TPS22990 [TI]

具有可调节上升时间、电源正常指示和可选输出放电功能的 5.5V、10A、3.9mΩ 负载开关;
TPS22990
型号: TPS22990
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间、电源正常指示和可选输出放电功能的 5.5V、10A、3.9mΩ 负载开关

开关
文件: 总34页 (文件大小:5381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
TPS22990 5.5V10A、导通电阻为 3.9mΩ 的负载开关  
1 特性  
3 说明  
1
集成单通道负载开关  
VBIAS 电压范围:2.5V 5.5V  
TPS22990 产品系列由两款器件组成:TPS22990 和  
TPS22990N。这两款器件都是 3.9m单通道负载开  
关,不但可以调节接通时间,而且还集成有 PG 指示  
器。  
VIN 电压范围:0.6V VBIAS  
导通电阻  
RON = 3.9mVIN = 5V  
(VBIAS = 5V) 时的典型值)  
该系列器件包含一个可在 0.6V 5.5V 输入电压范围  
内运行的 N 沟道 MOSFET,最高可支持  
10A 持续电流。宽输入电压范围及高电流能力使得该  
系列器件适用于多种设计与终端设备。3.9m的导通  
电阻能够将负载开关两端的压降和负载开关的功耗降到  
最低。  
RON = 3.9mVIN = 3.3V  
(VBIAS = 3.3V) 时的典型值)  
10A 最大连续开关电流  
静态电流  
IQ,VBIAS = 63µAVBIAS = 5V 时)  
器件的可控上升时间可大幅降低大容量负载电容所产生  
的浪涌电流,从而降低或消除电源压降。该器件可通过  
CT 调节转换率,从而在设计中灵活权衡浪涌电流和上  
电时序要求。集成的 PG 指示器会将负载开关的状态  
通知给系统,从而实现无缝电源排序。  
关断电流  
ISD,VBIAS = 5.5µAVBIAS = 5V 时)  
ISD,VIN = 4nAVBIAS = 5VVIN = 5V 时)  
可通过 CT 调节的受控转换率  
电源正常 (PG) 指示器  
快速输出放电 (QOD)(仅限 TPS22990)  
带散热焊盘的 10 引脚 3mm × 2mm SON 封装  
根据 JESD 22 测试得出的静电放电 (ESD) 性能  
TPS22990 具有一个可选的 218Ω 片上电阻。当开关  
被禁用时,可通过该电阻使输出快速放电,从而避免因  
电源浮动而导致下游负载出现未知状态。  
2kV 人体放电模式 (HBM) 1kV 器件充电模型  
(CDM)  
TPS22990 采用小型、节省空间的  
10 引脚 3mm × 2mm SON 封装,此类封装集成有散  
热焊盘,支持较高功耗。该器件在自然通风环境下的额  
定运行温度范围为 –40°C +105°C。  
2 应用  
笔记本、Chromebooks 和平板电脑  
台式机和工业 PC  
固态硬盘 (SSD)  
服务器  
器件信息(1)  
器件型号  
TPS22990  
TPS22990N  
封装  
封装尺寸(标称值)  
WSON (10)  
3.00mm x 2.00mm  
电信系统  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
导通电阻与输入电压间的关系  
典型应用  
5.5  
-40°C  
25°C  
VOUT  
5.25  
CT  
NC  
VOUT  
85°C  
5
CT  
105°C  
4.75  
VOUT  
CL  
RL  
Power Supply  
RPU  
VIN  
VOUT  
PG  
4.5  
4.25  
4
VBIAS  
CIN  
ON  
ON  
GND  
3.75  
3.5  
3.25  
3
OFF  
TPS22990  
Copyright © 2016, Texas Instruments Incorporated  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
D008  
VBIAS = 5VIOUT = –200mA  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDK1  
 
 
 
