向模拟和数字信号。  
– 器件温度等140°C 125°C 的工作环境  
温度范围  
提供功能安全  
可帮助进行功能安全系统设计的文档  
• 双电源电压范围±4.5V ±18V  
• 单电源电压范围4.5V 36V  
• 低导通电阻2.1Ω  
可以通过控制 EN 引脚来启用或禁用 TMUX6219-Q1。  
当禁用时两个信号路径开关都断开。当启用时SEL  
引脚可用于导通信号路径 1S1 D或信号路径 2  
S2 D。所有逻辑控制输入均支持 1.8V VDD  
的逻辑电平因此当器件在有效电源电压范围内运行  
可确保 TTL CMOS 逻辑兼容性。失效防护逻辑  
电路允许先在控制引脚上施加电压然后在电源引脚上  
施加电压从而保护器件免受潜在的损害。  
• 低电荷注入-10pC  
• 高电流支持330mA最大值)  
1.8V 逻辑电平  
失效防护逻辑  
轨至轨运行  
双向信号路径  
• 先断后合开关  
TMUX6219-Q1 是精密开关和多路复用器系列器件。这  
些器件具有非常低的导通和关断泄漏电流以及较低的电  
荷注入因此可用于高精度测量应用。  
2 应用  
电动汽车充电站电源模块  
高级驾驶辅助系(ADAS)  
• 汽车网关  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
模拟和数字多路复用/多路信号分离  
汽车音响主机  
TMUX6219-Q1  
VSSOP (8) (DGK)  
3.00mm × 3.00mm  
远程信息处理控制单元  
紧急呼(eCall)  
信息娱乐系统  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
车身控制模(BCM)  
车身电子装置和照明  
电池管理系(BMS)  
HVAC 控制器模块  
ADAS 域控制器  
VSS  
VDD  
S1  
S2  
D
Decoder  
EN SEL  
TMUX6219-Q1 方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS437  
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
Table of Contents  
7.9 Charge Injection........................................................27  
7.10 Off Isolation.............................................................27  
7.11 Crosstalk................................................................. 28  
7.12 Bandwidth............................................................... 28  
7.13 THD + Noise........................................................... 29  
7.14 Power Supply Rejection Ratio (PSRR)...................29  
8 Detailed Description......................................................30  
8.1 Overview...................................................................30  
8.2 Functional Block Diagram.........................................30  
8.3 Feature Description...................................................30  
8.4 Device Functional Modes..........................................32  
8.5 Truth Tables.............................................................. 32  
9 Application and Implementation..................................33  
9.1 Application Information............................................. 33  
9.2 Typical Application.................................................... 33  
10 Power Supply Recommendations..............................34  
11 Layout...........................................................................35  
11.1 Layout Guidelines................................................... 35  
11.2 Layout Example...................................................... 35  
12 Device and Documentation Support..........................36  
12.1 Documentation Support.......................................... 36  
12.2 Receiving Notification of Documentation Updates..36  
12.3 支持资源..................................................................36  
12.4 Trademarks.............................................................36  
12.5 Electrostatic Discharge Caution..............................36  
12.6 Glossary..................................................................36  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Thermal Information ...................................................4  
6.4 Recommended Operating Conditions ........................5  
6.5 Source or Drain Continuous Current ..........................5  
6.6 ±15 V Dual Supply: Electrical Characteristics ...........6  
6.7 ±15 V Dual Supply: Switching Characteristics ..........7  
6.8 36 V Single Supply: Electrical Characteristics .......... 9  
6.9 36 V Single Supply: Switching Characteristics ....... 10  
6.10 12 V Single Supply: Electrical Characteristics ...... 12  
6.11 12 V Single Supply: Switching Characteristics ......13  
6.12 ±5 V Dual Supply: Electrical Characteristics .........15  
6.13 ±5 V Dual Supply: Switching Characteristics ........16  
6.14 Typical Characteristics............................................18  
7 Parameter Measurement Information..........................23  
7.1 On-Resistance.......................................................... 23  
7.2 Off-Leakage Current................................................. 23  
7.3 On-Leakage Current................................................. 24  
7.4 Transition Time......................................................... 24  
7.5 tON(EN) and tOFF(EN) .................................................. 25  
7.6 Break-Before-Make...................................................25  
7.7 tON (VDD) Time............................................................26  
7.8 Propagation Delay.................................................... 26  
Information.................................................................... 36  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (January 2021) to Revision A (June 2021)  
Page  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
D
S1  
1
2
3
4
8
7
6
5
S2  
VSS  
SEL  
EN  
GND  
VDD  
Not to scale  
5-1. DGK Package  
8-Pin VSSOP  
Top View  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
DGK  
D
1
I/O  
I
Drain pin. Can be an input or output.  
Active high logic enable, has internal pull-up resistor. When this pin is low, all switches are turned off.  
When this pin is high, the SEL logic input determine which switch is turned on.  
EN  
5
GND  
S1  
3
2
8
6
P
I/O  
I/O  
I
Ground (0 V) reference  
Source pin 1. Can be an input or output.  
S2  
Source pin 2. Can be an input or output.  
SEL  
Logic control input, has internal pull-down resistor. Controls the switch connection as shown in 8-1.  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
4
7
P
P
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
(1) I = input, O = output, I/O = input and output, P = power.  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX6219-Q1  
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
V
Power supply voltage differential  
Supply voltage  
38  
VDDVSS  
VDD  
38  
V
0.5  
38  
VSS  
Supply voltage  
0.5  
V
VSEL or VEN  
ISEL or IEN  
VS or VD  
IIK  
Logic control input pin voltage (SEL, EN)(3)  
Logic control input pin current (SEL, EN)(3)  
Source or drain voltage (Sx, D)(3)  
Diode clamp current(3)  
38  
V
0.5  
30  
VDD+0.5  
30  
mA  
V
30  
VSS0.5  
30  
mA  
mA  
°C  
°C  
°C  
mW  
IS or ID (CONT)  
TA  
Source or drain continuous current (Sx, D)  
Ambient temperature  
IDC + 10 %(4)  
150  
55  
65  
Tstg  
Storage temperature  
150  
TJ  
Junction temperature  
150  
Ptot  
Total power dissipation(5)  
460  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages are with respect to ground, unless otherwise specified.  
(3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
(4) Refer to Source or Drain Continuous Current table for IDC specifications.  
(5) For DGK package: Ptot derates linearily above TA = 70°C by 6.7mW/°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TMUX6219-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
152.1  
48.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
73.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.1  
ΨJT  
71.8  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
VSS  
0
NOM  
MAX  
36  
UNIT  
V
(1)  
VDD - VSS  
VDD  
Power supply voltage differential  
Positive power supply voltage  
36  
V
VS or VD  
VSEL or VEN  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Address or enable pin voltage  
VDD  
36  
V
V
(2)  
IS or ID (CONT) Source or drain continuous current (Sx, D)  
TA Ambient temperature  
IDC  
mA  
°C  
125  
40  
(1) VDD and VSS can be any value as long as 4.5 V (VDD VSS) 36 V, and the minimum VDD is met.  
