TPS22966TDPUTQ1 [TI]

具有可调节上升时间和输出放电功能的 2 通道、5.5V、16mΩ 汽车负载开关 | DPU | 14 | -40 to 105;
TPS22966TDPUTQ1
型号: TPS22966TDPUTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间和输出放电功能的 2 通道、5.5V、16mΩ 汽车负载开关 | DPU | 14 | -40 to 105

开关
文件: 总28页 (文件大小:1606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
TPS22966-Q1 双通道、超低电阻负载开关  
1 特性  
2 应用  
1
符合汽车类应用 要求  
具有符合 AEC-Q100 标准的下列特性:  
信息娱乐  
ADAS(高级驾驶辅助系统)  
器件温度等级 2-40°C 105°C 的环境工作  
温度范围  
3 说明  
TPS22966-Q1 器件是一款上升时间可调节的小型、超  
RON 双通道负载开关。此器件包含两个可在 0V 至  
5.5V 输入电压范围内工作的 N 沟道 MOSFET,并且  
每通道支持最大 4A 的连续电流。每个开关由一个导通  
/关断输入(ON1 ON2)单独控制,此输入可与低电  
压控制信号直接连接。TPS22966-Q1 包含一个 230Ω  
片上电阻,用于在开关关闭时快速输出放电。  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H1C  
器件组件充电模式 (CDM) ESD 分类等级 C6  
集成双通道负载开关  
输入电压范围:0V 5.5V  
超低导通电阻 (RON  
)
VIN = 5V (VBIAS = 5V) 时,RON = 16mΩ  
VIN = 3.3V (VBIAS = 5V) 时,RON = 16mΩ  
VIN = 1.8V (VBIAS = 5V) 时,RON = 16mΩ  
TPS22966-Q1 采用节省空间的 2mm × 3mm 14-SON  
小型封装 (DPU),带有集成散热焊盘,可实现较高的  
功率耗散。器件在自然通风环境下的额定运行温度范围  
–40°C 105℃。  
每通道最大 4A 持续开关电流  
低静态电流  
80µA(两个通道)  
80µA(单通道)  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
低控制输入阈值支持使用  
1.2V1.8V2.5V 3.3V 逻辑器件  
可配置的上升时间  
TPS22966-Q1  
WSON (14)  
3.00mm × 2.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
快速输出放电 (QOD)  
带有散热焊盘的 SON 14 引脚封装  
典型应用原理图  
VIN1  
ON1  
VOUT1  
Dual  
CIN  
Power  
ON  
CL  
RL  
CT1  
CT2  
OFF  
Supply  
or  
GND  
VBIAS  
Dual  
DC/DC  
converter  
VIN2  
ON2  
VOUT2  
ON  
CIN  
CL  
OFF  
GND  
TPS22966-Q1  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSC71  
 
 
 
 
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics: VBIAS = 5 V ...................... 5  
6.6 Electrical Characteristics: VBIAS = 2.5 V ................... 6  
6.7 Switching Characteristics.......................................... 7  
6.8 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 13  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 21  
12 器件和文档支持 ..................................................... 22  
12.1 ....................................................................... 22  
12.2 静电放电警告......................................................... 22  
12.3 Glossary................................................................ 22  
12.4 接收文档更新通知 ................................................. 22  
12.5 支持资源................................................................ 22  
13 机械、封装和可订购信息....................................... 22  
7
8
4 修订历史记录  
Changes from Revision A (March 2015) to Revision B  
Page  
Changed Input voltage range from 0.8 V to 0 V in the Recommended Operating Conditions table .................................... 4  
Changes from Original (December 2013) to Revision A  
Page  
已添加 添加了引脚配置和功能 部分、ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源建议  
部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ......................................................................... 1  
2
Copyright © 2013–2020, Texas Instruments Incorporated  
 
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
5 Pin Configuration and Functions  
DPU Package  
14-Pin WSON  
14  
1
1
14  
VIN1  
VIN1  
VOUT1  
VOUT1  
VOUT1  
VIN1  
VIN1  
VOUT1  
1
1
1
1
ON  
ON  
CT  
CT  
GND  
GND  
VBIAS  
ON2  
VBIAS  
ON2  
2
2
CT  
CT  
VIN2  
VIN2  
VIN2  
VIN2  
VOUT2  
VOUT2  
VOUT2  
VOUT2  
Top View  
Bottom View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
1
VIN1  
I
Switch 1 input. Place an optional decoupling capacitor between this pin and GND for reduce VIN dip during  
turnon of the channel. See Application Information section for more information.  
2
VIN1  
I
Switch 1 input. Place an optional decoupling capacitor between this pin and GND for reduce VIN dip during  
turnon of the channel. See Application Informationfor more information.  
3
4
5
6
ON1  
VBIAS  
ON2  
I
I
I
I
Active high switch 1 control input. Do not leave floating.  
Bias voltage. Power supply to the device. See Application Information for more information.  
Active high switch 2 control input. Do not leave floating.  
VIN2  
Switch 2 input. Place an optional decoupling capacitor between this pin and GND for reduce VIN dip during  
turnon of the channel. See Application Information for more information.  
7
VIN2  
I
Switch 2 input. Place an optional decoupling capacitor between this pin and GND for reduce VIN dip during  
turnon of the channel. See Application Information for more information.  
8
VOUT2  
VOUT2  
CT2  
O
O
O
Switch 2 output.  
Switch 2 output.  
9
10  
Switch 2 slew rate control. Can be left floating. Capacitor used on this pin should be rated for a minimum of 25  
V for desired rise time performance.  
11  
12  
GND  
CT1  
Ground  
O
Switch 1 slew rate control. Can be left floating. Capacitor used on this pin should be rated for a minimum of 25  
V for desired rise time performance.  
13  
14  
15  
VOUT1  
VOUT1  
O
O
O
Switch 1 output.  
Switch 1 output.  
Thermal Pad  
Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See Layout Guidelines for layout  
guidelines.  
Copyright © 2013–2020, Texas Instruments Incorporated  
3
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VIN1,2  
Input voltage  
6
6
VOUT1,2 Output voltage  
V
VON1,2  
VBIAS  
IMAX  
IPLS  
ON-pin voltage  
6
V
VBIAS voltage  
6
V
Maximum continuous switch current per channel  
4
A
Maximum pulsed switch current per channel, pulse <300 µs, 2% duty cycle  
Maximum junction temperature  
6
A
TJ  
150  
300  
150  
°C  
°C  
°C  
TLEAD  
TSTG  
Maximum lead temperature (10-s soldering time)  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX UNIT  
VIN1,2  
VBIAS  
VON1,2  
VOUT1,2  
VIH  
Input voltage range  
0
2.5  
0
VBIAS  
5.5  
V
V
Bias voltage range  
ON voltage range  
5.5  
V
Output voltage range  
High-level input voltage, ON  
Low-level input voltage, ON  
Input capacitor  
VIN  
V
VBIAS = 2.5 V to 5.5 V  
VBIAS = 2.5 V to 5.5 V  
1.2  
0
1(1)  
5.5  
V
VIL  
0.5  
V
CIN1,2  
TA  
µF  
°C  
Operating free-air temperature(2)  
–40  
105  
(1) Refer to Application Information.  
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the  
maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the following equation: TA(max) = TJ(max) – (θJA × PD(max)  
)
4
版权 © 2013–2020, Texas Instruments Incorporated  
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
6.4 Thermal Information  
TPS22966-Q1  
THERMAL METRIC(1)  
DPU (WSON)  
14 PINS  
52.3  
UNIT  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
45.9  
11.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
11.4  
θJCbot  
6.9  
(1) 有关传统和新热指标的更多信息,请参见应用报告《半导体和 IC 封装热指标》(文献编号:SPRA953)。  
6.5 Electrical Characteristics: VBIAS = 5 V  
Unless otherwise noted, the specifications apply over the operating ambient temperature, –40°C TA 105°C (full) and VBIAS  
= 5 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IOUT1 = IOUT2 = 0 mA,  
VIN1,2 = VON1,2 = VBIAS = 5 V  
VBIAS quiescent current (both  
IIN(VBIAS-ON)  
channels)  
–40°C to 105°C  
80 120  
µA  
IOUT1 = IOUT2 = 0 mA, VON2 = 0 V  
VIN1,2 = VON1 = VBIAS = 5 V  
VBIAS quiescent current (single  
IIN(VBIAS-ON)  
channel)  
–40°C to 105°C  
–40°C to 105°C  
80 120  
2
µA  
µA  
IIN(VBIAS-OFF) VBIAS shutdown current  
VON1,2 = 0 V, VOUT1,2 = 0 V  
VIN1,2 = 5 V  
0.5  
0.1  
8
3
2
1
1
VIN1,2 = 3.3 V  
VIN1,2 = 1.8 V  
VIN1,2 = 0.8 V  
VON1,2 = 0 V,  
VOUT1,2 = 0 V  
VIN1,2 off-state supply current  
(per channel)  
IIN(VIN-OFF)  
–40°C to 105°C  
–40°C to 105°C  
µA  
µA  
0.07  
0.04  
ION  
ON pin input leakage current  
VON = 5.5 V  
RESISTANCE CHARACTERISTICS  
25°C  
16  
16  
16  
16  
16  
16  
19  
21  
23  
19  
21  
23  
19  
21  
23  
19  
21  
23  
19  
21  
23  
19  
21  
23  
VIN = 5 V  
–40°C to 85°C  
–40°C to 105°C  
25°C  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.8 V  
–40°C to 85°C  
–40°C to 105°C  
25°C  
–40°C to 85°C  
–40°C to 105°C  
25°C  
IOUT = –200 mA,  
VBIAS = 5 V  
ON-state resistance (per  
channel)  
RON  
m  
–40°C to 85°C  
–40°C to 105°C  
25°C  
–40°C to 85°C  
–40°C to 105°C  
25°C  
–40°C to 85°C  
–40°C to 105°C  
VIN = 5.0 V, VON = 0 V, IOUT  
15 mA  
=
RPD  
Output pulldown resistance  
–40°C to 105°C  
230 330  
版权 © 2013–2020, Texas Instruments Incorporated  
5
 
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
6.6 Electrical Characteristics: VBIAS = 2.5 V  
Unless otherwise noted, the specifications apply over the operating ambient temperature  
–40°C TA 105°C (full) and VBIAS = 2.5 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IOUT1 = IOUT2 = 0 mA,  
VIN1,2 = VON1,2 = VBIAS = 2.5 V  
VBIAS quiescent current (both  
IIN(VBIAS-ON)  
channels)  
–40°C to 105°C  
32  
32  
40  
40  
µA  
IOUT1 = IOUT2 = 0 mA, VON2 = 0 V  
VIN1,2 = VON1 = VBIAS = 2.5 V  
VBIAS quiescent current (single  
IIN(VBIAS-ON)  
channel)  
–40°C to 105°C  
–40°C to 105°C  
µA  
µA  
IIN(VBIAS-OFF) VBIAS shutdown current  
VON1,2 = 0 V, VOUT1,2 = 0 V  
VIN1,2 = 2.5 V  
2
3
2
2
1
1
0.13  
0.07  
0.05  
0.04  
VIN1,2 = 1.8 V  
VIN1,2 = 1.2 V  
VIN1,2 = 0.8 V  
VON1,2 = 0 V,  
VOUT1,2 = 0 V  
VIN1,2 off-state supply current  
(per channel)  
IIN(VIN-OFF)  
–40°C to 105°C  
–40°C to 105°C  
µA  
µA  
ION  
ON pin input leakage current  
VON = 5.5 V  
RESISTANCE CHARACTERISTICS  
25°C  
21  
19  
18  
18  
17  
24  
27  
29  
22  
25  
27  
21  
24  
26  
21  
24  
26  
20  
23  
25  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.8 V  
–40°C to 85°C  
–40°C to 105°C  
25°C  
–40°C to 85°C  
–40°C to 105°C  
25°C  
IOUT = –200 mA,  
VBIAS = 2.5 V  
RON  
ON-state resistance  
–40°C to 85°C  
–40°C to 105°C  
25°C  
mΩ  
–40°C to 85°C  
–40°C to 105°C  
25°C  
–40°C to 85°C  
–40°C to 105°C  
Full  
RPD  
Output pulldown resistance  
VIN = 2.5 V, VON = 0 V, IOUT = 1 mA  
280 330  
6
版权 © 2013–2020, Texas Instruments Incorporated  
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
6.7 Switching Characteristics  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VIN = VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1559  
6
1991  
2
µs  
tF  
tD  
665  
VIN = 0.8 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
732  
161  
371  
14  
µs  
µs  
µs  
tF  
tD  
544  
VIN = 2.5 V, VON = 5 V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
2410  
7
2412  
2
tF  
tD  
1181  
VIN = 0.8 V, VON = 5 V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1575  
124  
927  
14  
tF  
tD  
1089  
版权 © 2013–2020, Texas Instruments Incorporated  
7
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
120  
-40°C  
-40°C  
25°C  
25°C  
100  
105°C  
105°C  
80  
60  
40  
20  
VIN1 = VIN2 = VBIAS, VON1 = VON2 = 5V, VOUT = Open  
VIN1 = VIN2 = VBIAS, VON1 = VON2 = 5V, VOUT = Open  
0
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
VBIAS (V)  
VBIAS (V)  
C001  
C002  
1. Quiescent Current vs. VBIAS (Both Channels)  
2. Quiescent Current vs. VBIAS (Single Channel)  
1.2  
0.3  
-40°C  
-40°C  
25°C  
VBIAS = 5V, VON = 0V, VOUT = 0V  
1.1  
25°C  
0.25  
0.2  
0.15  
0.1  
0.05  
0
105°C  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
105°C  
VIN1=VIN2=VBIAS, VON1 = VON2 = 0V, VOUT = 0V  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2  
VBIAS (V)  
C004  
C003  
4. Off-State VIN Current vs. VIN (Single Channel)  
3. Shutdown Current vs. VBIAS (Both Channels)  
28  
22  
VIN = 0.8V  
VIN = 0.8V  
VIN = 1.2V  
26  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
VIN = 1.2V  
VIN = 1.5V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 5V  
VIN = 1.5V  
24  
22  
20  
18  
16  
14  
12  
VIN = 1.8V  
VIN = 2.5V  
VBIAS = 2.5V, IOUT = -200mA  
55 80 105  
VBIAS = 5V, IOUT = -200mA  
55 80  
-45  
-20  
5
30  
-45  
-20  
5
30  
105  
Temperature (ºC)  
Temperature (ºC)  
C005  
C006  
5. RON vs. Temperature (VBIAS = 2.5 V, Single Channel)  
6. RON vs. Temperature (VBIAS = 5 V, Single Channel)  
8
版权 © 2013–2020, Texas Instruments Incorporated  
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
Typical Characteristics (接下页)  
26  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
-40°C  
-40°C  
25°C  
25°C  
24  
105°C  
105°C  
22  
20  
18  
16  
14  
12  
VBIAS = 2.5V, IOUT = -200mA  
2.2 2.4  
VBIAS = 5V, IOUT = -200mA  
10  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.6  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2  
VIN (V)  
VIN (V)  
C007  
C008  
7. RON vs. VIN (VBIAS = 2.5 V, Single Channel)  
8. RON vs. VIN (VBIAS = 5 V, Single Channel)  
250  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
VBIAS = 2.5V  
VBIAS = 3.6V  
VBIAS = 5V  
VBIAS = 3.3V  
VBIAS = 4.2V  
VBIAS = 5.5V  
-40°C  
25°C  
245  
240  
235  
230  
225  
220  
105°C  
IOUT = 1mA, VBIAS = 5V, VON = 0V  
3.6 4.4 4.8 5.2  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
4
VIN (V)  
C011  
C010  
9. RON vs. VIN (TA = 25°C, Single Channel)  
10. RPD vs. VIN (VBIAS = 5 V, Single Channel)  
2.5  
1800  
VBIAS = 2.5V  
CT = 1nF  
1600  
1400  
1200  
1000  
800  
2.0  
1.5  
VBIAS = 2.5V  
1.0  
VBIAS = 3.3V  
VBIAS = 3.6V  
-40°C  
25°C  
0.5  
0.0  
VBIAS = 4.2V  
VBIAS = 5V  
600  
85°C  
VBIAS = 5.5V  
105°C  
400  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
VON (V)  
C024  
C012  
11. VOUT vs. VON (TA = 25°C, Single Channel)  
12. tD vs. VIN (VBIAS = 2.5 V, CT = 1 nF)  
版权 © 2013–2020, Texas Instruments Incorporated  
9
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
20  
18  
16  
14  
12  
10  
8
900  
-40°C  
25°C  
VBIAS = 2.5V, CT = 1nF  
VBIAS = 5V  
CT = 1nF  
800  
700  
600  
500  
400  
300  
85°C  
105°C  
6
-40°C  
25°C  
4
85°C  
2
105°C  
0
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0.8  
0.8  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2  
VIN (V)  
VIN (V)  
C014  
C013  
14. tF vs. VIN (VBIAS = 2.5 V, CT = 1 nF)  
13. tD vs. VIN (VBIAS = 5 V, CT = 1 nF)  
180  
160  
140  
120  
100  
80  
-40°C  
-40°C  
25°C  
VBIAS = 5V, CT = 1nF  
VBIAS = 2.5V, CT = 1nF  
25°C  
85°C  
105°C  
20  
15  
10  
5
85°C  
105°C  
60  
40  
20  
0
0
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2  
VIN (V)  
VIN (V)  
C015  
C016  
16. tOFF vs. VIN (VBIAS = 2.5 V, CT = 1 nF)  
15. tF vs. VIN (VBIAS = 5 V, CT = 1 nF)  
3500  
3000  
2500  
2000  
1500  
1000  
250  
200  
150  
100  
50  
-40°C  
25°C  
-40°C  
VBIAS = 5V, CT = 1nF  
25°C  
85°C  
105°C  
85°C  
105°C  
VBIAS = 2.5V  
CT = 1nF  
0
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2  
VIN (V)  
VIN (V)  
C018  
C017  
18. tON vs. VIN (VBIAS = 2.5 V, CT = 1 nF)  
17. tOFF vs. VIN (VBIAS = 5 V, CT = 1 nF)  
10  
版权 © 2013–2020, Texas Instruments Incorporated  
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
Typical Characteristics (接下页)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2000  
-40°C  
25°C  
-40°C  
25°C  
1800  
85°C  
85°C  
105°C  
1600  
1400  
1200  
1000  
800  
105°C  
600  
VBIAS = 2.5V  
CT = 1nF  
VBIAS = 5V  
CT = 1nF  
400  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2  
VIN (V)  
VIN (V)  
C020  
C019  
20. tR vs. VIN (VBIAS = 2.5 V, CT = 1 nF)  
19. tON vs. VIN (VBIAS = 5 V, CT = 1 nF)  
2750  
2250  
1750  
1250  
750  
3500  
3000  
2500  
2000  
1500  
1000  
500  
-40°C  
25°C  
-40°C  
VIN = 2.5V  
CT = 1nF  
25°C  
85°C  
85°C  
105°C  
105°C  
VBIAS = 5V  
CT = 1nF  
250  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2  
2.5  
2.75  
3
3.25  
3.5  
3.75  
4
4.25  
4.5  
4.75  
5
VBIAS (V)  
VIN (V)  
C021  
C022  
21. tR vs. VIN (VBIAS = 5 V, CT = 1 nF)  
22. tR vs. VBIAS (VIN = 2.5 V, CT = 1 nF)  
6.8.1 Typical AC Scope Captures at TA = 25ºC, CT = 1 nF  
23. Turnon Response Time (VIN = 0.8 V, VBIAS = 2.5 V,  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω)  
24. Turnon Response Time (VIN = 0.8 V, VBIAS = 5 V, CIN  
= 1 µF, CL = 0.1 µF, RL = 10 Ω)  
版权 © 2013–2020, Texas Instruments Incorporated  
11  
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
Typical AC Scope Captures at TA = 25ºC, CT = 1 nF (接下页)  
25. Turnon Response Time (VIN = 2.5 V, VBIAS = 2.5 V,  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω)  
26. Turnon Response Time (VIN = 5 V, VBIAS = 5 V, CIN  
1 µF, CL = 0.1 µF, RL = 10 Ω)  
=
27. Turnoff Response Time (VIN = 0.8 V, VBIAS = 2.5 V,  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω)  
28. Turnoff Response Time (VIN = 0.8 V, VBIAS = 5 V, CIN  
= 1 µF, CL = 0.1 µF, RL = 10 Ω)  
29. Turnoff Response Time (VIN = 2.5 V, VBIAS = 2.5 V,  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω)  
30. Turnoff Response Time (VIN = 5 V, VBIAS = 5 V, CIN  
1 µF, CL = 0.1 µF, RL = 10 Ω)  
=
12  
版权 © 2013–2020, Texas Instruments Incorporated  
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
7 Parameter Measurement Information  
VIN  
VOUT  
CT  
CIN = 1µF  
ON  
ON  
CL  
+
-
(A)  
RL  
OFF  
VBIAS  
GND  
TPS22966-Q1  
GND  
GND  
Single channel shown for clarity.  
TEST CIRCUIT  
VON  
50%  
50%  
tF  
tOFF  
tR  
VOUT  
tON  
90%  
90%  
50%  
50%  
VOUT  
10%  
10%  
10%  
tD  
TIMING WAVEFORMS  
(A) Control signal rise and fall times are 100 ns.  
31. Test Circuit and Timing Waveforms  
版权 © 2013–2020, Texas Instruments Incorporated  
13  
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The device is a dual-channel, 4-A automotive load switch in a 14-pin SON package. To reduce the voltage drop  
in high current rails, the device implements a low-resistance N-channel MOSFET.  
The device has a programmable slew rate for applications that require specific rise-time. The device has very low  
leakage current during off state. This prevents downstream circuits from pulling high standby current from the  
supply. Integrated control logic, driver, power supply, and output discharge FET eliminates the need for any  
external components, which reduces solution size and bill of materials (BOM) count.  
8.2 Functional Block Diagram  
VIN1  
Control  
Logic  
ON1  
CT1  
VOUT1  
GND  
VBIAS  
Charge Pump  
VOUT2  
CT2  
Control  
Logic  
ON2  
VIN2  
14  
版权 © 2013–2020, Texas Instruments Incorporated  
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
8.3 Feature Description  
8.3.1 Quick Output Discharge  
Each channel of the TPS22966-Q1 includes a Quick Output Discharge (QOD) feature. When the switch is  
disabled, a discharge resistor is connected between VOUT and GND. This resistor has a typical value of 230-Ω  
and prevents the output from floating while the switch is disabled.  
8.3.2 ON/OFF Control  
The ON pins control the state of the switch. Asserting ON high enables the switch. ON is active high and has a  
low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard  
GPIO logic threshold. It can be used with any microcontroller with 1.2-V or higher GPIO voltage. This pin cannot  
be left floating and must be tied either high or low for proper functionality.  
8.3.3 Adjustable Rise Time  
A capacitor to GND on the CTx pins sets the slew rate for each channel. To ensure desired performance, a  
capacitor with a minimum voltage rating of 25 V should be used on the CTx pin. An approximate formula for the  
relationship between CTx and slew rate is (the equation below accounts for 10% to 90% measurement on VOUT  
and does NOT apply for CTx = 0 pF. Use 1 to determine rise times for when CTx = 0 pF):  
SR = 0.32´CT +13.7  
where  
SR = slew rate (in µs/V)  
CT = the capacitance value on the CTx pin (in pF)  
The units for the constant 13.7 is in µs/V.  
(1)  
Rise time can be calculated by multiplying the input voltage by the slew rate. 1 shows rise time values  
measured on a typical device. Rise times shown below are only valid for the power-up sequence where VIN and  
VBIAS are already in steady state condition, and the ON pin is asserted high.  
1. Rise Time Values  
RISE TIME (µs) 10% - 90%, CL = 0.1µF, CIN = 1µF, RL = 10Ω  
TYPICAL VALUES at 25°C, VBIAS = 5V, 25V X7R 10% CERAMIC CAP  
CTx (pF)  
5V  
124  
3.3V  
88  
1.8V  
63  
1.5V  
60  
1.2V  
53  
1.05V  
49  
0.8V  
42  
0
220  
481  
323  
193  
166  
143  
251  
469  
893  
1920  
4230  
133  
109  
175  
342  
650  
1411  
3033  
470  
855  
603  
348  
299  
228  
1000  
2200  
4700  
10000  
1724  
3328  
7459  
16059  
1185  
2240  
4950  
10835  
670  
570  
411  
1308  
2820  
6040  
1088  
2429  
5055  
808  
1748  
3770  
8.4 Device Functional Modes  
2. Functional Table  
ONx  
VINx to VOUTx  
VOUTx to GND  
L
Off  
On  
On  
Off  
H
版权 © 2013–2020, Texas Instruments Incorporated  
15  
 
 
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Input Capacitor (Optional)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic capacitor, CIN,  
placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop  
in high-current application. When switching heavy loads, it is recommended to have an input capacitor about 10  
times higher than the output capacitor to avoid excessive voltage drop.  
9.1.2 Output Capacitor (Optional)  
Due to the integrated body diode in the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN  
dip caused by inrush currents during start-up, however a 10 to 1 ratio for capacitance is not required for proper  
functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause slightly more VIN dip upon  
turnon due to inrush currents. This can be mitigated by increasing the capacitance on the CT pin for a longer rise  
time (see Adjustable Rise Time).  
9.1.3 VIN and VBIAS Voltage Range  
For optimal RON performance, make sure VIN VBIAS. The device will still be functional if VIN > VBIAS but it will  
exhibit RON greater than what is listed in Electrical Characteristics. See 32 for an example of a typical device.  
Notice the increasing RON as VIN exceeds VBIAS voltage.  
50  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 3.6V  
VBIAS = 4.2V  
VBIAS = 5V  
45  
40  
35  
30  
25  
20  
15  
VBIAS = 5.5V  
Temperature = 25£C, IOUT = -200mA  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
C023  
32. RON vs. VIN (Single Channel)  
16  
版权 © 2013–2020, Texas Instruments Incorporated  
 
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
Application Information (接下页)  
9.1.4 Safe Operating Area (SOA)  
The SOA curves in 33 show the continuous current carrying capability of the device versus ambient  
temperature (TA) to ensure reliable operation over 100,000 hours of device lifetime. Each curve represents a  
specific percent of time that the switch is on.  
The 100% curve represents use for a full 24 hours in a day. The 75% curve indicates 18 hours of use in a day  
while the 12.5% curve shows 3 hours of use per day.  
Examples on how to use this plot:  
The application has an ambient temperature of 60°C and the switch will be on 100% of the time. The  
maximum continuous current that can be applied is approximately 2.1 A.  
The application requires the switch to be on 12.5% of the time and the current while on will be 3 A. The  
maximum ambient temperature is approximately 100°C.  
The application requires 2 A and will be operated at 70°C. The switch can be on for a maximum of 75% of the  
time.  
It is expected that most applications will not have specific use cases as defined in the examples above.  
Different use cases can be combined to generate a more complete view of a specific application. This  
example shows use under various conditions simplified to an average use case. The application requires  
operation at 4 A for 25% of the time, 1 A for 25% of the time and is off the remaining 50% of the time.  
Ambient temperature will vary from 25°C to 50°C. Will there be any limitations? The average current can be  
calculated as (4 A × 25% + 1 A * 25% + 0 A * 50%). The average current calculates to be 1.25 A. Assuming  
worst case temperature of 50°C, the resulting application is within the safe operating area.  
5.00  
4.00  
3.00  
2.00  
1.00  
100% On time  
75% On time  
VBIAS = 5.0 V  
12.5% On time  
0.00  
-40  
-15  
10  
35  
60  
85  
110  
Ambient Temperature (°C)  
C002  
33. Safe Operating Area  
版权 © 2013–2020, Texas Instruments Incorporated  
17  
 
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
9.2 Typical Application  
VIN1  
ON1  
VOUT1  
Dual  
CIN  
Power  
ON  
CL  
RL  
CT1  
CT2  
OFF  
Supply  
or  
GND  
VBIAS  
Dual  
DC/DC  
converter  
VIN2  
ON2  
VOUT2  
ON  
CIN  
CL  
OFF  
GND  
TPS22966-Q1  
GND  
34. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 3 as the input parameters.  
3. Design Parameters  
DESIGN PARAMETER  
Input voltage  
VALUE  
3.3 V  
Bias voltage  
5 V  
Load capacitance (CL)  
Maximum acceptable inrush current  
22 µF  
400 mA  
9.2.2 Detailed Design Procedure  
When the switch is enabled, the output capacitors must be charged up from 0 V to the set value (3.3 V in this  
example). This charge arrives in the form of inrush current. Inrush current can be calculated using 公式 2:  
Inrush Current = C × dV/dt  
where  
C = output capacitance  
dV = output voltage  
dt = rise time  
(2)  
The TPS22966-Q1 offers adjustable rise time for VOUT. This feature allows the user to control the inrush current  
during turnon. The appropriate rise time can be calculated using 3 and the inrush current equation.  
400 mA = 22 μF × 3.3 V/dt  
dt = 181.5 μs  
(3)  
(4)  
To ensure an inrush current of less than 400 mA, choose a CT value that will yield a rise time of more than 181.5  
μs. See the oscilloscope captures in for an example of how the CT capacitor can be used to reduce inrush  
current.  
18  
版权 © 2013–2020, Texas Instruments Incorporated  
 
 
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
9.2.3 Application Curves  
VBIAS = 5 V ; VIN = 3.3 V ; CL = 22 μF  
35. Inrush Current With CT = 0 pF  
36. Inrush Current With CT = 220 pF  
版权 © 2013–2020, Texas Instruments Incorporated  
19  
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from a VBIAS range of 2.5 V to 5.5 V and a VIN voltage range of 0 V to 5.5 V.  
The power supply should be well regulated and placed as close to the device terminals as possible. It must be  
able to withstand all transient and load current steps. In most situations, using an input capacitance of 1 uF is  
sufficient to prevent the supply voltage from dipping when the switch is turned on. In cases where the power  
supply is slow to respond to a large transient current or large load current step, additional bulk capacitance may  
be required on the input.  
The requirements for larger input capacitance can be mitigated by adding additional capacitance to the CT pin.  
This will cause the load switch to turn on more slowly. Not only will this reduce transient inrush current, but it will  
also give the power supply more time to respond to the load current step.  
11 Layout  
11.1 Layout Guidelines  
For best performance, all traces should be as short as possible. To be most effective, the input and output  
capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects  
along with minimizing the case to ambient thermal impedance.  
The maximum IC junction temperature should be restricted to 150°C under normal operating conditions. To  
calculate the maximum allowable power dissipation, PD(max) for a given output current and ambient temperature,  
use the following equation:  
TJ(max) - TA  
=
P
D(max)  
θJA  
where  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature (150°C for the TPS22966-Q1)  
TA = ambient temperature  
ΘJA = junction to air thermal impedance. See Thermal Information section. This parameter is highly dependent  
upon board layout.  
(5)  
37 shows an example of a layout. Notice the thermal vias located under the exposed thermal pad of the  
device. This allows for thermal diffusion away from the device.  
20  
版权 © 2013–2020, Texas Instruments Incorporated  
TPS22966-Q1  
www.ti.com.cn  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
11.2 Layout Example  
VOUT1 capacitor  
CT1 capacitor  
VIN1 capacitor  
Thermal  
relief vias  
VIN2 capacitor  
CT2 capacitor  
VOUT2 capacitor  
37. Layout Example  
版权 © 2013–2020, Texas Instruments Incorporated  
21  
TPS22966-Q1  
ZHCSBZ2B DECEMBER 2013REVISED MARCH 2020  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2013–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22966TDPURQ1  
TPS22966TDPUTQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DPU  
DPU  
14  
14  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
966TQ1  
966TQ1  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Mar-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22966TDPURQ1  
TPS22966TDPUTQ1  
WSON  
WSON  
DPU  
DPU  
14  
14  
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.25  
2.25  
3.25  
3.25  
1.05  
1.05  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Mar-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22966TDPURQ1  
TPS22966TDPUTQ1  
WSON  
WSON  
DPU  
DPU  
14  
14  
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS22967

具有可调节上升时间和可调节输出放电功能的 5.5V、4A、22mΩ 负载开关
TI

TPS22967DSGR

具有可调节上升时间和可调节输出放电功能的 5.5V、4A、22mΩ 负载开关 | DSG | 8 | -40 to 85
TI

TPS22967DSGT

具有可调节上升时间和可调节输出放电功能的 5.5V、4A、22mΩ 负载开关 | DSG | 8 | -40 to 85
TI

TPS22968

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关
TI

TPS22968-Q1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关
TI

TPS22968DPUR

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968DPUT

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NDPUR

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NDPUT

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NQDMGRQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968NQDMGTQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968QDMGRQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI