TPD3S014TDBVRQ1 [TI]

适用于汽车 USB 主机端口的限流开关和 D+/D- ESD 保护器件 | DBV | 6 | -40 to 105;
TPD3S014TDBVRQ1
型号: TPD3S014TDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于汽车 USB 主机端口的限流开关和 D+/D- ESD 保护器件 | DBV | 6 | -40 to 105

开关
文件: 总28页 (文件大小:2385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
TPD3S014-Q1 适用于汽USB 主机端口的限流开关D+/D– ESD 保护  
1 特性  
3 说明  
• 符AEC-Q100 标准2 )  
– 环境温度范围-40°C +105°C  
提供功能安全  
TPD3S014-Q1 是一款集成器件具有一个限流负载开  
关和一个基于双通道瞬态电压抑制器 (TVS)用于  
USB 接口的静电放(ESD) 保护二极管阵列。  
– 可帮助进行功能安全系统设计的文档  
• 持续电流额定值0.5A  
• 固定的恒流限值0.85A典型值)  
• 快速过流响2μs  
• 集成输出放电  
• 反向电流阻断  
• 短路保护  
• 带有自动重启的过热保护  
• 内置软启动  
TPD3S014-Q1 器件适用于很可能出现大容性负载和短  
路情况的 USB 等应用可提供短路保护和过流保护。  
当输出负载超过电流限制阈值时TPD3S014-Q1 通过  
在恒定电流模式下运行即可将输出电流限制到安全水  
平。快速过载响应特性有助于减轻 5V 主电源的负担,  
当输出短路时可以快速调节电源。电流限制开关的上升  
和下降此时受到控制力求尽量减小器件开关过程中的  
浪涌电流。  
IEC 61000-4-2 4 级静电放(ESD) 保护外部引  
)  
TPD3S014-Q1 支持 0.5A 的持续电流。TVS 二极管阵  
列的额定 ESD 冲击消散值高于 IEC 61000-4-2 国际标  
准中规定的最高水平。  
±12kV 接触放(IEC 61000-4-2)  
±15kV 空气间隙放(IEC 61000-4-2)  
ISO 10605 330pF330ESD 保护外部引脚)  
此器件高度集成并且采用易于布线的 DBV 封装可  
对音响主机、USB 集线器和媒体接口等应用中的 USB  
接口提供强力的电路保护。  
±8kV 接触放电  
±15kV 气隙放电  
6 引脚小外形尺寸晶体(SOT)-23 (2.90mm  
× 1.60mm)  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
SOT-23 (6)  
TPD3S014-Q1  
2.90mm × 1.60mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 终端设备:  
– 音响主机  
– 后座娱乐系统  
– 远程信息处理  
USB 集线器  
– 导航模块  
• 接口:  
USB 2.0  
USB 3.0  
From Processor  
5 V Source  
TPD3S014œQ1  
OUT  
EN  
IN  
150 F  
0.1 F  
USB Port  
VBUS  
D-  
D1  
D2 GND  
USB Transceiver  
D+  
GND  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDG5  
 