(2) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.5 Source or Drain Continuous Current  
at supply voltage of VDD ± 10%, VSS ± 10 % (unless otherwise noted)  
CONTINUOUS CURRENT PER CHANNEL (IDC  
PACKAGE TEST CONDITIONS  
±15 V Dual Supply  
)
TA = 25°C  
TA = 85°C  
210  
TA = 125°C  
UNIT  
330  
120  
mA  
mA  
mA  
mA  
mA  
+36 V Single Supply(1)  
+12 V Single Supply  
±5 V Dual Supply  
300  
240  
240  
180  
190  
160  
160  
120  
110  
100  
100  
80  
DGK (VSSOP)  
+5 V Single Supply  
(1) Specified for nominal supply voltage only.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX6219-Q1  
 
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
MAX UNIT  
6.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
2.1  
2.9  
3.8  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
4.5  
0.05  
0.5  
0.25  
0.3  
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
0.35  
0.6  
VS = 10 V to +10 V  
IS = 10 mA  
Refer to On-Resistance  
0.7  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
0.85  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
0.01  
0.1  
40°C to +125°C  
/°C  
25°C  
0.3  
3
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
0.3  
3  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
50  
nA  
40°C to +125°C  
50  
25°C  
0.1  
0.1  
2
5
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
2  
5  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
70  
nA  
40°C to +125°C  
70  
25°C  
2
5
nA  
nA  
nA  
2  
5  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
70  
70  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
30  
3
40  
48  
62  
10  
15  
25  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.7 ±15 V Dual Supply: Switching Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
120  
175  
190  
210  
170  
185  
200  
180  
195  
210  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V  
100  
100  
50  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.19  
0.2  
VDD rise time = 100ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
0.2  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
700  
ps  
VD = 0 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
10  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
40  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.18  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
64  
Refer to ACPSRR  
VPP = 15 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0005  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
33  
48  
pF  
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX6219-Q1  
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CS(ON)  
CD(ON)  
,
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
148  
pF  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.8 36 V Single Supply: Electrical Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
2.5  
3.2  
4.2  
4.9  
0.2  
0.25  
0.3  
1
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 30 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.1  
0.3  
VS = 0 V to 30 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 30 V  
IS = 10 mA  
Refer to On-Resistance  
1.5  
2
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 18 V, IS = 10 mA  
Refer to On-Resistance  
0.009  
0.1  
40°C to +125°C  
/°C  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
25°C  
0.5  
5
nA  
nA  
0.5  
5  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 30 V  
Refer to Off-Leakage Current  
70  
nA  
40°C to +125°C  
70  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
VD = 1 V / 30 V  
Refer to Off-Leakage Current  
25°C  
0.1  
0.1  
2
nA  
nA  
2  
10  
40°C to +85°C  
10  
ID(OFF)  
Drain off leakage current(1)  
80  
nA  
40°C to +125°C  
80  
25°C  
2
10  
80  
nA  
nA  
nA  
VDD = 39.6 V, VSS = 0 V  
Switch state is on  
VS = VD = 30 V or 1 V  
Refer to On-Leakage Current  
2  
10  
80  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
28  
50  
58  
70  
µA  
µA  
µA  
VDD = 39.6 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX6219-Q1  
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
MAX UNIT  
6.9 36 V Single Supply: Switching Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
110  
170  
185  
200  
180  
190  
200  
180  
195  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 18 V  
110  
90  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
44  
VS = 18 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.17  
0.19  
0.19  
VDD rise time = 100ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
920  
ps  
VD = 18 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
13  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 6 V,  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
38  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.19  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
60  
Refer to ACPSRR  
VPP =18 V, VBIAS = 18 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0004  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
35  
49  
pF  
pF  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CS(ON),  
CD(ON)  
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
146  
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX6219-Q1  
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
MAX UNIT  
6.10 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
4.6  
6
7.5  
8.4  
0.2  
0.32  
0.35  
2
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.08  
1.2  
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 10 V  
IS = 10 mA  
Refer to On-Resistance  
2.2  
2.4  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 6 V, IS = 10 mA  
Refer to On-Resistance  
0.017  
0.1  
40°C to +125°C  
/°C  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
25°C  
1
5
nA  
nA  
1  
5  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
50  
nA  
40°C to +125°C  
50  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
25°C  
0.1  
0.1  
2
5
nA  
nA  
2  
5  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
70  
nA  
40°C to +125°C  
70  
25°C  
2
5
nA  
nA  
nA  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
Refer to On-Leakage Current  
2  
5  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
70  
70  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
10  
35  
45  
55  
µA  
µA  
µA  
VDD = 13.2 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.11 12 V Single Supply: Switching Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
180  
185  
215  
235  
180  
210  
230  
210  
235  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 8 V  
120  
130  
40  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 8 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.19  
0.2  
VDD rise time = 100ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
0.2  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
740  
ps  
VD = 6 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
6  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Charge Injection  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
42  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.3  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
65  
Refer to ACPSRR  
VPP = 6 V, VBIAS = 6 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0009  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
38  
56  
pF  
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX6219-Q1  
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CS(ON)  
CD(ON)  
,
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
150  
pF  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.12 ±5 V Dual Supply: Electrical Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
4
7.2  
8.6  
VDD = +4.5 V, VSS = 4.5 V  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Ω
Ω
40°C to +85°C  
RON  
On-resistance  
10  
0.3  
40°C to +125°C  
25°C  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Refer to On-Resistance  
0.1  
1.3  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
0.35  
0.4  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
2.2  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Refer to On-Resistance  
2.5  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
2.8  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
0.019  
0.1  
40°C to +125°C  
/°C  
25°C  
1
4
nA  
nA  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is off  
VS = +4.5 V / 4.5 V  
1  
4  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 4.5 V / + 4.5 V  
Refer to Off-Leakage Current  
50  
nA  
40°C to +125°C  
50  
25°C  
0.1  
0.1  
2
5
nA  
nA  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is off  
VS = +4.5 V / 4.5 V  
VD = 4.5 V / + 4.5 V  
Refer to Off-Leakage Current  
2  
5  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
50  
nA  
40°C to +125°C  
50  
25°C  
2
5
nA  
nA  
nA  
2  
5  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is on  
VS = VD = ±4.5 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
50  
50  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
20  
35  
40  
50  
5
µA  
µA  
µA  
µA  
µA  
µA  
VDD = +5.5 V, VSS = 5.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
0.001  
VDD = +5.5 V, VSS = 5.5 V  
Logic inputs = 0 V, 5 V, or VDD  
8
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
15  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX6219-Q1  
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
MAX UNIT  
6.13 ±5 V Dual Supply: Switching Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
300  
400  
490  
550  
300  
350  
380  
280  
330  
350  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 3 V  
220  
210  
50  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 3 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.19  
0.19  
0.19  
VDD rise time = 100ns  
RL = 300 Ω, CL = 35pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
1
1
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
650  
ps  
VD = 0 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
5  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Crosstalk  
Crosstalk  
25°C  
25°C  
25°C  
dB  
dB  
dB  
55  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
RL = 50 Ω, CL = 5 pF  
VS = 0 V,  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
43  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.35  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
25°C  
dB  
%
68  
0.001  
Refer to ACPSRR  
VPP = 5 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
THD+N  
Total Harmonic Distortion + Noise  
Total Harmonic Distortion + Noise  
Refer to THD + Noise  
VPP = 5 V, VBIAS = 0 V  
RL = 10 MΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
0.0006  
%
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
40  
60  
pF  
pF  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
150  
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX6219-Q1  
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.14 Typical Characteristics  
at TA = 25°C  
4
VDD = 18 V, VSS = –18 V  
VDD = 15 V, VSS = –15 V  
3.5  
3
2.5  
2
1.5  
1
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
VS or VD - Source or Drain Voltage (V)  
6-1. On-Resistance vs Source or Drain Voltage Dual  
6-2. On-Resistance vs Source or Drain Voltage Dual  
Supply  
Supply  
5
VDD = 36 V, VSS = 0 V  
VDD = 24 V, VSS = 0 V  
VDD = 18 V, VSS = 0 V  
4
3
2
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
VS or VD - Source or Drain Voltage (V)  
6-3. On-Resistance vs Source or Drain Voltage Single  
6-4. On-Resistance vs Source or Drain Voltage Single  
Supply  
Supply  
VDD = 15 V, VSS = -15 V  
VDD = 5 V, VSS = -5 V  
6-5. On-Resistance vs Temperature  
6-6. On-Resistance vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
6-7. On-Resistance vs Temperature  
6-8. On-Resistance vs Temperature  
15  
ID(OFF) VS/VD = –4.5 V/4.5 V  
ID(OFF) VS/VD = 4.5 V/–4.5 V  
ION –4.5 V  
ION 4.5 V  
IS(OFF) VS/VD = –4.5 V/4.5 V  
IS(OFF) VS/VD = 4.5 V/–4.5 V  
10  
5
0
-5  
-10  
-15  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD = 5 V, VSS = -5 V  
VDD = 15 V, VSS = -15 V  
6-9. Leakage Current vs Temperature  
6-10. Leakage Current vs Temperature  
VDD = 36 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
6-11. Leakage Current vs Temperature  
6-12. Leakage Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX6219-Q1  
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
50  
100  
80  
60  
40  
20  
0
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5 V  
45  
40  
35  
30  
25  
20  
15  
-20  
-40  
-60  
0
4
8
12  
16  
20  
24  
28  
32  
36  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Logic Voltage (V)  
Source Voltage (V)  
D015  
6-14. Charge Injection vs Source Voltage Dual Supplies  
6-13. Supply Current vs Logic Voltage  
80  
130  
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5 V  
VDD = 36 V, VSS = 0 V  
VDD = 20 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
110  
60  
40  
20  
0
90  
VDD = 5 V, VSS = 0 V  
70  
50  
30  
10  
-10  
-30  
-50  
-70  
-20  
-40  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Drain Voltage (V)  
Source Voltage (V)  
D018  
6-15. Charge Injection vs Drain Voltage Dual Supplies  
6-16. Charge Injection vs Source Voltage Single Supplies  
120  
VDD = 36 V, VSS = 0 V  
100  
80  
60  
40  
20  
0
VDD = 20 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
-20  
-40  
-60  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Drain Voltage (V)  
VDD = 15 V, VSS = -15 V  
6-17. Charge Injection vs Drian Voltage Single Supplies  
6-18. TTRANSITION vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
120  
Transiton_Falling  
Transiton_Rising  
115  
110  
105  
100  
95  
90  
85  
80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD = 36 V, VSS = 0 V  
VDD = 15 V, VSS = -15 V  
6-19. TTRANSITION vs Temperature  
6-20. TON and TOFF vs Temperature  
120  
115  
110  
105  
100  
95  
0
T(OFF)  
T(ON)  
VDD = 15V, VSS = –15V  
VDD = 36V, VSS = 0V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
90  
85  
80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
VDD = 36 V, VSS = 0 V  
6-21. TON and TOFF vs Temperature  
6-22. Off-Isolation vs Frequency  
Switch ON (EN = 1)  
Switch OFF (EN = 0)  
6-23. Crosstalk vs Frequency  
6-24. Crosstalk vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX6219-Q1  
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
0.002  
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5V  
0.001  
0.0008  
0.0007  
0.0006  
0.0005  
0.0004  
0.0003  
10  
100  
1k  
10k  
Frequency (Hz)  
6-26. THD+N vs Frequency (Single Supplies)  
6-25. THD+N vs Frequency (Dual Supplies)  
VDD = 15 V, VSS = -15 V  
VDD = +15 V, VSS = -15 V  
6-27. On Response vs Frequency  
6-28. ACPSRR vs Frequency  
VDD = +15 V, VSS = -15 V  
VDD = 12 V, VSS = 0 V  
6-29. Capacitance vs Source Voltage or Drain Voltage  
6-30. Capacitance vs Source Voltage or Drain Voltage  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using the following setup, where RON is computed as RON = V / ISD  
:
V
ISD  
Sx  
Dx  
VS  
RON  
7-1. On-Resistance  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current.  
2. Drain off-leakage current.  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
7-2 shows the setup used to measure both off-leakage currents.  
.
.
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
ID (OFF)  
S1  
S2  
S1  
S2  
A
D
D
A
VS  
VS  
VD  
VD  
GND  
GND  
IS(OFF)  
ID(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
Is (ON)  
ID (ON)  
S1  
S2  
S1  
S2  
N.C.  
A
D
D
A
N.C.  
VS  
VS  
VS  
GND  
GND  
IS(ON)  
ID(ON)  
7-3. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal  
has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 7-4 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
0 V  
VDD  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1  
S2  
D
Output  
CL  
tTRANSITION  
tTRANSITION  
90%  
RL  
SEL  
Output  
10%  
GND  
VSEL  
0 V  
7-4. Transition-Time Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7.5 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-5  
shows the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-5  
shows the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VEN  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1  
S2  
VS  
0 V  
D
Output  
CL  
tON  
tOFF  
90%  
RL  
EN  
Output  
10%  
GND  
VEN  
0 V  
7-5. Turn-On and Turn-Off Time Measurement Setup  
7.6 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-6 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VSEL  
tr < 20ns  
tf < 20ns  
S1  
S2  
VS  
0 V  
D
Output  
CL  
RL  
80%  
SEL  
Output  
0 V  
tBBM  
1
tBBM 2  
VSEL  
GND  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
7-6. Break-Before-Make Delay Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7.7 tON (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-7 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
VSS  
0.1 µF  
0.1 µF  
VDD  
Supply  
Ramp  
VDD  
VDD  
VSS  
tr = 10 µs  
4.5 V  
VS  
S2  
S1  
0 V  
D
Output  
CL  
tON  
90%  
RL  
EN  
Output  
3 V  
SEL  
GND  
0 V  
7-7. tON (VDD) Time Measurement Setup  
7.8 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-8 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
250 mV  
Input  
(VS)  
VDD  
S1  
S2  
VSS  
50%  
50%  
tr < 40ps  
tf < 40ps  
50  
VS  
0 V  
D
Output  
CL  
tPD  
1
tPD 2  
RL  
Output  
0 V  
50%  
50%  
GND  
tProp Delay = max ( tPD 1, tPD 2)  
7-8. Propagation Delay Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7.9 Charge Injection  
The TMUX6219-Q1 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and  
PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate  
signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QC. 7-9 shows the setup used to measure charge injection from source (Sx) to drain  
(D).  
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VEN  
VDD  
VSS  
tr < 20 ns  
tf < 20 ns  
Output  
S1  
S2  
D
0 V  
VD  
CL  
N.C.  
Output  
VD  
EN  
VOUT  
QINJ = CL ×  
VOUT  
VEN  
GND  
7-9. Charge-Injection Measurement Setup  
7.10 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-10 shows the setup used to measure, and the equation used to calculate  
off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1  
D
50Ω  
VOUT  
VSIG  
50Ω  
S2  
50Ω  
GND  
8176  
1BB +OKH=PEKJ = 20 × .KC  
8
5
7-10. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7.11 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-11 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1  
S2  
D
50Ω  
VOUT  
50Ω  
VSIG  
50Ω  
GND  
8176  
%NKOOP=HG = 20 × .KC  
8
5
7-11. Crosstalk Measurement Setup  
7.12 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-12  
shows the setup used to measure bandwidth.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1  
D
50Ω  
VOUT  
VSIG  
50Ω  
S2  
50Ω  
GND  
8176  
$=J@SE@PD = 20 × .KC  
8
5
7-12. Bandwidth Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7.13 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output.  
The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the  
drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD + N.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
S1  
D
40 Ω  
VOUT  
VS  
RL  
Other  
Sx pins  
50Ω  
GND  
7-13. THD + N Measurement Setup  
7.14 Power Supply Rejection Ratio (PSRR)  
PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage  
pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave  
of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the  
ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.  
This helps stabilize the supply and immediately filter as much of the supply noise as possible.  
VDD  
Network Analyzer  
VSS  
DC Bias  
Injector  
With & Without  
Capacitor  
50 Ω  
0.1 µF  
0.1 µF  
VDD  
S1  
VSS  
620 mVPP  
VIN  
VBIAS  
50 Ω  
S2  
50 Ω  
VOUT  
D
RL  
GND  
CL  
8176  
2544 = 20 × .KC  
8
+0  
7-14. ACPSRR Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX6219-Q1 is a 2:1, 1-channel switch. Each input is turned on or turned off based on the state of the  
select line and enable pin.  
8.2 Functional Block Diagram  
VSS  
VDD  
S1  
S2  
D
Decoder  
EN SEL  
8-1. TMUX6219-Q1 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX6219-Q1 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail to Rail Operation  
The valid signal path input or output voltage for TMUX6219-Q1 ranges from VSS to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX6219-Q1 has 1.8-V logic compatible control for all logic control inputs. 1.8-V logic level inputs allows  
the TMUX6219-Q1 to interface with processors that have lower logic I/O rails and eliminates the need for an  
external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations  
refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Fail-Safe Logic  
The TMUX6219-Q1 supports Fail-Safe Logic on the control input pins (EN, SEL) allowing for operation up to 36  
V above ground, regardless of the state of the supply pins. This feature allows voltages on the control pins to be  
applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system  
complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-  
Safe Logic feature allows the logic input pins of the TMUX6219-Q1 to be ramped to +36 V while VDD and VSS  
=
0 V. The logic control inputs are protected against positive faults of up to +36 V in powered-off condition, but do  
not offer protection against negative overvoltage conditions.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
8.3.5 Latch-Up Immune  
Latch-Up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX62xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide  
layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures  
from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events  
due to overvoltage or current injections. The latch-up immunity feature allows the TMUX62xx family of switches  
and multiplexers to be used in harsh environments.  
8.3.6 Ultra-Low Charge Injection  
The TMUX6219-Q1 has a transmission gate topology, as shown in 8-2. Any mismatch in the stray  
capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is  
opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-2. Transmission Gate Topology  
The TMUX6219-Q1 contains specialized architecture to reduce charge injection on the source (Sx). To further  
reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D).  
This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on  
the drain (D) instead of the source (Sx). As a general rule of thumb, Cp should be 20× larger than the equivalent  
load capacitance on the source (Sx). 8-3 shows charge injection variation with source voltage with different  
compensation capacitors on the Drain side.  
8-3. Charge Injection Compensation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX6219-Q1  
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
8.4 Device Functional Modes  
When the EN pin of the TMUX6219-Q1 is pulled high, one of the switches is closed based on the state of the  
SEL pin. When the EN pin is pulled low, both of the switches are in an open state regardless of the state of the  
SEL pin. The control pins can be as high as 36 V.  
The TMUX6219-Q1 can be operated without any external components except for the supply decoupling  
capacitors. The EN pin has an internal pull-up resistor of 4 MΩ and SEL pin has internal pull-down resistor of 4  
MΩ. If unused, EN pin must be tied to VDD and SEL pin must be tied to GND in order to ensure the device does  
not consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal  
path inputs (S1, S2, or D) should be connected to GND.  
8.5 Truth Tables  
8-1 show the truth tables for the TMUX6219-Q1.  
8-1. TMUX6219-Q1 Truth Table  
EN SEL  
Selected Source Connected To Drain (D) Pin  
0
1
1
X(1)  
All sources are off (HI-Z)  
0
S1  
S2  
1
(1) X denotes don't care.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
TMUX6219-Q1 is part of the precision switches and multiplexers family of devices. TMUX6219-Q1 offers low  
RON, low on and off leakage currents and ultra-low charge injection performance. These properties make  
TMUX6219-Q1 ideal for implementing high precision industrial systems requiring selection of one of two inputs  
or outputs.  
9.2 Typical Application  
9.2.1 PWM Signal Generation (EV Charging Station)  
One application of the TMUX6219-Q1 is in Electric Vehicle Service Equipment (EVSE). The EVSE is a system  
that monitors and controls the high voltage power path from the grid to the vehicle. One key feature of an EVSE  
is the pilot signal wire communication support that requires a 1-kHz, ±12-V PWM signal to be transmitted down  
the length of the charger cable to the vehicle.  
The TMUX6219-Q1 can be used to generate 1kHz ±12V PWM signal for EVSE control pilot. A 1 kHz square  
wave at ±12 V generated by the EVSE on the control pilot line is used to detect the presence of the vehicle,  
communicate the maximum allowable charging current, and control charging.  
9-1 shows the TMUX6219-Q1 configured for PWM signal generation for EVSE control pilot.  
+12V  
+12 V  
0V  
+12V  
–12V  
±12 V, 1kHz  
EVSE  
Control  
Electric  
Vehicle  
–12V  
SEL  
TMUX6219-  
Q1  
–12 V  
0 V to 5 V, 1kHz  
9-1. PWM Signal Generation (EV Charging Station)  
9.2.2 Design Requirements  
For the design example, use the parameters listed in 9-1 .  
9-1. Design Parameters  
PARAMETERS  
Supply (VDD  
Supply (VSS  
VALUES  
12 V  
)
)
-12 V  
MUX I/O signal range  
Control logic thresholds  
EN  
-12 V to 12 V (Rail-to-Rail)  
1.8 V compatiable (up to VDD  
)
EN pulled high to enable the switch  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
9.2.3 Detailed Design Procedure  
The application shown in 9-1 demonstrates how to generate a ±12V PWM signal that is created by toggling  
the TMUX6219-Q1. This PWM signal generated by the EVSE on the control pilot line signals to the car the  
available current of the charger, and the car will respond with a charging status. This handshake results in a safe  
method for supplying power to vehicle. The TMUX6219-Q1 can support 1.8 V logic signals on the control input,  
allowing the device to interface with low logic controls of an FPGA or MCU. The TMUX6219-Q1 can be operated  
without any external components except for the supply decoupling capacitors. The select pin has an internal  
pull-down resistor to prevent floating input logic. All inputs to the switch must fall within the recommend operating  
conditions of the TMUX6219-Q1 including signal range and continuous current. For this design with a positive  
supply of 12 V on VDD, and negative supply of -12 V on VSS, the signal range can be 12 V to -12 V. The max  
continuous current (IDC) can be up to 330 mA as shown in the Recommended Operating Conditions table for  
wide-range current measurement.  
10 Power Supply Recommendations  
The TMUX6219-Q1 operates across a wide supply range of of ±4.5 V to ±18 V (4.5 V to 36 V in single-supply  
mode). It also performs well with asymmetrical supplies such as VDD = 8 V and VSS = 12 V.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF at both the  
VDD and VSS pins to ground. Place the bypass capacitors as close to the power supply pins of the device as  
possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs)  
that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply  
decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use  
of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple  
vias in parallel lowers the overall inductance and is beneficial for connections to power and ground planes.  
Always ensure the ground (GND) connection is established before supplies are ramped.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
11-2 illustrates an example of a PCB layout with the TMUX6219-Q1. Some key considerations are:  
Decouple the supply pins with a 0.1-µF and 1 µF capacitor, placed lowest value capacitor as close to the pin  
as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground  
planes.  
11.2 Layout Example  
S2  
VSS  
SEL  
EN  
D
TMUX6219-Q1  
S1  
GND  
VDD  
Wide (low inductance)  
trace for power  
C
C
Wide (low inductance)  
trace for power  
Via to ground plane  
11-2. TMUX6219-Q1 Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
 
TMUX6219-Q1  
ZHCSMY9A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief  
Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief  
Texas Instruments, Multiplexers and Signal Switches Glossary application report  
Texas Instruments, QFN/SON PCB Attachment application report  
Texas Instruments, Quad Flatpack No-Lead Logic Packages application report  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report  
Texas Instruments, TMUX6219-Q1 Functional Safety, FIT Rate, Failure Mode Distribution and Pin FMA  
functional safety FIT rate, FMD and Pin-FMA  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMUX6219-Q1  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX6219DGKRQ1  
VSSOP  
DGK  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSSOP DGK  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
TMUX6219DGKRQ1  
8
2500  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TMUX6219RQXR

具有 1.8V 逻辑控制的 36V 低导通电阻、2:1、单通道多路复用器 | RQX | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX621X

TMUX621x 36-V, Low-Ron, 1:1 (SPST), 4-Channel Precision Switches with 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6221

具有 1.8V 逻辑电平和闩锁效应抑制的 36V、1:1 (SPST) 2 通道精密开关(高电平有效)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6222

具有 1.8V 逻辑电平和闩锁效应抑制的 36V、1:1 (SPST) 2 通道精密开关(低电平有效)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6234

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1(SPDT)、四通道精密开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6234PWR

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1(SPDT)、四通道精密开关 | PW | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6234RRQR

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1(SPDT)、四通道精密开关 | RRQ | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6236

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1 (SPDT)、双通道精密开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6236RUMR

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1 (SPDT)、双通道精密开关 | RUM | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX646

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX646NZECR

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX646ZECR

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI