TMUX7236 [TI]

具有闩锁效应抑制和 1.8V 逻辑电平的 44V、低导通电阻、2:1 (SPDT)、双通道精密开关;
TMUX7236
型号: TMUX7236
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有闩锁效应抑制和 1.8V 逻辑电平的 44V、低导通电阻、2:1 (SPDT)、双通道精密开关

开关 光电二极管
文件: 总34页 (文件大小:1648K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
TMUX7236 具有闩锁效应抑制特性1.8V 逻辑电平44VRON2:1  
(SPDT)、双通道精密开关  
1 特性  
3 说明  
闩锁效应抑制  
TMUX7236 是一款具有闩锁效应抑制特性的互补金属  
氧化物半导体 (CMOS) 开关采用双通道 2:1 配置。  
该器件在双电源±5V ±22V、单电源5V 至  
44V或非对称电源例如 VDD = 12VVSS = 5V)  
供电时均能正常运行。TMUX7236 可在源极 (Sx) 和漏  
(D) 引脚上支持从 VSS VDD 范围的双向模拟和数  
字信号。  
• 双电源电压范围±4.5 V ±22 V  
• 单电源电压范围4.5 V 44 V  
• 低导通电阻2Ω  
• 高电流支持330 mA最大值(WQFN)  
• –40°C +125°C 工作温度  
1.8 V 逻辑电平  
逻辑引脚上具有集成的下拉电阻器  
失效防护逻辑  
轨至轨运行  
所有逻辑控制输入均支1.8V VDD 的逻辑电平因  
器件在有效电源电压范围内运行时确保  
TTL CMOS 逻辑兼容性。失效防护逻辑电路允许先  
在控制引脚上施加电压然后在电源引脚上施加电压,  
从而保护器件免受潜在的损害。  
双向运行  
2 应用  
燃气表  
流量变送器  
工厂自动化和工业控制  
可编程逻辑控制(PLC)  
模拟输入模块  
半导体测试  
数据采集系统  
超声波扫描仪  
光纤网络  
TMUX72xx 系列具有闩锁效应抑制特性可防止器件  
内寄生结构之间通常由过压事件引起的大电流不良事  
件。闩锁状态通常会一直持续到电源轨关闭为止并可  
能导致器件故障。闩锁效应抑制特性使得 TMUX72xx  
系列开关和多路复用器能够在恶劣的环境中使用。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TMUX7236  
封装  
WQFN (16)  
4.00mm × 4.00mm  
光学测试设备  
远程无线电单元  
有线网络  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
患者监护和诊断  
VSS  
VDD  
S1A  
D1  
S1B  
S2A  
S2B  
D2  
SEL1  
SEL2  
Logic  
Decoder  
EN  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS417  
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
7.8 Propagation Delay.................................................... 22  
7.9 Charge Injection........................................................23  
7.10 Off Isolation.............................................................23  
7.11 Crosstalk................................................................. 24  
7.12 Bandwidth............................................................... 24  
7.13 THD + Noise........................................................... 25  
7.14 Power Supply Rejection Ratio (PSRR)...................25  
8 Detailed Description......................................................26  
8.1 Functional Block Diagram.........................................26  
8.2 Feature Description...................................................26  
8.3 Device Functional Modes..........................................28  
8.4 Truth Tables.............................................................. 28  
9 Application and Implementation..................................28  
9.1 Application Information............................................. 28  
9.2 Typical Application.................................................... 28  
10 Power Supply Recommendations..............................30  
11 Layout...........................................................................31  
11.1 Layout Guidelines................................................... 31  
11.2 Layout Example...................................................... 31  
12 Device and Documentation Support..........................32  
12.1 Documentation Support.......................................... 32  
12.2 接收文档更新通知................................................... 32  
12.3 支持资源..................................................................32  
12.4 Trademarks.............................................................32  
12.5 术语表..................................................................... 32  
12.6 Electrostatic Discharge Caution..............................32  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................5  
6.4 Recommended Operating Conditions.........................5  
6.5 Source or Drain Continuous Current...........................5  
6.6 ±15 V Dual Supply: Electrical Characteristics ............6  
6.7 ±15 V Dual Supply: Switching Characteristics ...........7  
6.8 ±20 V Dual Supply: Electrical Characteristics.............8  
6.9 ±20 V Dual Supply: Switching Characteristics............9  
6.10 44 V Single Supply: Electrical Characteristics ....... 10  
6.11 44 V Single Supply: Switching Characteristics .......11  
6.12 12 V Single Supply: Electrical Characteristics ....... 12  
6.13 12 V Single Supply: Switching Characteristics ...... 13  
6.14 Typical Characteristics............................................14  
7 Parameter Measurement Information..........................19  
7.1 On-Resistance.......................................................... 19  
7.2 Off-Leakage Current................................................. 19  
7.3 On-Leakage Current................................................. 20  
7.4 Transition Time......................................................... 20  
7.5 tON(EN) and tOFF(EN) .................................................. 21  
7.6 Break-Before-Make...................................................21  
7.7 tON (VDD) Time............................................................22  
Information.................................................................... 32  
4 Revision History  
Changes from Revision * (March 2022) to Revision A (July 2022)  
Page  
• 将数据表的状态从预告信更改为量产数..................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
D1  
S1B  
1
2
3
4
12  
11  
10  
9
EN  
VDD  
S2B  
D2  
Thermal  
Pad  
VSS  
GND  
Not to scale  
5-1. RUM Package, 16-Pin WQFN (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
D1  
NO.  
1
I/O  
I/O  
P
Drain pin. Can be an input or output.  
D2  
9
Drain pin. Can be an input or output.  
GND  
NC  
4
Ground (0 V) reference  
5, 7, 13, 14  
No internal connection. Can be shorted to GND or left floating.  
Source pin 1A. Can be an input or output.  
Source pin 1B. Can be an input or output.  
Source pin 2A. Can be an input or output.  
Source pin 2B. Can be an input or output.  
S1A  
S1B  
S2A  
S2B  
16  
2
I/O  
I/O  
I/O  
I/O  
8
10  
Active high logic enable, has internal pull-up resistor. When this pin is low, all switches are turned off. When this pin  
is high, the SEL logic input determine which switch is turned on.  
EN  
12  
I
SEL1  
SEL2  
15  
6
I
I
Logic control input, has internal pull-down resistor. Controls the switch connection as shown in 8.4.  
Logic control input, has internal pull-down resistor. Controls the switch connection as shown in 8.4.  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
11  
3
P
P
Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin  
can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF  
between VSS and GND.  
VSS  
The thermal pad is not connected internally. There is no requirement to electrically connect this pad. If connected,  
however, it is recommended that the pad be left floating or tied to GND.  
Thermal Pad  
(1) I = input, O = output, P = power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX7236  
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
V
48  
VDD VSS  
VDD  
Supply voltage  
48  
V
0.5  
48  
VSS  
0.5  
V
VSEL or VEN  
Logic control input pin voltage (SELx)  
Logic control input pin current (SELx)  
Source or drain voltage (Sx, Dx)  
Diode clamp current(3)  
48  
30  
V
0.5  
ISEL or IEN  
mA  
V
30  
VS or VD  
VDD+0.5  
30  
VSS0.5  
30  
IIK  
mA  
mA  
°C  
°C  
°C  
mW  
IS or ID (CONT)  
Source or drain continuous current (Sx, Dx)  
Ambient temperature  
IDC + 10 %(4)  
150  
TA  
55  
65  
Tstg  
TJ  
Storage temperature  
150  
Junction temperature  
150  
Ptot  
Total power dissipation (QFN)(5)  
1650  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltages are with respect to ground, unless otherwise specified.  
(3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
(4) Refer to Source or Drain Continuous Current table for IDC specifications.  
(5) For QFN package: Ptot derates linearily above TA = 70°C by 24.2mW/°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
 
 
 
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.3 Thermal Information  
TMUX7236  
THERMAL METRIC(1)  
RUM (WQFN)  
16 PINS  
41.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
25.1  
16.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
16.4  
ΨJB  
RθJC(bot)  
2.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
VSS  
0
NOM  
MAX  
44  
UNIT  
V
(1)  
Power supply voltage differential  
VDD VSS  
VDD  
Positive power supply voltage  
44  
V
VS or VD  
VSEL or VEN  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Address or enable pin voltage  
VDD  
44  
V
V
(2)  
IS or ID (CONT) Source or drain continuous current (Sx, D)  
TA Ambient temperature  
IDC  
mA  
°C  
125  
40  
(1) VDD and VSS can be any value as long as 4.5 V (VDD VSS) 44 V, and the minimum VDD is met.  
(2) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.5 Source or Drain Continuous Current  
at supply voltage of VDD ± 10%, VSS ± 10 % (unless otherwise noted)  
(2)  
CONTINUOUS CURRENT PER CHANNEL (IDC  
PACKAGE TEST CONDITIONS  
+44 V Single Supply(1)  
)
TA = 25°C  
TA = 85°C  
220  
TA = 125°C  
UNIT  
330  
120  
mA  
mA  
mA  
mA  
mA  
±15 V Dual Supply  
+12 V Single Supply  
±5 V Dual Supply  
+5 V Single Supply  
330  
260  
240  
180  
220  
180  
160  
120  
120  
110  
100  
80  
RUM (WQFN)  
(1) Specified for nominal supply voltage only.  
(2) Refer to the total power dissipation (Ptot) limits in the Absolute Maximum Ratings table, which must be followed with the maximum  
continuous current specification.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX7236  
 
 
 
 
 
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
2
2.7  
3.4  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
4
0.1  
0.2  
0.18  
0.19  
0.21  
0.46  
0.65  
0.7  
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 10 V to +10 V  
IS = 10 mA  
Refer to On-Resistance  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.008  
0.05  
40°C to +125°C  
/°C  
25°C  
0.25  
3
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
0.25  
3  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
20  
nA  
40°C to +125°C  
20  
25°C  
0.1  
0.6  
7
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
0.6  
7  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
45  
nA  
40°C to +125°C  
45  
25°C  
0.05  
0.25  
3
nA  
nA  
nA  
0.25  
3  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
20  
20  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.4  
µA  
µA  
pF  
IIL  
1.5 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
35  
5
56  
65  
80  
20  
24  
35  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.7 ±15 V Dual Supply: Switching Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ± 10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
110  
125  
140  
155  
120  
135  
145  
160  
175  
190  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
95  
125  
27  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tON  
Turn-on time from control input  
Turn-off time from control input  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-before-make Time  
5
5
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.17  
0.18  
0.18  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
tON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
720  
30  
ps  
VS = 0 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
70  
50  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
107  
93  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
40  
MHz  
dB  
3 dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.15  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
68  
Refer to ACPSRR  
VPP = 15 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0006  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
45  
55  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
165  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX7236  
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.8 ±20 V Dual Supply: Electrical Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
1.7  
2.5  
3.2  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 15 V to +15 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
3.8  
0.1  
0.3  
0.18  
0.19  
0.21  
0.6  
VS = 15 V to +15 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 15 V to +15 V  
IS = 10 mA  
Refer to On-Resistance  
0.8  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
0.95  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.008  
0.05  
40°C to +125°C  
/°C  
25°C  
1
nA  
nA  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
1  
4.5  
40°C to +85°C  
4.5  
IS(OFF)  
Source off leakage current(1)  
VD = 15 V / + 15 V  
Refer to Off-Leakage Current  
33  
nA  
40°C to +125°C  
33  
25°C  
0.22  
0.05  
2.2  
10  
nA  
nA  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
Refer to Off-Leakage Current  
2.2  
10  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
70  
nA  
40°C to +125°C  
70  
25°C  
1
4.5  
33  
nA  
nA  
nA  
1  
4.5  
33  
VDD = 22 V, VSS = 22 V  
Switch state is on  
VS = VD = ±15 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.4  
µA  
µA  
pF  
IIL  
1.2 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
33  
7
65  
74  
90  
26  
30  
45  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 22 V, VSS = 22 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 22 V, VSS = 22 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.9 ±20 V Dual Supply: Switching Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
100  
160  
170  
180  
140  
160  
180  
150  
165  
190  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
95  
125  
28  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tON  
Turn-on time from control input  
Turn-off time from control input  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-before-make Time  
5
5
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.17  
0.18  
0.18  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
tON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
740  
45  
ps  
VS = 0 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
70  
50  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
107  
93  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
35  
MHz  
dB  
3 dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.14  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
68  
Refer to ACPSRR  
VPP = 20 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0006  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
45  
55  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
165  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX7236  
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
MAX UNIT  
6.10 44 V Single Supply: Electrical Characteristics  
VDD = +44 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +44 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
2
2.4  
3.2  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
3.8  
0.1  
0.18  
0.19  
0.21  
0.8  
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
0.65  
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
1.1  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
1.2  
VS = 22 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.007  
0.05  
40°C to +125°C  
/°C  
VDD = 44 V, VSS = 0 V  
Switch state is off  
VS = 40 V / 1 V  
25°C  
1
7
nA  
nA  
1  
7  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 40 V  
Refer to Off-Leakage Current  
50  
nA  
40°C to +125°C  
50  
VDD = 44 V, VSS = 0 V  
Switch state is off  
VS = 40 V / 1 V  
VD = 1 V / 40 V  
Refer to Off-Leakage Current  
25°C  
0.12  
0.05  
2.2  
15  
nA  
nA  
2.2  
15  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
115  
nA  
40°C to +125°C  
115  
25°C  
1
7
nA  
nA  
nA  
1  
7  
VDD = 44 V, VSS = 0 V  
Switch state is on  
VS = VD = 40 V or 1 V  
Refer to On-Leakage Current  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
50  
50  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
1
2.75  
µA  
µA  
pF  
IIL  
1.2 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
44  
79  
88  
µA  
µA  
µA  
VDD = 44 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
105  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.11 44 V Single Supply: Switching Characteristics  
VDD = +44 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +44 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
85  
145  
155  
185  
130  
140  
160  
160  
170  
180  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
90  
125  
27  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tON  
Turn-on time from control input  
Turn-off time from control input  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 18 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-before-make Time  
10  
10  
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.14  
0.15  
0.15  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
tON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
900  
104  
ps  
VS = 22 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
70  
50  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
112  
93  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
35  
MHz  
dB  
3 dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.15  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
66  
Refer to ACPSRR  
VPP = 22 V, VBIAS = 22 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0006  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 22 V, f = 1 MHz  
VS = 22 V, f = 1 MHz  
25°C  
25°C  
45  
55  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 22 V, f = 1 MHz  
25°C  
165  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX7236  
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
MAX UNIT  
6.12 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
2.8  
5.4  
6.8  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
7.4  
0.13  
0.8  
0.21  
0.23  
0.25  
1.7  
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
1.9  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
2
VS = 6 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.015  
0.01  
40°C to +125°C  
/°C  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
25°C  
0.25  
2
nA  
nA  
0.25  
2  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
16  
nA  
40°C to +125°C  
16  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
25°C  
0.12  
0.01  
0.6  
5
nA  
nA  
0.6  
5  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
34  
nA  
40°C to +125°C  
34  
25°C  
0.25  
2
nA  
nA  
nA  
0.25  
2  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
Refer to On-Leakage Current  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
16  
16  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.4  
2.25  
µA  
µA  
pF  
IIL  
1.25 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
30  
44  
52  
62  
µA  
µA  
µA  
VDD = 13.2 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.13 12 V Single Supply: Switching Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
90  
160  
190  
225  
235  
260  
280  
200  
220  
245  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
190  
160  
30  
VS = 8 V  
tON  
Turn-on time from control input  
Turn-off time from control input  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
VS = 8 V  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
VS = 8 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-before-make Time  
9
9
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.17  
0.18  
0.18  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
tON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
770  
12  
ps  
VS = 6 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
70  
50  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
112  
93  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
50  
MHz  
dB  
3 dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.25  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
70  
Refer to ACPSRR  
VPP = 6 V, VBIAS = 6 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.001  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
CS(ON)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
52  
68  
pF  
pF  
,
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
170  
pF  
CD(ON)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX7236  
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.14 Typical Characteristics  
at TA = 25°C (unless otherwise noted)  
3.5  
7
6.5  
6
VDD = 15 V, VSS = -15 V  
VDD = 5 V, VSS = -5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
VDD = 10 V, VSS = -10 V  
VDD = 12 V, VSS = -12 V  
VDD = 13.5 V, VSS = -13.5 V  
3
2.5  
2
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1.5  
1
1
-25 -20 -15 -10 -5  
0
5
10 15 20 25 30  
-15  
-10  
-5  
0
5
10  
15  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
.
.
6-1. On-Resistance vs Source or Drain Voltage Dual  
6-2. On-Resistance vs Source or Drain Voltage Dual  
Supply  
Supply  
4
10  
VDD = 18 V, VSS = 0 V  
VDD = 24 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
VDD = 8 V, VSS = 0 V  
VDD = 10.8 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
9
8
7
6
5
4
3
2
3.5  
3
2.5  
2
1.5  
1
0
5
10  
15  
20  
25  
30  
35  
40 44  
0
.
5
10  
15  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
.
6-3. On-Resistance vs Source or Drain Voltage Single  
6-4. On-Resistance vs Source or Drain Voltage Single  
Supply  
Supply  
4.8  
5.6  
TA = -40C  
TA = 25C  
TA = -40C  
TA = 25C  
4
4.8  
TA = 85C  
TA = 85C  
TA = 125C  
TA = 125C  
3.2  
4
2.4  
1.6  
0.8  
0
3.2  
2.4  
1.6  
0.8  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-16  
-12  
-8  
-4  
0
4
8
12  
16  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
VDD = 20 V, VSS = 20 V  
VDD = 15 V, VSS = 15 V  
6-5. On-Resistance vs Temperature  
6-6. On-Resistance vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
10  
30  
24  
18  
12  
6
IDOFF VS/VD = -15 V/15 V  
IDOFF VS/VD = 15 V/-15 V  
IDON -15 V  
IDON 15 V  
ISOFF VS/VD = -15 V/15 V  
ISOFF VS/VD = 15 V/-15 V  
TA = -40C  
TA = 25C  
TA = 85C  
TA = 125C  
8.5  
7
0
5.5  
4
-6  
-12  
-18  
-24  
-30  
2.5  
1
0
25  
50  
75  
100  
125  
0
0
0
1.5  
3
4.5  
6
7.5  
9
10.5  
12  
Temperature (C)  
VS or VD - Source or Drain Voltage (V)  
VDD = 20 V, VSS = 20 V  
VDD = 12 V, VSS = 0 V  
6-8. On-Leakage vs Temperature  
6-7. On-Resistance vs Temperature  
30  
24  
18  
12  
6
20  
16  
12  
8
IDOFF VS/VD = -10 V/10 V  
IDOFF VS/VD = 10 V/-10 V  
IDON -10 V  
IDON 10 V  
ISOFF VS/VD = -10 V/10 V  
ISOFF VS/VD = 10 V/-10 V  
IDOFF VS/VD = 1 V/10 V  
IDOFF VS/VD = 10 V/1 V  
IDON 1 V  
IDON 10 V  
ISOFF VS/VD = 1 V/10 V  
ISOFF VS/VD = 10 V/1 V  
4
0
0
-4  
-6  
-8  
-12  
-18  
-24  
-30  
-12  
-16  
-20  
0
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
6-10. On-Leakage vs Temperature  
6-9. On-Leakage vs Temperature  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
IDOFF VS/VD = 1 V/30 V  
IDOFF VS/VD = 30 V/1 V  
ION 1 V  
ION 30 V  
ISOFF VS/VD = 1 V/30 V  
ISOFF VS/VD = 30 V/1 V  
VDD = 20 V, VSS = -20 V  
VDD = 15 V, VSS = -15 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = -5 V  
VDD = 5 V, VSS = 0 V  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
25  
50  
75  
100  
125  
0
5
10  
15  
20  
25  
30  
35  
40 44  
Temperature (C)  
Logic Voltage (V)  
VDD = 36 V, VSS = 0 V  
All channels on  
6-11. On-Leakage vs Temperature  
6-12. Supply Current vs Logic Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX7236  
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
140  
130  
100  
70  
VDD = 15 V, VSS = -15 V  
VDD = 5 V, VSS = -5 V  
VDD = 5 V, VSS = -5 V  
VDD = 15 V, VSS = -15 V  
110  
80  
50  
40  
20  
10  
-10  
-40  
-70  
-20  
-50  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
VS - Source Voltage (V)  
VD - Drain Voltage (V)  
.
.
6-13. Charge Injection vs Source Voltage Dual Supply  
6-14. Charge Injection vs Drain Voltage Dual Supply  
180  
180  
VDD = 36 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
150  
120  
90  
150  
120  
90  
VDD = 20 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
VDD = 20 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
60  
60  
30  
30  
0
0
-30  
-60  
-90  
-30  
-60  
-90  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
VS - Source Voltage (V)  
VD - Drain Voltage (V)  
.
.
6-15. Charge Injection vs Source Voltage Single Supply  
6-16. Charge Injection vs Drain Voltage Single Supply  
250  
180  
VDD: 5 V, VSS: -5 V  
VDD: 12 V, VSS: 0 V  
VDD: 15 V, VSS: -15 V  
VDD: 36 V, VSS: 0 V  
VDD: 44 V, VSS: 0 V  
225  
200  
175  
150  
125  
100  
75  
165  
150  
135  
120  
105  
90  
75  
50  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
.
.
6-17. TTRANSITION vs Temperature  
6-18. TTRANSITION vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX7236  
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
180  
180  
165  
150  
135  
120  
105  
90  
T(OFF)  
T(ON)  
T(OFF)  
T(ON)  
165  
150  
135  
120  
105  
90  
75  
75  
60  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 44 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
6-19. TON (EN) and TOFF (EN) vs Temperature  
6-20. TON (EN) and TOFF (EN) vs Temperature  
0
0
Adjacent Channel  
Non-Adjacent Channel  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency(Hz)  
Frequency(Hz)  
VDD = 15 V, VSS = 15 V  
6-21. Off-Isolation vs Frequency  
VDD = 15 V, VSS = 15 V  
6-22. Crosstalk vs Frequency  
270  
240  
210  
180  
150  
120  
90  
0
-1  
-2  
-3  
-4  
-5  
-6  
CDOFF  
CON  
CSOFF  
60  
30  
-15  
-10  
-5  
0
5
10  
15  
1k  
10k  
100k  
Frequency(Hz)  
1M  
10M  
100M  
VS or VD - Source or Drain Voltage (V)  
VDD = 15 V, VSS = 15 V  
VDD = 15 V, VSS = 15 V  
6-24. Capacitance vs Source or Drain Voltage  
6-23. On Response vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX7236  
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
0.002  
0.001  
225  
200  
175  
150  
125  
100  
75  
VDD = 36 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
CDOFF  
CON  
CSOFF  
0.0008  
0.0007  
0.0006  
0.0005  
0.0004  
0.0003  
0.0002  
50  
25  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
0
2
4
6
8
10  
12  
VS or VD - Source or Drain Voltage (V)  
.
VDD = 12 V, VSS = 0 V  
6-26. THD+N vs Frequency Single Supply  
6-25. Capacitance vs Source or Drain Voltage  
0.002  
0
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
VDD with decoupling capacitors  
VDD without decoupling capacitors  
VSS with decoupling capacitors  
VSS without decoupling capacitors  
-20  
-40  
0.001  
0.0008  
0.0007  
0.0006  
-60  
0.0005  
0.0004  
-80  
0.0003  
0.0002  
-100  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
10  
100  
1k  
10k  
100k  
1M  
10M 50M  
Frequency (Hz)  
.
VDD = 15 V, VSS = 15 V  
6-28. ACPSRR vs Frequency  
6-27. THD+N vs Frequency Dual Supply  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX7236  
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed with RON = V / ISD  
.
V
ISD  
Sx  
Dx  
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
Source off-leakage current  
Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
7-2 shows the setup used to measure both off-leakage currents.  
.
.
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
ID (OFF)  
S1A  
S1B  
S1A  
S1B  
A
D1  
D1  
A
VS  
VD  
VD  
VS  
VD  
Is (OFF)  
ID (OFF)  
S2A  
S2B  
S2A  
S2B  
D2  
A
A
D2  
VS  
VD  
VS  
GND  
GND  
VD  
VD  
IS(OFF)  
ID(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX7236  
 
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
Is (ON)  
A
ID (ON)  
S1A  
S1B  
S1A  
S1B  
N.C.  
N.C.  
D1  
D1  
A
N.C.  
VS  
N.C.  
VD  
Is (ON)  
A
S2A  
S2B  
S2A  
S2B  
N.C.  
N.C.  
D2  
D2  
N.C.  
A
VS  
N.C.  
VD  
GND  
GND  
IS(ON)  
7-3. On-Leakage Measurement Setup  
ID(ON)  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal  
has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 7-4 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
0 V  
VDD  
S1A  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
D1  
Output  
CL  
S1B  
tTRANSITION  
tTRANSITION  
RL  
90%  
Output  
0 V  
S2A  
S2B  
VS  
D2  
Output  
CL  
10%  
RL  
SELx  
GND  
VSEL  
7-4. Transition-Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
7.5 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-7  
shows the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-7  
shows the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VEN  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1A  
S1B  
0 V  
VS  
D1  
D2  
Output  
CL  
tON  
tOFF  
RL  
90%  
Output  
0 V  
S2A  
S2B  
VS  
Output  
CL  
10%  
RL  
EN  
GND  
VEN  
7-5. Turn-On and Turn-Off Time Measurement Setup  
7.6 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-6 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
S1A  
S1B  
VS  
0 V  
D1  
D2  
Output  
CL  
RL  
80%  
Output  
0 V  
S2A  
S2B  
VS  
tBBM  
1
tBBM 2  
Output  
CL  
RL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
SELx  
GND  
VSEL  
7-6. Break-Before-Make Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX7236  
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
7.7 tON (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-7 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
VSS  
0.1 µF  
0.1 µF  
VDD  
Supply  
VDD  
VDD  
S1A  
VSS  
tr = 10 µs  
4.5 V  
Ramp  
VS  
0 V  
Output  
D1  
D2  
S1B  
tON  
RL  
CL  
90%  
Output  
0 V  
VS  
S2A  
S2B  
Output  
CL  
RL  
EN  
3 V  
SELx  
GND  
7-7. tON (VDD) Time Measurement Setup  
7.8 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-8 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
VSS  
250 mV  
0.1 µF  
0.1 µF  
VDD  
S1A  
VSS  
Input  
(VS)  
50%  
50%  
tr < 40 ps  
tf < 40 ps  
50  
VS  
0 V  
D1  
Output  
CL  
tPD  
1
tPD 2  
S1B  
RL  
Output  
0 V  
50%  
50%  
50  
S2A  
S2B  
VS  
D2  
Output  
CL  
tProp Delay = max ( tPD 1, tPD 2)  
RL  
GND  
7-8. Propagation Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
7.9 Charge Injection  
The TMUX7236 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QINJ. 7-9 shows the setup used to measure charge injection from source (Sx) to drain  
(D).  
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VEN  
VDD  
S1A  
VSS  
tr < 20 ns  
tf < 20 ns  
VS  
D1 Output  
CL  
0 V  
S1B  
N.C.  
Output  
VD  
VOUT  
QINJ = CL  
×
VOUT  
S2A  
S2B  
VS  
D2 Output  
CL  
N.C.  
EN  
VEN  
GND  
7-9. Charge-Injection Measurement Setup  
7.10 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-10 shows the setup used to measure, and the equation used to calculate  
off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-10. Off Isolation Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX7236  
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
7.11 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-11 shows the setup used to measure and the equation used to  
calculate crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1A  
S2A  
D
50  
VOUT  
50  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-11. Crosstalk Measurement Setup  
7.12 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-12  
shows the setup used to measure bandwidth.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-12. Bandwidth Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
7.13 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion  
when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as  
THD.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
S
D
40  
VOUT  
VS  
RL  
SxA / SxB / Dx  
GND  
50  
7-13. THD Measurement Setup  
7.14 Power Supply Rejection Ratio (PSRR)  
PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage  
pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave  
of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the  
ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.  
7-14 shows how the decoupling capacitors reduce high frequency noise on the supply pins. This helps  
stabilize the supply and immediately filter as much of the supply noise as possible.  
VDD  
Network Analyzer  
VSS  
DC Bias  
Injector  
With & Without  
Capacitor  
50  
0.1 µF  
0.1 µF  
VDD  
VSS  
620 mVPP  
VIN  
S
VBIAS  
50 Ω  
SxA / SxB / Dx  
50 Ω  
VOUT  
D
RL  
GND  
CL  
7-14. ACPSRR Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX7236  
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Functional Block Diagram  
The TMUX7236 is a 2:1, 2-channel multiplexer or demultiplexer. Each input is turned on or turned off based on  
the state of the select lines and enable pin.  
VSS  
VDD  
S1A  
S1B  
S2A  
S2B  
D1  
D2  
SEL1  
SEL2  
Logic  
Decoder  
EN  
8.2 Feature Description  
8.2.1 Bidirectional Operation  
The TMUX7236 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.2.2 Rail to Rail Operation  
The valid signal path input or output voltage for TMUX7236 ranges from VSS to VDD  
.
8.2.3 1.8 V Logic Compatible Inputs  
The TMUX7236 has 1.8-V logic compatible control for all logic control inputs. 1.8-V logic level inputs allows the  
TMUX7236 to interface with processors that have lower logic I/O rails and eliminates the need for an external  
translator, which saves both space and bill of materials (BOM) cost. For more information on 1.8 V logic  
implementations, refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.2.4 Integrated Pull-Down Resistor on Logic Pins  
The TMUX7236 has internal weak pull-down resistors to GND to ensure the logic pins are not left floating. The  
value of this pull-down resistor is approximately 4 MΩ, but is clamped to about 1 µA at higher voltages. This  
feature integrates up to three external components and reduces system size and cost.  
8.2.5 Fail-Safe Logic  
The TMUX7236 supports Fail-Safe Logic on the control input pins (EN and SEL) allowing the device to operate  
up to 44 V above VSS, regardless of the state of the supply pins. This feature allows voltages on the control pins  
to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes  
system complexity by removing the need for power supply sequencing on the logic control pins. For example,  
the Fail-Safe Logic feature allows the logic input pins of the TMUX7236 to be ramped to +44 V while VDD and  
VSS = 0 V. The logic control inputs are protected against positive faults of up to +44 V in the powered-off  
condition, but does not offer protection against negative overvoltage conditions.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
 
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
8.2.6 Latch-Up Immune  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. The latch-up  
condition is caused by a trigger (current injection or overvoltage); but once activated, the low impedance path  
remains even after the trigger is no longer present. This low impedance path may cause system upset or  
catastrophic damage due to excessive current levels. The latch-up condition typically requires a power cycle to  
eliminate the low impedance path.  
The TMUX7236 is constructed on silicon on insulator (SOI) based process where an oxide layer is added  
between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The  
oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or  
current injections. The latch-up immunity feature allows the TMUX7236 to be used in harsh environments. For  
more information on latch-up immunity, refer to Using Latch Up Immune Multiplexers to Help Improve System  
Reliability.  
8.2.7 Ultra-Low Charge Injection  
8-1 shows how the TMUX7236 device has a transmission gate topology. Any mismatch in the stray  
capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is  
opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-1. Transmission Gate Topology  
The TMUX7236 contains specialized architecture to reduce charge injection on the Drain (Dx). To further reduce  
charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the Source (Sx). This  
will ensure that excess charge from the switch transition is pushed into the compensation capacitor on the  
Source (Sx) instead of the Drain (Dx). As a general rule, Cp should be 20x larger than the equivalent load  
capacitance on the Drain (Dx). 8-2 shows charge injection variation with different compensation capacitors on  
the Source side. 8-2 was captured on the TMUX7219 as part of the TMUX72xx family with a 100 pF load  
capacitance.  
8-2. Charge Injection Compensation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX7236  
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
8.3 Device Functional Modes  
When the EN pin of the TMUX7236 is pulled high, one of the switches is closed based on the state of the SEL  
pin. When the EN pin is pulled low, both of the switches are in an open state regardless of the state of the SEL  
pin. The control pins can be as high as 44 V.  
8.4 Truth Tables  
8-1 show the truth tables for the TMUX7236.  
8-1. TMUX7236 Truth Table  
EN SELx  
Selected Input Connected To Drain (D) Pin  
0
1
1
X(1)  
All channels are off (Hi-Z)  
0
SxB  
SxA  
1
(1) X denotes do not care.  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMUX7236 is part of the precision switches and multiplexers family of devices. This device operates with  
dual supplies (±4.5 V to ±22 V), a single supply (4.5 V and 44 V), or asymmetric supplies (such as, VDD = 12 V  
and VSS = 5 V), and offers rail-to-rail input and output. The TMUX7236 offers low RON, low on and off leakage  
currents and ultra-low charge injection performance. These features makes the TMUX7236 a precision, robust,  
high-performance analog multiplexer for high-voltage, industrial applications.  
9.2 Typical Application  
One application for the TMUX7236 is in data acquisition systems. For these types of input modules, accuracy  
and precision is key. To help account for drift over time and temperature, a calibration path is often added to  
calibrate the input in real time before a measurement. An SPDT switch can be used to switch in this calibration  
path, which the TMUX7236 is ideal for. This device offers a very low on-resistance, leakage, and charge  
injection, which ensures a high measurement fidelity and reduces error. The break-before-make feature allows  
switching from the calibration path without shorting the inputs together. This device also offers on-resistance  
mismatch, which makes this device suitable for high precision systems. As 9-1 shows, the TMUX7236 can be  
used in both voltage and current acquisition.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
VDD  
VSS  
0.1 µF  
0.1 µF  
Inputs  
Module  
Voltage Input  
S1A  
S1B  
D1  
SEL1  
+
Calibra on Path  
To µC  
OPA2202  
-
Precision  
ADC  
Precision  
DAC  
Current Input  
S2A  
S2B  
D2  
+
Calibra on Path  
To µC  
OPA2202  
-
SEL2  
Precision  
ADC  
Precision  
DAC  
9-1. Data Acquisition Systems (DAQ) Calibration  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
Supply (VDD  
Supply (VSS  
VALUES  
15 V  
)
)
15 V  
MUX I/O signal range  
Control logic thresholds  
EN  
15 V to 15 V (Rail-to-Rail)  
1.8 V compatiable (up to VDD  
)
EN pulled high to enable the switch  
9.2.2 Detailed Design Procedure  
The TMUX7236 can operate without any external components except for the supply decoupling capacitors. All  
inputs passing through the switch must fall within the recommended operating conditions of the TMUX7236,  
including signal range and continuous current. The signal range for this design can be up to 15 V to +15 V and  
the maximum continuous current can be up to 330 mA for wide-range current measurement with a positive  
supply of 15 V on VDD and negative supply of 15 V on VSS (for more information, see 6.4). The TMUX7236  
device is a bidirectional, single-pole double-throw (SPDT) switch that offers low on-resistance, low leakage, and  
low power. These features make this device suitable for precision and power sensitive applications.  
9.2.3 Application Curve  
The low on-resistance of TMUX7236 and ultra-low charge injection performance make this device ideal for  
implementing high precision systems. 9-2 shows the plot for the on-resisitance versus temperature.  
Additionally, the TMUX7236 features a very low mismatch between channels, which is important for this  
application because it reduces the difference between the calibration and non-calibration paths. The TMUX7236  
features mismatch between channels <180 mΩand 100 mΩtypically.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX7236  
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
5.6  
4.8  
4
TA = -40C  
TA = 25C  
TA = 85C  
TA = 125C  
3.2  
2.4  
1.6  
0.8  
-16  
-12  
-8  
-4  
0
4
8
12  
16  
VS or VD - Source or Drain Voltage (V)  
VDD = 15 V, VSS = 15 V  
9-2. On-Resistance vs Temperature  
9.2.3.1 On-Resistance Mismatch Between Channels  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
UNIT  
Ω
25°C  
0.1  
0.18  
0.19  
On-resistance  
mismatch between  
channels  
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
40°C to +85°C  
Ω
ΔRON  
40°C to  
+125°C  
0.21  
Ω
10 Power Supply Recommendations  
The TMUX7236 operates across a wide supply range of of ±4.5 V to ±22 V (4.5 V to 44 V in single-supply  
mode). The device also performs well with asymmetrical supplies such as VDD = 12 V and VSS= 5 V.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF at both the  
VDD and VSS pins to ground. Place the bypass capacitors as close to the power supply pins of the device as  
possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs)  
that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply  
decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use  
of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple  
vias in parallel lowers the overall inductance and is beneficial for connections to ground planes. Always ensure  
the ground (GND) connection is established before supplies are ramped.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self-inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
Some key considerations are as follows:  
For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD/VSS and  
GND. TI recommends a 0.1-µF and 1-µF capacitor, placing the lowest value capacitor as close to the pin as  
possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground  
planes.  
11.2 Layout Example  
Wide (low inductance)  
trace for power  
EN  
VDD  
S2B  
D2  
D1  
S1B  
VSS  
GND  
Wide (low inductance)  
trace for power  
Via to ground plane  
11-2. TMUX7236 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX7236  
 
 
 
 
TMUX7236  
ZHCSQ93A MARCH 2022 REVISED JULY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Eliminate Power Sequencing with Powered-off Protection Signal Switches  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers  
Texas Instruments, QFN/SON PCB Attachment  
Texas Instruments, Quad Flatpack No-Lead Logic Packages  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers  
Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX7236  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX7236RUMR  
ACTIVE  
WQFN  
RUM  
16  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
TMUX  
T236  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMUX7236RUMR

具有闩锁效应抑制和 1.8V 逻辑电平的 44V、低导通电阻、2:1 (SPDT)、双通道精密开关 | RUM | 16 | -40 to 125
TI

TMUX7308F

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7308FPWR

具有 1.8V 逻辑电平的 ±60V 故障保护、8:1 单通道多路复用器 | PW | 16 | -40 to 125
TI

TMUX7308FRRPR

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7308F_V01

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with 1.8-V Logic
TI

TMUX7308F_V02

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7309F

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7309FRRPR

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX730XF

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7348F

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、8:1 多路复用器
TI

TMUX7348FRTJR

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、8:1 多路复用器 | RTJ | 20 | -40 to 125
TI

TMUX7349F

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、双路 4:1 多路复用器
TI