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram......................................... 11  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 15  
10 Power Supply Recommendations..............................18  
11 Layout...........................................................................18  
11.1 Layout Guidelines................................................... 18  
11.2 Layout Example...................................................... 18  
11.3 Power Dissipation and Junction Temperature.........18  
12 Device and Documentation Support..........................21  
12.1 Documentation Support.......................................... 21  
12.2 支持资源..................................................................21  
12.3 Trademarks.............................................................21  
12.4 静电放电警告.......................................................... 21  
12.5 术语表..................................................................... 21  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD RatingsAEC Specification...............................4  
6.3 ESD RatingsIEC Specification................................ 4  
6.4 ESD RatingsISO Specification................................ 4  
6.5 Recommended Operating Conditions.........................4  
6.6 Thermal Information....................................................5  
6.7 Electrical Characteristics: TJ = TA = 25°C...................5  
6.8 Electrical Characteristics: 40°C TA 105°C......6  
6.9 Typical Characteristics................................................7  
7 Parameter Measurement Information..........................10  
8 Detailed Description......................................................11  
8.1 Overview................................................................... 11  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (April 2016) to Revision C (August 2020)  
Page  
• 向部分添加了功能安全链接........................................................................................................................ 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changes from Revision A (April 2016) to Revision B (April 2016)  
Page  
• 更改了电气特性40°C TA 105°C TA 125°C 更改105°C.......................................................1  
• 将功率耗散和结部分中的温度125°C 更改105°C...................................................................................1  
Changes from Revision * (March 2016) to Revision A (April 2016)  
Page  
• 将器件状态从产品预发更改为量产数.........................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
EN  
1
2
6
5
D2  
D1  
GND  
IN  
3
4
OUT  
5-1. DBV Package 6-Pin SOT-23 Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
D1  
NO.  
5
I/O  
USB data+ or USB data–  
D2  
6
EN  
1
I
Enable input, logic high turns on power switch  
Ground  
GND  
2
Input voltage and power-switch drain; Connect a 0.1-µF or greater ceramic capacitor  
from IN to GND close to the IC  
IN  
3
4
I
OUT  
O
Power-switch output, connect to load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPD3S014-Q1  
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
MIN  
MAX  
UNIT  
VIN  
VOUT  
EN  
D1  
6
6
6
6
6
6
0.3  
0.3  
0.3  
0.3  
0.3  
6  
Input voltage(3)  
V
D2  
Voltage from VIN to VOUT  
Junction temperature  
Storage temperature  
V
TJ  
Internally limited  
Tstg  
150  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Voltages are with respect to GND unless otherwise noted.  
(3) See the Input and Output Capacitance section.  
6.2 ESD RatingsAEC Specification  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 ESD RatingsIEC Specification  
VALUE  
UNIT  
Contact discharge(1)  
Air-gap discharge(1)  
±12000  
±15000  
V(ESD)  
Electrostatic discharge  
IEC 61000-4-2, VOUT, Dx pins  
V
(1) VOUT was tested on a PCB with input and output bypassing capacitors of 0.1 µF and 120 µF, respectively.  
6.4 ESD RatingsISO Specification  
VALUE  
±8000  
UNIT  
Contact discharge(1)  
ISO 10605 330 pF, 330 Ω,  
VOUT, Dx pins  
V(ESD)  
Electrostatic discharge  
V
Air-gap discharge(1)  
±15000  
(1) VOUT was tested on a PCB with input and output bypassing capacitors of 0.1 µF and 120 µF, respectively.  
6.5 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
0
MAX  
5.5  
UNIT  
V
VIN  
VEN  
VIH  
VIL  
Input voltage  
Input voltage, EN  
5.5  
V
High-level Input voltage, EN  
Low-level Input voltage, EN  
Input decoupling capacitance, IN to GND  
Continuous output current (TPD3S014-Q1)  
Operating junction temperature  
2
V
0.7  
V
CIN  
IOUT  
TJ  
0.1  
µF  
A
(1)  
0.5  
125  
°C  
40  
(1) Package and current ratings may require an ambient temperature derating of 85°C  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.6 Thermal Information  
TPD3S014-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
6 PINS  
185.8  
124.7  
32.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
See the Power Dissipation and Junction Temperature section  
23.7  
ψJT  
31.5  
ψJB  
RθJC(bot)  
N/A  
RθJA (Custom)  
120.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.7 Electrical Characteristics: TJ = TA = 25°C  
VIN = 5 V, VEN = VIN, IOUT = 0 A (unless otherwise noted). Parameters over a wider operational range are shown in Electrical  
Characteristics: 40°C TA 105°C table.  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
mΩ  
A
POWER SWITCH  
97  
97  
120  
140  
RDS(on)  
Input Output resistance  
40°C (TJ, TA) +85°C  
CURRENT LIMIT  
(2)  
IOS  
0.67  
0.85  
0.02  
1.01  
Current limit, see 8-3  
SUPPLY CURRENT  
IOUT = 0 A  
1
2
ISD  
Supply current, switch disabled  
µA  
µA  
µA  
40°C (TJ, TA) +85°C, VIN = 5.5 V, IOUT  
=
=
0 A  
IOUT = 0 A  
66  
74  
85  
1
ISE  
Supply current, switch enabled  
Reverse leakage current  
40°C (TJ, TA) +85°C, VIN = 5.5 V, IOUT  
0 A  
VOUT = 5 V, VIN = 0 V, Measure IVOUT  
0.2  
IREV  
40°C (TJ, TA) +85°C, VOUT = 5 V, VIN = 0  
V, Measure IVOUT  
5
OUTPUT DISCHARGE  
RPD  
Output pull-down resistance(3)  
VIN = VOUT = 5 V, disabled  
400  
456  
600  
Ω
ESD PROTECTION  
Differential capacitance between  
the D1, D2 lines  
0.02  
pF  
pF  
ΔCIO  
ƒ= 1 MHz, VIO = 2.5 V  
CIO  
(D1, D2 to GND)  
1.4  
0.2  
0.2  
ƒ= 1 MHz, VIO = 2.5 V  
Dx to GND  
Ω
Ω
Dynamic on-resistance D1, D2  
IEC clamps(4)  
RDYN  
GND to Dx  
(1) Pulsed testing techniques maintain junction temperature approximately equal to ambient temperature  
(2) See the Current Limit for explanation of this parameter.  
(3) These Parameters are provided for reference only, and do not constitute a part of TIs published device specifications for purposes of  
TIs product warranty.  
(4) RDYN was extracted using the least squares first of the TLP characteristics between I = 20 A and I = 30 A.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPD3S014-Q1  
 
 
 
 
 
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.8 Electrical Characteristics: 40°C TA 105°C  
4.5 V VIN 5.5 V, VEN = VIN, IOUT = 0 A, typical values are at 5 V and 25°C (unless otherwise noted)  
PARAMETER  
POWER SWITCH  
RDS(on)  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
97  
164  
2
Input output resistance  
mΩ  
ENABLE INPUT (EN)  
Threshold  
Input rising  
VEN = 0 V  
1
1.45  
0.13  
0
V
V
Hysteresis  
Leakage current  
1
µA  
1  
VIN = 5 V, CL = 1 µF, RL = 100 Ω, EN ↑  
See 8-2  
tON  
Turnon time  
1
1.6  
2.1  
2.2  
ms  
ms  
VIN = 5 V, CL = 1 µF, RL = 100 Ω, EN ↓  
See 8-2  
tOFF  
Turnoff time  
1.7  
2.7  
tR  
tF  
Rise time, output  
Fall time, output  
0.4  
0.64  
0.4  
0.9  
0.8  
ms  
ms  
CL = 1 µF, RL = 100 Ω, VIN = 5 V, See 8-1  
CL = 1 µF, RL = 100 Ω, VIN = 5 V, See 8-1  
0.25  
CURRENT LIMIT  
(2)  
IOS  
0.65  
0.85  
2
1.05  
A
Current limit, see 8-3  
VIN = 5 V (see 8-3)  
One Half full load RSHORT = 50 mΩMeasure  
from application to when current falls below  
120% of final value  
tIOS  
Short-circuit response time(2)  
µs  
SUPPLY CURRENT  
ISD  
Supply current, switch disabled  
IOUT = 0 A  
0.02  
66  
10  
94  
20  
µA  
µA  
µA  
ISE  
Supply current, switch enabled  
Reverse leakage current  
IOUT = 0 A  
IREV  
VOUT = 5.5 V, VIN = 0 V, Measure IVOUT  
0.2  
UNDERVOLTAGE LOCKOUT  
VUVLO  
Rising threshold  
Hysteresis  
3.5  
3.77  
0.14  
4
V
V
VIN↑  
VIN↓  
OUTPUT DISCHARGE  
VIN = 4 V, VOUT = 5 V, Disabled  
VIN = 5 V, VOUT = 5 V, Disabled  
350  
300  
545  
456  
1200  
800  
RPD  
Output pull-down resistance  
Ω
THERMAL SHUTDOWN  
In current limit  
135  
155  
TSHDN  
Rising threshold (TJ)  
°C  
°C  
Not in current limit  
Hysteresis(3)  
ESD PROTECTION  
20  
II  
Input leakage current (D1, D2)  
VI = 3.3 V  
IO = 8 mA  
IBR = 1 mA  
0.02  
1
µA  
V
Diode forward voltage (D1, D2);  
Lower clamp diode  
VD  
VBR  
0.95  
Breakdown voltage (D1, D2)  
6
V
(1) Pulsed testing techniques maintain junction temperature approximately equal to ambient temperature  
(2) See the Current Limit section for explanation of this parameter.  
(3) These parameters are provided for reference only, and do not constitute part of TIs published device specifications for purposes of  
TIs product warranty.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
 
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.9 Typical Characteristics  
7.5  
7
1.5  
1.4  
1.3  
1.2  
1.1  
1
7.5  
7
1.5  
IN  
IN  
1.4  
1.3  
1.2  
1.1  
1
OUT  
EN  
IOUT  
OUT  
EN  
IOUT  
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.5  
4
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-6  
-4  
-2  
0
2
4 6  
Time (ms)  
8
10 12 14 16  
-6  
-4  
-2  
0
2
4 6  
Time (ms)  
8
10 12 14 16  
D001  
D001  
6-1. Turn ON into 10  
6-2. Enable into Short  
7.5  
7
1.2  
7.5  
7
56  
52  
48  
IN  
IN  
OUT  
IOUT  
1.12  
1.04  
0.96  
0.88  
0.8  
CIN = 300 mF, COUT = 150 mF  
OUT  
EN  
IOUT  
6.5  
6
6.5  
6
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
5.5  
5
5.5  
5
4.5  
4
0.72  
0.64  
0.56  
0.48  
0.4  
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
0.32  
0.24  
0.16  
0.08  
0
1.5  
1
1.5  
1
4
0.5  
0
-10  
0.5  
0
-4  
0
-4  
-5  
0
5
10 15  
Time (ms)  
20  
25  
30  
35  
-2  
0
2
4
6
Time (µs)  
8
10 12 14 16 18  
D001  
D001  
6-3. Pulsed Output Short  
6-4. Short Applied  
7
6
14  
-40°C  
25°C  
85°C  
VIN = 5 V  
12  
10  
8
5
125°C  
4
3
6
2
4
1
2
0
0
-1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-2  
Junction Temperature (èC)  
D007  
0
0.5  
1
1.5  
2
2.5  
3
Output Voltage (V)  
3.5  
4
4.5  
5
D001  
6-5. Reverse Leakage Current (IREV) vs  
6-6. Output Discharge Current vs Output  
Temperature  
Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPD3S014-Q1  
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
0.5  
0.475  
0.45  
0.425  
0.4  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.375  
0.35  
0.325  
0.3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temprature (èC)  
D027  
Junction Temprature (èC)  
D026  
6-8. Output Fall Time (tF) vs Temperature  
6-7. Short Circuit Current (IOS) vs Temperature  
0.8  
2.8  
All Unit Types  
2.4  
0.75  
0.7  
2
1.6  
1.2  
0.8  
0.4  
0
0.65  
0.6  
0.55  
-0.4  
0.5  
-0.8  
-40  
-20  
0
20  
40  
60  
Junction Temprature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temprature (èC)  
D028  
D001  
6-9. Output Rise Time (tR) vs Temperature  
6-10. Disabled Supply Current (ISD) vs  
Temperature  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
4
-40 (°C)  
25 (°C)  
85 (°C)  
125 (°C)  
-40 (èC)  
All Unit Types  
All Unit Types, VIN = 0 V  
3.5  
25 (èC)  
85 (èC)  
125 (èC)  
3
2.5  
2
1.5  
1
0.5  
0
-0.2  
-0.5  
4
4.2  
4.4  
4.6  
4.8  
Input Voltage (V)  
5
5.2  
5.4  
5.6  
4
4.2  
4.4  
4.6  
Output Voltage (V)  
4.8  
5
5.2  
5.4  
5.6  
D001  
D001  
6-11. Disabled Supply Current (ISD) vs Input  
6-12. Reverse Leakage Current (IREV) vs Output  
Voltage  
Voltage  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
72  
85  
80  
75  
70  
65  
60  
55  
50  
45  
-40 (°C)  
All Unit Types, VIN = 5.5 V  
All Unit Types  
25 (°C)  
85 (°C)  
125 (°C)  
70  
68  
66  
64  
62  
60  
58  
56  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
4
4.2  
4.4  
4.6  
4.8  
Input Voltage (V)  
5
5.2  
5.4  
5.6  
Junction Temprature (èC)  
D001  
D001  
6-13. Enabled Supply Current (ISE) vs  
6-14. Enabled Supply Current (ISE) vs Input  
Temperature  
Voltage  
35  
35  
32.5  
30  
32.5  
30  
27.5  
25  
27.5  
25  
22.5  
20  
22.5  
20  
17.5  
15  
17.5  
15  
12.5  
10  
12.5  
10  
7.5  
5
7.5  
5
2.5  
0
2.5  
0
0
2
4
6
8
10  
Voltage (V)  
12  
14  
16  
18  
20  
0
0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2  
Voltage (V)  
8
D001  
D001  
6-15. D1/D2 Positive TLP Curve  
6-16. D1/D2 Negative TLP Curve  
1
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
D1/D2 Pins  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-10  
-2 -1  
0
1
2
3
4
5
6
Voltage (V)  
7
8
9 10 11 12 13 14  
-25  
0
25  
50  
75 100 125 150 175 200 225  
Time (ns)  
D001  
D001  
6-17. D1/D2 I-V Curve  
6-18. D1/D2 IEC 61000-4-2 8-kV Contact  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPD3S014-Q1  
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
20  
10  
D1/D2 Pins  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-25  
0
25  
50  
75  
Time (ns)  
100  
125  
150  
175  
D001  
6-19. D1/D2 IEC 61000-4-2 8-kV Contact  
7 Parameter Measurement Information  
IOUT  
VOUT  
RLOAD  
VIN  
IN  
OUT  
150 µF  
0.1 µF1  
Enable  
Signal  
EN  
D1  
D2  
GND  
Copyright © 2016, Texas Instruments Incorporated  
A. During the short applied tests, 300 µF is used because of the use of an external supply.  
7-1. Test Circuit for System Operation  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPD3S014-Q1 is a highly integrated device that features a current limited load switch and a two-channel  
TVS based ESD protection diode array for USB interfaces. The TPD3S014-Q1 provides 0.5 A of continuous load  
current in 5 V circuits. This part uses N-channel MOSFETs for low resistance, maintaining voltage regulation to  
the load. It is designed for applications where short circuits or heavy capacitive loads will be encountered.  
Device features include enable, reverse blocking when disabled, output discharge pull-down, over-current  
protection, and over-temperature protection. Finally, with two channels of TVS ESD protection diodes integrated,  
the TPD3S014-Q1 provides system level ESD protection to all the pins of the USB port.  
8.2 Functional Block Diagram  
Back  
Gate  
Control  
IN  
Current  
Limit  
OUT  
UVLO  
Thermal  
Sense  
Control Logic  
+
Charge  
Pump  
EN  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Undervoltage Lockout (UVLO)  
The UVLO circuit disables the power switch until the input voltage reaches the UVLO turnon threshold. Built-in  
hysteresis prevents unwanted on and off cycling becuase of input voltage drop from large current surges.  
8.3.2 Enable  
The logic enable input (EN) controls the power switch, bias for the charge pump, driver, and other circuits. The  
supply current is reduced to less than 1 µA when the TPD3S014-Q1 is disabled. The enable input is compatible  
with both TTL and CMOS logic levels.  
The turnon and turnoff times (tON, tOFF) are composed of a delay and a rise or fall time (tR, tF). The delay times  
are internally controlled. The rise time is controlled by both the TPD3S014-Q1 and the external loading  
(especially capacitance). The TPD3S014-Q1 fall time is controlled by the loading (R and C), and the output  
discharge (RPD). An output load consisting of only a resistor experiences a fall time set by the TPD3S014-Q1. An  
output load with parallel R and C elements experiences a fall time determined by the (R × C) time constant if it is  
longer than the TPD3S014-Q1 tF. See 8-1 and 8-2 showing tR, tF, tON, and tOFF. The enable must not be  
left open; it may be tied to VIN.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPD3S014-Q1  
 
 
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
90%  
10%  
VEN  
50%  
tON  
50%  
tR  
tF  
VOUT  
tOFF  
8-1. Power-On and Power-Off Timing  
90%  
VOUT  
10%  
8-2. Enable Timing, Active-High Enable  
8.3.3 Internal Charge Pump  
The TPD3S014-Q1 incorporates an internal charge pump and gate drive circuitry necessary to drive the N-  
channel MOSFET. The charge pump supplies power to the gate driver circuit and provides the necessary voltage  
to pull the gate of the MOSFET above the source. The driver incorporates circuitry that controls the rise and fall  
times of the output voltage to limit large current and voltage surges on the input supply, and provides built-in soft-  
start functionality. The MOSFET power switch blocks current from OUT to IN when turned off by the UVLO or  
disabled.  
8.3.4 Current Limit  
The TPD3S014-Q1 responds to overloads by limiting output current to the static current-limit (IOS) levels shown  
in the Electrical Characteristics: TJ = TA = 25°C table. When an overload condition is present, the device  
maintains a constant output current, with the output voltage determined by (IOS × RLOAD). Two possible overload  
conditions can occur.  
The first overload condition occurs when either:  
1. The input voltage is first applied, enable is true, and a short circuit is present (load which draws IOUT > IOS  
)
or  
2. The input voltage is present and the TPD3S014-Q1 is enabled into a short circuit.  
The output voltage is held near zero potential with respect to ground and the TPD3S014-Q1 ramps the output  
current to IOS. The TPD3S014-Q1 limits the current to IOS until the overload condition is removed or the device  
begins to thermal cycle. The device subsequently cycles current off and on as the thermal protection engages.  
The second condition is when an overload occurs while the device is enabled and fully turned on. The device  
responds to the overload condition within tIOS when the specified overload (per Electrical Characteristics: TJ = TA  
= 25°C, Electrical Characteristics: 40°C TA 105°C tables) is applied (See 8-3 and 8-4). The  
response speed and shape varies with the overload level, input circuit, and rate of application. The current-limit  
response varies between simply settling to IOS, or turnoff and controlled return to IOS. Similar to the previous  
case, the TPD3S014-Q1 limits the current to IOS until the overload condition is removed or the device begins to  
thermal cycle.  
IOUT  
VIN  
Decreasing  
Load  
120% x IOS  
Slope = -RDS(ON)  
Resistance  
IOS  
0 A  
tIOS  
0 V  
8-3. Output Short Circuit Parameters  
0 A  
IOUT  
IOS  
8-4. Output Characteristic Showing Current  
Limit  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
The TPD3S014-Q1 thermal cycles if an overload condition is present long enough to activate thermal limiting in  
any of the cases shown in 8-3 and 8-4. This is because of the relatively large power dissipation [(VIN –  
VOUT) × IOS] driving the junction temperature up. The devices turn off when the junction temperature exceeds  
135°C (minimum) while in current limit. The devices remains off until the junction temperature cools down to  
20°C and then restarts.  
There are two kinds of current limit profiles typically available in TI switch products similar to the TPD3S014-Q1.  
Many older designs have an output I vs V characteristic similar to the plot labeled "Current Limit with Peaking" in  
8-5. This type of limiting can be characterized by two parameters, the current limit corner (IOC), and the short  
circuit current (IOS). IOC is often specified as a maximum value. The TPD3S014-Q1 part does not present  
noticeable peaking in the current limit, corresponding to the characteristic labeled "Flat Current Limit" in 8-5.  
This is why the IOC parameter is not present in the Electrical Characteristics: TJ = TA = 25°C, Electrical  
Characteristics: 40°C TA 105°C tables.  
Current Limit  
with Peaking  
Flat Current  
Limit  
VIN  
VIN  
Decreasing  
Load  
Decreasing  
Load  
Slope = -RDS(ON)  
Slope = -RDS(ON)  
Resistance  
Resistance  
0 V  
0 V  
0 A  
0 A  
IOUT  
IOUT  
IOS IOC  
IOS  
8-5. Current Limit Profiles  
8.3.5 Output Discharge  
A 470 (typical) output discharge resistance dissipates stored charge and leakage current on OUT when the  
TPD3S014-Q1 is in UVLO or disabled. The pull-down circuit loses bias gradually as VIN decreases, causing a  
rise in the discharge resistance as VIN falls towards 0 V.  
8.3.6 Input and Output Capacitance  
Input and output capacitance improves the performance of the device; the actual capacitance must be optimized  
for the particular application. For all applications, a 0.1 µF or greater ceramic bypass capacitor between IN and  
GND is recommended as close to the device as possible for local noise decoupling.  
All protection circuits such as the TPD3S014-Q1 has the potential for input voltage overshoots and output  
voltage undershoots.  
Input voltage overshoots can be caused by either of two effects. The first cause is an abrupt application of input  
voltage in conjunction with input power bus inductance and input capacitance when the IN terminal is high  