 
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 16  
9.3 Feature Description................................................. 16  
9.4 Device Functional Modes........................................ 18  
10 Application and Implementation........................ 19  
10.1 Application Information.......................................... 19  
10.2 Typical Application ............................................... 22  
11 Power Supply Recommendations ..................... 25  
12 Layout................................................................... 25  
12.1 Layout Guidelines ................................................. 25  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 26  
13.1 文档支持................................................................ 26  
13.2 接收文档更新通知 ................................................. 26  
13.3 社区资源................................................................ 26  
13.4 ....................................................................... 26  
13.5 静电放电警告......................................................... 26  
13.6 Glossary................................................................ 26  
14 机械、封装和可订购信息....................................... 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics—VBIAS = 5 V..................... 5  
7.6 Electrical Characteristics—VBIAS = 3.3 V.................. 6  
7.7 Switching Characteristics.......................................... 7  
7.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 15  
Detailed Description ............................................ 16  
9.1 Overview ................................................................. 16  
8
9
4 修订历史记录  
Changes from Revision B (September 2016) to Revision C  
Page  
Updated VIH in Recommended Operating Conditions ............................................................................................................ 4  
Changes from Revision A (July 2016) to Revision B  
Page  
Removed the status column from Device Comparison Table ................................................................................................ 3  
Added the comment “(TPS22990 Only)” to the “RPD” cell in both Electrical Characteristics tables ...................................... 7  
Changes from Original (May 2016) to Revision A  
Page  
已将器件状态从产品预览改为量产数据................................................................................................................................... 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
5 Device Comparison Table  
DEVICE  
TPS22990  
TPS22990N  
RON at VBIAS = 5 V  
QOD  
Yes  
No  
IMAX  
10 A  
10 A  
ENABLE  
Active high  
Active high  
3.9 mΩ  
3.9 mΩ  
6 Pin Configuration and Functions  
DML Package  
10-Pin WSON  
Top View  
DML Package  
10-Pin WSON  
Bottom View  
VOUT 10  
10 VOUT  
CT  
1
2
3
4
5
CT  
NC  
VIN  
1
2
3
4
5
VOUT  
VOUT  
9
8
9
8
VOUT  
VOUT  
NC  
VIN  
(thermal pad)  
VIN  
(thermal pad)  
VIN  
VBIAS  
ON  
7
6
7
6
PG  
VBIAS  
ON  
PG  
GND  
GND  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
2
3
4
5
6
7
8
9
10  
CT  
NC  
O
VOUT slew rate control  
Not internally connected  
VIN  
I
P
Switch input. Bypass this input with a ceramic capacitor to GND  
Bias voltage. Power supply to the device  
VBIAS  
ON  
I
Active high switch control input. Do not leave floating  
Device ground  
GND  
PG  
GND  
O
Power good. Active high, open drain output. Tie to GND if not used  
VOUT  
O
I
Switch output  
Switch input. VIN and thermal pad (exposed center pad) to alleviate thermal stress. See  
the Layout section for layout guidelines  
VIN (Thermal Pad)  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
V
VIN  
Input voltage  
VBIAS  
VOUT  
VON  
VPG  
VCT  
IMAX  
IPLS  
TJ  
Bias voltage  
6
V
Output voltage  
6
V
ON voltage  
6
V
PG voltage  
6
V
CT voltage  
15  
10  
12  
125  
300  
150  
V
Maximum continuous switch current at TJ = 125°C  
Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle  
Maximum junction temperature  
Maximum lead temperature (10-s soldering time)  
Storage temperature  
A
A
°C  
°C  
°C  
TLEAD  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
VBIAS  
5.5  
UNIT  
VIN  
Input voltage  
Bias voltage  
Output voltage  
ON voltage  
0.6  
2.5  
V
V
V
V
V
VBIAS  
VOUT  
VON  
VPG  
VIN  
5.5  
0
0
PG voltage  
5.5  
VBIAS = 2.5 V to 5 V, TA< 85°C  
1.05  
1.2  
0
5.5  
VIH, ON  
High-level input voltage, ON  
V
VBIAS = 2.5 V to 5.5 V, TA< 105°C  
5.5  
VIL, ON  
CIN  
Low-level input voltage, ON  
Input capacitor  
0.5  
V
1(1)  
µF  
°C  
TA  
Operating free-air temperature  
–40  
105  
(1) See the Application Information section.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
7.4 Thermal Information  
TPS22990  
THERMAL METRIC(1)  
DML (WSON)  
UNIT  
10 PINS  
51.4  
65  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
17  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
ψJB  
17  
RθJC(bot)  
3.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics—VBIAS = 5 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temp –40°C TA +105°C  
(full) and VBIAS = 5 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
63  
5.5  
76  
77  
7
IOUT = 0 A,  
VIN = VON = 5 V  
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
µA  
µA  
ISD, VBIAS  
VON = 0 V, VOUT = 0 V  
7
0.004  
0.003  
0.002  
0.002  
0.001  
0.001  
4
VIN = 5 V  
10  
3
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.05 V  
VIN = 0.6 V  
7
2
5
VON = 0 V,  
VOUT = 0 V  
ISD, VIN  
VIN shutdown current  
µA  
2
4
1
3
1
2
ON pin input leakage  
current  
ION  
VON = 5.5 V  
VIN = 5 V  
–40°C to +105°C  
0.1  
µA  
VHYS,ON  
IPG, LKG  
VPG,OL  
ON pin hysteresis  
25°C  
123  
mV  
µA  
V
Leakage current into PG pin VPG = 5 V  
PG output low voltage VON = 0 V, IPG = 1 mA  
–40°C to +105°C  
–40°C to +105°C  
0.5  
0.2  
RESISTANCE CHARACTERISTICS  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
 
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics—VBIAS = 5 V (continued)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temp –40°C TA +105°C  
(full) and VBIAS = 5 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
25°C  
3.9  
3.9  
3.9  
3.9  
3.9  
3.9  
4.8  
5.7  
6
VIN = 5 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
4.8  
5.7  
6
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.05 V  
VIN = 0.6 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
4.8  
5.7  
6
–40°C to +85°C  
–40°C to +105°C  
25°C  
IOUT = –200 mA,  
VON = 5 V  
RON  
On-state resistance  
mΩ  
4.8  
5.7  
6
–40°C to +85°C  
–40°C to +105°C  
25°C  
4.8  
5.7  
6
–40°C to +85°C  
–40°C to +105°C  
25°C  
4.8  
5.7  
6
–40°C to +85°C  
–40°C to +105°C  
Output pull-down resistance VIN = VOUT = 5 V,  
(TPS22990 Only) VON = 0 V  
RPD  
–40°C to +105°C  
218  
253  
Ω
7.6 Electrical Characteristics—VBIAS = 3.3 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temp –40°C TA +105°C  
(full) and VBIAS = 3.3 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
48  
4.5  
58  
59  
6
IOUT = 0 A,  
VIN = VON = 3.3 V  
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
µA  
µA  
ISD, VBIAS  
VON = 0 V, VOUT = 0 V  
7
0.003  
0.002  
0.002  
0.001  
0.001  
3
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.05 V  
VIN = 0.6 V  
7
2
5
2
VON = 0 V,  
VOUT = 0 V  
ISD, VIN  
VIN shutdown current  
µA  
4
1
3
1
2
ON pin input leakage  
current  
ION  
VON = 5.5 V  
VIN = 3.3 V  
–40°C to +105°C  
0.1  
µA  
VHYS,ON  
IPG, LKG  
VPG,OL  
ON pin hysteresis  
25°C  
100  
mV  
µA  
V
Leakage current into PG pin VPG = 5 V  
PG output low voltage VON = 0 V, IPG = 1 mA  
–40°C to +105°C  
–40°C to +105°C  
0.5  
0.2  
RESISTANCE CHARACTERISTICS  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
Electrical Characteristics—VBIAS = 3.3 V (continued)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temp –40°C TA +105°C  
(full) and VBIAS = 3.3 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
25°C  
3.9  
3.9  
3.9  
3.9  
3.9  
4.8  
VIN = 3.3 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
5.7  
6
4.8  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.05 V  
VIN = 0.6 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
5.7  
6
4.8  
IOUT = –200 mA,  
VON = 5 V  
RON  
On-state resistance  
–40°C to +85°C  
–40°C to +105°C  
25°C  
5.7 mΩ  
6
4.8  
5.7  
6
–40°C to +85°C  
–40°C to +105°C  
25°C  
4.8  
5.7  
6
–40°C to +85°C  
–40°C to +105°C  
Output pull-down resistance VIN = VOUT = 3.3 V,  
(TPS22990 Only) VON = 0 V  
RPD  
–40°C to +105°C  
219  
256  
Ω
7.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 5 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
34  
5.4  
31  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
PG turnon time  
tF  
2.3  
21  
µs  
tD  
tPG,ON  
152  
1.3  
tPG,OFF PG turnoff time  
VIN = 1.05 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
30  
8
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
PG turnon time  
13  
tF  
2.2  
24  
µs  
tD  
tPG,ON  
134  
1.3  
tPG,OFF PG turnoff time  
VIN = 0.6 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
29  
8.8  
10  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
PG turnon time  
tF  
2.2  
24  
µs  
tD  
tPG,ON  
131  
1.3  
tPG,OFF PG turnoff time  
(1) Turnoff time and fall time are dependent on the time constant at the load. For TPS22990N, there is no QOD. The time constant is  
RL×CL. For TPS22990, internal pull down RPD is enabled when the switch is disabled. The time constant is (RPD//RL)×CL.  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
MAX UNIT  
Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
TYP  
VIN = 3.3 V, VON = 5 V, VBIAS = 3.3 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
33  
6.2  
24  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
PG turnon time  
tF  
2.4  
22  
µs  
µs  
µs  
tD  
tPG,ON  
132  
1.5  
tPG,OFF PG turnoff time  
VIN = 1.05 V, VON = 5 V, VBIAS = 3.3 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
30  
8.7  
12  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
PG turnon time  
tF  
2.3  
24  
tD  
tPG,ON  
122  
1.5  
tPG,OFF PG turnoff time  
VIN = 0.6 V, VON = 5 V, VBIAS = 3.3 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF, RPU = 10 kΩ, CIN= 1 µF  
30  
9.4  
9
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
PG turnon time  
tF  
2.3  
25  
tD  
tPG,ON  
119  
1.5  
tPG,OFF PG turnoff time  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
7.8 Typical Characteristics  
6.75  
6.5  
6.25  
6
69  
-40 èC  
-40°C  
25°C  
85°C  
105°C  
66  
25 èC  
85 èC  
105 èC  
63  
60  
57  
54  
51  
48  
45  
42  
39  
36  
5.75  
5.5  
5.25  
5
4.75  
4.5  
4.25  
4
3.75  
2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Bias Voltage (V)  
2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Bias Voltage (V)  
D001  
D051  
VON = 5 V  
IOUT = 0 A  
VIN = VBIAS  
VON = 0 V  
VOUT = 0 V  
VIN = VBIAS  
Figure 1. Quiescent Current vs Bias Voltage  
Figure 2. Bias Shutdown Current vs Bias Voltage  
0.35  
0.3  
0.35  
0.3  
-40 èC  
25 èC  
85 èC  
105 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.05  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
Input Voltage (V)  
Input Voltage (V)  
D053  
D052  
VON = 0 V  
VBIAS = 5 V  
VOUT = 0 V  
VON = 0 V  
VBIAS = 3.3 V  
VOUT = 0 V  
Figure 4. Input Shutdown Current vs Input Voltage  
Figure 3. Input Shutdown Current vs Input Voltage  
4.75  
4.5  
4.25  
4
4.75  
4.5  
4.25  
4
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1.05 V  
VIN = 0.8 V  
VIN = 0.6 V  
VIN = 5 V  
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.05 V  
VIN = 0.6 V  
3.75  
3.5  
3.25  
3
3.75  
3.5  
3.25  
3
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D001  
D001  
VON = 5 V  
VBIAS = 5 V  
IOUT = –200mA  
VON = 5 V  
VBIAS = 3.3 V  
IOUT = –200mA  
Figure 6. On-Resistance vs Ambient Temperature  
Figure 5. On-Resistance vs Ambient Temperature  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
5.5  
5.5  
5.25  
5
-40 èC  
-40°C  
25°C  
85°C  
5.25  
5
25 èC  
85 èC  
105 èC  
105°C  
4.75  
4.5  
4.25  
4
4.75  
4.5  
4.25  
4
3.75  
3.5  
3.25  
3
3.75  
3.5  
3.25  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D007  
D008  
VON = 5 V  
VBIAS = 3.3 V  
IOUT = –200mA  
VON = 5 V  
VBIAS = 5 V  
IOUT = –200mA  
Figure 7. On-Resistance vs Input Voltage  
Figure 8. On-Resistance vs Input Voltage  
226  
225  
224  
223  
222  
221  
220  
219  
218  
217  
1.05  
1.025  
1
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
105°C  
105°C  
0.975  
0.95  
0.925  
0.9  
0.875  
0.85  
0.825  
0.8  
0.775  
2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Bias Voltage (V)  
2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Bias Voltage (V)  
D001  
D001  
VON = 0 V  
VOUT = VIN = 1.05 V  
IOUT = 0 A  
Figure 9. Output Pull-Down Resistance vs Bias Voltage  
Figure 10. High-Level Input Voltage vs Bias Voltage  
0.9  
150  
140  
130  
120  
110  
100  
90  
-40 èC  
25 èC  
85 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
0.85  
105 èC  
0.8  
0.75  
0.7  
80  
70  
0.65  
60  
2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Bias Voltage (V)  
2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Bias Voltage (V)  
D061  
D062  
IOUT = 0 A  
IOUT = 0 A  
Figure 11. Low-Level Input Voltage vs Bias Voltage  
Figure 12. Hysteresis vs Bias Voltage  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
Typical Characteristics (continued)  
40  
42.5  
40  
-40 èC  
-40 èC  
38  
36  
34  
32  
30  
28  
26  
24  
22  
25 èC  
85 èC  
105 èC  
25 èC  
85 èC  
105 èC  
37.5  
35  
32.5  
30  
27.5  
25  
22.5  
20  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D062  
D062  
VBIAS = 3.3 V  
CIN = 1 µF  
VON = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
VBIAS = 5 V  
CIN = 1 µF  
VON = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 13. Turnon Time vs Input Voltage  
Figure 14. Turnon Time vs Input Voltage  
10  
9.5  
9
9.5  
9
-40 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
25 èC  
85 èC  
105 èC  
8.5  
8
8.5  
8
7.5  
7
7.5  
7
6.5  
6
6.5  
6
5.5  
5
5.5  
0.6  
4.5  
0.5  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D020  
D021  
VBIAS = 3.3 V  
CIN = 1 µF  
VON = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
VBIAS = 5 V  
CIN = 1 µF  
VON = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 15. Turnoff Time vs Input Voltage  
Figure 16. Turnoff Time vs Input Voltage  
37.5  
35  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
-40 èC  
25 èC  
85 èC  
105 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
32.5  
30  
27.5  
25  
22.5  
20  
17.5  
15  
12.5  
10  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D024  
D025  
VBIAS = 3.3 V  
CIN = 1 µF  
VON = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
VBIAS = 5 V  
CIN = 1 µF  
VON = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 17. Rise Time vs Input Voltage  
Figure 18. Rise Time vs Input Voltage  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
4
3
2
1
4
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
105°C  
105°C  
3
2
1
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D020  
D021  
VBIAS = 3.3 V  
CIN = 1 µF  
VON = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
VBIAS = 5 V  
CIN = 1 µF  
VON = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 19. Fall Time vs Input Voltage  
Figure 20. Fall Time vs Input Voltage  
145  
142.5  
140  
165  
162  
159  
156  
153  
150  
147  
144  
141  
138  
135  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
105°C  
105°C  
137.5  
135  
132.5  
130  
127.5  
125  
122.5  
120  
0.6  
132  
0.5  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D026  
D027  
VBIAS = 3.3 V  
VON = 5 V  
CT = 0 pF  
VBIAS = 5 V  
VON = 5 V  
CT = 0 pF  
RPU = 10 kΩ  
CL = 0.1 µF  
RL = 10 Ω  
RPU = 10 kΩ  
CL = 0.1 µF  
RL = 10 Ω  
Figure 21. PG Turnon Time vs Input Voltage  
Figure 22. PG Turnon Time vs Input Voltage  
2
1.8  
1.6  
1.4  
1.2  
2.4  
2.2  
2
-40°C  
25°C  
85°C  
-40 èC  
25 èC  
85 èC  
105 èC  
105°C  
1.8  
1.6  
1.4  
1.2  
1
1
0.5  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D0287  
D025  
VBIAS = 3.3 V  
VON = 5 V  
CT = 0 pF  
VBIAS = 5 V  
VON = 5 V  
CT = 0 pF  
RPU = 10 kΩ  
CL = 0.1 µF  
RL = 10 Ω  
RPU = 10 kΩ  
CL = 0.1 µF  
RL = 10 Ω  
Figure 23. PG Turnoff vs Input Voltage  
Figure 24. PG Turnoff Time vs Input Voltage  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
Typical Characteristics (continued)  
37.5  
VBIAS = 2.5 V  
VBIAS = 3.3 V  
35  
VBIAS = 5 V  
VBIAS = 5.5 V  
32.5  
30  
27.5  
25  
22.5  
20  
17.5  
15  
12.5  
10  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VBIAS = 5 V  
CIN = 1 µF  
VIN = 1.05 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Input Voltage (V)  
D030  
TA= 25°C  
CIN = 1 µF  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 26. Turnon Response  
Figure 25. Rise Time vs Input Voltage  
VBIAS = 5 V  
CIN = 1 µF  
VIN = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
VBIAS = 3.3 V  
CIN = 1 µF  
VIN = 1.05 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 27. Turnon Response  
Figure 28. Turnon Response  
VBIAS = 3.3 V  
CIN = 1 µF  
VIN = 3.3 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
VBIAS = 5 V  
CIN = 1 µF  
VIN = 1.05 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 29. Turnon Response  
Figure 30. Turnon Response  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
VBIAS = 5 V  
CIN = 1 µF  
VIN = 5 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
VBIAS = 3.3 V  
CIN = 1 µF  
VIN = 1.05 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 31. Turnoff Response  
Figure 32. Turnoff Response  
VBIAS = 3.3 V  
CIN = 1 µF  
VIN = 3.3 V  
CL = 0.1 µF  
CT = 0 pF  
RL = 10 Ω  
Figure 33. Turnoff Response  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
8 Parameter Measurement Information  
CT  
VOUT  
VOUT  
CT  
NC  
RL  
CL  
Power  
Supply  
RPU  
VIN  
VOUT  
PG  
Power  
Supply  
VBIAS  
CIN  
ON  
ON  
GND  
OFF  
TPS22990  
Copyright © 2016, Texas Instruments Incorporated  
Figure 34. Timing Test Circuit  
VON  
50%  
50%  
tOFF  
90%  
tON  
90%  
50%  
VOUT  
50%  
10%  
10%  
tF  
tD  
tR  
tPG,OFF  
tPG,ON  
50%  
50%  
VPG  
Rise and fall times of the control signals is 100 ns.  
Figure 35. Timing Waveforms  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
 
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS22990 device is a single channel load switch with a controlled adjustable turnon and integrated PG  
indicator. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.6 V to  
5.5 V and can support a maximum continuous current of 10 A. The wide input voltage range and high current  
capability enable the devices to be used across multiple designs and end equipment. 3.9-mΩ On-resistance  
minimizes the voltage drop across the load switch and power loss from the load switch.  
The controlled rise time for the device greatly reduces inrush current caused by large bulk load capacitances,  
thereby reducing or eliminating power supply droop. The adjustable slew rate through CT provides the design  
flexibility to trade off the inrush current and power up timing requirements. Integrated PG indicator notifies the  
system about the status of the load switch to facilitate seamless power sequencing.  
During shutdown, the device has very low leakage current, thereby reducing unnecessary leakages for  
downstream modules during standby. The TPS22990 has an optional 218-Ω On-chip resistor for quick discharge  
of the output when switch is disabled.  
9.2 Functional Block Diagram  
PG  
VIN  
Charge  
Pump  
VBIAS  
Control  
Logic  
Driver  
ON  
CT  
VOUT  
TPS22990 Only  
GND  
Copyright © 2016, Texas Instruments Incorporated  
9.3 Feature Description  
9.3.1 On and Off Control  
The ON pin controls the state of the load switch. Asserting the pin high enables the switch. The minimum voltage  
that guarantees logic high is 1.2 V. This pin cannot be left floating and must be tied either high or low for proper  
functionality.  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
Feature Description (continued)  
9.3.2 Adjustable Rise Time  
The TPS22990 has controlled rise time for inrush current control. A capacitor to GND on the CT pin adjusts the  
rise time. Without any capacitor on the CT, the rise time is at its minimum for fastest timing. The voltage on the  
CT pin can be as high as 15 V; therefore the minimum voltage rating for the CT capacitor must be 25 V for  
optimal performance. An approximate equation for the relationship between CT, VIN and rise time when VBIAS is  
set to 5 V is shown in Equation 1. As shown in Figure 35, rise time is defined as from 10% to 90% measurement  
on VOUT  
.
tR = 0.011ìV + 0.002 ìC + 4.7 ìV + 7.8  
(
)
IN  
T
IN  
where  
tR is the rise time (in µs)  
VIN is the input voltage (in V)  
CT is the capacitance value on the CT pin (in pF)  
(1)  
Table 1 contains rise time values measured on a typical device. Rise times shown below are only valid for the  
power-up sequence where VIN and VBIAS are already in steady state condition before the ON pin is asserted  
high.  
Table 1. Rise Time vs CT Capacitor  
Rise Time (µs) at 25°C  
CL = 0.1 uF, CIN = 1 uF, RL = 10 Ω, VBIAS = 5 V  
CT (pF)  
VIN = 5 V  
30.5  
VIN = 3.3 V  
VIN = 1.8 V  
17.5  
VIN = 1.05 V  
VIN = 0.6 V  
9.5  
0
24.8  
34  
12.6  
15.8  
18.8  
25.2  
40.9  
72.8  
146.9  
220  
44.6  
22.7  
11.4  
470  
56.6  
42.2  
61.1  
107  
27.1  
13.2  
1000  
2200  
4700  
10000  
85  
38.9  
17.9  
154.6  
284.6  
598.5  
64.7  
27.7  
193.5  
404.8  
114.4  
233.2  
48.1  
98.6  
9.3.3 Power Good (PG)  
The TPS22990 has a power good (PG) output signal to indicate the gate of the pass FET is driven high and the  
switch is on with the On-resistance close to its final value (full load ready). The signal is an active high and open  
drain output which can be connected to a voltage source through an external pull up resistor, RPU. This voltage  
source can be VOUT from the TPS22990 or another external voltage. VBIAS is required for PG to have a valid  
output. Equation 2 below shows the approximate equation for the relationship between CT, VIN and PG turnon  
time (tPG,ON) when VBIAS is set to 5 V.  
tPG,ON = (0.013 *VIN + 0.04) *CT + 4.7 *VIN +129  
where  
tPG,ON is the PG turnon time (in µs)  
VIN is the input voltage (in V)  
CT is the capacitance value on the CT pin (in pF)  
(2)  
Table 2 contains PG turnon time values measured on a typical device.  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
 
 
 
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 2. PG Turnon Time vs CT Capacitor  
Typical PG turnon time (us) at 25°C  
CL = 0.1 uF, CIN = 1 uF, RL = 10 Ω, VBIAS = 5 V, RPU = 10 kΩ  
CT (pF)  
VIN = 5 V  
151.9  
177.7  
200.9  
257.2  
390.6  
636.4  
1239  
VIN = 3.3 V  
144.4  
VIN = 1.8 V  
137.5  
VIN = 1.05 V  
133.9  
VIN = 0.6 V  
0
131.3  
143.5  
154.4  
181.3  
241.6  
353.3  
627.4  
220  
164.6  
153.3  
147.1  
470  
183.2  
167.4  
159.2  
1000  
2200  
4700  
10000  
227.8  
202.5  
189.5  
332.3  
282.4  
257.1  
525.6  
429.8  
382.7  
999.8  
792.4  
689.4  
9.3.4 Quick Output Discharge (QOD) (TPS22990 Only)  
The TPS22990 family includes an optional QOD feature. When the switch is disabled, a discharge resistor is  
connected between VOUT and GND. This resistor has a typical value of 218 and prevents the output from  
floating while the switch is disabled.  
9.4 Device Functional Modes  
Table 3 shows the function table for TPS22990.  
Table 3. Function Table  
(1)  
ON  
L
VIN to VOUT  
OFF  
OUTPUT DISCHARGE  
ENABLED  
H
ON  
DISABLED  
(1) This feature is in the TPS22990 only (not in TPS22990N).  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Input to Output Voltage Drop  
The input to output voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN and VBIAS condition of the device. See the RON specification in the  
Electrical Characteristics—VBIAS = 5 V table of this datasheet. Once the RON of the device is determined based  
upon the VIN and VBIAS conditions, use Equation 3 to calculate the input to output voltage drop.  
DV = ILOAD ì RON  
where  
ΔV is the voltage drop from VIN to VOUT  
ILOAD is the load current  
RON is the on-resistance of the device for a specific VIN and VBIAS  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated  
(3)  
10.1.2 Input Capacitor  
It is recommended to use a capacitor between VIN and GND close to the device pins. This helps limit the voltage  
drop on the input supply caused by transient inrush currents when the switch is turned on into a discharged  
capacitor at the load. A 1-μF ceramic capacitor, CIN, is usually sufficient. Higher values of CIN can be used to  
further reduce the voltage drop. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN dip caused by  
inrush currents during startup, where CL is the load capacitance.  
10.1.3 Thermal Consideration  
The maximum junction temperature should be limited to below 125°C. Use Equation 4 to calculate the maximum  
allowable dissipation, PD(max) for a given output load current and ambient temperature. RθJA is highly dependent  
upon board layout.  
TJ max -TA  
(
)
PD max  
=
(
)
RJA  
where  
PD(max) is the maximum allowable power dissipation  
TJ(max) is the maximum allowable junction temperature  
TA is the ambient temperature  
RθJA is the junction-to-air thermal impedance  
(4)  
10.1.4 PG Pull Up Resistor  
The PG output is an open drain signal which connects to a voltage source through a pull up resistor RPU. The PG  
signal can be used to drive the enable pins of downstream devices, EN. PG is active high, and its voltage is  
given by Equation 5.  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
 
 
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Application Information (continued)  
VPG =VOUT - I  
+ IEN,LK ìR  
(
)
PG,LK  
PU  
where  
VOUT is the voltage where PG is tied to  
IPG,LK is the leakage current into PG pin  
IEN,LK is the leakage current into the EN pin driven by PG  
RPU is the pull up resistance  
(5)  
VPG needs to be higher than VIH, MIN of the EN pin to be treated as logic high. The maximum RPU is determined  
by Equation 6.  
VOUT -VIH,MIN  
IPG,LK + IEN,LK  
RPU,MAX =  
(6)  
When PG is disabled, with 1 mA current into PG pin (IPG = 1 mA), VPG,OL is less than 0.2 V and treated as logic  
low as long as VIL,MAX of the EN pin is greater than 0.2 V. The minimum RPU is determined by Equation 7.  
VOUT  
RPU,MIN  
=
IPG + IEN,LK  
(7)  
RPU can be chosen within the range defined by RPU,MIN and RPU,MAX. RPU = 10 kis used for characterization.  
10.1.5 Power Sequencing  
The TPS22990 has an integrated power good indicator which can be used for power sequencing. As shown in  
Figure 36, the switch to the second load is controlled by the PG signal from the first switch. This ensures that the  
power to load 2 is only enabled after the power to load 1 is enabled and the first switch is full load ready.  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
Application Information (continued)  
Load 1  
CT  
NC  
VOUT  
VOUT  
CT  
Power  
Supply 1  
RPU  
VIN  
VOUT  
PG  
Power  
Supply  
VBIAS  
ON  
CIN  
GPIO  
GND  
MCU  
TPS22990  
Load 2  
CT  
NC  
VOUT  
VOUT  
CT  
Power  
Supply 2  
RPU  
VIN  
VOUT  
PG  
VBIAS  
ON  
CIN  
GND  
TPS22990  
Copyright © 2016, Texas Instruments Incorporated  
Figure 36. Power Sequencing  
10.1.6 Standby Power Reduction  
Any end equipment that is being powered from a battery has a need to reduce current consumption in order to  
maintain the battery charge for a longer time. The TPS22990 devices help to accomplish this reduction by turning  
off the supply to the downstream modules that are in standby state and significantly reduce the leakage current  
overhead of the standby modules as shown in Figure 37.  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Application Information (continued)  
Always ON  
Module  
Standby  
Module  
CT  
NC  
VOUT  
VOUT  
CT  
Power  
Supply  
VIN  
VOUT  
PG  
Power  
Supply  
VBIAS  
ON  
CIN  
GPIO  
GND  
MCU  
TPS22990  
Copyright © 2016, Texas Instruments Incorporated  
Figure 37. Standby Power Reduction  
10.2 Typical Application  
Figure 38 demonstrates how to use TPS22990 to limit inrush current to output capacitance.  
CT  
NC  
VOUT  
VOUT  
CT  
RL  
CL  
Power  
Supply  
RPU  
VIN  
VOUT  
PG  
Power  
Supply  
VBIAS  
CIN  
ON  
ON  
GND  
OFF  
TPS22990  
Copyright © 2016, Texas Instruments Incorporated  
Figure 38. Powering a Downstream Module  
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
Typical Application (continued)  
10.2.1 Design Requirements  
For this design example, use the input parameters shown in Table 4.  
Table 4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VBIAS  
3.3 V  
1.05 V  
10 μF  
VIN  
CL  
RL  
None  
Maximum acceptable inrush current  
100 mA  
10.2.2 Detailed Design Procedure  
10.2.2.1 Managing Inrush Current  
When the switch is enabled, the output capacitors must be charged up from 0 V to VIN. This charge arrives in the  
form of inrush current. Inrush current can be calculated using Equation 8.  
0.8ìV  
dV  
dt  
IN  
IINRUSH = CL ì  
ö CL ì  
tR  
where  
IINRUSH is the Inrush current  
CL is the Load capacitance  
dV/dt is the Output slew rate  
VIN is the Input voltage  
tR is the rise time  
(8)  
Minimum acceptable rise time can be calculated using the design requirements and the inrush current equation.  
See Equation 9.  
0.8 ìV ìCL  
IN  
tR =  
= 84s  
IINRUSH  
(9)  
The TPS22990 has very fast timing without a CT capacitor (CT). The typical rise time is 12 μs at VBIAS = 3.3 V,  
VIN = 1.05 V, RL = 10 , and CL = 0.1 µF. As shown in Figure 39, the rise time is much smaller than 84 µs and  
the inrush current is 460 mA without CT. The CT for the required rise time must be calculated using Equation 1.  
For 84 µs, the calculated CT = 5259 pF. Figure 40 shows the inrush current is less than 100 mA with CT = 6800  
pF.  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
 
 
 
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
10.2.3 Application Curves  
Figure 39. . Inrush Current with CT = 0 pF  
Figure 40. Inrush Current with CT = 6800 pF  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22990  
www.ti.com.cn  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
11 Power Supply Recommendations  
The device is designed to operate with a VBIAS range of 2.5 V to 5.5 V, and a VIN range of 0.6 V to VBIAS. The  
supply must be well regulated and placed as close to the device terminal as possible with the recommended 1-  
μF bypass capacitor. If the supply is located more than a few inches from the device terminals, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. In the case where the power supply is  
slow to respond to a large load current step, additional bulk may also be required. If additional bulk capacitance  
is required, an electrolytic, tantalum, or ceramic capacitor of 10 μF may be sufficient.  
12 Layout  
12.1 Layout Guidelines  
For best performance, all traces must be as short as possible. To be most effective, the input and output  
capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects.  
The CT trace must be as short as possible to reduce parasitic capacitance.  
12.2 Layout Example  
VIA to Power Ground Plane  
VIA to VIN Plane  
10  
VOUT  
CT  
NC  
VIN  
1
2
3
4
5
CT  
Capacitor  
9
8
VOUT  
VOUT  
VIN  
(thermal pad)  
VBIAS  
Bypass  
Capacitor  
RPU  
VOUT  
Bypass  
7
6
VBIAS  
ON  
PG  
Capacitor  
GND  
To GPIO  
control  
VIN  
Bypass  
Capacitor  
Copyright © 2016, Texas Instruments Incorporated  
Figure 41. Layout Example  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
TPS22990  
ZHCSF87C MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
TPS22990 负载开关评估模块》SLVUAS2  
《负载开关导通电阻基础》SLVA771  
13.2 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22990DMLR  
TPS22990DMLT  
TPS22990NDMLR  
TPS22990NDMLT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DML  
DML  
DML  
DML  
10  
10  
10  
10  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
3000 RoHS & Green  
250 RoHS & Green  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
RB990  
RB990  
NIPDAUAG  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
RB990N  
RB990N  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22990NDMLR  
TPS22990NDMLT  
WSON  
WSON  
DML  
DML  
10  
10  
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
3.2  
3.2  
1.0  
1.0  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22990NDMLR  
TPS22990NDMLT  
WSON  
WSON  
DML  
DML  
10  
10  
3000  
250  
213.0  
213.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DML0010A  
WSON - 0.8 mm max height  
SCALE 4.500  
PLASTIC SMALL OUTLINE - NO LEAD  
A
2.1  
1.9  
B
PIN 1 INDEX AREA  
3.1  
2.9  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
1.1±0.1  
PKG  
(0.2) TYP  
0.35  
0.15  
7X  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
0.29  
0.19  
7X  
0.1  
C A  
B
6
0.05  
5
1
0.02  
PKG  
2
2.6±0.1  
5X 0.5  
2X 0.56  
1
10  
0.33  
0.23  
3X  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
B
2X (0.125)  
0.05  
C
0.35  
0.15  
4222524/A 11/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DML0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
3X (0.45)  
3X (0.28)  
2X (0.125)  
7X (0.45)  
1
10  
2X  
(0.56)  
7X (0.24)  
(0.02)  
(2.6)  
PKG  
5X (0.5)  
2X (1)  
(R0.05) TYP  
5
6
(
0.2) VIA  
TYP  
PKG  
(1.1)  
(1.95)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
THERMAL PAD & PADS 8-10  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222524/A 11/2015  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DML0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X  
EXPOSED METAL  
SOLDER MASK  
EDGE, TYP  
PKG  
3X (0.45)  
3X (0.28)  
7X (0.45)  
10  
1
2X  
(0.56)  
7X (0.24)  
METAL UNDER  
SOLDER MASK  
TYP  
EXPOSED METAL  
TYP  
PKG  
(0.02)  
5X (0.5)  
2X  
(0.674)  
2X  
(1.148)  
(R0.05) TYP  
5
6
METAL UNDER  
SOLDER MASK  
TYP  
2X (1.038)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
83% PRINTED SOLDER COVERAGE BY AREA  
SCALE:35X  
4222524/A 11/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS22990DMLR

具有可调节上升时间、电源正常指示和可选输出放电功能的 5.5V、10A、3.9mΩ 负载开关 | DML | 10 | -40 to 105
TI

TPS22990DMLT

具有可调节上升时间、电源正常指示和可选输出放电功能的 5.5V、10A、3.9mΩ 负载开关 | DML | 10 | -40 to 105
TI

TPS22990NDMLR

具有可调节上升时间、电源正常指示和可选输出放电功能的 5.5V、10A、3.9mΩ 负载开关 | DML | 10 | -40 to 105
TI

TPS22990NDMLT

具有可调节上升时间、电源正常指示和可选输出放电功能的 5.5V、10A、3.9mΩ 负载开关 | DML | 10 | -40 to 105
TI

TPS22992

具有可调节上升时间和可调节快速输出放电功能的 5.5V、6A、8.7mΩ 负载开关
TI

TPS22992RXPR

具有可调节上升时间和可调节快速输出放电功能的 5.5V、6A、8.7mΩ 负载开关

| RXP | 8 | -40 to 125
TI

TPS22992SRXNR

具有可调节上升时间和可调节快速输出放电功能的 5.5V、6A、8.7mΩ 负载开关

| RXN | 8 | -40 to 125
TI

TPS22993

可通 I2C 进行控制的 4 通道、3.6V、1.2A、15mΩ 负载开关
TI

TPS22993RLWR

可通 I2C 进行控制的 4 通道、3.6V、1.2A、15mΩ 负载开关 | RLW | 20 | -40 to 85
TI

TPS22994

可通 I2C 进行控制的 4 通道、3.6V、1A、41mΩ 负载开关
TI

TPS22994RUKR

可通 I2C 进行控制的 4 通道、3.6V、1A、41mΩ 负载开关 | RUK | 20 | -40 to 85
TI

TPS22994RUKT

可通 I2C 进行控制的 4 通道、3.6V、1A、41mΩ 负载开关 | RUK | 20 | -40 to 85
TI