TPA3221 [TI]

具有低空闲电流的 100W 立体声、200W 单声道、7V 至 32V 电源电压、模拟输入 D 类音频放大器;
TPA3221
型号: TPA3221
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低空闲电流的 100W 立体声、200W 单声道、7V 至 32V 电源电压、模拟输入 D 类音频放大器

放大器 音频放大器
文件: 总50页 (文件大小:2251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
TPA3221 100W 立体声 200W 单声道高清模拟输入 D 类放大器  
1 特性  
3 说明  
1
7V 30V 宽电源电压操作  
TPA3221 是一款可在全功率、空闲和待机状态下实现  
高效操作的高功率 D 类放大器。该器件 采用 具有高达  
100kHz 带宽的闭环反馈,从而在音频频带内提供低失  
真并提供出色的质量。该器件以 AD 或低空闲电流  
HEAD(高效 AD 模式)调制运行,并可为 4Ω 负载提  
2 x 105W 的功率,或为 2Ω 负载提供 1 x 208W 功  
率。  
立体声 (2 x BTL) 和单声道 (1 x PBTL) 操作  
THD+N 10% 时的输出功率  
105W/4ΩBTL 立体声配置  
112W/3ΩBTL 立体声配置  
208W/2ΩPBTL 单声道配置  
THD+N 1% 时的输出功率  
88W/4ΩBTL 立体声配置  
100W/3ΩBTL 立体声配置  
170W/2ΩPBTL 单声道配置  
TPA3221 具有 单端或差分模拟输入接口,该接口最高  
支持 2VRMS 并具有四种可选增益:18dB24dB、  
30dB 34dBTPA3221 还实现了大于 90% 的效  
率、低空闲功率 (<0.25 W) 和超低待机功耗 (<0.1  
W)。这是通过使用 70mΩ MOSFET、经优化的栅极驱  
动方案和低功耗操作模式实现的。TPA3221 包含用于  
轻松集成在单电源系统中的内置 LDO。为了进一步简  
化设计,该级器件集成了重要的保护 功能, 其中包括  
欠压、过压、逐周期电流限制、短路、削波检测、过热  
警告和关断以及直流扬声器保护。  
用于可选单电源操作的 5V 栅极驱动器或内置 LDO  
闭环反馈设计  
高达 100kHz 的信号带宽,用于高清源的高频成  
1W/4Ω 时的 THD+N 0.02%  
PSRR 60dBBTL,无输入信号)  
输出噪声(A 加权)< 75µV  
SNRA 加权)> 108dB  
器件信息(1)  
AD HEAD 调制方案  
器件型号  
TPA3221  
封装  
封装尺寸(NOM)  
低功耗操作模式  
HTSSOP (44)  
6.10mm x 14.00mm  
待机模式:静音,< 1mA 关断  
低空闲电流 HEAD 调制方案  
单通道 BTL 操作  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
多输入操作,可简化前置放大器设计  
差动或单端模拟输入  
TPA322x  
RIGHT  
LEFT  
LC Filter  
LC Filter  
可选增益:18dB24dB30dB34dB  
集成式保护:欠压、过压、逐周期电流限制、短  
路、削波检测、过热警告和关断以及直流扬声器保  
PBTL  
Detect  
Audio Source  
And Control  
OTW_CLIP  
RESET  
FAULT  
CMUTE  
VDD  
AVDD  
GVDD  
90% 高效 D 类操作 (4)  
5V  
散热垫位于封装的底部  
Modulation Mode Select  
Switching Frequency Select  
Master/Slave Synchronization  
HEAD  
Power Supply  
30V  
FREQ_ADJ  
OSCM/P  
PVDD  
具有电压和功率级别选项的引脚兼容系列器件  
2 应用  
110VAC->240VAC  
Copyright © 2017, Texas Instruments Incorporated  
蓝牙和 Wi-Fi™扬声器  
条形音箱  
低音炮  
书架立体声系统  
专业和公共广播 (PA) 扬声器和  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASEE9  
 
 
 
 
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
9.1 Overview ................................................................. 15  
9.2 Functional Block Diagrams ..................................... 16  
9.3 Feature Description................................................. 18  
9.4 Device Functional Modes........................................ 24  
10 Application and Implementation........................ 30  
10.1 Application Information.......................................... 30  
10.2 Typical Applications .............................................. 30  
11 Power Supply Recommendations ..................... 34  
11.1 Power Supplies ..................................................... 34  
12 Layout................................................................... 36  
12.1 Layout Guidelines ................................................. 36  
12.2 Layout Examples................................................... 37  
13 器件和文档支持 ..................................................... 40  
13.1 文档支持................................................................ 40  
13.2 接收文档更新通知 ................................................. 40  
13.3 社区资源................................................................ 40  
13.4 ....................................................................... 40  
13.5 静电放电警告......................................................... 40  
13.6 Glossary................................................................ 40  
14 机械、封装和可订购信息....................................... 40  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Audio Characteristics (BTL) ...................................... 9  
7.7 Audio Characteristics (PBTL) ................................... 9  
7.8 Typical Characteristics, BTL Configuration, AD-  
mode ........................................................................ 10  
7.9 Typical Characteristics, PBTL Configuration, AD-  
mode ........................................................................ 13  
8
9
Parameter Measurement Information ................ 15  
Detailed Description ............................................ 15  
4 修订历史记录  
Changes from Revision A (November 2017) to Revision B  
Page  
Changed OUT_P To: OUT1_P for 1 x BTL in Table 1 .......................................................................................................... 4  
Added pins OSCM, OSCP to the Interface pins in the Absolute Maximun Ratings table...................................................... 5  
Changed the TJ MIN value From: 0°C To –40°C in the Absolute Maximun Ratings table .................................................... 5  
Deleted TJ Junction Temperature from the Recommended Operating Conditions table ....................................................... 5  
Changed the capacitor on IN1_P, IN2_P and IN1_M, IN2_M From: 10µF To: 1µF in 50............................................... 30  
Changed the capacitor on IN1_P and IN1_M From: 10µF To: 1µF in 51 ....................................................................... 32  
Changed the capacitor on IN1_P and IN1_M From: 10µF To: 1µF in 52 ....................................................................... 33  
Changes from Original (September 2017) to Revision A  
Page  
预告信息更改成了生产数据” ............................................................................................................................................ 1  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
5 Device Comparison Table  
THERMAL PAD  
LOCATION  
TPA3221  
PIN-COMPATIBLE  
DEVICE NAME  
DESCRIPTION  
TPA3220  
TPA3244  
TPA3245  
TPA3250  
35 W Stereo, 100 W Peak HD, Analog-Input, Pad-Down Class-D Amplifier  
Bottom  
Bottom  
Top  
Y
40 W Stereo, 100 W Peak Ultra-HD, Analog-Input, Pad-Down Class-D  
Amplifier  
100 W Stereo, 200 W Mono Ultra-HD, Analog-Input Class-D Amplifier  
70 W Stereo, 130 W Peak Ultra-HD, Analog-Input, Pad-Down Class-D  
Amplifier  
Bottom  
TPA3251  
TPA3255  
175 W Stereo, 350 W Mono Ultra-HD, Analog-Input Class-D Amplifier  
315 W Stereo, 600 W Mono Ultra-HD, Analog-Input Class-D Amplifier  
Top  
Top  
6 Pin Configuration and Functions  
The TPA3221 is available in a thermally enhanced TSSOP package.  
The package type contains a heat slug that is located on the top side of the device for convenient thermal  
coupling to the heat sink.  
DDV Package  
HTSSOP 44-Pin  
(Top View)  
VDD  
GAIN/SLV  
OTW_CLIP  
FAULT  
GND  
BST1_P  
BST1_M  
GND  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
2
3
GND  
4
5
OUT1_P  
OUT1_P  
PVDD  
GND  
6
GND  
7
IN1_P  
PVDD  
8
PVDD  
IN1_M  
RESET  
HEAD  
9
OUT1_M  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
OSCM  
OSCP  
GND  
OUT2_P  
PVDD  
FREQ_ADJ  
IN2_P  
PVDD  
IN2_M  
CMUTE  
GND  
PVDD  
OUT2_M  
OUT2_M  
GND  
GND  
GND  
GND  
20  
21  
22  
BST2_P  
AVDD  
GVDD  
BST2_M  
Copyright © 2017, Texas Instruments Incorporated  
3
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Pin Functions  
NAME  
NO.  
11  
I/O  
I
DESCRIPTION  
HEAD  
AVDD  
0 = AD, 1 = HEAD. Refer to: AD-Mode and HEAD-Mode PWM Modulation  
AVDD voltage supply. Refer to: Internal LDO, AVDD and GVDD Supplies  
21  
P
BST1_M  
BST1_P  
BST2_M  
BST2_P  
43  
P
OUT1_M HS bootstrap supply (BST), 0.033 μF capacitor to OUT1_M required.  
Refer to: BST capacitors  
44  
23  
24  
P
P
P
OUT1_P HS bootstrap supply (BST), 0.033 μF capacitor to OUT1_P required.  
Refer to: BST capacitors  
OUT2_M HS bootstrap supply (BST), 0.033 μF capacitor to OUT2_M required.  
Refer to: BST capacitors  
OUT2_P HS bootstrap supply (BST), 0.033 μF capacitor to OUT2_P required.  
Refer to: BST capacitors  
CMUTE  
17  
4
P
O
O
Mute and Startup Timing Capacitor. Connect a 33 nF capacitor to GND. Refer to: Device Reset  
Shutdown signal, open drain; active low. Refer to: Error Reporting  
FAULT  
FREQ_ADJ  
14  
Oscillator frequency programming pin. Refer to: Oscillator  
Closed loop gain and master/slave programming pin.  
Refer to: Input Configuration, Gain Setting And Master / Slave Operation  
GAIN/SLV  
GND  
2
I
5, 6, 7, 18, 19, 20, 25, 26, 33,  
34, 41, 42  
P
Ground  
GVDD  
IN1_M  
IN1_P  
IN2_M  
IN2_P  
OSCM  
22  
9
P
Gate drive supply. Refer to: Internal LDO, AVDD and GVDD Supplies  
Negative audio input for channel 1  
I
8
I
I
Positive audio input for channel 1  
16  
15  
12  
Negative audio input for channel 2  
I
Positive audio input for channel 2  
I/O  
Oscillator synchronization interface.  
Refer to: Input Configuration, Gain Setting And Master / Slave Operation  
OSCP  
13  
3
I/O  
O
Oscillator synchronization interface.  
Refer to: Input Configuration, Gain Setting And Master / Slave Operation  
OTW_CLIP  
Clipping warning and Over-temperature warning; open drain; active low.  
Refer to: Error Reporting  
OUT1_M  
OUT1_P  
OUT2_M  
OUT2_P  
PVDD  
35  
O
O
O
O
P
I
Negative output for channel 1  
39, 40  
Positive output for channel 1  
27, 28  
Negative output for channel 2  
32  
Positive output for channel 2  
29, 30, 31, 36, 37, 38  
PVDD supply. Refer to: PVDD Capacitor Recommendation, PVDD Supply  
Device reset Input; active low. Refer to: Fault Handling, Powering Up, Powering Down  
Input power supply. Refer to: Internal LDO, VDD Supply  
Ground, connect to grounded heatsink. Placed on top side of device.  
RESET  
10  
1
VDD  
P
P
PowerPad™  
Table 1. Mode Selection Pins  
MODE PINS(1)  
OUTPUT  
CONFIGURATION  
INPUT MODE(2)  
DESCRIPTION  
IN2_M IN2_P HEAD  
X
X
X
X
0
1
1N/2N + 1  
1N/2N + 1  
2 × BTL  
2 × BTL  
Stereo, BTL output configuration, AD mode modulation  
Stereo, BTL output configuration, HEAD mode modulation  
Mono, Parallelled BTL configuration. Connect OUT1_P to OUT2_P  
and OUT1_M to OUT2_M, AD mode modulation  
0
0
1
1
0
0
1
1
0
1
0
1
1N/2N + 1  
1N/2N + 1  
1N/2N + 1  
1N/2N + 1  
1 x PBTL  
1 x PBTL  
1 x BTL  
1 x BTL  
Mono, Parallelled BTL configuration. Connect OUT1_P to OUT2_P  
and OUT1_M to OUT2_M, HEAD mode modulation  
Mono, BTL configuration. OUT1_M and OUT1_P active, AD mode  
modulation  
Mono, BTL configuration. OUT1_M and OUT1_P active, HEAD mode  
modulation  
(1) X refers to inputs connected through AC coupling capacitor, 0 refers to logic low (GND), 1 refers to logic high (AVDD).  
(2) 2N refers to differential input signal, 1N refers to single ended input signal. +1 refers to number of logic control (RESET) input pins.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
37  
UNIT  
V
PVDD to GND(2)  
BST_X to GVDD(2)  
37  
V
BST1_M, BST1_P, BST2_M, BST2_P to GND(2)  
47.8  
43  
V
Supply voltage  
VDD to GND  
V
GVDD to GND(2)  
5.5  
5.5  
43  
V
AVDD to GND  
OUT1_M, OUT1_P, OUT2_M, OUT2_P to GND(2)  
V
V
IN1_M, IN1_P, IN2_M, IN2_P to GND  
5.5  
5.5  
5.5  
9
V
Interface pins  
HEAD, FREQ_ADJ, GAIN/SLV, CMUTE, RESET, OSCP, OSCM to GND  
FAULT, OTW_CLIP to GND  
V
V
Continuous sink current, FAULT, OTW_CLIP to GND  
Operating junction temperature range  
mA  
°C  
°C  
TJ  
–40  
–40  
150  
150  
Tstg  
Storage temperature range  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) These voltages represents the DC voltage + peak AC waveform measured at the terminal of the device in all conditions.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins  
±1000  
V
(1)  
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±250  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017, Texas Instruments Incorporated  
5
 