impedance (before turnon). Theoretically, the peak voltage is 2 times the applied. The second cause is because  
of the abrupt reduction of output short circuit current when the TPD3S014-Q1 turns off and energy stored in the  
input inductance drives the input voltage high. Input voltage droops may also occur with large load steps and as  
the TPD3S014-Q1 output is shorted. Applications with large input inductance (for example, connecting the  
evaluation board to the bench power-supply through long cables) may require large input capacitance reduce  
the voltage overshoot from exceeding the absolute maximum voltage of the device. The fast current-limit speed  
of the TPD3S014-Q1 to hard output short circuits isolates the input bus from faults. However, ceramic input  
capacitance in the range of 1 µF to 22 µF adjacent to the TPD3S014-Q1 input aids in both speeding the  
response time and limiting the transient seen on the input power bus. Momentary input transients to 6.5 V are  
permitted.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPD3S014-Q1  
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
Output voltage undershoot is caused by the inductance of the output power bus just after a short has occurred  
and the TPD3S014-Q1 has abruptly reduced OUT current. Energy stored in the inductance drives the OUT  
voltage down and potentially negative as it discharges. Applications with large output inductance (such as from a  
cable) benefit from use of a high-value output capacitor to control the voltage undershoot. When implementing  
USB standard applications, a 120-µF minimum output capacitance is required. Typically a 150- µF electrolytic  
capacitor is used, which is sufficient to control voltage undershoots. However, if the application does not require  
120 µF of capacitance, and there is potential to drive the output negative, a minimum of 10-µF ceramic  
capacitance on the output is recommended. The voltage undershoot must be controlled to less than 1.5 V for 10  
µs.  
8.4 Device Functional Modes  
8.4.1 Operation With VIN < 4 V (Minimum VIN)  
These devices operate with input voltages above 4 V. The maximum UVLO voltage on IN is 4 V and the devices  
will operate at input voltages above 4 V. Any voltage below 4 V may not work with these devices. The minimum  
UVLO is 3.5 V, so some devices may work between 3.5 V and 4 V. At input voltages below the actual UVLO  
voltage, these devices will not operate.  
8.4.2 Operation With EN Control  
The enable rising edge threshold voltage is 1.45 V typical and 2 V maximum. With EN held below that voltage  
the device is disabled and the load switch will be open. The IC quiescent current is reduced in this state. When  
the EN pin is above its rising edge threshold and the input voltage on the IN pin is above its UVLO threshold, the  
device becomes active. The load switch is closed, and the current limit feature is enabled. The output voltage on  
OUT ramps up with the soft start value TON in order to prevent large inrush current surges on VBUS because of a  
heavy capacitive load. When EN voltage is lowered below is falling edge threshold, the device output voltage  
also ramps down with soft turnoff value TOFF to prevent large inductive voltages being presented to the system in  
the case a large load current is following through the device.  
8.4.3 Operation of Level 4 IEC 61000-4-2 ESD Protection  
Regardless of which functional mode the devices are in, the TPD3S014-Q1 provides Level 4 IEC 61000-4-2  
ESD Protection on the pins of the USB connector.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPD3S014-Q1 is a device that features a current limited load switch and a two-channel TVS based ESD  
protection diode array. It is typically used to provide a complete protection solution for USB host ports. USB host  
ports are required by the USB specification to provide a current limit on the VBUS path in order to protect the  
system from overcurrent conditions on the port that could lead to system damage and user injury. Additionally,  
USB ports typically require system level IEC ESD protection because of direct end-user interaction. The  
following design procedure can be used to determine how to properly implement the TPD3S014-Q1 in your  
systems to provide a complete, one-chip solution for your USB ports.  
9.2 Typical Application  
From Processor  
5 V Source  
TPD3S014œQ1  
OUT  
EN  
IN  
150 F  
0.1 F  
USB Port  
VBUS  
D-  
D1  
D2 GND  
USB Transceiver  
D+  
GND  
Copyright © 2016, Texas Instruments Incorporated  
9-1. USB2.0 Application Schematic  
9.2.1 Design Requirements  
For this design example, design parameters shown in 9-1 are used.  
9-1. Design Parameters  
DESIGN PARAMETER  
VALUE  
Standard downstream port  
0 V to 5.25 V  
USB port type  
Signal voltage range on VBUS  
Current range on VBUS  
0 mA to 500 mA  
0 V to 0.7 V(1)  
2 V to 5.5 V(1)  
330 mV  
Drive EN low (disabled)  
Drive EN high (enabled)  
Maximum voltage droop allowed on adjacent USB port  
Maximum data rate  
480 Mbps  
(1) If active low logic is desired, see the Implementing Active Low Logic section.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPD3S014-Q1  
 
 
 
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
To properly implement your USB port with the TPD3S014-Q1, the first step is to determine what type of USB port  
is implemented in the system, whether it be a Standard Downstream Port (SDP), Charging Downstream Port  
(CDP), or Dedicated Charging Port (DCP); this informs us what maximum continuous operating current will be  
on VBUS. In our example, we are implementing an SDP port, so the maximum continuous current allowed to be  
pulled by a device is 500 mA. Therefore, we must choose a current limit switch that is 5.25 V tolerant, can  
handle 500 mA continuous DC current, and has a current limit point is above 500 mA so it will not current limit  
during normal operation. The TPD3S014-Q1 is therefore the best choice for this application, as it has these  
features, and in fact was specifically designed for this application.  
The next decision point is choosing the input and output capacitors for the current limit switch. A minimum of 0.1  
µF is always recommended on the IN pin. For the OUT pin on VBUS, USB standard requires a minimum of 120  
µF; typically a 150 µF capacitor is used. The purpose of the capacitance requirement on the VBUS line in the  
USB specification is to prevent the adjacent USB port's VBUS voltage from dropping more than 330 mV during a  
hot-plug or fault occurrence on the VBUS pin of one USB port. Hot-plugs and fault conditions on one USB port  
must not disturb the normal operation of an adjacent USB port; therefore, it is possible to use an output  
capacitance lower than 120 µF if the system is able to keep voltage droops on adjacent USB ports less than or  
equal to 330 mV. For example, if the DC/DC powering VBUS has a fast transient response, 120 µF may not be  
required.  
If the USB port is powered from a shared system 5 V rail, a system designer may desire to use an input  
capacitor larger than 0.1 µF on the IN pin. This is largely dependent on the PCB layout and parasitics, as well as  
your maximum tolerated voltage droop on the shared rail during transients. For more information on choosing  
input and output capacitors, see the Input and Output Capacitance section.  
The EN pin controls the on and off state of the device, and typically is connected to the system processor for  
power sequencing. However, the EN pin can also be shorted to the IN pin to always have the TPD3S014-Q1 on  
when 5 V power supply on; this also saves a GPIO pin on your processor.  
For a USB port with High-Speed 480 Mbps operation, low capacitance TVS ESD protection diodes are required  
to protect the D+ and Dlines in the event of system level ESD event. The TPD3S014-Q1 has 2-channels of  
low capacitance TVS ESD protection diodes integrated. When placed near the USB connector, the TPD3S014-  
Q1 offers little or no signal distortion during normal operation. The TPD3S014-Q1 also ensures that the core  
system circuitry is protected in the event of an ESD strike. PCB layout is critical when implementing TVS ESD  
protection diodes in your system. See the Layout section for proper guidelines on routing your USB lines with the  
TPD3S014-Q1.  
9.2.3 Implementing Active Low Logic  
For active low logic, a transistor can be used with the TPD3S014-Q1 EN Pin. 9-2 shows how to implement  
Active low logic for EN pin.  
Using an nFET transistor, when the Processor sends a low signal, the transistor is switched off, and VLOGIC pulls  
up EN through R1. When the Processor sends a highsignal, the nFET is switched on and sinks current from  
the EN Pin and R1. For 5 V VLOGIC, with the appropriate on-resistance (RON) value in the nFET and resistance  
for R1, the VIL for EN can be met. For example, with a transistor with RON of 3 , a pull-up resistor as low as 11  
provides a logic level of 0.7 V. For power-budgeting concerns, a better choice is R1 of 40 kwhich provides  
0.25 V for EN when the Processor asserts high, and 4.96 V when the Processor asserts low.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
VLOGIC  
R1  
40 kΩ  
TPD3S014-Q1  
EN  
Processor  
EN_Out  
Copyright © 2016, Texas Instruments Incorporated  
9-2. Implementing Active Low Logic for EN Pin  
9.2.4 Application Curves  
9-3. Eye-Diagram Without EVM  
9-4. Eye-Diagram With EVM, Without TPD3S014-  
Q1  
9-5. Eye-Diagram of TPD3S014-Q1 on EVM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPD3S014-Q1  
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The TPD3S014-Q1 is designed to operate from a 5-V input voltage supply. This input must be well regulated. If  
the input supply is located more than a few inches away from the TPD3S014-Q1, additional bulk capacitance  
may be required in addition to the recommended minimum 0.1-µF bypass capacitor on the IN pin to keep the  
input rail stable during fault events.  
11 Layout  
11.1 Layout Guidelines  
The optimum placement is as close to the connector as possible.  
EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces,  
resulting in early system failures.  
The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away  
from the protected traces which are between the TVS and the connector.  
Route the protected traces as straight as possible.  
Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded  
corners with the largest radii possible.  
Electric fields tend to build up on corners, increasing EMI coupling.  
11.2 Layout Example  
GND  
D+  
D-  
EN  
GND  
IN  
D2  
D1  
OUT  
Top Layer GND Plane  
VBUS  
Via  
11-1. USB2.0 Type A TPD3S014-Q1 Board Layout  
11.3 Power Dissipation and Junction Temperature  
anged Temperature from 125°C to 105°C in Power Dissipation and Junction Temperature section  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
 
 
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
It is good design practice to estimate power dissipation and maximum expected junction temperature of the  
TPD3S014-Q1. The system designer can control choices of the devices proximity to other power dissipating  
devices and printed circuit board (PCB) design based on these calculations. These have a direct influence on  
maximum junction temperature. Other factors, such as airflow and maximum ambient temperature, are often  
determined by system considerations. It is important to remember that these calculations do not include the  
effects of adjacent heat sources, and enhanced or restricted air flow. Addition of extra PCB copper area around  
these devices is recommended to reduce the thermal impedance and maintain the junction temperature as low  
as practical. In particular, connect the GND pin to a large ground plane for the best thermal dissipation. The  
following PCB layout example in 11-2 was used to determine the RθJA Custom thermal impedances noted in  
the Thermal Information table. It is based on the use of the JEDEC high-k circuit board construction with 4, 1 oz.  
copper weight layers (2 signal and 2 plane).  
GND  
D+  
D-  
EN  
GND  
IN  
D2  
D1  
OUT  
V
BUS  
OUT: W: 10.424 mm, H:4.536 mm, A: 47.28 mm2  
GND: W: 6.57 mm, H: 7.53 mm, A: 49.47 mm2  
& 6 x 0.879 mm diameter vias  
IN: W: 4.26 mm  
H: 5.82 mm  
A: 24.79 mm2  
& 4 x 0.879 mm  
diameter vias  
GND: W: 4.44 mm, H: 4.00 mm, A: 17.76 mm2  
& 2 x 0.533 mm diameter vias  
11-2. PCB Layout Example  
The following procedure requires iteration a power loss is because of the internal MOSFET I2 × RDS(ON), and  
RDS(ON) is a function of the junction temperature. See 方程式 1. As an initial estimate, use the RDS(ON) at 105°C  
from the Typical Characteristics, and the preferred package thermal resistance for the preferred board  
construction from the Thermal Information table.  
TJ = TA + [(IOUT 2 × RDS(ON)) × RθJA  
]
(1)  
where  
IOUT = Rated OUT pin current (A)  
RDS(ON) = Power switch on-resistance at an assumed TJ (Ω)  
TA = Maximum ambient temperature (°C)  
TJ = Maximum junction temperature (°C)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPD3S014-Q1  
 
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
RθJA = Thermal resistance (°C/W)  
If the calculated TJ is substantially different from the original assumption, estimate a new value of RDS(ON) using  
the typical characteristic plot and recalculate.  
If the resulting TJ is not less than 125°C, try a PCB construction with a lower RθJA. The junction temperature  
derating curve based on the TI standard reliability duration is shown in 11-3.  
130  
TI Standard  
125  
120  
115  
110  
105  
100  
95  
90  
85  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
IOUT (ADC  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
)
D001  
11-3. Junction Temperature Derating Curve  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPD3S014-Q1  
 
TPD3S014-Q1  
ZHCSEX2C MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
TPD3S014-Q1EVM User's Guide, SLVUAQ0.  
12.2 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPD3S014-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPD3S014TDBVRQ1  
ACTIVE  
SOT-23  
DBV  
6
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 105  
13WW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPD3S014TDBVRQ1  
SOT-23  
DBV  
6
3000  
178.0  
9.0  
3.23  
3.17  
1.37  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
180.0 180.0 18.0  
TPD3S014TDBVRQ1  
6
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

TPD3S044

适用于 USB 主机的限流开关和 D+/D- ESD 保护器件
TI

TPD3S044DBVR

适用于 USB 主机的限流开关和 D+/D- ESD 保护器件 | DBV | 6 | -40 to 85
TI

TPD3S713-Q1

汽车类 USB 0.05A 至 0.6A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护
TI

TPD3S713A-Q1

汽车类 USB 0.05A 至 0.6A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护
TI

TPD3S713AQRVCRQ1

汽车类 USB 0.05A 至 0.6A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护 | RVC | 20 | -40 to 125
TI

TPD3S713QRVCRQ1

Automotive USB 0.05-A to 0.6-A adjustable current limit and VBUS/D+/D- short-to-VBATT protection | RVC | 20 | -40 to 125
TI

TPD3S714-Q1

汽车类 USB 0.55A 固定电流限制和 VBUS/D+/D- VBATT 短路保护
TI

TPD3S714QDBQRQ1

Automotive USB 0.55-A fixed current limit and  VBUS/D+/D- short-to-VBATT protection | DBQ | 16 | -40 to 125
TI

TPD3S716-Q1

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护
TI

TPD3S716QDBQRQ1

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护 | DBQ | 16 | -40 to 125
TI

TPD4001K

IC BUF OR INV BASED PRPHL DRVR, PSFM12, F-12, Peripheral Driver
TOSHIBA

TPD4005K

IC,MOTOR CONTROLLER,BIPOLAR,ZIP,18PIN
TOSHIBA