TPS2151IPWPR [TI]

ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR USB;
TPS2151IPWPR
型号: TPS2151IPWPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR USB

光电二极管 输出元件 调节器
文件: 总25页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 – JANUARY 2002  
ADJUSTABLE LDO AND SWITCH WITH DUAL CURRENT LIMIT FOR  
USB HIGH-POWER PERIPHERAL POWER MANAGEMENT  
FEATURES  
DESCRIPTION  
D
D
D
D
D
D
D
D
D
D
D
Complete Power Management Solution for  
USB High-Power Peripherals  
The TPS2140/41/50/51 is a USB 1.0 and 2.0  
Specification-compatible IC containing a dual-current-  
limiting power switch and an adjustable low dropout  
regulator (LDO). Both the switch and LDO limit inrush  
current by controlling the turnon slew rate. The unique  
dual-current-limiting feature of the switch allows USB  
peripherals to utilize high-value capacitance at the  
output of the switch, while keeping the inrush current  
low. During turnon, the switch limits the current  
delivered to the capacitive load to less than 100 mA.  
When the output voltage from the switch reaches about  
93% of the input voltage, the switch power good output  
goes high, and the switch current limit increases to  
800mA (minimum), at which point higher current loads  
can be turned on. The higher current limit provides short  
circuit protection while allowing the peripheral to draw  
maximum current from the USB bus.  
250 mA Low-Dropout Regulator (LDO) With  
Enable and 325 mA (Typ) Current Limit  
LDO Supports 2.7 V to 5.5 V V and 0.9 V to  
IN  
3.3 V Adjustable V  
OUT  
40 m(Typ) High-Side MOSFET With Dual  
Current Limit  
Undervoltage Lockout and Power Good for  
LDO and Switch  
CMOS- and TTL-Compatible Enable Inputs  
85 µA (Typ) Supply Current  
5 µA (Typ) Standby Supply Current  
Available in 14-Pin HTSSOP (PowerPAD )  
–40°C to 85°C Ambient Temperature Range  
Alternative to TPS2148/58 3.3-V LDO With  
3.3-V Switch and 5-V Switch  
The switch and LDO function independently, providing  
flexibility in DSP applications requiring separate core  
and I/O voltages. For example, in a DSP application  
operating from a 3.3-V rail, the LDO can supply the DSP  
core voltage down to 0.9 V, while the switch powers the  
3.3-V (typical) DSP I/O supply. If supply sequencing is  
required, the LDO power good output can be used to  
enable the switch.  
APPLICATIONS  
D
High-Power USB Peripherals  
– ADSL Modems  
– Digital Still and PC Cameras  
– Zip Drives  
– Speakers  
D
DSP Sequencing  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PACKAGE  
AND PIN  
COUNT  
TARGET  
APPLICATION  
T
A
DESCRIPTION  
ACTIVE LOW  
ACTIVE HIGH  
(SWITCH)  
(SWITCH)  
AdjustableLDOand3.3Vswitchwithdualcurrent  
limit  
DSP  
USB  
HTSSOP-14  
HTSSOP-14  
TPS2140IPWP  
TPS2150IPWP  
TPS2151IPWP  
40°C to 85°C  
Adjustable LDO and 5 V switch with dual current  
limit  
TPS2141IPWP  
NOTE: All options available taped and reeled. Add an R suffix (e.g., TPS2140IPWPR)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
USB is a trademark of Universal Serial Bus Association.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright 2002, Texas Instruments Incorporated  
1
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
TPS2140/41/50/51  
PWP PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
SW_PG  
SW_IN  
SW_IN  
LDO_IN  
SW_EN  
LDO_EN  
GND  
SW_PLDN  
SW_OUT  
SW_OUT  
LDO_OUT  
LDO_PLDN  
ADJ  
8
LDO_PG  
Pin 5 is active high for TPS2150 and TPS2151.  
USB peripheral application  
D+  
D–  
USB  
Function  
Controller  
TPS2151  
LDO  
GND  
5 V  
1.5 kΩ  
LDO_PLDN  
LDO_OUT  
LDO_IN  
ADJ  
LDO_EN  
SW_IN  
LDO_PG  
5 V  
Circuitry  
SW_OUT  
Switch  
SW_PLDN  
SW_PG  
SW_EN  
2
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
functional block diagram  
CS  
SW_OUT  
SW_IN  
SW_OUT  
SW_PG  
2-Level  
Current  
Limit  
Driver  
VREF  
SW_PLDN  
SW_EN  
V
Charge  
Pump  
Thermal  
Sense  
CC  
Select  
LDO_PG  
VREF  
0.9 V to 3.3 V  
250 mA  
ADJ  
LDO_IN  
LDO  
LDO_OUT  
LDO_PLDN  
LDO_EN  
GND  
The pin is active low for TPS2140 and TPS2141, with an internal pullup.  
The pin is active high for TPS2150 and TPS2151, with an internal pulldown.  
Terminal Functions  
TERMINAL  
NAME  
ADJ  
GND  
I/O  
DESCRIPTION  
NO.  
9
I
Feedback adjustment of LDO regulator to set output voltage  
Ground  
7
LDO_EN  
LDO_IN  
6
I
I
Enable signal for LDO regulator, active high, no internal pullup or pulldown  
Input of LDO regulator  
4
LDO_OUT  
LDO_PG  
LDO_PLDN  
11  
8
O
O
I
Output of LDO regulator  
Power good signal for LDO output, open-drain, active high  
Output pulldown pin used for LDO when connected to LDO_OUT  
10  
5
SW_EN or  
SW_EN  
I
Active-high enable for switch on TPS2150 and TPS2151 devices with internal pulldown  
Active-low enable for switch on TPS2140 and TPS2141 devices with internal pullup  
SW_IN  
2, 3  
12, 13  
1
I
Input of the switch  
SW_OUT  
SW_PG  
SW_PLDN  
O
O
I
Output of switch  
Power good signal for switch output, active high logic-level signal, no external pullup required.  
Output pulldown pin used for switch when connected to SW_OUT.  
14  
3
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
detailed description  
GND  
Ground  
SW_IN  
SW_IN is the input to an integrated N-channel MOSFET, which has a maximum on-state resistance of 65 m.  
Configured as a high-side switch, the power switch prevents current, flow from OUT to IN and IN to OUT when  
disabled. The power switch is rated at 500 mA, continuous current and has a dual current limit feature.  
dual current limit  
The current limiter for the switch limits the initial current drawn from SW_IN to 100 mA maximum. The user can  
estimate the amount of time it takes to charge a capacitor (CL) connected to SW_OUT by using the following  
relationship:  
CL × V  
/ 0.1 < t  
< CL × V  
/ 0.05  
I(SW_IN)  
I(SW_IN)  
CHG  
Capacitance in farads. If V  
= 5 V, then  
I(SW_IN)  
50 × CL< t  
<100 × CL  
CHG  
When the voltage at output SW_OUT rises above 93% of the voltage at SW_IN, the current limit is increased  
to 1800 mA maximum. The SW_PG can be used to turn on loads which may draw more than 50 mA.  
In the event of an overload on SW_OUT, the protection circuit limits the current delivered to 1800 mA maximum.  
As the output voltage drops and it crosses 80% of the SW_IN voltage, the current limiter reverts back to the  
low-current limit mode of 100 mA maximum.  
SW_IN also serves as one of the two inputs to an internal voltage selector that provides operating voltage to  
the whole device. The other input to the selector is LDO_IN.  
SW_OUT  
SW_OUT is the output of the internal power-distribution switch.  
SW_EN or SW_EN  
The logic input disables or enables the power switch. This signal is active low (SW_EN) for TPS2140/41 and  
active high (SW_EN) for TPS2150/51. SW_EN has an internal pullup and SW_EN has an internal pulldown.  
SW_PG  
SW_PG signals the presence of an undervoltage condition on SW_OUT. The pin is driven by a CMOS output  
buffer and is pulled low during an undervoltage condition. To minimize erroneous SW_PG responses from  
transients on the voltage rail, the voltage sense circuit incorporates a rising and falling edge deglitch filter. When  
SW_OUT voltage is lower than 88% of 3.3 V for TPS2140/50, or 5 V for TPS2141/51, SW_PG goes low to  
indicate an undervoltage condition on SW_OUT.  
SW_PLDN  
SW_PLDN is an open drain output incorporated to provide a discharge path. When the power switch is on, this  
pin is open; otherwise it is pulled down to ground. When this pin is connected to SW_OUT, the output voltage  
fall time is reduced but the rise time remains unaffected.  
LDO_IN  
The LDO_IN serves as the input to the internal LDO. The adjustable LDO has a dropout voltage of 0.5 V  
maximum and is rated for 250 mA of continuous current. LDO_IN is also used as one of the two inputs for V  
selection.  
CC  
4
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
detailed description (continued)  
LDO_OUT  
LDO_OUT is the output of the internal LDO. It has an output voltage range of 0.9 V to 3.3 V.  
LDO_EN  
LDO_EN is used to enable or disable the internal LDO and is compatible with CMOS and TTL logic. LDO_EN  
is an active high input.  
ADJ  
ADJ is used to adjust the LDO output voltage (LDO_OUT) anywhere between 0.9 V and 3.3 V by connecting  
a resistor divider from LDO_OUT to ground (ADJ connects to the center point of the resistor divider).  
LDO_PG  
LDO_PG signals the presence of an undervoltage condition on LDO_OUT. LDO_PG is an open-drain output  
and is pulled low during an undervoltage condition. To minimize erroneous LDO_PG responses from transients  
on the voltage rail, the voltage sense circuit incorporates a 150-µs falling deglitch filter. When the LDO_OUT  
voltage is lower than 94% of a threshold voltage (set by an external resistor divider), LDO_PG goes low to  
indicate an undervoltage condition. A pullup resistor from LDO_PG to a power rail is required for proper  
operation.  
LDO_PLDN  
LDO_PLDN is an open drain output incorporated to provide a discharge path. When the LDO is on, this pin is  
open; otherwise, it is pulled down to ground. When this pin is connected to LDO_OUT, the output voltage fall  
time is reduced but the rise time remains unaffected.  
current sense  
Both the power switch and the LDO have integrated current sense circuits. When an overload or short circuit  
is encountered, the current-sense circuitry sends a control signal to the driver. The driver reduces the gate  
voltage until the current drops back to the limiting value.  
thermal sense  
A dual-threshold thermal trip is implemented to protect the device. The lower thermal trip point is used to protect  
the device during an overcurrent condition. The higher thermal trip point is used to protect the device when the  
junction temperature rises but not due to an overcurrent condition.  
undervoltage lockout  
A voltage sense circuit monitors both input voltages on SW_IN and LDO_IN. When the input voltage is below  
its respective threshold, a control signal turns off the related channel (the power switch or the LDO).  
5
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Input voltage range for bus switch and LDO: V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
I(SW_IN)  
V
I(LDO_IN)  
Output voltage range for bus switch and LDO:V  
V
O(SW_OUT)  
O(LDO_OUT)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
V . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
Input voltage range for pulldown transistors:  
Logic input/output voltage range:  
V
or V  
I(SW_PLDN) , I(LDO_PLDN)  
V
V
V V , V  
I(SW_EN)  
I(LDO_PG)  
I(/SW_EN), I(LDO_EN), I(ADJ) I(SW_PG),  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Output current for bus switch and LDO: I  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally Limited  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally Limited  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 mA to 30 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 mA to 30 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA to 10 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 mA to 10 mA  
O(SW_OUT)  
O(LDO_OUT)  
I(SW_PLDN)  
I(LDO_PLDN)  
Sink current for pulldown switches:  
I
I
I
I
Output current for logic outputs:  
O(SW_PG)  
O(LDO_PG)  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
J
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T 85°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
PWP-14  
2266.7 mW  
26.7 mW/°C  
1066.7 mW 666.7 mW  
NOTE: This device is mounted on an JEDEC low-k board (2 oz traces on surface), 1 W power applied  
with no air flow.  
recommended operating conditions  
MIN  
2.7  
4.1  
2.7  
0
MAX  
5.5  
5.5  
5.5  
5.5  
5.5  
0.6  
UNIT  
V
V
V
V
V
TPS2140 and TPS2150  
TPS2141 and TPS2151  
I(SW_IN),  
I(SW_IN),  
I(LDO_IN)  
I(SW_EN)  
Input voltage, V  
V
I
or V  
V
I(/SW_EN), I(LDO_EN)  
V
0
I(SW_PLDN), I(LDO_PLDN)  
I
I
at T = 110°C  
J
O(SW_OUT)  
O(LDO_OUT)  
Output current, I  
A
O
at T =110°C  
0.25  
110  
J
Operating virtual junction temperature, T  
40  
°C  
J
Assuming the power dissipation does not exceed the devices thermal limit. Refer to the power dissipation and junction temperature section for  
the power dissipation calculation.  
6
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
electrical characteristics over recommended operating junction temperature range,  
V
=3.3VforTPS2140/50,V  
=5VforTPS2141/51,V  
=5V,alloutputsunloaded  
I(SW_IN)  
I(SW_IN)  
I(LDO_IN)  
(unless otherwise noted)  
general  
PARAMETER  
TEST CONDITIONS  
TYP  
85  
MAX  
UNIT  
MIN  
2.7 V < V  
< 5.5 V, V  
= 0,  
I(SW_IN)  
I(LDO_IN)  
TPS2140, TPS2150  
V
= 5.5 V or V  
= 0 V,  
110  
I(SW_EN)  
I(/SW_EN)  
Power switch operat-  
ing supply current  
V
= 0 V, No load  
I(LDO_EN)  
4.1 V< V  
< 5.5 V, V  
= 0,  
I(SW_IN)  
I(LDO_IN)  
I
OP_SW  
TPS2141, TPS2151  
TPS2140, TPS2150  
TPS2141, TPS2151  
V
= 5.5 V or V  
= 0 V,  
I(/SW_EN)  
85  
5
110  
10  
I(SW_EN)  
V
= 0 V, No load  
ILDO_EN)  
µA  
2.7 V< V  
<5.5 V, V  
= 0,  
I(LDO_IN)  
I(SW_IN)  
V
= 0 V or V  
= 5.5 V,  
I(/SW_EN)  
I(SW_EN)  
Power switch standby  
supply current  
V
= 0 V, No load  
I(LDO_EN)  
4.1 V< V  
< 5.5 V, V  
= 0,  
= 5.5 V,  
I(SW_IN)  
I(LDO_IN)  
I(SW_IN)  
I(SW_IN)  
I(SW_EN)  
I
STBY_SW  
V
= 0 V or V  
5
10  
I(SW_EN)  
I(/SW_EN)  
V
= 0 V, No load  
I(LDO_EN)  
2.7 V< V  
<5.5 V, V  
= 0 V,  
= 5.5 V,  
I(LDO_IN)  
LDO operating supply current I  
LDO standby supply current I  
V
= 0 V or V  
90  
5
120  
10  
OP_LDO  
I(SW_EN)  
I(/SW_EN)  
V
= 5 V, No load  
I(LDO_EN)  
µA  
2.7 V< V  
<5.5 V, V  
= 0 V,  
= 5.5 V,  
I(LDO_IN)  
V
= 0 V or V  
STBY_LDO  
I(SW_EN)  
I(/SW_EN)  
V
= 0 V, No load  
I(LDO_EN)  
2.7 V< V  
V
<5.5 V, V  
= 5.5 V or  
= 5 V, No load  
I(SW_IN)  
TPS2140, TPS2150  
= 0 V, V  
150  
150  
10  
I(/SW_EN)  
I(LDO_EN)  
<5.5 V  
Power switch and LDO  
total operating supply  
2.7 V< V  
I(LDO_IN)  
4.1 V< V  
<5.5 V, V  
= 5.5 V or  
I(SW_IN)  
I(SW_EN)  
current I  
OP_TOTAL  
TPS2141, TPS2151  
TPS2140, TPS2150  
TPS2141, TPS2151  
V
= 0 V, V  
= 5 V, No load  
I(LDO_EN)  
I(/SW_EN)  
2.7 V< V  
<5.5 V  
I(LDO_IN)  
µA  
2.7 V< V  
V
<5.5 V, V  
= 0 V or  
I(SW_EN)  
I(SW_IN)  
= 5.5 V, V  
= 0 V, No load  
I(LDO_EN)  
I(/SW_EN)  
Power switch and LDO  
total standby supply  
2.7 V<V  
<5.5 V  
I(LDO_IN)  
4.1 V< V  
V
<5.5 V, V  
= 0 V or  
I(SW_EN)  
I(SW_IN)  
current I  
STBY_TOTAL  
= 5.5 V, V  
= 0 V, No load  
I(LDO_EN)  
10  
I(/SW_EN)  
2.7 V<V  
<5.5 V  
I(LDO_IN)  
7
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
electrical characteristics over recommended operating junction temperature range,  
V
=3.3VforTPS2140/50,V  
=5VforTPS2141/51,V  
=5V,alloutputsunloaded  
I(SW_IN)  
I(SW_IN)  
I(LDO_IN)  
(unless otherwise noted) (continued)  
power switch  
PARAMETER  
TEST CONDITIONS  
TYP  
40  
MAX  
50  
UNIT  
MIN  
T = 25°C, I = 500 mA,  
J
V
= 3.3 V or V  
= 0 V  
I(/SW_EN)  
I(SW_EN)  
TPS2140, TPS2150  
T = 110°C, I = 500 mA,  
J
65  
50  
V
= 3.3 V or V  
= 0 V  
I(/SW_EN)  
I(SW_EN)  
Switch on resistance  
(SW_IN to SW_OUT)  
mΩ  
T = 25°C, I = 500 mA,  
J
40  
V
= 5 V or V  
= 0 V  
I(/SW_EN)  
I(SW_EN)  
TPS2141, TPS2151  
T = 110°C, I = 500 mA,  
J
65  
V
= 5 V or V  
= 0 V  
I(/SW_EN)  
I(SW_EN)  
Switch low-current-limit cutoff  
Low current limit is disabled when V  
O(SW_OUT)  
91%  
76%  
50  
93%  
79%  
75  
96%  
82%  
99  
threshold, V  
is above this %V  
level  
I(SW_IN)  
COFF(SW_OUT)  
Switch low-current-limit  
cutin threshold, V  
Low current limit is enabled V  
is be-  
O(SW_OUT)  
low this %V  
level  
CIN(SW_OUT)  
I(SW_IN)  
Low-current-limit mode:  
Ramp-up current limit, IRCL  
Switch current limit  
Switch forward leak-  
T = 25°C  
50  
47  
75  
75  
99  
99  
J
Low-current-limit mode: Short-  
circuit dc current limit, I  
OS  
SW_OUT is enabled into a  
short to ground  
mA  
T = 110°C  
J
T = 25°C  
J
900  
800  
1300  
1300  
1800  
1800  
High-current-limit mode:  
Overload dc current limit, I  
OL  
T = 110°C  
J
V
V
= 0 V, V  
= 5.5 V,  
I(SW_IN)  
O(SW_OUT)  
Current into pin SW_OUT  
Current into pin SW_OUT  
10  
10  
age current I  
= 0 V or V  
= 5 V  
LK_SW  
I(SW_EN)  
I(/SW_EN)  
µA  
Switch reverse leak-  
age current I  
V
V
= 5.5 V, V  
= 0 V,  
= 5 V  
O(SW_OUT)  
I(SW_IN)  
= 0 V or V  
RLK_SW  
I(SW_EN)  
I(/SW_EN)  
V
V
= 3.3 V  
= 1 V  
9
15  
5
I(SW_PLDN)  
I(PLDN_SW)  
Switch pulldown transistor current  
mA  
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
timing parameters, power switch  
PARAMETER  
TEST CONDITIONS  
TYP  
MAX  
UNIT  
MIN  
t
t
t
t
Turnon time  
Turnoff time  
Rise time  
C = 10 µF, No load  
L
1
on  
C = 10 µF, SW_OUT is connected to SW_PLDN, No load  
L
8
0.5  
5
off  
ms  
C = 10 µF, No load  
L
r
f
Fall time  
C = 10 µF, SW_OUT is connected to SW_PLDN, No load  
L
undervoltage lockout, SW_IN  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
2.7  
UNIT  
V
TPS2140, TPS2150  
TPS2141, TPS2151  
TPS2140, TPS2150  
TPS2141, TPS2151  
Switch UVLO rising threshold  
Switch UVLO falling threshold  
4.1  
2.3  
3.5  
2.45  
3.9  
UVLO hysteresis  
250  
mV  
Not tested in production.  
8
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
electrical characteristics over recommended operating junction temperature range,  
=3.3VforTPS2140/50,V =5VforTPS2141/51,V =5V,alloutputsunloaded  
V
I(SW_IN)  
I(SW_IN)  
I(LDO_IN)  
(unless otherwise noted) (continued)  
adjustable voltage regulator (V  
= 0.9 V to 3.3 V)  
set  
PARAMETER  
TEST CONDITIONS  
= V + 0.6 V to 5.5 V and  
TYP  
MAX  
UNIT  
MIN  
V
V
I(LDO_IN)  
set  
V
V
V
Output voltage total tolerance  
Line regulation  
> 2.7 V, I  
= 5 mA to  
4%  
3%  
O(LDO_OUT)  
O(LDO_OUT)  
O(LDO_OUT)  
I(LDO_IN)  
O(LDO_OUT)  
250 mA  
V
V
= V  
+ 0.6 V to 5.5 V and  
O(LDO_OUT)  
I(LDO_IN)  
I(LDO_IN)  
0.03  
0.1  
%/V  
> 2.7 V, I  
= 5 mA  
O(LDO_OUT)  
V
V
=V  
+ 0.6 V to 5.5 V and  
= 5 mA to  
I(LDO_IN)  
O(LDO_OUT)  
Load regulation  
> 2.7 V, I  
I(LDO_IN) O(LDO_OUT)  
0.6% 1.3%  
250 mA ( a percentage of V  
)
set  
V
V
V  
2.7 V, I  
+ 0.6 V  
O(LDO_OUT)  
I(LDO_IN)  
Regulated output voltage set  
range  
V
SET  
= 0 mA to  
O(LDO_OUT)  
0.9  
3.3  
V
I(LDO_IN)  
250 mA  
V
V
ADJ reference voltage  
Drop-out voltage  
0.8  
V
V
ref  
V
V  
= 250 mA  
= 0.1 V,  
SET  
I(LDO_IN)  
0.18  
0.5  
DROP  
I
O(LDO_OUT)  
Vac = 1 kHz sine wave, 100 mV  
superimposed on LDO_IN, C = 4.7 µF,  
L
pp  
Power supply rejection ratio,  
20 log(Vac/Vo)  
PSRR  
50  
dB  
ESR = 0.25 , I = 5 mA  
O
LDO_OUT is enabled into a  
short to ground  
T = 40°C  
to 110°C  
J
Short circuit peak current  
0.7  
2
500  
10  
10  
1
A
LDO current limit  
Overload or short circuit dc  
current limit  
LDO_OUT is over-loaded or en- T = 40°C  
J
abled into a short to ground  
250  
325  
mA  
to 110°C  
LDO forward leakage  
V = 0 V, V  
O(LDO_OUT) I(LDO_IN)  
= 5.5 V,  
Current into pin LDO_OUT  
Current into pin LDO_OUT  
Turnon time  
current I  
V
= 0 V  
LK_LDO  
I(EN_LDO)  
µA  
LDO reverse leakage  
V
V
= 5.5 V, V  
= 0 V  
I(EN_LDO)  
= 0 V,  
I(LDO_IN)  
O(LDO_OUT)  
current I  
RLK_LDO  
From 50% V  
to 90% V  
,
,
I(EN_LDO)  
O(LDO_OUT)  
t
0.1  
0.1  
0.35  
0.4  
ON_LDO  
R = V  
L
/0.2, C = 10 µF (20%)  
O(LDO_OUT) L  
From 50% V  
to 10% V  
O(LDO_OUT)  
I(EN_LDO)  
t
Turnoff time  
1
OFF_LDO  
R
= V  
/0.2, C = 10 µF (20%)  
O(LDO_OUT) L  
ms  
mA  
L
V
= 5V, V  
ramping up from  
I(EN_LDO)  
I(LDO_IN)  
V
ramp-up time (0%  
O(LDO_OUT)  
10% to 90% in 0.1 ms, R = V  
/0.2,  
O(LDO_OUT)  
0.1  
9
0.65  
1
L
to 90%)  
C
= 10 µF (20%)  
L
V
= 3.3 V  
15  
5
I(PLDN_LDO)  
I(LDO_PLDN)  
LDO pulldown transistor current  
V
= 1 V  
Not tested in production.  
undervoltage lockout, LDO_IN  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
2.7  
UNIT  
V
LDO UVLO rising threshold  
LDO UVLO falling threshold  
2.25  
250  
2.45  
V
UVLO hysteresis  
mV  
Not tested in production.  
9
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
electrical characteristics over recommended operating junction temperature range,  
V
=3.3VforTPS2140/50,V  
=5VforTPS2141/51,V  
=5V,alloutputsunloaded  
I(SW_IN)  
I(SW_IN)  
I(LDO_IN)  
(unless otherwise noted) (continued)  
logic section (SW_EN, SW_EN, LDO_EN, ADJ, SW_PG, LDO_PG)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
, source  
V
V
V
= 0 V  
= 5 V  
1
1
5
I(/SW_EN)  
I(/SW_EN)  
I(SW_EN)  
I(EN_LDO)  
Logic input current  
, sink  
5
1
µA  
I(SW_EN)  
I(LDO_EN)  
= 0 V 5.5 V  
1  
2
V
V
V
V
V
V
V
V
IH_MIN(/SW_EN)  
IH_MIN(SW_EN)  
IH_MIN(LDO_EN)  
IL_MAX(/SW_EN)  
IL_MAX(SW_EN)  
IL_MAX(LDO_EN)  
IF(/SW_EN)  
Logic input high level  
2
V
V
2
0.8  
0.8  
0.8  
Logic input low level  
Floating input voltage  
SW_EN pin is open  
SW_EN pin is open  
2.5  
V
0.4  
1
IF(SW_EN)  
LDO feedback input current  
SW_PG sense threshold, V  
I
V
I(ADJ)  
= 0 V 5.5 V  
1  
µA  
I(ADJ)  
TPS2140, TPS2150  
TPS2141, TPS2151  
Percentage of V  
85%  
88%  
90%  
TH_SW  
I(SW_IN)  
A percentage of output voltage set point  
, derived from a resistor divider  
LDO_PG sense threshold, V  
92%  
94%  
96%  
TH_LDO  
V
SET  
PG hysteresis (all)  
V
2%  
1
2.5%  
2.5  
3.5%  
TH_HYS  
SW_PG rising edge deglitch  
t
t
ms  
d_SWPG_rise  
d_PG_fail  
PG falling edge deglitches times (all)  
50  
150  
µs  
V
SW_PG minimum output high state  
voltage  
Source current I  
= 1 mA,  
I(SW_IN)  
O(SW_PG)  
> V  
TH_SW  
V
V
V
OH_MIN(SW_PG)  
V
0.5  
I(SW_OUT)  
SW_PG maximum output low state  
voltage  
Sink current I  
= 1 mA,  
O(SW_PG)  
V
0.5  
0.5  
OL_MAX(SW_PG)  
V
< V  
TH_SW  
I(SW_OUT)  
LDO_PG maximum output low state  
voltage  
Sink current I  
= 1 mA,  
O(SW_PG)  
OH_MIN(LDO_PG)  
V
< V  
TH_LDO  
I(LDO_OUT)  
LDO_PG leakage current  
I
V
= 5.5 V  
1
µA  
LK(LDO_PG)  
O(LDO_PG)  
Not tested in production.  
thermal shutdown characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Over temperature trip point  
Low thermal shutdown  
125  
137  
Switch and/or LDO in current limit  
°C  
(whole device)  
Hysteresis  
10  
10  
Over temperature trip point  
155  
170  
High thermal shutdown  
(whole device)  
Switch and LDO are not in current limit  
°C  
Hysteresis  
Not tested in production.  
10  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
PARAMETER MEASUREMENT INFORMATION  
V
V
O(LDO_OUT)  
O(SW_OUT)  
I
O
I
O
C
C
L
L
LOAD CIRCUIT  
LOAD CIRCUIT  
VOLTAGE WAVEFORMS  
V
V
DD  
DD  
SW_EN  
LDO_EN  
50%  
50%  
50%  
50%  
GND  
GND  
t
t
pd(off)  
pd(off)  
t
t
pd(on)  
O(SW_OUT)  
pd(on)  
O(LDO_OUT)  
V
V
I(SW_IN)  
(SET)  
90%  
10%  
90%  
10%  
V
V
GND  
GND  
Propagation Delay (SW_OUT)  
Propagation Delay (LDO_OUT)  
t
t
t
t
r
f
r
f
V
V
I(SW_IN)  
(SET)  
V
V
O(SW_OUT)  
90%  
10%  
O(LDO_OUT)  
90%  
10%  
GND  
GND  
Rise/Fall Time (SW_OUT)  
Rise/Fall Time (LDO_OUT)  
V
V
DD  
DD  
SW_EN  
LDO_EN  
50%  
50%  
50%  
50%  
GND  
GND  
t
t
off  
off  
t
t
on  
on  
V
V
I(SW_IN)  
(SET)  
90%  
10%  
90%  
10%  
V
V
O(SW_OUT)  
O(LDO_OUT)  
GND  
GND  
Turn On/Off Time (SW_OUT)  
Turn On/Off Time (LDO_OUT)  
Figure 1. Test Circuits and Voltage Waveforms  
Current  
Meter  
DUT  
IN  
OUT  
A
+
Figure 2. Current Limit Test Circuit  
11  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
PARAMETER MEASUREMENT INFORMATION  
V
I (SW_EN)  
5 V/div  
V
I (SW_EN)  
5 V/div  
LDO_EN = 5 V  
LDO_EN = 0 V  
V
V
O (SW_OUT)  
5 V/div  
V
V
O (SW_OUT)  
5 V/div  
O (SW_OUT)  
5 V/div  
O (SW_OUT)  
5 V/div  
t Time 1 ms/div  
t Time 200 µs/div  
Figure 3. Switch Turnon Delay and Rise Time With Figure 4. Switch Turnoff Delay and Fall Time With  
10-µF Load (SW_OUT Shorted With SW_PLDN) 10-µF Load (SW_OUT Shorted With SW_PLDN)  
V
I (SW_EN)  
5 V/div  
V
I (SW_EN)  
5 V/div  
LDO_EN = 5 V  
LDO_EN = 0 V  
V
V
O (SW_OUT)  
5 V/div  
V
V
O (SW_OUT)  
5 V/div  
O (SW_OUT)  
5 V/div  
O (SW_OUT)  
5 V/div  
t Time 10 ms/div  
t Time 2 ms/div  
Figure 5. Switch Turnon Delay and Rise Time With Figure 6. Switch Turnoff Delay and Fall Time With  
120-µF Load (SW_OUT Shorted With SW_PLDN)  
120-µF Load (SW_OUT Shorted With SW_PLDN)  
12  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
PARAMETER MEASUREMENT INFORMATION  
V
V
I (SW_EN)  
5 V/div  
I (SW_EN)  
5 V/div  
C
= 600 µF  
L(SW_OUT)  
C
= 10 µF  
L(SW_OUT)  
I
I
I (SW_IN)  
50 m A/div  
I (SW_IN)  
0.1 A/div  
t Time 1 ms/div  
t Time 5 ms/div  
Figure 7. Switch Turnon Inrush Current With  
Different Load Capacitance  
Figure 8. Switch Short-Circuit Current, With  
Switch Enabled Into a Short Circuit  
V
V
I (LDO_EN)  
5 V/div  
I (LDO_EN)  
5 V/div  
SW_EN = 5 V  
SW_EN = 0 V  
V
V
O (LDO_OUT)  
1 V/div  
SW_EN = 5 V  
SW_EN = 0 V  
V
V
O (LDO_OUT)  
1 V/div  
O (LDO_OUT)  
1 V/div  
O (LDO_OUT)  
1 V/div  
t Time 1 ms/div  
t Time 200 µs/div  
Figure 9. LDO Turnon Delay and Rise Time With 4.7  
Figure 10. LDO Turnoff Delay and Fall Time With  
4.7 µF Load (LDO_OUT Shorted With LDO_PLDN)  
µF Load (LDO_OUT Shorted With LDO_PLDN)  
13  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
PARAMETER MEASUREMENT INFORMATION  
V
V
I (LDO_EN)  
O(LDO_OUT)  
5 V/div  
1 V/div  
I
I (LDO_IN)  
0.2 A/div  
I
I (LDO_IN)  
0.2 A/div  
t Time 1 ms/div  
t Time 1 ms/div  
Figure 11. LDO Short-Circuit Current, With LDO  
Enabled Into a Short Circuit  
Figure 12. LDO Short-Circuit Current, With  
Short Circuit Connected Into Enabled LDO  
C
= 4.7 µF  
L
5.5 V  
ESR = 1 Ω  
3.3 V  
V
V
O(LDO_OUT)  
0.2 V/div  
I (LDO_IN)  
1 V/div  
3.8 V  
3.3 V  
250 mA  
V
O (LDO_OUT)  
0.1 V/div  
I
O(LDO_OUT)  
0.1 A/div  
0 mA  
C
= 4.7 µF  
L
ESR = 1 Ω  
t Time 100 µs/div  
t Time 25 µs/div  
Figure 13. LDO Line Transient Response  
Figure 14. LDO Load Transient Response  
14  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
PARAMETER MEASUREMENT INFORMATION  
LDO TYPICAL REGIONS OF STABILITY  
LDO TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
EQUIVALENT SERIES RESISTANCE  
vs  
vs  
LOAD CURRENT  
LOAD CURRENT  
100  
10  
100  
10  
V = 2.7 5 V,  
V = 2.7 5 V,  
I
I
V
C
= 0.9 V,  
= 4.7 µF  
V
= 0.9 V,  
O
O
O
C
= 10 µF  
O
Max ESR  
Max ESR  
1
1
Min ESR  
100  
Min ESR  
100  
0.1  
0.1  
0
50  
150  
200  
250  
0
50  
I
150  
200  
250  
I
L
Load Current mA  
Load Current mA  
L
Figure 15  
Figure 16  
LDO TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
vs  
SUPPLY CURRENT  
vs  
LOAD CURRENT  
JUNCTION TEMPERATURE  
140  
120  
100  
80  
100  
V = 2.7 5 V,  
I
Switch on,  
LDO on  
V
= 0.9 V,  
O
C
= 100 µF  
O
10  
1
Max ESR  
Switch off  
LDO on  
60  
Switch on,  
LDO off  
40  
0.1  
Switch off,  
LDO off  
20  
0
Min ESR  
0.01  
0
50  
100  
150  
200  
250  
50  
0
50  
100  
150  
I
L
Load Current mA  
T
J
Junction Temperature °C  
Figure 17  
Figure 18  
15  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
PARAMETER MEASUREMENT INFORMATION  
SWITCH STATIC DRAIN-SOURCE  
SUPPLY CURRENT  
vs  
ON-STATE RESISTANCE  
vs  
SUPPLY VOLTAGE  
JUNCTION TEMPERATURE  
140  
60  
SW = On,  
LDO = On  
V
= 5 V  
I (SW_IN)  
120  
50  
40  
SW = Off,  
LDO = On  
100  
80  
60  
40  
20  
0
30  
20  
10  
0
SW = On,  
LDO = Off  
SW = Off,  
LDO = Off  
2.5  
3
3.5  
4
4.5  
5
5.5  
50  
0
50  
100  
150  
V
CC  
Supply Voltage V  
T
J
Junction Temperature °C  
Figure 19  
Figure 20  
TPS2140  
SWITCH SHORT-CIRCUIT CURRENT  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
vs  
JUNCTION TEMPERATURE  
SUPPLY VOLTAGE  
78  
77  
76  
75  
74  
50  
45  
40  
35  
30  
25  
20  
15  
10  
73  
72  
5
0
50  
0
50  
100  
150  
2.5  
3
3.5  
4
4.5  
5
5.5  
T
J
Junction Temperature °C  
V
CC  
Supply Voltage V  
Figure 21  
Figure 22  
16  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
PARAMETER MEASUREMENT INFORMATION  
SWITCH SHORT-CIRCUIT CURRENT  
LDO SHORT-CIRCUIT CURRENT  
vs  
JUNCTION TEMPERATURE  
vs  
SUPPLY VOLTAGE  
90  
80  
322  
321  
70  
60  
50  
40  
30  
320  
319  
318  
317  
316  
315  
314  
313  
20  
10  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
50  
0
50  
100  
150  
V
CC  
Supply Voltage V  
T
J
Junction Temperature °C  
Figure 23  
Figure 24  
LDO SHORT-CIRCUIT CURRENT  
vs  
SUPPLY VOLTAGE  
312  
310  
308  
306  
304  
302  
300  
298  
296  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
CC  
Supply Voltage V  
Figure 25  
17  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
APPLICATION INFORMATION  
external capacitor requirements on power lines  
Ceramic bypass capacitors (0.01 µF to 0.1 µF) between SW_IN and GND and LDO_IN and GND, close to the  
device, are recommended to improve load transient response and noise rejection. Bulk capacitors (4.7 µF or  
higher) between SW_IN and GND and LDO_IN and GND are also recommended, especially if load transients  
in the hundreds of milliamps with fast rise times are anticipated. A 66-µF bulk capacitor is recommended from  
SW_OUT to ground, especially when the output load is heavy. This precaution helps reduce transients seen  
on the power rails. Additionally, bypassing the outputs with a 0.1-µF ceramic capacitor improves the immunity  
of the device to short-circuit transients.  
LDO output capacitor requirements  
Stabilizing the internal control loop of the LDO requires an output capacitor connected between LDO_OUT and  
GND. The minimum recommended capacitance is 4.7 µF with an ESR value between 200 mand 8.5 . Solid  
tantalum electrolytic, aluminum electrolytic and multilayer ceramic capacitors are all suitable, provided they  
meet the ESR requirements (see Figures 15, 16, and 17). The adjustable LDO (for output voltages lower than  
3 V) requires a bypass capacitor across the feedback resistor as shown in Figure 26. The nominal value of this  
capacitor is determined by using the following equation:  
1
C +  
Ǔ * 4 pF  
f
3
ǒ
63.7   10   2   3.14   R1  
(1)  
where R1 is derived by programming the adjustable LDO (see programming the adjustable LDO regulator  
section shown below).  
TPS2140/41/50/51  
LDO_IN  
LDO_OUT  
R1  
R2  
C
0.1 µF  
f
0.1 µF  
10 µF  
4.7 µF  
LDO_EN  
GND  
ADJ  
Figure 26. LDO External Resistor Divider  
programming the adjustable LDO regulator  
The output voltage of the TPS2140/41/50/51 adjustable regulator is programmed using an external resistor  
divider as shown in Figure 26. The output voltage is calculated using equation 2:  
R1  
ref ǒ1 )  
Ǔ
LDO_OUT + V  
R2  
where V = 0.8 V typical (internal reference voltage).  
(2)  
ref  
Resistors R1 and R2 should be chosen for approximately 4-µA (minimum) divider current. Lower value resistors  
can be used but offer no inherent advantage and waste more power. Higher values should be avoided as a  
minimum load is required to sink the LDO forward leakage and maintain regulation. The recommended design  
procedure is to choose R2 = 200 kto set the divider current at 4-µA and then solve the LDO_OUT equation  
for R1.  
18  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
APPLICATION INFORMATION  
programming the adjustable LDO regulator (continued)  
Table 1. Output Voltage Programming Guide  
OUTPUT VOLTAGE  
R1  
R2  
Cf  
3.3  
625 kΩ  
550 kΩ  
425 kΩ  
250 kΩ  
175 kΩ  
50 kΩ  
200 kΩ  
200 kΩ  
200 kΩ  
200 kΩ  
200 kΩ  
200 kΩ  
NR  
NR  
3.0  
2.5  
2 pF  
6 pF  
1.8  
1.5  
1.0  
10.3 pF  
46 pF  
NR Not required  
overcurrent  
When an overcurrent condition is detected, the device maintains a constant output current. Complete shutdown  
occurs only if the fault is present long enough to activate thermal limiting.  
Three possible overload conditions can occur. In the first condition, the output is shorted before the device is  
enabled. Once enabled the TPS2140/41/50/51 sense the short and immediately switch to a constant-current  
output.  
In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high  
currents may flow for a very short time before the current-limit circuit can react. After the current-limit circuit has  
tripped (reached the overcurrent trip threshold), the device switches into constant-current mode.  
In the third condition, the load has been gradually increased beyond the recommended operating current. The  
current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is  
exceeded. The TPS2140/41/50/51 are capable of delivering current up to the current-limit threshold without  
damagingthedevice. Oncethethresholdhasbeenreached, thedeviceswitchesintoitsconstant-currentmode.  
dual current limit  
The TPS2140/41/50/51 has a dual-current-limited power switch. When the output voltage of the power switch  
is below a defined power-good threshold voltage, the typical current the switch can conduct is approximately  
75 mA. Therefore, the inrush current can be limited to about 75 mA even if there is a very large capacitor on  
the load. When the switch output voltage reaches the power-good threshold voltage, the internal controller  
enables the higher current limit, which is at least 0.8 A and at most 1.8 A. This dual-current-limit feature  
completely solves the large inrush current problems that most power management applications experience.  
Figure 7 shows the inrush currents with different load capacitance. The current spike at C = 600 µF is due to  
L
voltage difference between input and output once the higher current limit is enabled.  
Because the lower current limit is only about 75 mA, the initial resistive load or equivalent load current on the  
switch output must be less than 50 mA, excluding the load capacitors.  
19  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
APPLICATION INFORMATION  
power dissipation and junction temperature  
The major source of power dissipation for the TPS2140/41/50/51 comes from the internal voltage regulator and  
the N-channel MOSFET. Checking the power dissipation and junction temperature is always a good design  
practice and it starts with determining the r  
of the N-channel MOSFET according to the input voltage and  
DS(on)  
operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and  
read r from the graphs shown in the Typical Characteristics section of this data sheet. Using this value,  
DS(on)  
the power dissipation per switch can be calculated using:  
2
P = r  
× I  
D
DS(on)  
(3)  
The power dissipation for the internal voltage regulator is calculated using:  
+ ǒVIV  
Ǔ
P
  I  
D
O(min)  
O
(4)  
(5)  
(6)  
The total power dissipation for the device becomes:  
= P + P  
P
D(total)  
D(LDO)  
D(switch)  
Finally, calculate the junction temperature:  
T = P × R  
+ T  
A
J
D
θJA  
Where:  
T = Ambient temperature °C  
A
R
= Thermal resistance °C/W, equal to inverting the derating factor found on the power dissipation  
θJA  
table in this data sheet.  
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,  
repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally  
sufficient to get a reasonable answer.  
thermal protection  
Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for  
extended periods of time. The overcurrent faults force the TPS2140/41/50/51 into constant-current mode at  
first, whichcausesthevoltageacrossthehigh-sideswitchtoincrease;undershort-circuitconditions, thevoltage  
across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to  
rise to high levels.  
IfeitherthepowerdistributionswitchortheLDOisinovercurrent, athermalsensortripsatapproximately135°C,  
turning off both circuits. Normal operation resumes when the die temperature drops approximately 10°C. If  
neither the power distribution switch nor the LDO is in overcurrent, a second thermal sensor trips at  
approximately 160°C. Normal operation resumes when the die temperature drops approximately 10°C.  
20  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
APPLICATION INFORMATION  
undervoltage lockout (UVLO)  
An undervoltage lockout ensures that the device (LDO and switch) is in the off state at power up. The UVLO  
also keeps the device from being turned on until the power supply has reached the start threshold (see  
undervoltage lockout table), even if the switches are enabled. The UVLO is also activated whenever the input  
voltage falls below the stop threshold as defined in the undervoltage lockout table. This function facilitates the  
design of hot-insertion systems where it is not possible to turn off the power switches before input power is  
removed. Upon reinsertion, the power switches are turned on with a controlled rise time to reduce EMI and  
voltage overshoots.  
universal serial bus (USB) applications  
The universal serial bus (USB) interface is a multiplexed serial bus operating at either 12 Mbps, or 1.5 Mbps  
for USB 1.1, or 480 Mbps for USB 2.0. The USB interface is designed to accommodate the bandwidth required  
by PC peripherals such as keyboards, printers, scanners, and mice. The four-wire USB interface was conceived  
for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two  
lines are provided for 5-V power distribution.  
USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power  
is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V  
from the 5-V input or its own internal power supply.  
The USB specification defines the following five classes of devices, each differentiated by power-consumption  
requirements:  
D
D
D
D
D
Hosts/self-powered hubs (SPH)  
Bus-powered hubs (BPH)  
Low-power, bus-powered functions  
High-power, bus-powered functions  
Self-powered functions  
The TPS2140/41/50/51 are well suited for USB hub and peripheral applications. The internal LDO can be used  
to provide the 3.3-V power needed by the controller while the switch distributes power to the downstream  
functions.  
USB power-distribution requirements  
USB can be implemented in several ways, and, regardless of the type of USB device being developed, several  
power-distribution features must be implemented.  
D
Hosts/self-powered hubs must:  
Current-limit downstream ports  
Report overcurrent conditions on USB VBUS  
D
Buspowered hubs must:  
Enable/disable power to downstream ports  
Power up at <100 mA  
Limit inrush current (<44 and 10 µF)  
D
Functions must:  
Limit inrush currents  
Power up at <100 mA  
21  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
APPLICATION INFORMATION  
USB power-distribution requirements (continued)  
The feature set of the TPS2140/41/50/51 allows them to meet the requirements of functions. The integrated  
current-limiting is required by hubs and peripheral functions. The logic-level enable and controlled rise times  
meet the need of both input and output ports on bus-powered hubs, as well as the input ports for bus-powered  
functions.  
USB applications  
Figure 27 shows the TPS2151 being used in a USB bus-powered peripheral design. The internal 3.3-V LDO  
is used to provide power for the USB function controller as well as to the 1.5-kpullup resistor. One example  
of USB bus-powered peripheral applications is the USB ADSL modem, which needs several power rails and  
power sequencing.  
D+  
D–  
USB  
Function  
Controller  
TPS2151  
GND  
5 V  
1.5 kΩ  
LDO_PLDN  
LDO_OUT  
3.3 V  
LDO_IN  
LDO  
4.7 µF  
0.1 µF  
0.1 µF  
10 µF  
ADJ  
LDO_EN  
LDO_PG  
3.3 V  
Circuitry  
SW_EN  
SW_IN  
SW_OUT  
SW_PLDN  
Switch  
C
5 V  
0.1 µF  
Circuitry  
SW_PG  
C can be very high-value capacitance  
Figure 27. Bus-Powered USB Peripheral Application  
22  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
APPLICATION INFORMATION  
DSP applications  
Figure 28 shows the TPS2150 in a DSP application. DSPs use 1.8-V core voltage and 3.3-V I/O voltage. In this  
type of application the TPS2150 adjustable LDO is configured for a 1.8-V output specifically for the DSP core  
voltage.  
Theadditional3.3-VcircuitryispoweredthroughtheswitchoftheTPS2150onlyaftertheDSPisupandrunning.  
3.3 V  
TPS2150  
Power  
Supply  
LDO_PLDN  
TMS320Cxxxx  
CVDD  
4.7 µF  
LDO_OUT  
1.8 V  
LDO_IN  
LDO  
LDO_EN  
0.1 µF 10 µF  
ADJ  
LDO_PG  
DVDD  
RESET  
SW_EN  
SW_IN  
3.3 V  
SW_OUT  
Switch  
0.1 µF  
C
SW_PLDN  
Additional  
3.3 V  
0.1 µF  
Circuitry  
SW_PG  
C can be very high-value capacitance  
Figure 28. DSP Power Sequencing Application  
system level design consideration of DSP power application  
System level design considerations, such as bus contention, may require supply sequencing to be  
implemented. In this case, the core supply should be powered up at the same time as (or prior to and powered  
down after), the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the  
output buffers are powered up, thus preventing bus contention with other chips on the board.  
For some DSP systems, the core supply may be required to provide a considerable amount of current until the  
I/O supply is powered up. This extra current condition is a result of uninitialized logic within the DSP(s).  
Decreasing the amount of time between the core supply power up and the I/O supply power up can minimize  
the effects of this current draw.  
23  
www.ti.com  
TPS2140, TPS2141  
TPS2150, TPS2151  
SLVS399 JANUARY 2002  
MECHANICAL DATA  
PWP (R-PDSO-G**)  
PowerPAD PLASTIC SMALL-OUTLINE  
20 PINS SHOWN  
0,30  
0,19  
0,65  
20  
M
0,10  
11  
Thermal Pad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°ā8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/F 10/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusions.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-153  
PowerPAD is a trademark of Texas Instruments.  
24  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TIs terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TIs standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding thirdparty products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  

相关型号:

TPS2151IPWPRG4

Adjustable LDO Plus 5V Switch with Dual Current Limit for High Power USB Peripherals 14-HTSSOP -40 to 85
TI

TPS2155

LDO AND DUAL SWITCH WITH CONTROLLED RISE TIMES FOR DSP AND PORTABLE APPLICATIONS
TI

TPS2155IPWP

3.3-V LDO AND DUAL SWITCH FOR USB BUS-POWERED HUB POWER MANAGEMENT
TI

TPS2155IPWPG4

LDO AND DUAL SWITCH WITH CONTROLLED RISE TIMES FOR DSP AND PORTABLE APPLICATIONS
TI

TPS2155IPWPR

Analog IC
ETC

TPS2155IPWPRG4

IC VREG DUAL OUTPUT, FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, PDSO14, PLASTIC, TSSOP-14, Fixed/Adjustable Positive Multiple Output LDO Regulator
TI

TPS2157

LDO AND DUAL SWITCH WITH CONTROLLED RISE TIMES FOR DSP AND PORTABLE APPLICATIONS
TI

TPS2157IDGQ

3.3-V LDO AND DUAL SWITCH FOR USB BUS-POWERED HUB POWER MANAGEMENT
TI

TPS2157IDGQR

Analog IC
ETC

TPS2158

3.3-V LDO AND DUAL SWITCH FOR USB PERIPHERAL POWER MANAGEMENT
TI

TPS2158IDGN

3.3-V LDO AND DUAL SWITCH FOR USB BUS-POWERED HUB POWER MANAGEMENT
TI

TPS2158IDGNG4

3.3-V LDO AND DUAL SWITCH FOR USB PERIPHERAL POWER MANAGEMENT
TI