 
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
PVDD  
Power-stage supply  
DC supply voltage  
DC supply voltage  
7
30  
32  
V
Supply voltage for internal LDO regulator  
to supply GVDD and AVDD  
7
32  
V
V
VDD(1)  
External supply for VDD, GVDD and  
AVDD. Internal LDO bypassed  
DC supply voltage  
4.5  
5
5.5  
AVDD  
Supply voltage for analog circuits  
Supply voltage for gate-drive circuitry  
Output filter inductance  
DC supply voltage  
4.5  
4.5  
5
5
5
5.5  
5.5  
V
V
GVDD  
DC supply voltage  
LOUT(BTL)  
Minimum output inductance at IOC  
10  
Output filter inductance, PBTL before the  
LC filter  
Minimum output inductance at IOC  
5
5
10  
10  
μH  
LOUT(PBTL)  
Output filter inductance, PBTL after the  
LC filter  
Minimum output inductance at half IOC  
each inductor  
,
Nominal  
575  
510  
460  
49.5  
29.7  
9.9  
600  
533  
480  
50  
625  
555  
PWM frame rate selectable for AM  
interference avoidance; 1% Resistor  
tolerance  
FPWM  
AM1  
kHz  
AM2  
500  
Nominal; Master mode  
AM1; Master mode  
AM2; Master mode  
50.5  
30.3  
10.1  
R(FREQ_ADJ)  
PWM frame rate programming resistor  
PVDD close decoupling capacitors  
30  
k  
10  
CPVDD  
1.0  
μF  
Voltage on FREQ_ADJ pin for slave  
mode operation  
V(FREQ_ADJ)  
Slave Mode (Connect to AVDD)  
5
V
(1) VDD must be connected to a supply of 5V in LDO bypass mode; OR 7V to 30V with LDO active. VDD can be connected directly to  
PVDD in LDO bypass mode, but must not exceed PVDD voltage.  
7.4 Thermal Information  
TPA3221  
DDV 44-PINS HTSSOP  
THERMAL METRIC(1)  
UNIT  
FIXED 85°C  
HEATSINK  
JEDEC STANDARD 4 LAYER  
PCB  
TEMPERATURE(2)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44.8  
1.1  
5.5  
2.0  
n/a  
n/a  
n/a  
n/a  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
14.9  
0.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
14.7  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Thermal data are obtained with 85°C heat sink temperature using thermal compound with 0.7W/mK thermal conductivity and 2mil  
thickness. In this model heat sink temperature is considered to be the ambient temperature and only path for dissipation is to the  
heatsink.  
6
Copyright © 2017, Texas Instruments Incorporated  
 
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
7.5 Electrical Characteristics  
PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, TC (Case temperature) = 75 °C, fS = 600 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION  
Voltage regulator. Only used as reference  
AVDD  
node when supplied by internal LDO. Voltage VDD = 30 V  
regulator bypassed for VDD = 5 V.  
5
V
Operating, no audio signal  
Reset mode  
25  
118  
150  
50  
10  
1
mA  
VDD supply current. LDO mode (VDD > 7 V)  
IVDD  
Operating, no audio signal  
Reset mode  
µA  
VDD supply current. LDO bypass mode  
(VDD = 5 V)  
Operating, no audio signal  
Reset mode  
Gate-supply current. LDO bypass mode  
(VDD = 5 V)  
IAVDD  
mA  
50% duty cycle  
16  
50  
16  
50  
15  
Gate-supply current. LDO bypass mode  
(VDD = 5 V), AD-mode modulation  
Reset mode  
µA  
mA  
µA  
IGVDD  
HEAD-mode modulation  
Reset mode  
Gate-supply current. LDO bypass mode  
(VDD = 5 V), HEAD-mode modulation  
50% duty cycle with recommended output filter  
Total PVDD idle current, AD-mode  
modulation, BTL  
50% duty cycle with recommended output filter, TC  
= 25 ºC  
13  
1
Reset mode, No switching  
IPVDD  
mA  
HEAD-mode modulation with recommended output  
filter  
10  
Total PVDD idle current, HEAD-mode  
modulation, BTL  
HEAD-mode with recommended output filter, TC  
25 ºC  
=
9
1
Reset mode, No switching  
ANALOG INPUTS  
VIN  
IIN  
Maximum input voltage swing  
Maximum input current  
±2.8  
1
V
-1  
mA  
R1 = 5.6 kΩ, R2 = OPEN  
R1 = 20 kΩ, R2 = 100 kΩ  
R1 = 39 kΩ, R2 = 100 kΩ  
R1 = 47 kΩ, R2 = 75 kΩ  
R1 = 51 kΩ, R2 = 51 kΩ  
R1 = 75 kΩ, R2 = 47 kΩ  
R1 = 100 kΩ, R2 = 39 kΩ  
R1 = 100 kΩ, R2 = 16 kΩ  
G = 18 dB  
18  
24  
30  
34  
18  
24  
30  
34  
48  
24  
12  
7.7  
Inverting voltage Gain, VOUT/VIN(Master  
Mode)  
G
dB  
Inverting voltage Gain, VOUT/VIN(Slave Mode)  
G = 24 dB  
RIN  
Input resistance  
k  
G = 30 dB  
G = 34 dB  
OSCILLATOR  
Nominal, Master Mode  
AM1, Master Mode  
3.45  
3.6  
3.75  
3.33  
3
(1)  
fOSC(IO)  
FPWM × 6  
3.06 3.198  
MHz  
AM2, Master Mode  
2.76  
1.88  
2.88  
VIH  
VIL  
High level input voltage  
Low level input voltage  
V
V
1.65  
3.78  
EXTERNAL OSCILLATOR (Slave Mode)  
fOSC(IO)  
CLK input on OSCM/OSCP (Slave Mode)  
2.3  
MHz  
OUTPUT-STAGE MOSFETs  
Drain-to-source resistance, low side (LS)  
Drain-to-source resistance, high side (HS)  
70  
70  
mΩ  
mΩ  
TJ = 25 °C, Excludes metallization resistance,  
GVDD = 5 V  
RDS(on)  
(1) Nominal, AM1 and AM2 use same internal oscillator with fixed ratio 4 : 4.5 : 5  
Copyright © 2017, Texas Instruments Incorporated  
7
 
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, TC (Case temperature) = 75 °C, fS = 600 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I/O PROTECTION  
Vuvp,AVDD  
Undervoltage protection limit, AVDD  
4
V
V
(2)  
Vuvp,AVDD,hyst  
Undervoltage protection hysteresis, AVDD  
Undervoltage protection limit, PVDD_x  
Undervoltage protection hysteresis, PVDD_x  
Overvoltage protection limit, PVDD_x  
Overvoltage protection hysteresis, PVDD_x  
0.1  
Vuvp,PVDD  
6.4  
V
(2)  
Vuvp,PVDD,hyst  
0.45  
34  
V
Vovp,PVDD  
V
(2)  
Vovp,PVDD,hyst  
0.45  
125  
V
(2)  
OTW  
Overtemperature warning, OTW_CLIP  
115  
145  
135  
165  
°C  
Temperature drop needed below OTW  
temperature for OTW_CLIP to be inactive  
after OTW event.  
(2)  
OTWhyst  
20  
°C  
OTE(2)  
Overtemperature error  
155  
20  
°C  
°C  
A reset needs to occur for FAULT to be  
released following an OTE event  
(2)  
OTEhyst  
OTE-OTW(differential)  
OTE-OTW differential  
25  
°C  
(2)  
OLPC  
Overload protection counter  
fPWM = 600 kHz (1024 PWM cycles)  
1.7  
10  
ms  
A
IOC, BTL  
Overcurrent limit protection, speaker output  
current  
Nominal peak current in 1load  
IOC, PBTL  
IDCspkr, BTL  
IDCspkr, PBTL  
20  
A
BTL current imbalance threshold  
PBTL current imbalance threshold  
1.8  
3.6  
A
DC Speaker Protection Current Threshold  
A
Time from switching transition to flip-state induced  
by overcurrent.  
IOCT  
IPD  
Overcurrent response time  
150  
3
ns  
Connected when RESET is active to provide  
bootstrap charge. Not used in SE mode.  
Output pulldown current of each half  
mA  
STATIC DIGITAL SPECIFICATIONS  
VIH  
VIL  
Ilkg  
High level input voltage  
1.9  
V
V
Low level input voltage  
Input leakage current  
HEAD, OSCM, OSCP,CMUTE, RESET  
0.8  
100  
μA  
OTW/SHUTDOWN (FAULT)  
Internal pullup resistance, OTW_CLIP to  
RINT_PU  
20  
3
26  
32  
kΩ  
AVDD, FAULT to AVDD  
High level output voltage  
Low level output voltage  
OTW_CLIP, FAULT  
VOH  
Internal pullup resistor  
IO = 4 mA  
3.3  
200  
30  
3.6  
V
VOL  
500  
mV  
Device fanout  
No external pullup  
devices  
(2) Specified by design.  
8
Copyright © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
7.6 Audio Characteristics (BTL)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 30 V,  
VDD = 5 V, GVDD = 5 V, RL = 4 , fS = 600 kHz, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, AD-Modulation,  
AES17 + AUX-0025 measurement filters, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
RL = 3 , 10% THD+N  
MIN  
TYP MAX UNIT  
112  
RL = 4 , 10% THD+N  
RL = 3 , 1% THD+N  
RL = 4 , 1% THD+N  
1 W  
105  
PO  
Power output per channel  
W
100  
88  
THD+N Total harmonic distortion + noise  
0.02  
%
A-weighted, AES17 filter, Input Capacitor  
Grounded, Gain = 18 dB  
Vn  
Output integrated noise  
75  
μV  
|VOS  
|
Output offset voltage  
Signal-to-noise ratio(1)  
Dynamic range  
Inputs AC coupled to GND  
A-weighted, Gain = 18 dB  
A-weighted, Gain = 18 dB  
20  
108  
109  
60  
mV  
dB  
dB  
SNR  
DNR  
PO = 0, all outputs switching, AD-modulation,  
TC = 25°C(2)  
0.37  
0.25  
W
W
Pidle  
Power dissipation due to idle losses (IPVDD_X)  
PO = 0, all outputs switching, HEAD-  
modulation, TC = 25°C(2)  
(1) SNR is calculated relative to 1% THD+N output level.  
(2) Actual system idle losses also are affected by core losses of output inductors.  
7.7 Audio Characteristics (PBTL)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 30 V,  
VDD = 5 V, GVDD = 5 V, RL = 2 , fS = 600 kHz, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, Pre-Filter PBTL, AD-  
Modulation, AES17 + AUX-0025 measurement filters, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
RL = 2 , 10% THD+N  
MIN  
TYP MAX UNIT  
208  
155  
RL = 3 , 10% THD+N  
RL = 4 , 10% THD+N  
RL = 2 , 1% THD+N  
RL = 3 , 1% THD+N  
RL = 4 , 1% THD+N  
1 W  
120  
W
PO  
Power output per channel  
170  
125  
98  
THD+N Total harmonic distortion + noise  
0.02  
%
A-weighted, AES17 filter, Input Capacitor  
Grounded, Gain = 18 dB  
Vn  
Output integrated noise  
75  
μV  
|VOS  
|
Output offset voltage  
Signal to noise ratio(1)  
Dynamic range  
Inputs AC coupled to GND  
A-weighted, Gain = 18 dB  
A-weighted, Gain = 18 dB  
20  
108  
110  
60 mV  
dB  
SNR  
DNR  
dB  
PO = 0, all outputs switching, AD-  
modulation, TC = 25°C(2)  
0.20  
0.17  
W
W
Pidle  
Power dissipation due to idle losses (IPVDD_X)  
PO = 0, all outputs switching, HEAD-  
modulation, TC = 25°C(2)  
(1) SNR is calculated relative to 1% THD+N output level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
Copyright © 2017, Texas Instruments Incorporated  
9
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
7.8 Typical Characteristics, BTL Configuration, AD-mode  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, RL = 4 , fS =  
600 kHz, 18 dB, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, AD-Modulation, AES17 + AUX-0025  
measurement filters, unless otherwise noted.  
10  
1
10  
1
3W  
4W  
8W  
RL = 4W  
TC = 75èC  
1W  
10W  
50W  
0.1  
0.01  
0.1  
0.01  
TC = 75èC  
100 200  
0.001  
0.0005  
0.001  
10m  
100m  
1
10  
20  
100  
1k  
10k 20k  
Po - Output Power - W  
D001  
f - Frequency - Hz  
D002  
Figure 1. Total Harmonic Distortion + Noise vs Output  
Power, AD-mode  
Figure 2. Total Harmonic Distortion+Noise vs Frequency,  
AD-mode  
120  
10  
3W  
AUX-0025 Filter  
1W  
3W - CB3C Limited  
80 kHz analyzer BW  
RL = 4W, TC = 75èC  
10W  
50W  
100  
4W  
8W  
1
0.1  
80  
60  
40  
0.01  
20  
THD+N = 10%  
TC = 75èC  
0
0.001  
5
10  
15  
20  
25  
30  
35  
20  
100  
1k  
10k  
40k  
PVDD - Supply Voltage - V  
f - Frequency - Hz  
D004  
D003  
Figure 4. Output Power vs Supply Voltage, AD-mode  
Figure 3. Total Harmonic Distortion+Noise vs Frequency,  
AD-mode  
120  
100  
3W  
4W  
8W  
3W  
3W - CB3C Limited  
100  
4W  
8W  
80  
60  
40  
10  
20  
THD+N = 1%  
TC = 75èC  
TC = 75èC  
PVDD = 30V  
0
1
10m  
5
10  
15  
20  
25  
30  
35  
100m  
1
10  
100 300  
PVDD - Supply Voltage - V  
2 Channel Output Power - W  
D005  
D006  
Figure 5. Output Power vs Supply Voltage, AD-mode  
Figure 6. System Efficiency vs Output Power, AD-mode  
10  
Copyright © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
Typical Characteristics, BTL Configuration, AD-mode (continued)  
100  
10  
1
100  
10  
1
3W  
4W  
8W  
3W  
4W  
8W  
TC = 75èC  
PVDD = 24V  
TC = 75èC  
PVDD = 12V  
10m  
100m  
1
10  
100 200  
10m  
100m  
1
10  
50  
2 Channel Output Power - W  
2 Channel Output Power - W  
D007  
D008  
Figure 7. System Efficiency vs Output Power, AD-mode  
Figure 8. System Efficiency vs Output Power, AD-mode  
75  
150  
3W  
4W  
8W  
125  
100  
75  
50  
25  
50  
3W  
4W  
8W  
25  
0
TC = 75èC  
PVDD = 30V  
THD+N = 10%  
75 100  
0
0
25  
50  
75 100 125 150 175 200 225 250  
2 Channel Output Power - W  
0
25  
50  
TC - Case Temperature - èC  
D009  
D010  
Figure 9. System Power Loss vs Output Power, AD-mode  
Figure 10. Output Power vs Case Temperature, AD-mode  
0
0
TC = 75èC  
4W  
TC = 75èC  
4W  
Vref = 21.21 V  
Pout = 1W/channel  
FFT size = 16384  
-20  
-40  
-20  
-40  
FFT size = 16384  
AUX-0025 filter  
80kHz Analyzer BW  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
AUX-0025 filter  
80kHz Analyzer BW  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k48k  
f - Frequency - Hz  
0
5k  
10k  
15k  
20k  
25k  
30k  
35k  
40k  
f - Frequency - Hz  
D011  
D012  
18 kHz + 19 kHz  
Ratio 1 : 1  
Figure 11. Noise Amplitude vs Frequency, AD-mode  
Figure 12. CCIF Intermodulation, AD-mode  
Copyright © 2017, Texas Instruments Incorporated  
11  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics, BTL Configuration, AD-mode (continued)  
0
0
TC = 75èC  
Pout = 25W/channel  
FFT size = 16384  
TC = 75èC  
PSU Ripple - 250mVp-p  
4W  
CH1  
CH2  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
AUX-0025 filter  
80kHz Analyzer BW  
0
5k  
10k  
15k  
20k  
25k  
30k  
35k  
40k  
20  
100  
1k  
f - Frequency - Hz  
10k 20k  
f - Frequency - Hz  
D013  
D014  
18 kHz + 19 kHz  
Ratio 1 : 1  
Figure 13. CCIF Intermodulation, AD-mode  
Figure 14. Power Supply Rejection Ratio vs Frequency, AD-  
mode  
0
-20  
15  
RL = 4W, TC = 75èC  
Aggressor Amplitude = 2VRMS (1W)  
CH2 to CH1  
CH1 to CH2  
AD Mode  
HEAD Mode  
-40  
10  
5
-60  
-80  
-100  
-120  
RL = 4W  
TC = 25èC  
20  
100  
1k  
10k 20k  
0
f - Frequency - Hz  
D015  
5
10  
15  
20  
25  
30  
35  
PVDD - Supply Voltage - V  
D026  
Figure 15. Channel to Channel Crosstalk vs Frequency, AD-  
mode  
Figure 16. Idle Current vs Supply Voltage  
12  
Copyright © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
7.9 Typical Characteristics, PBTL Configuration, AD-mode  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, RL = 2 , fS =  
600 kHz, 18 dB, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, Pre-Filter PBTL, AD Modulation, AES17 +  
AUX-0025 measurement filters, unless otherwise noted.  
10  
1
10  
1
2W  
3W  
4W  
1W  
25W  
100W  
RL = 2W  
TC = 75èC  
0.1  
0.01  
0.1  
0.01  
0.001  
0.0005  
TC = 75èC  
100 300  
0.001  
10m  
100m  
1
10  
20  
100  
1k  
10k 20k  
Po - Output Power - W  
f - Frequency - Hz  
D016  
D017  
Figure 17. Total Harmonic Distortion+Noise vs Output  
Power, AD-mode  
Figure 18. Total Harmonic Distortion + Noise vs Frequency,  
AD-mode  
225  
10  
2W  
AUX-0025 Filter  
80 kHz analyzer BW  
RL = 2W, TC = 75èC  
1W  
25W  
100W  
200  
175  
150  
125  
100  
75  
2W - CB3C Limited  
3W  
4W  
1
0.1  
0.01  
50  
THD+N = 10%  
25  
TC = 75èC  
0
0.001  
5
10  
15  
20  
25  
30  
35  
20  
100  
1k  
10k  
40k  
PVDD - Supply Voltage - V  
f - Frequency - Hz  
D019  
D018  
Figure 20. Output Power vs Supply Voltage, AD-mode  
Figure 19. Total Harmonic Distortion+Noise vs Frequency,  
AD-mode  
200  
100  
2W  
3W  
4W  
2W  
3W  
4W  
175  
150  
125  
100  
75  
10  
50  
25  
THD+N = 1%  
TC = 75èC  
TC = 75èC  
PVDD = 30V  
0
1
10m  
5
10  
15  
20  
25  
30  
35  
100m  
1
10  
100 300  
PVDD - Supply Voltage - V  
2 Channel Output Power - W  
D020  
D021  
Figure 21. Output Power vs Supply Voltage, AD-mode  
Figure 22. System Efficiency vs Output Power, AD-mode  
Copyright © 2017, Texas Instruments Incorporated  
13  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics, PBTL Configuration, AD-mode (continued)  
40  
30  
20  
10  
0
250  
200  
150  
100  
50  
2W  
3W  
4W  
2W  
3W  
4W  
TC = 75èC  
PVDD = 30V  
THD+N = 10%  
75 100  
0
0
25  
50  
75  
100 125 150 175 200 225  
0
25  
50  
2 Channel Output Power - W  
TC - Case Temperature - èC  
D022  
D023  
Figure 23. System Power Loss vs Output Power, AD-mode  
Figure 24. Output Power vs Case Temperature, AD-mode  
0
0
TC = 75èC  
Pout = 1W/channel  
FFT size = 16384  
TC = 75èC  
Pout = 50W/channel  
FFT size = 16384  
2W  
2W  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
AUX-0025 filter  
80kHz Analyzer BW  
AUX-0025 filter  
80kHz Analyzer BW  
0
5k  
10k  
15k  
20k  
25k  
30k  
35k  
40k  
0
5k  
10k  
15k  
20k  
25k  
30k  
35k  
40k  
f - Frequency - Hz  
f - Frequency - Hz  
D024  
D025  
18 kHz + 19 kHz  
Ratio 1 : 1  
18 kHz + 19 kHz  
Ratio 1 : 1  
Figure 25. CCIF Intermodulation vs Frequency, AD-mode  
Figure 26. CCIF Intermodulation vs Frequency, AD-mode  
14  
版权 © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
8 Parameter Measurement Information  
All parameters are measured according to the conditions described in the Recommended Operating Conditions.  
Most audio analyzers will not give correct readings of Class-D amplifiers’ performance due to their sensitivity to  
out of band noise present at the amplifier output. AES-17 + AUX-0025 pre-analyzer filters are recommended to  
use for Class-D amplifier measurements. In absence of such filters, a 30-kHz low-pass filter (10 + 47 nF) can  
be used to reduce the out of band noise remaining on the amplifier outputs.  
9 Detailed Description  
9.1 Overview  
TPA3221 is designed as a feature-enhanced cost efficient high power Class-D audio amplifier. It has built-in  
advanced protection circuitry to ensure maximum product robustness as well as a flexible feature set including  
built in LDO for easy supply of low voltage circuitry, selectable gain, switching frequency, master/slave  
synchronization of multiple devices, selectable PWM modulation scheme, mute function, temperature and  
clipping status signals. TPA3221 has a bandwidth up to 100 kHz and low output noise designed for high  
resolution audio applications and accepts both differential and single ended analog audio inputs at levels from 1  
VRMS to 2 VRMS. With its closed loop operation TPA3221 is designed for high audio performance with a system  
power supply between 7 V and 30 V.  
To facilitate system design, the TPA3221 needs only a (typical) 30 V power stage supply. The TPA3221 has an  
internal voltage regulator supplied from the VDD pin for the analog and digital system blocks and the output  
stage gate drive respectively. The VDD pin can be connected directly to PVDD in case of only this power supply  
rail being available.  
To reduce device power losses an external 5 V supply can be used for the AVDD and VDD supply pins. The  
internal voltage regulator connected to the VDD pin is automatically turned off if an external 5 V supply is used  
for this pin. Although supplied from the same 5 V source, separating AVDD and VDD on the printed-circuit board  
(PCB) by RC filters (see application diagram for details) is recommended. These RC filters provide the  
recommended high-frequency isolation. Special attention should be paid to placing all decoupling capacitors as  
close to their associated pins as possible. In general, the physical loop with the power supply pins, decoupling  
capacitors and GND return path to the device pins must be kept as short as possible and with as little area as  
possible to minimize induction (see Layout Examples for additional information).  
The floating supplies for the output stage high side gate drives are supplied by built-in bootstrap circuitry  
requiring only an external capacitor for each half-bridge.  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin  
(BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap capacitor is  
charged through an internal diode connected between the gate-drive power-supply pin (GVDD) and the bootstrap  
pins. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output potential  
and thus provides a suitable voltage supply for the high-side gate driver. It is recommended to use 33 nF ceramic  
capacitors, size 0603 or 0805, for the bootstrap supply. These 33 nF capacitors ensure sufficient energy storage,  
even during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully turned on during  
the remaining part of the PWM cycle.  
Special attention should be paid to the power stage power supply; this includes component selection, PCB  
placement, and routing.  
For optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X  
node is decoupled with 1 μF ceramic capacitors placed as close as possible to the PVDD supply pins. It is  
recommended to follow the PCB layout of the TPA3221 reference design. For additional information on  
recommended power supply and required components, see the application diagrams in this data sheet.  
If using external power supply for the AVDD and VDD internal regulators, this supply should be from a low-noise,  
low-output-impedance voltage regulator. Likewise, the 30 V power stage supply is assumed to have low output  
impedance throughout the entire audio band, and low noise. The power supply sequence is not critical as  
facilitated by the internal power-on-reset circuit, but it is recommended to release RESET after the power supply  
is settled for minimum turn on audible artefacts. Moreover, the TPA3221 is fully protected against erroneous  
power-stage turn on due to parasitic gate charging. Thus, voltage-supply ramp rates (dV/dt) are noncritical within  
the specified range (see the Recommended Operating Conditions table of this data sheet).  
版权 © 2017, Texas Instruments Incorporated  
15  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
9.2 Functional Block Diagrams  
VDD  
AVDD  
REGULATOR  
(Auto Bypass)  
VDD  
RESET  
AVDD  
GVDD  
GVDD  
ERROR  
HANDLING  
OTW_CLIP  
FAULT  
DIFFOC  
CB3C  
IOUT1_M  
IOUT1_P  
IOUT2_M  
IOUT2_P  
OVER-LOAD  
PROTECTION  
CURRENT  
SENSE  
GAIN/SLV  
PWM ACTIVITY  
DETECTOR  
PVDD  
PPSC  
OUT_X  
HEAD  
POWER-UP  
RESET  
TEMP  
SENSE  
I/O LOGIC  
CMUTE  
STARTUP  
CONTROL  
PVDD  
AVDD  
UVP  
STARTUP & CONTROL  
FREQ_ADJ  
OVP  
PVDD  
OSCILLATOR  
OSCM  
OSCP  
OUTPUT DC  
CONTROL  
PROTECTION  
GVDD  
BST1_M  
PVDD  
-
GATE-DRIVE  
GATE-DRIVE  
OUT1_M  
GND  
+
IN1_P  
IN1_M  
ANALOG  
LOOP  
FILTER  
PWM  
RECEIVER  
TIMING  
CONTROL  
CONTROL  
+
-
OUT_1_P  
PVDD  
GVDD  
BST1_P  
CHANNEL 1  
GVDD  
BST2_M  
PVDD  
-
GATE-DRIVE  
GATE-DRIVE  
OUT2_M  
GND  
+
IN2_P  
IN2_M  
ANALOG  
LOOP  
FILTER  
PWM  
RECEIVER  
TIMING  
CONTROL  
CONTROL  
+
-
OUT2_P  
PVDD  
GVDD  
BST2_P  
CHANNEL 2  
Copyright © 2017, Texas Instruments Incorporated  
16  
版权 © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
Functional Block Diagrams (接下页)  
System  
microcontroller or  
Analog circuitry  
BST1_P  
OSCM  
OSCP  
Oscillator  
Synchronization  
Bootstrap  
Capacitors  
BST1_M  
2nd Order  
OUT1_P  
L-C Output  
Filter for  
each  
Output  
H-Bridge 1  
IN1_M  
Input DC  
Blocking  
Caps  
ANALOG_IN1_M  
ANALOG_IN1_P  
OUT1_M  
Input  
H-Bridge 1  
IN1_P  
H-Bridge  
2-CHANNEL  
H-BRIDGE  
BTL MODE  
Hardwire PWM  
Frame Adjust  
& Master/Slave  
Mode  
FREQ_ADJ  
2nd Order  
L-C Output  
Filter for  
each  
OUT2_P  
OUT2_M  
IN2_M  
IN2_P  
Input DC  
Blocking  
Caps  
ANALOG_IN2_M  
ANALOG_IN2_P  
Output  
H-Bridge 2  
Input  
H-Bridge 2  
H-Bridge  
PBTL  
Detect  
BST2_P  
BST2_M  
Hardwire  
Mode  
HEAD  
Bootstrap  
Capacitors  
Control  
PVDD  
GND  
PVDD  
VDD, AVDD  
& GVDD  
Power Supply  
Decoupling  
30 V  
Power Supply  
Decoupling  
SYSTEM  
Power  
Supplies  
GND  
5 V or 7-30 V  
VDD (5 V or 7-30 V)  
Copyright © 2018, Texas Instruments Incorporated  
VAC  
*NOTE1: Logic AND in or outside microcontroller  
27. System Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
17  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Internal LDO  
TPA3221 has a built in optional LDO (Low dropout voltage regulator) to supply the analog and digital circuits as  
well as the gate drive for the output stages. The LDO can be used in systems where only the high voltage power  
rail is available, hence no additional power supply rails need to be generated for the TPA3221 to operate. As  
being a linear regulator, the LDO will add to the power losses of the device due to the (PVDD-5V) voltage drop  
and the supply current for AVDD and GVDD given in the Electrical Characteristics table.  
VDD  
+7VPVDD  
470uF  
100nF  
GND  
AVDD  
GVDD  
5V LDO  
3R3  
1µF  
TPA322x  
1µF  
28. Internal LDO for Single Supply Systems  
When using the internal LDO in TPA3221 the VDD terminal should be connected to a voltage source between  
7V and PVDD. In a single supply system the VDD terminal should be connected directly to the PVDD terminal.  
The LDO output is connected to the AVDD terminal, and can be used to supply the gate drive by supplying the  
GVDD from AVDD through a RC filter for best noise performance as shown in 28.  
+5V  
VDD  
470uF  
100nF  
GND  
AVDD  
GVDD  
5V LDO  
3R3  
1µF  
TPA322x  
1µF  
29. Internal LDO Bypass for Highest Power Efficiency  
For highest system power efficiency the LDO can be bypassed by connecting VDD to an external 5 V supply. In  
this configuration AVDD and GVDD should be supplied by 5 V from the external power supply. GVDD should be  
supplied through a RC filter for best noise performance as shown in 29.  
9.3.1.1 Input Configuration, Gain Setting And Master / Slave Operation  
TPA3221 is designed to accept either a differential or a single-ended audio input signal. To accept a wide range  
of system front ends TPA3221 has selectable input gain that allows full scale output with a wide range of input  
signal levels.  
Best system noise performance is obtained with balanced audio interface. However, to be used in systems with  
only a single ended audio input signal available, one input terminal can be connected to AC ground, to accept  
single ended audio input signals.  
IN1_P  
IN1_P  
IN1_M  
+
-
IN1_M  
IN2_P  
IN2_P  
IN2_M  
+
-
IN2_M  
TPA322x  
30. Balanced Audio Input Configuration  
18  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
Feature Description (接下页)  
In systems with single ended audio inputs the device gain will typically need to be set higher than for systems  
with balanced audio input signals.  
IN1_P  
IN1  
+
-
IN1_M  
IN2_P  
IN2  
+
-
IN2_M  
TPA322x  
31. Single Ended Audio Input Configuration  
9.3.2 Gain Setting And Master / Slave Operation  
The gain of TPA3221 is set by the voltage divider connected to the GAIN/SLV control pin. Master or Slave mode  
is also controlled by the same pin. An internal ADC is used to detect the 8 input states. The first four stages sets  
the GAIN in Master mode in gains of 18, 24, 30, 34 dB respectively, while the next four stages sets the GAIN in  
Slave mode in gains of 18, 24, 30, 34 dB respectively. The gain setting is latched when RESET goes high and  
cannot be changed while RESET is high. 2 shows the recommended resistor values, the state and gain:  
2. Gain and Master / Slave  
Master / Slave  
Mode  
Differential Input Signal Level  
(each input pin)  
Single Ended Input Signal  
Level  
Gain  
R1 (to GND)  
R2 (to AVDD)  
Master  
Master  
Master  
Master  
Slave  
18 dB  
24 dB  
30 dB  
34 dB  
18 dB  
24 dB  
30 dB  
34 dB  
5.6 kΩ  
20 kΩ  
39 kΩ  
47 kΩ  
51 kΩ  
75 kΩ  
100 kΩ  
100 kΩ  
OPEN  
100 kΩ  
100 kΩ  
75 kΩ  
51 kΩ  
47 kΩ  
39 kΩ  
16 kΩ  
2 VRMS  
1 VRMS  
2 VRMS  
2 VRMS  
0.5 VRMS  
0.32 VRMS  
2 VRMS  
1 VRMS  
0.63 VRMS  
2 VRMS  
Slave  
1 VRMS  
2 VRMS  
Slave  
0.5 VRMS  
0.32 VRMS  
1 VRMS  
Slave  
0.63 VRMS  
AVDD  
R2  
AVDD  
GAIN/SLV  
TPA322x  
R1  
GND  
32. Gain and Master / Slave Setup  
For easy multi-channel system design TPA3221 has a Master / Slave feature that allows automatic  
synchronization of multiple slave devices operated at the PWM switching frequency of a master device. This  
benefits system noise performance by eliminating spurious crosstalk sum and difference tones due to  
unsynchronized channel-to-channel switching frequencies. Furthermore the Master / Slave scheme is designed  
to interleave switching of the individual channels in a multi-channel system such that the power supply current  
ripple frequency is moved to a higher frequency which reduces the RMS ripple current in the power supply bulk  
capacitors.  
版权 © 2017, Texas Instruments Incorporated  
19  
 
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
The Master / Slave scheme and the interleaving of the output stage switching is automatically configured by  
connecting the OSCx pins between a master and multiple slave devices. Connect the OSCx pins in either  
positive or negative polarity to configure either a Slave1 or Slave2 device. Connect the OSCM of the Master  
device to the OSCM of a slave device to configure for Slave1 or OSCP to configure for Slave2. Then connect the  
remaining OSCx pins between the master and slave devices. The Master, Slave1 and Slave2 PWM switching will  
be 30 degrees out of phase with each other. All switching channels are automatically synchronized by releasing  
RESET on all devices at the same time.  
AVDD  
47k  
47k  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
TPA322x  
SLAVE1  
RESET  
TPA322x  
SLAVE2  
RESET  
TPA322x  
SLAVE1  
RESET  
TPA322x  
MASTER  
RESET  
TPA322x  
SLAVE2  
RESET  
TPA322x  
SLAVE1  
RESET  
TPA322x  
SLAVE2  
RESET  
33. Gain and Master PCB Implementation  
Placement on the PCB and connection of multiple TPA3221 devices in a multi channel system is illustrated in 图  
33. Slave devices should be placed on either side of the master device, with a Slave1 device on one side of the  
Master device, and a Slave2 device on the other. In systems with more than 3 TPA3221 devices, the master  
should be in the middle, and every second slave devices should be a Slave1 or Slave 2 as illustrated in 33. A  
47kΩ pull up resistor to AVDD should be connected to the master device OSCM output and a 47kΩ pull down  
resistor to GND should be connected to the master OSCP CLK outputs.  
9.3.3 AD-Mode and HEAD-Mode PWM Modulation  
TPA3221 has the option of using either AD-Mode or HEAD-Mode PWM modulation scheme. AD mode has  
continuous switching of the two half bridge outputs in each BTL output channel. Both half bridge outputs are  
switching in HEAD mode, but with reduced duty cycle for idle operation and while playing small signals. With  
higher output levels one half bridge stops switching on HEAD mode operation. HEAD benefits both device power  
loss and EMI performance, where AD mode is considered to have the highest audio performance.  
SPACE  
HEAD  
AVDD  
HEAD  
AVDD  
TPA322x  
TPA322x  
34. AD-Mode Configuration  
35. HEAD-Mode Configuration  
OUTP  
OUTN  
0V  
0V  
0A  
OUTP Current  
OUTN Current  
0A  
36. AD Mode Output Waveforms, Idle  
20  
版权 © 2017, Texas Instruments Incorporated  
 
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
OUTP  
OUTN  
0V  
0V  
>0A  
OUTP Current  
OUTN Current  
<0A  
37. AD Mode Output Waveforms, High Level Output  
PVDD  
PVDD  
OUTX_P (PWM)  
OUTX_M (PWM)  
PVDD/2  
PVDD/2  
SpeakerX_P  
SpeakerX_M  
0V  
SpeakerX_Diff  
38. AD Mode Speaker Output Signals, Low or and High Level Output  
OUTP  
OUTN  
0V  
0V  
0A  
OUTP Current  
OUTN Current  
0A  
39. HEAD Mode Output Waveforms, Idle  
OUTP  
OUTN  
0V  
0V  
>0A  
OUTP Current  
OUTN Current  
<0A  
40. HEAD Mode Output Waveforms, High Level Output  
版权 © 2017, Texas Instruments Incorporated  
21  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
PVDD  
PVDD  
OUTX_P (PWM)  
OUTX_M (PWM)  
SpeakerX_P  
SpeakerX_M  
0V  
0V  
0V  
SpeakerX_Diff  
41. HEAD Mode Speaker Output Signals, Low Level Output  
PVDD  
PVDD  
OUTX_P (PWM)  
OUTX_M (PWM)  
SpeakerX_P  
SpeakerX_M  
0V  
0V  
SpeakerX_Diff  
0V  
42. HEAD Mode Speaker Output Signals, High Level Output  
22  
版权 © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
9.3.4 Oscillator  
The oscillator frequency can be trimmed by external control of the FREQ_ADJ pin.  
To reduce interference problems while using radio receiver tuned within the AM band, the switching frequency  
can be changed from nominal to higher values. These values should be chosen such that the nominal and the  
higher value switching frequencies together results in the fewest cases of interference throughout the AM band.  
The oscillator frequency can be selected by the value of the FREQ_ADJ resistor connected to GND in master  
mode according to the description in the Recommended Operating Conditions table.  
For slave mode operation, turn off the oscillator by pulling the FREQ_ADJ pin to AVDD. This configures the  
OSC_I/O pins as inputs to be slaved from an external differential clock. In a master/slave system inter channel  
delay is automatically setup between the switching of the audio channels, which can be illustrated by no idle  
channels switching at the same time. This will not influence the audio output, but only the switch timing to  
minimize noise coupling between audio channels through the power supply to optimize audio performance and to  
get better operating conditions for the power supply. The inter channel delay will be setup for a slave device  
depending on the polarity of the OSC_I/O connection such that a slave mode 1 is selected by connecting the  
master device OSC_I/O to the slave 1 device OSC_I/O with same polarity (+ to + and - to -), and slave mode 2 is  
selected with the inverse polarity (+ to - and - to +).  
9.3.5 Input Impedance  
The TPA3221 input stage is a fully differential input stage and the input impedance changes with the gain setting  
from 7.7 kΩ at 34 dB gain to 47 kΩ at 18 dB gain. Table 1 lists the values from min to max gain. The tolerance of  
the input resistor value is ±20 % so the minimum value will be higher than 6.2 kΩ. The inputs need to be AC-  
coupled to minimize the output DC-offset and ensure correct ramping of the output voltages during power-ON  
and power-OFF. The input ac-coupling capacitor together with the input impedance forms a high-pass filter with  
the following cut-off frequency:  
If a flat bass response is required down to 20 Hz the recommended cut-off frequency is a tenth of that, 2 Hz. 3  
lists the recommended ac-couplings capacitors for each gain step. If a -3 dB is accepted at 20 Hz 10 times lower  
capacitors can used – for example, a 1 μF can be used.  
3. Recommended Input AC-Coupling Capacitors  
Input AC-Coupling  
Capacitance  
Gain  
Input Impedance  
Input High Pass Filter  
18 dB  
24 dB  
30 dB  
34 dB  
48 kΩ  
24 kΩ  
12 kΩ  
7.7 kΩ  
4.7 µF  
0.7 Hz  
0.7 Hz  
1.3 Hz  
2.1 Hz  
10 µF  
10 µF  
10 µF  
The input capacitors used should be a type with low leakage, like quality electrolytic, tantalum, film or ceramic. If  
a polarized type is used the positive connection should face such that the capacitor has a positive DC bias.  
9.3.6 Error Reporting  
The FAULT, and OTW_CLIP, pins are active-low, open-drain outputs. The FAULT function is for protection-mode  
signaling to a system-control device. Any fault resulting in device shutdown is signaled by the FAULT pin going  
low. Also, OTW_CLIP goes low when the device junction temperature exceeds 125°C (see 4).  
4. Error Reporting  
FAULT  
OTW_CLIP  
DESCRIPTION  
Overtemperature (OTE), overload (OLP), undervoltage (UVP), or overvoltage (OVP).  
Junction temperature higher than 125°C (overtemperature warning)  
0
0
Overload (OLP), undervoltage (UVP), or overvoltage (OVP). Junction temperature  
lower than 125°C  
0
1
1
1
0
1
Junction temperature higher than 125°C (overtemperature warning)  
Junction temperature lower than 125°C and no OLP or UVP faults (normal operation)  
版权 © 2017, Texas Instruments Incorporated  
23  
 
 
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Note that asserting RESET low forces the FAULT signal high, independent of faults being present. TI  
recommends monitoring the OTW_CLIP signal using the system microcontroller and responding to an  
overtemperature warning signal by turning down the volume to prevent further heating of the device resulting in  
device shutdown (OTE).  
To reduce external component count, an internal pullup resistor to 3.3 V is provided on both FAULT and  
OTW_CLIP outputs.  
9.4 Device Functional Modes  
TPA3221 can be configured in either a stereo BTL (Bridge Tied Load) mode, mono BTL mode (only one output  
BTL channel active), or in a mono PBTL (Parallel Bridge Tied Load) mode. In PBTL mode the two output BTL  
channels are parallelled with double output current available. The parallelling of the two BTL outputs can be  
made either before the output LC filter, or after the output LC filter. For PBTL mode the audio performance will in  
general be higher when parallelling before the output LC filter, but parallelling after the LC output filter may be  
preferred in some systems.  
See Table 1 for mode configuration setup.  
OUT1_P  
OUT1_P  
IN1_P  
IN1_P  
IN1_M  
IN1_P  
IN1_M  
IN1_P  
IN1_M  
OUT1_M  
OUT2_P  
OUT1_M  
OUT2_P  
IN1_M  
IN2_P  
TPA322x  
TPA322x  
IN2_P  
IN2_M  
IN2_P  
IN2_M  
IN2_M  
AVDD  
OUT2_M  
OUT2_M  
43. Stereo BTL  
44. Mono BTL  
OUT1_P  
OUT1_P  
IN1_P  
IN1_M  
IN1_P  
IN1_M  
IN1_P  
IN1_M  
IN1_P  
IN1_M  
OUT1_M  
OUT1_M  
TPA322x  
TPA322x  
IN2_P  
IN2_M  
IN2_P  
IN2_M  
OUT2_P  
OUT2_P  
OUT2_M  
OUT2_M  
45. Mono PBTL, Pre LC Filter  
9.4.1 Powering Up  
46. Mono PBTL, Post LC Filter  
The TPA3221 does not require a power-up sequence because of the integrated undervoltage protection (UVP),  
but it is recommended to hold RESET low until PVDD supply voltage is stable to avoid audio artifacts. The  
outputs of the H-bridges remain in a high-impedance state until the gate-drive supply (GVDD) and AVDD  
voltages are above their UVP voltage thresholds (see the Electrical Characteristics table of this data sheet). This  
allows an internal circuit to charge the external bootstrap capacitors by enabling a weak pull-down of the half-  
bridge output as well as initiating a controlled ramp up sequence of the output voltage.  
24  
版权 © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
PVDD  
VDD  
GVDD  
RESET  
AVDD  
FAULT  
VIN_X  
OUT_X  
VOUT_X  
t
Precharge  
C 20 ms  
t
Startup ramp  
V_CMUTE  
47. Startup Timing  
When RESET is released to turn on TPA3221, FAULT signal will turn low and AVDD voltage regulator will be  
enabled. FAULT will stay low until AVDD reaches the undervoltage protection (UVP) voltage threshold (see the  
Electrical Characteristics table of this data sheet). After a pre-charge time to stabilize the DC voltage across the  
input AC coupling capacitors, the ramp up sequence starts and completes once the CMUTE node is charged to  
its final value.  
9.4.1.1 Startup Ramp Time  
During the startup ramp the CMUTE capacitor is charged by an internal current generator. With use of the  
recommended 33 nF CMUTE capacitor value, the startup ramp time is approximately 20 ms. Higher CMUTE  
capacitor value will increase the ramp time, and a lower value will decrease the ramp time. The recommended  
CMUTE capacitor value is selected for minimum audible artifacts during startup and shutdown ramp.  
9.4.2 Powering Down  
The TPA3221 does not require a power-down sequence. The device remains fully operational as long as the  
VDD, AVDD and PVDD voltages are above their undervoltage protection (UVP) voltage thresholds (see the  
Electrical Characteristics table of this data sheet). Although not specifically required, it is a good practice to hold  
RESET low during power down, thus preventing audible artifacts including pops or clicks by initiating a controlled  
ramp down sequence of the output voltage. The ramp down sequence will complete once the CMUTE node is  
discharged.  
版权 © 2017, Texas Instruments Incorporated  
25  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
9.4.2.1 Power Down Ramp Time  
During the power down ramp the CMUTE capacitor is discharged by internal circuitry. With use of the  
recommended 33 nF CMUTE capacitor value, the power-down ramp time is approximately 20 ms.  
9.4.3 Device Reset  
Asserting RESET low initiates the device ramp down. The output FETs go into a Hi-Z state after the ramp down  
is complete. Output pull downs are active in both BTL mode and PBTL mode with RESET low.  
In BTL modes, to accommodate bootstrap charging prior to switching start, asserting the RESET input low  
enables weak pull-down of the half-bridge outputs.  
Asserting RESET low removes any fault information to be signaled on the FAULT output, that is, FAULT is  
forced high. A rising-edge transition on RESET allows the device to resume operation after a fault. To ensure  
thermal reliability, the rising edge of RESET must occur no sooner than 4 ms after the falling edge of FAULT.  
The TPA3221 will enter a low power state once the ramp down sequence is complete.  
9.4.4 Device Soft Mute  
Asserting CMUTE low initiates the device soft mute function. The soft mute function initiates a ramp down  
sequence of the outputs, and the output FETs go into a Hi-Z state after the ramp down is complete. All internal  
circuits are powered while in soft mute state. External control of the soft mute function must provide high  
impedance output when not engaged (open drain output) to allow the CMUTE node to charge/discharge during  
device ramp up and ramp down when de-asserting and asserting RESET.  
9.4.5 Device Protection System  
The TPA3221 contains advanced protection circuitry carefully designed to facilitate system integration and ease  
of use, as well as to safeguard the device from permanent failure due to a wide range of fault conditions such as  
short circuits, overload, overtemperature, overvoltage and undervoltage. The TPA3221 responds to a fault by  
immediately setting the power stage in a high-impedance (Hi-Z) state and asserting the FAULT pin low. In  
situations other than overload and overtemperature error (OTE), the device automatically recovers when the fault  
condition has been removed, that is, the supply voltage has increased. The device will handle errors, as shown  
in 5.  
5. Device Protection  
BTL MODE  
LOCAL ERROR IN  
PBTL MODE  
LOCAL ERROR IN  
TURNS OFF  
TURNS OFF  
A
B
C
D
A
B
C
D
A+B  
A+B+C+D  
C+D  
Bootstrap UVP does not shutdown according to the table, it shuts down the respective halfbridge (non-latching,  
does not assert FAULT).  
9.4.5.1 Overload and Short Circuit Current Protection  
TPA3221 has fast reacting current sensors on all high-side and low-side FETs. To prevent output current from  
increasing beyond the overcurrent threshold, TPA3221 uses current limiting of the output current for each  
switching cycle (Cycle By Cycle Current Control, CB3C) in case of excess output current. CB3C prevents  
premature shutdown due to high output current transients caused by high level music transients and a drop of  
real speaker’s load impedance, and allows the output current to be limited to a maximum programmed level. If  
the maximum output current persists, i.e. the power stage being overloaded with too low load impedance, the  
device will shut down the affected output channel and the affected output is put in a high-impedance (Hi- Z) state  
until a RESET cycle is initiated. CB3C works individually for each full-bridge output. If an over current event is  
triggered, CB3C performs a state flip of the full-bridged output that is cleared upon beginning of next PWM  
frame.  
26  
版权 © 2017, Texas Instruments Incorporated  
 
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
PWM_X  
HS PWM  
RISING EDGE PWM  
SETS CB3C LATCH  
LS PWM  
OC EVENT RESETS  
CB3C LATCH  
OC THRESHOLD  
OUTPUT CURRENT  
OCH  
HS GATE-DRIVE  
LS GATE-DRIVE  
48. CB3C Timing Example  
9.4.5.2 Signal Clipping and Pulse Injector  
A built in activity detector monitors the PWM activity of the OUT_X pins. TPA3221 is designed to drive  
unclipped output signals all the way to PVDD and GND rails. In case of audio signal clipping when applying  
excessive input signal voltage, or in case of CB3C current protection being active, the amplifier feedback  
loop of the audio channel will respond to this condition with a saturated state, and the output PWM signals  
will stop unless special circuitry is implemented to handle this situation. To prevent the output PWM signals  
from stopping in a clipping or CB3C situation, narrow pulses are injected to the gate drive to maintain output  
activity. The injected narrow pulses are injected at every 4th PWM frame, and thus the effective switching  
frequency during this state is reduced to 1/4 of the normal switching frequency.  
Signal clipping is signalled on the OTW_CLIP pin and is self clearing when signal level reduces and the  
device reverts to normal operation. The OTW_CLIP pulses starts at the onset to output clipping, typically at a  
THD level around 0.01%, resulting in narrow OTW_CLIP pulses starting with a pulse width of ~500ns.  
49. Signal Clipping PWM and Speaker Output Signals  
版权 © 2017, Texas Instruments Incorporated  
27  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
9.4.5.3 DC Speaker Protection  
The output DC protection scheme protects a speaker from excess DC current in case one terminal of the  
speaker is connected to the amplifier while the other is accidentally shorted to the chassis ground. Such a short  
circuit results in a DC voltage of PVDD/2 across the speaker, which potentially can result in destructive current  
levels. The output DC protection detects any unbalance of the output and input current of a BTL or PBTL output  
configuration (current into/out of one half-bridge equals current out of/into the other half-bridge), and in the event  
of the unbalance exceeding a programmed threshold, the overload counter increments until its maximum value  
and the affected output channel is shut down. DC Speaker Protection is enabled in both BTL and PBTL mode  
operation.  
9.4.5.4 Pin-to-Pin Short Circuit Protection (PPSC)  
The PPSC detection system protects the device from permanent damage in the case that a power output pin  
(OUT_X) is shorted to GND_X or PVDD_X. For comparison, the OC protection system detects an overcurrent  
after the demodulation filter where PPSC detects shorts directly at the pin before the filter. PPSC detection is  
performed at startup after RESET is pulled high. When PPSC detection is activated by a short on the output, all  
half-bridges are kept in a Hi-Z state until the short is removed; the device then continues the startup sequence  
and starts switching. The detection is controlled globally by a two step sequence. The first step ensures that  
there are no shorts from OUT_X to GND_X, the second step tests that there are no shorts from OUT_X to  
PVDD_X. The total duration of this process is roughly proportional to the capacitance of the output LC filter. The  
typical duration is < 15 ms/μF. While the PPSC detection is in progress, FAULT is kept low. If no shorts are  
present the PPSC detection passes, and FAULT is released. A device reset will start a new PPSC detection.  
PPSC detection is enabled in both BTL and PBTL output configurations. To make sure not to trip the PPSC  
detection system it is recommended not to insert a resistive load to GND_X or PVDD_X.  
9.4.5.5 Overtemperature Protection OTW and OTE  
TPA3221 has a two-level temperature-protection system that asserts an active-low warning signal (OTW_CLIP)  
when the device junction temperature exceeds 125°C (typical) and, if the device junction temperature exceeds  
155°C (typical), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-  
impedance (Hi-Z) state and FAULT being asserted low. OTE is latched in this case. To clear the OTE latch,  
RESET must be asserted. Thereafter, the device resumes normal operation.  
9.4.5.6 Undervoltage Protection (UVP), Overvoltage Protection (OVP) and Power-on Reset (POR)  
The UVP, OVP and POR circuits of the TPA3221 fully protect the device in any power-up/down, and brownout  
situation, and also in overvoltage situation with PVDD not exceeding the values stated in Absolute Maximum  
Ratings. While powering up, the POR circuit ensures that all circuits are fully operational when the AVDD supply  
voltage reaches the value stated in the Electrical Characteristics table. Although AVDD is independently  
monitored, a supply voltage drop below the UVP threshold on AVDD pin results in all half-bridge outputs  
immediately being set in the high-impedance (Hi-Z) state and FAULT being asserted low. The device  
automatically resumes operation when all supply voltages have increased above their UVP threshold. In case of  
an OVP event, all half-bridge outputs are immediately set in the high-impedance (Hi-Z) state and FAULT is  
asserted low until PVDD is below the OVP threshold.  
28  
版权 © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
9.4.5.7 Fault Handling  
If a fault situation occurs while in operation, the device acts accordingly to the fault being a global or a channel  
fault. A global fault is a chip-wide fault situation and causes all PWM activity of the device to be shut down, and  
will assert FAULT low. A global fault is a latching fault and clearing FAULT and restarting operation requires  
resetting the device by toggling RESET. De-asserting RESET should never be allowed with excessive system  
temperature, so it is advised to monitor RESET with a system microcontroller and only release RESET (RESET  
high) if the OTW_CLIP signal is cleared (high). A channel fault results in shutdown of the PWM activity of the  
affected channel(s). Note that asserting RESET low forces the FAULT signal high, independent of faults being  
present.  
6. Error Reporting  
Fault/Event  
Description  
Latched/Self  
Clearing  
Action needed to  
Clear  
Fault/Event  
Global or Channel  
Reporting Method  
Output FETs  
PVDD_X UVP  
PVDD_X OVP  
AVDD UVP  
Increase affected  
supply voltage  
Voltage Fault  
Global  
FAULT pin  
Self Clearing  
HI-Z  
POR (AVDD UVP)  
Power On Reset  
Thermal Warning  
Global  
Global  
FAULT pin  
OTW pin  
Self Clearing  
Self Clearing  
Allow AVDD to rise  
HI-Z  
Cool below OTW  
threshold  
OTW  
Normal operation  
OTE  
Thermal Shutdown  
OC Shutdown  
Global  
FAULT pin  
FAULT pin  
Latched  
Latched  
Toggle RESET  
Toggle RESET  
HI-Z  
HI-Z  
OLP (CB3C>1.7 ms)  
Channel  
Reduce signal level  
or remove short  
Flip state, cycle by  
cycle at fs/3  
CB3C  
OC Limiting  
Channel  
Global  
None  
None  
Self Clearing  
Self Clearing  
No OSC_IO activity  
in Slave Mode  
Resume OSC_IO  
activity  
Stuck at Fault(1)  
HI-Z  
(1) Stuck at Fault occurs when input OSC_IO input signal frequency drops below minimum frequency given in the Electrical Characteristics  
table of this data sheet.  
版权 © 2017, Texas Instruments Incorporated  
29  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
TPA3221 can be configured either in stereo BTL, mono BTL or mono PBTL mode depending on output power  
conditions and system design.  
10.2 Typical Applications  
10.2.1 Stereo BTL Application  
+5V  
470uF  
100nF  
5.6k  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
VDD  
BST1_P  
BST1_M  
GND  
10µH  
GAIN/SLV  
OTW_CLIP  
FAULT  
GND  
10nF  
33nF  
/OTW_CLIP  
/FAULT  
1nF  
1nF  
1µF  
1µF  
GND  
3R3  
OUT1_P  
OUT1_P  
PVDD  
3R3  
GND  
10nF  
GND  
1µF  
10µH  
1µF  
470uF  
IN1_P  
IN1_M  
IN1_P  
IN1_M  
RESET  
HEAD  
OSCM  
OSCP  
FREQ_ADJ  
IN2_P  
IN2_M  
CMUTE  
GND  
PVDD  
1µF  
PVDD  
PVDD  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
/RESET  
OUT1_M  
GND  
1µF  
1µF  
TPA322x  
GND  
OUT2_P  
PVDD  
50k  
1µF  
10µH  
IN2_P  
IN2_M  
PVDD  
1µF 470uF  
10nF  
1µF  
PVDD  
1nF  
1nF  
1µF  
1µF  
OUT2_M  
OUT2_M  
GND  
3R3  
CMUTE  
1k  
26  
25  
24  
23  
3R3  
GND  
CMUTE  
+5V  
33nF  
20  
21  
22  
10nF  
GND  
GND  
33nF  
10µH  
AVDD  
GVDD  
BST2_P  
BST2_M  
3R3  
1µF  
1µF  
33nF  
Copyright © 2017, Texas Instruments Incorporated  
50. Typical Differential (2N) AD-Mode BTL Application  
30  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
Typical Applications (接下页)  
10.2.1.1 Design Requirements  
For this design example, use the parameters in 7.  
7. Design Requirements, BTL Application  
DESIGN PARAMETER  
Low Power Supply  
High Power Supply  
EXAMPLE  
5 V  
7 - 30 V  
IN1_M = ±2.8V (peak, max)  
IN1_P = ±2.8V (peak, max)  
IN2_M = ±2.8V (peak, max)  
IN2_P = ±2.8V (peak, max)  
Inductor-Capacitor Low Pass Filter (10 µH + 1 µF)  
3 - 8 Ω  
Analog Inputs  
Output Filters  
Speaker Impedance  
10.2.1.2 Detailed Design Procedures  
A rising-edge transition on RESET input allows the device to execute the startup sequence and starts switching.  
A toggling OTW_CLIP signal is indicating that the output is approaching clipping. The signal can be used either  
to decrease audio volume or to control an intelligent power supply nominally operating at a low rail adjusting to a  
higher supply rail.  
The device inverts the audio signal from input to output.  
The AVDD pin is not recommended to be used as a voltage source for external circuitry when internal LDO is  
enabled (VDD 7 V).  
10.2.1.2.1 Decoupling Capacitor Recommendations  
In order to design an amplifier that has robust performance, passes regulatory requirements, and exhibits good  
audio performance, good quality decoupling capacitors should be used. In practice, X7R should be used in this  
application.  
The voltage of the decoupling capacitors should be selected in accordance with good design practices.  
Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in the  
selection of the 1μF that is placed on the power supply to each full-bridge. It must withstand the voltage  
overshoot of the PWM switching, the heat generated by the amplifier during high power output, and the ripple  
current created by high power output. A minimum voltage rating of 50 V is required for use with a 30 V power  
supply.  
10.2.1.2.2 PVDD Capacitor Recommendation  
The large capacitors used in conjunction with each full-bridge, are referred to as the PVDD Capacitors. These  
capacitors should be selected for proper voltage margin and adequate capacitance to support the power  
requirements. In practice, with a well designed system power supply, 470 μF, 50 V supports most applications.  
The PVDD capacitors should be low ESR type because they are used in a circuit associated with high-speed  
switching.  
10.2.1.2.3 BST capacitors  
To ensure large enough bootstrap energy storage for the high side gate drive to work correctly with all audio  
source signals, 33 nF / 50V X7R BST capacitors are recommended.  
10.2.1.2.4 PCB Material Recommendation  
FR-4 Glass Epoxy material with 2 oz. (70 μm) copper is recommended for use with the TPA3221. The use of this  
material can provide for higher power output, improved thermal performance, and better EMI margin due to lower  
PCB trace inductance.  
版权 © 2017, Texas Instruments Incorporated  
31  
 
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
10.2.2 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled before LC filter)  
TPA3221 can be configured in mono PBTL mode by paralleling the outputs before the LC filter or after the LC  
filter (see Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled after LC filter)). Paralleled  
outputs before the LC filter is recommended for better performance and limiting the number of output LC filter  
inductors.  
+5V  
470uF  
100nF  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
VDD  
BST1_P  
BST1_M  
GND  
5.6k  
GAIN/SLV  
OTW_CLIP  
FAULT  
GND  
33nF  
/OTW_CLIP  
/FAULT  
GND  
OUT1_P  
OUT1_P  
PVDD  
GND  
PVDD  
GND  
1µF  
1µF  
10µH  
470uF  
IN1_P  
IN1_M  
IN1_P  
IN1_M  
RESET  
HEAD  
OSCM  
OSCP  
FREQ_ADJ  
IN2_P  
IN2_M  
CMUTE  
GND  
PVDD  
1µF  
10nF  
PVDD  
1nF  
1nF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
/RESET  
OUT1_M  
GND  
470nF  
470nF  
470nF  
470nF  
1µF  
1µF  
3R3  
TPA322x  
GND  
3R3  
OUT2_P  
PVDD  
10nF  
50k  
10µH  
PVDD  
1µF 470uF  
PVDD  
GND  
OUT2_M  
OUT2_M  
GND  
CMUTE  
1k  
26  
25  
24  
23  
GND  
CMUTE  
+5V  
33nF  
20  
21  
22  
GND  
GND  
33nF  
AVDD  
GVDD  
BST2_P  
BST2_M  
3R3  
1µF  
1µF  
33nF  
Copyright © 2017, Texas Instruments Incorporated  
51. Typical Differential (2N) AD-Mode PBTL Application  
10.2.2.1 Design Requirements  
Refer to Stereo BTL Application for the Design Requirements.  
8. Design Requirements, PBTL Application  
DESIGN PARAMETER  
Low Power Supply  
High Power Supply  
EXAMPLE  
5 V  
7 - 30 V  
IN1_M = ±2.8 V (peak, max)  
IN1_P = ±2.8 V (peak, max)  
IN2_M = Grounded  
Analog Inputs  
IN2_P = Grounded  
Output Filters  
Inductor-Capacitor Low Pass Filter (10 µH + 1 µF)  
2 - 4 Ω  
Speaker Impedance  
32  
版权 © 2017, Texas Instruments Incorporated  
 
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
10.2.3 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled after LC filter)  
TPA3221 can be configured in mono PBTL mode by paralleling the outputs before the LC filter (see Typical  
Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled before LC filter)) or after the LC filter.  
Paralleled outputs after the LC filter may be preferred if: a single board design must support both PBTL and BTL,  
or in the case multiple, smaller paralleled inductors are preferred due to size or cost. Paralleling after the LC filter  
requires four inductors, one for each OUT_x. This section shows an example of paralleled outputs after the LC  
filter.  
+5V  
470uF  
100nF  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
VDD  
BST1_P  
BST1_M  
GND  
10µH  
5.6k  
GAIN/SLV  
OTW_CLIP  
FAULT  
GND  
33nF  
/OTW_CLIP  
/FAULT  
GND  
OUT1_P  
OUT1_P  
PVDD  
GND  
PVDD  
GND  
1µF  
10µH  
1µF  
IN1_P  
IN1_M  
IN1_P  
IN1_M  
RESET  
HEAD  
OSCM  
OSCP  
FREQ_ADJ  
IN2_P  
IN2_M  
CMUTE  
GND  
470uF  
PVDD  
1µF  
10nF  
PVDD  
1nF  
1nF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
/RESET  
OUT1_M  
GND  
1µF  
1µF  
1µF  
1µF  
3R3  
TPA322x  
GND  
3R3  
OUT2_P  
PVDD  
10nF  
50k  
10µH  
PVDD  
1µF 470uF  
PVDD  
GND  
OUT2_M  
OUT2_M  
GND  
CMUTE  
1k  
26  
25  
24  
23  
GND  
CMUTE  
+5V  
33nF  
20  
21  
22  
GND  
GND  
33nF  
10µH  
AVDD  
GVDD  
BST2_P  
BST2_M  
3R3  
1µF  
1µF  
33nF  
Copyright © 2017, Texas Instruments Incorporated  
52. Typical Differential (2N) AD-Mode PBTL Application  
10.2.3.1 Design Requirements  
Refer to Stereo BTL Application for the Design Requirements.  
9. Design Requirements, PBTL Application  
DESIGN PARAMETER  
Low Power Supply  
High Power Supply  
EXAMPLE  
5 V  
7 - 30 V  
IN1_M = ±2.8 V (peak, max)  
IN1_P = ±2.8 V (peak, max)  
IN2_M = Grounded  
Analog Inputs  
IN2_P = Grounded  
Output Filters  
Inductor-Capacitor Low Pass Filter (10 µH + 1 µF)  
2 - 4 Ω  
Speaker Impedance  
版权 © 2017, Texas Instruments Incorporated  
33  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Supplies  
The TPA3221 device requires a single external power supply for proper operation. A high-voltage supply, PVDD,  
is required to power the output stage of the speaker amplifier and its associated circuitry. PVDD can be used to  
supply an internal LDO to supply 5 V to AVDD and GVDD (connect VDD to PVDD).  
Additionally, in LDO bypass mode an external power supply should be connected to VDD, AVDD and GVDD to  
power the gate-drive and other internal digital and analog circuit blocks in the device.  
The allowable voltage range for both the PVDD and VDD/AVDD/GVDD supplies are listed in the Recommended  
Operating Conditions table. Ensure both the PVDD and the VDD/AVDD/GVDD supplies can deliver more current  
than listed in the Electrical Characteristics table.  
11.1.1 VDD Supply  
VDD can be connected to PVDD in systems using only a single power supply. VDD is connected to an internal  
LDO that is then used to supply AVDD and GVDD for digital and analog circuits as well as to supply the gate  
drive.  
To reduce device power consumption, the internal LDO can be bypassed by connecting VDD, AVDD and GVDD  
to an external 5 V power supply.  
Proper connection, routing, and decoupling techniques are highlighted in the TPA3221 device EVM User's Guide  
(as well as the Application Information section and Layout Examples section) and must be followed as closely as  
possible for proper operation and performance. Deviation from the guidance offered in the TPA3221 device EVM  
User's Guide, which followed the same techniques as those shown in the Application Information section, may  
result in reduced performance, errant functionality, or even damage to the TPA3221 device. To simplify the  
power supply requirements for the system, the TPA3221 device includes a integrated low-dropout (LDO) linear  
regulator to create a 5V rail for AVDD and GVDD supplies. The linear regulator is internally connected to the  
VDD supply and its output is present on the AVDD pin, providing a connection point for an external bypass  
capacitors. It is important to note that the linear regulator integrated in the device has only been designed to  
support the current requirements of the internal circuitry, and should not be used to power any additional external  
circuitry. Additional loading on these pins could cause the voltage to sag and increase noise injection, which  
negatively affects the performance and operation of the device.  
11.1.2 AVDD and GVDD Supplies  
AVDD and GVDD can be supplied either through the internal LDO or from external 5 V power supply to power  
internal analog and digital circuits and the gate-drives for the output H-bridges. Proper connection, routing, and  
decoupling techniques are highlighted in the TPA3221 device EVM User's Guide (as well as the Application  
Information section and Layout Examples section) and must be followed as closely as possible for proper  
operation and performance. Deviation from the guidance offered in the TPA3221 device EVM User's Guide,  
which followed the same techniques as those shown in the Application Information section, may result in reduced  
performance, errant functionality, or even damage to the TPA3221 device.  
11.1.3 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques are  
highlighted in the TPA3221 device EVM User's Guide (as well as the Application Information section and Layout  
Examples section) and must be followed as closely as possible for proper operation and performance. Due the  
high-voltage switching of the output stage, it is particularly important to properly decouple the output power  
stages in the manner described in the TPA3221 device EVM User's Guide. The lack of proper decoupling, like  
that shown in the EVM User's Guide, can results in voltage spikes which can damage the device, or cause poor  
audio performance and device shutdown faults.  
34  
版权 © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
Power Supplies (接下页)  
11.1.4 BST Supply  
TPA3221 has built-in bootstrap supply for each half bridge gate drive to supply the high side MOSFETs, only  
requiring a single capacitor per half bridge. The capacitors are connected to each half bridge output, and are  
charged by the GVDD supply via an internal diode while the PWM outputs are in low state. The high side gate  
drive is supplied by the voltage across the BST capacitor while the output PWM is high. It is recommended to  
place the BST capacitors close to the TPA3221 device, and to keep PCB routing traces at minimum length.  
版权 © 2017, Texas Instruments Incorporated  
35  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Use an unbroken ground plane to have good low impedance and inductance return path to the power supply  
for power and audio signals.  
Maintain a contiguous ground plane from the ground pins to the PCB area surrounding the device for as  
many of the ground pins as possible, since the ground pins are the best conductors of heat in the package.  
PCB layout, audio performance and EMI are linked closely together.  
Routing the audio input should be kept short and together with the accompanied audio source ground.  
The small bypass capacitors on the PVDD lines should be placed as close the PVDD pins as possible.  
A local ground area underneath the device is important to keep solid to minimize ground bounce.  
Orient the passive component so that the narrow end of the passive component is facing the TPA3221  
device, unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads.  
Avoid placing other heat producing components or structures near the TPA3221 device.  
Avoid cutting off the flow of heat from the TPA3221 device to the surrounding ground areas with traces or via  
strings, especially on output side of device.  
36  
版权 © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
12.2 Layout Examples  
12.2.1 BTL Application Printed Circuit Board Layout Example  
T3  
T1  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
T2  
3
4
5
6
7
8
T2  
T2  
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1  
22  
T2  
T1  
T3  
System Processor  
Bottom to top layer connection via  
Bottom Layer Signal Traces  
Pad to top layer ground pour  
Top Layer Signal Traces  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins, the heat  
sink sets the distance. Wide traces should be routed on the top layer with direct connection to the pins and without  
going through vias. No vias or traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and  
close to the pins.  
D. Note T3: Heat sink needs to have a good connection to PCB ground.  
53. BTL Application Printed Circuit Board - Composite  
版权 © 2017, Texas Instruments Incorporated  
37  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Layout Examples (接下页)  
12.2.2 PBTL (Outputs Paralleled before LC filter) Application Printed Circuit Board Layout Example  
T3  
T1  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
T2  
3
4
5
6
7
8
T2  
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
10  
11  
12  
T2  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T2  
T1  
T3  
System Processor  
Bottom to top layer connection via  
Bottom Layer Signal Traces  
Pad to top layer ground pour  
Top Layer Signal Traces  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins, the heat  
sink sets the distance. Wide traces should be routed on the top layer with direct connection to the pins and without  
going through vias. No vias or traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and  
close to the pins.  
D. Note T3: Heat sink needs to have a good connection to PCB ground.  
54. PBTL (Outputs Paralleled before LC filter) Application Printed Circuit Board - Composite  
38  
版权 © 2017, Texas Instruments Incorporated  
TPA3221  
www.ti.com.cn  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
Layout Examples (接下页)  
12.2.3 PBTL (Outputs Paralleled after LC filter) Application Printed Circuit Board Layout Example  
T3  
T1  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
T2  
3
4
5
6
7
8
T2  
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
10  
11  
12  
T2  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T2  
T1  
T3  
System Processor  
Bottom to top layer connection via  
Bottom Layer Signal Traces  
Pad to top layer ground pour  
Top Layer Signal Traces  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins, the heat  
sink sets the distance. Wide traces should be routed on the top layer with direct connection to the pins and without  
going through vias. No vias or traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and  
close to the pins.  
D. ote T3: Heat sink needs to have a good connection to PCB ground.  
55. PBTL (Outputs Paralleled after LC filter) Application Printed Circuit Board - Composite  
版权 © 2017, Texas Instruments Incorporated  
39  
TPA3221  
ZHCSH28B SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
TPA3220 评估模块用户指南  
TPA3221 TPA3220 安装指南和配置工具  
TPA32xx 放大器的多器件配置  
13.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录  
13.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.4 商标  
E2E is a trademark of Texas Instruments.  
Wi-Fi is a trademark of Wi-Fi Alliance.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
40  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPA3221DDV  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
DDV  
DDV  
44  
44  
35  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
3221  
3221  
TPA3221DDVR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA3221DDVR  
HTSSOP DDV  
44  
2000  
330.0  
24.4  
8.6  
15.6  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DDV 44  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPA3221DDVR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DDV HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPA3221DDV  
44  
35  
530  
11.89  
3600  
4.9  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
5
0
PLASTIC SMALL OUTLINE  
C
8.3  
7.9  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
42X 0.635  
44  
1
2X (0.3)  
NOTE 6  
14.1  
13.9  
NOTE 3  
2X  
13.335  
7.30  
6.72  
EXPOSED  
THERMAL  
PAD  
(0.15) TYP  
NOTE 6  
2X (0.6)  
NOTE 6  
23  
22  
0.27  
0.17  
44X  
4.43  
3.85  
0.08  
C A B  
6.2  
6.0  
B
(0.15) TYP  
0.25  
1.2  
1.0  
GAGE PLANE  
SEE DETAIL A  
0.75  
0.50  
0.15  
0.05  
0 - 8  
DETAIL A  
TYPICAL  
4218830/A 08/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. The exposed thermal pad is designed to be attached to an external heatsink.  
6. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
SEE DETAILS  
SYMM  
44X (1.45)  
44X (0.4)  
1
44  
42X (0.635)  
SYMM  
(R0.05) TYP  
23  
22  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4218830/A 08/2016  
NOTES: (continued)  
7. Publication IPC-7351 may have alternate designs.  
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
44X (1.45)  
44X (0.4)  
SYMM  
1
44  
42X (0.635)  
SYMM  
23  
22  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE :6X  
4218830/A 08/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPA3221DDV

具有低空闲电流的 100W 立体声、200W 单声道、7V 至 32V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | -40 to 85
TI

TPA3221DDVR

具有低空闲电流的 100W 立体声、200W 单声道、7V 至 32V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | -40 to 85
TI

TPA3223

具有低空闲电流的 200W 立体声、400W 单声道、10 至 45V 电源电压、模拟输入 D 类音频放大器
TI

TPA3223DDVR

具有低空闲电流的 200W 立体声、400W 单声道、10 至 45V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | -40 to 85
TI

TPA3244

60W 立体声、120W 单声道、12 至 31.5V 电源电压、模拟输入 D 类音频放大器,低空闲电流,焊盘朝下
TI

TPA3244DDW

60W 立体声、120W 单声道、12 至 31.5V 电源电压、模拟输入 D 类音频放大器,低空闲电流,焊盘朝下 | DDW | 44 | 0 to 70
TI

TPA3244DDWR

60W 立体声、120W 单声道、12 至 31.5V 电源电压、模拟输入 D 类音频放大器,低空闲电流,焊盘朝下 | DDW | 44 | 0 to 70
TI

TPA3245

115W 立体声、230W 单声道、12V 至 31.5V 电源电压、模拟输入 D 类音频放大器
TI

TPA3245DDV

115W 立体声、230W 单声道、12V 至 31.5V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | 0 to 70
TI

TPA3245DDVR

115W 立体声、230W 单声道、12V 至 31.5V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | 0 to 70
TI

TPA3250

70W 立体声、140W 单声道、12 至 38V 电源电压、模拟输入 D 类音频放大器,焊盘朝下
TI

TPA3250D2DDW

70W 立体声、140W 单声道、12 至 38V 电源电压、模拟输入 D 类音频放大器,焊盘朝下 | DDW | 44 | 0 to 70
TI