TPS22994RUKT [TI]

可通 I2C 进行控制的 4 通道、3.6V、1A、41mΩ 负载开关 | RUK | 20 | -40 to 85;
TPS22994RUKT
型号: TPS22994RUKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

可通 I2C 进行控制的 4 通道、3.6V、1A、41mΩ 负载开关 | RUK | 20 | -40 to 85

开关
文件: 总44页 (文件大小:1984K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
TPS22994 具有通用输入输出 (GPIO) I2C 控制功能的四通道负载开关  
1 特性  
2 应用  
1
输入电压:1.0V 3.6V  
超薄个人电脑  
低导通状态电阻 (VBIAS = 7.2V)  
笔记本电脑  
平板电脑  
服务器  
VIN = 3.3V 时,RON = 41mΩ  
VIN = 1.8V 时,RON = 41mΩ  
VIN = 1.5V 时,RON = 41mΩ  
VIN = 1.0V 时,RON = 41mΩ  
一体机  
3 说明  
VBIAS 电压范围:2.7V 17.2V  
适合于 1S/2S/3S/4S 锂离子电池拓扑结构  
TPS22994 是一款多通道、低 RON 负载开关,此开关  
具有用户可编程特性。 此器件包括四个 N 通道属氧化  
物半导体场效应晶体管 (MOSFET),能够在 1.0V 至  
3.6V 输入电压范围内运行。由于开关可通过 I2C 控  
制,因此非常适用于 GPIO 有限的处理器。  
每通道持续电流最大为 1A  
静态电流  
单通道 < 12µA  
全部四通道 < 22µA  
TPS22994 器件的上升时间受到内部控制以避免浪涌  
电流。 TPS22994 具有五个可编程转换率选项、四个  
接通延迟选项和四个快速输出放电 (QOD) 电阻选项。  
关断电流(全部四通道)< 7µA  
四个 1.2V 兼容 GPIO 控制输入  
I2C 配置(每通道)  
此器件的通道可由 GPIO I2C 控制。 缺省运行模式  
为通过 ONx 端子的 GPIO 控制。 I2C 从地址端子可接  
至高电平或低电平,以分配 7 个唯一的器件地址。  
/关控制  
可编程转换率控制(5 个选项)  
可编程接通延迟(4 个选项)  
可编程输出放电(4 个选项)  
TPS22994 采用节省空间的 RUK 封装(焊球间距  
0.4mm),并可在 -40°C 85°C 的自然通风温度范  
围内运行。  
I2C SwitchALL™ 用于多通道/多芯片控制的命令  
四方扁平无引线 (QFN)-20 封装,3mm x 3mm,高  
0.75mm  
器件信息(1)  
部件号  
TPS22994  
封装  
WQFN (20)  
封装尺寸(标称值)  
3.00mm x 3.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
VBIAS  
(2.7 V to 17.2 V)  
VIN1  
VOUT1  
ON1  
CL  
RL  
VIN2  
VOUT2  
ON2  
CL  
RL  
PMIC or  
PMU  
TPS22994  
VOUT3  
VIN3  
ON3  
CL  
RL  
VOUT4  
VIN4  
ON4  
ADD1  
CL  
RL  
ADD2  
ADD3  
SDA SCL  
µC  
VDD  
(1.62 to 3.6)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCL4  
 
 
 
 
 
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
8.1 Recommended Operating Conditions....................... 5  
8.2 Absolute Maximum Ratings ..................................... 5  
8.3 Handling Ratings....................................................... 5  
8.4 Thermal Information.................................................. 6  
8.5 Electrical Characteristics........................................... 6  
8.6 Switching Characteristics, VBIAS = 7.2 V................... 9  
8.7 Switching Characteristics, VBIAS = 3.3 V .................. 9  
8.8 Typical Characteristics............................................ 11  
9
Detailed Description ............................................ 18  
9.1 Overview ................................................................. 18  
9.2 Functional Block Diagram ....................................... 18  
9.3 Feature Description................................................. 19  
9.4 Device Functional Modes........................................ 24  
9.5 Register Map........................................................... 25  
10 Applications and Implementation...................... 27  
10.1 Application Information.......................................... 27  
10.2 Typical Application ................................................ 30  
11 Layout................................................................... 35  
11.1 Board Layout......................................................... 35  
12 器件和文档支持 ..................................................... 36  
12.1 ....................................................................... 36  
12.2 静电放电警告......................................................... 36  
12.3 术语表 ................................................................... 36  
13 机械封装和可订购信息 .......................................... 36  
5 修订历史记录  
Changes from Revision A (September 2014) to Revision B  
Page  
Updated MAX limits in the Electrical Characteristics table. ................................................................................................... 6  
Updated Detailed Design Procedure for Parallel Channels Application. ............................................................................. 30  
Changes from Original (August 2014) to Revision A  
Page  
初始发布的完整版数据表 ....................................................................................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
6 Device Comparison Table  
TPS22994  
RON TYPICAL AT 3.3 V (VBIAS = 7.2 V)  
41 m  
(1)  
RISE TIME  
Programmable  
Programmable  
Programmable  
1 A  
(1)  
ON DELAY  
(1) (2)  
QUICK OUTPUT DISCHARGE  
MAXIMUM OUTPUT CURRENT (per channel)  
GPIO ENABLE  
Active High  
–40°C to 85°C  
OPERATING TEMP  
(1) See Application Information section.  
(2) This feature discharges output of the switch to GND through an internal resistor, preventing the output from floating. See Application  
information section.  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
7 Pin Configuration and Functions  
Bottom View  
Top View  
11  
12  
13  
14  
15  
15  
14  
13  
12  
11  
10  
9
16  
17  
18  
ON1  
ON2  
ADD2  
SCL  
10  
9
16  
17  
18  
ADD2  
SCL  
ON1  
ON2  
ON3  
ON4  
ADD1  
Exposed  
Thermal Pad  
Exposed  
Thermal Pad  
ON3  
8
VDD  
SDA  
8
VDD  
SDA  
ON4  
7
6
19  
20  
7
6
19  
20  
ADD1  
ADD3  
ADD3  
5
4
3
2
1
1
2
3
4
5
Pin Functions  
Pin  
NAME  
I/O  
DESCRIPTION  
NO.  
Exposed Thermal  
Pad  
-
Exposed thermal pad for thermal relief. Tie to GND.  
1
2
VOUT2  
VIN2  
O
I
Channel 2 output.  
Channel 2 input.  
Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.7 V to 17.2 V. See  
the Applications and Implementation section.  
3
VBIAS  
I
4
5
VIN1  
I
Channel 1 input.  
Channel 1 output.  
VOUT1  
O
Device address pin. Tie high or low. Do not leave floating. See the Applications and Implementation  
section.  
6
ADD1  
I
7
ON4  
I
I
Active high channel 4 control input. Do not leave floating.  
Active high channel 3 control input. Do not leave floating.  
Active high channel 2 control input. Do not leave floating.  
Active high channel 1 control input. Do not leave floating.  
Channel 4 output.  
8
ON3  
9
ON2  
I
10  
11  
12  
13  
14  
15  
16  
17  
ON1  
I
VOUT4  
VIN4  
GND  
VIN3  
VOUT3  
ADD2  
SCL  
O
I
Channel 4 input.  
-
Device ground.  
I
Channel 3 input.  
O
I
Channel 3 output.  
Device address pin. Tie high or low. See the Applications and Implementation section.  
Serial clock input.  
I
I2C device supply input. Tie this pin to the I2C SCL/SDA pull-up voltage. See the Applications and  
Implementation section.  
18  
VDD  
I
19  
20  
SDA  
I/O  
I
Serial data input/output.  
ADD3  
Device address pin. Tie high or low. See the Applications and Implementation section.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
8 Specifications  
8.1 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
1.0  
1.0  
2.7  
1.62  
0
MAX  
UNIT  
For VBIAS < 4.6 V  
(VBIAS – 1 V)  
Input voltage for VIN1, VIN2, VIN3,  
VIN4  
VINx  
V
For VBIAS 4.6 V  
3.6  
17.2  
3.6  
VBIAS  
VDD  
Supply voltage for VBIAS  
V
V
Supply voltage for VDD  
VADDx  
VONx  
VOUTx  
CINx  
Input voltage for ADD1, ADD2, ADD3  
Input voltage for ON1, ON2, ON3, ON4  
VDD  
5
V
0
V
Output voltage for VOUT1, VOUT2, VOUT3, VOUT4  
Input capacitor on VIN1, VIN2, VIN3, VIN4  
0
1(1)  
VINx  
V
µF  
(1) Refer to application section.  
8.2 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
4
VINx  
Input voltage for VIN1, VIN2, VIN3, VIN4  
Supply voltage for VBIAS  
V
V
V
VBIAS  
20  
4
VOUTx  
Output voltage for VOUT1, VOUT2, VOUT3, VOUT4  
VDD, VSCL  
,
Input voltage for VDD, SCL, SDA, ADD1, ADD2, ADD3  
–0.3  
–0.3  
4
V
VSDA, VADDx  
VONx  
IMAX  
Input voltage for ON1, ON2, ON3, ON4  
Maximum continuous switch current per channel  
Operating free-air temperature(3)  
6
1
V
A
TA  
–40  
85  
°C  
°C  
°C  
TJ  
Maximum junction temperature  
125  
300  
TLEAD  
Maximum lead temperature (10-s soldering time)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)],  
the maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the  
part/package in the application (θJA), as given by the following equation: TA(max) = TJ(max) – (θJA × PD(max)  
)
8.3 Handling Ratings  
MIN  
–65  
MAX  
150  
UNIT  
°C  
V
Tstg  
Storage temperature  
Human-Body Model (HBM)(2)  
Charged-Device Model (CDM)(3)  
–2000  
–-500  
2000  
500  
ESD(1)  
Electrostatic discharge protection  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500V HBM allows safe  
manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250V CDM allows safe  
manufacturing with a standard ESD control process.  
Copyright © 2014, Texas Instruments Incorporated  
5
 
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.4 Thermal Information  
TPS22994  
RUK  
20 PINS  
46  
THERMAL METRIC(1) (2)  
UNIT  
ΘJA  
Junction-to-ambient thermal resistance  
ΘJC(top)  
ΘJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
50  
18  
°C/W  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.7  
ΨJB  
18  
ΘJC(bottom)  
4.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.  
8.5 Electrical Characteristics  
The specification applies over the operating ambient temperature –40°C TA 85°C (Full) (unless otherwise noted). Typical  
values are for TA = 25°C. VBIAS = 7.2 V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES CURRENTS AND LEAKAGES  
VBIAS = 2.7 V  
VBIAS = 3.3 V  
VBIAS = 4.5 V  
VBIAS = 5.2 V  
VBIAS = 7.2 V  
VBIAS = 10.8 V  
VBIAS = 12.6 V  
VBIAS = 17.2 V  
VBIAS = 2.7 V  
VBIAS = 3.3 V  
VBIAS = 4.5 V  
VBIAS = 5.2 V  
VBIAS = 7.2 V  
VBIAS = 10.8 V  
VBIAS = 12.6 V  
VBIAS = 17.2 V  
VDD = 1.8 V  
18.3  
18.9  
19.4  
19.9  
21.1  
21.2  
21.2  
21.2  
8.3  
27.6  
28.6  
29.9  
30.3  
33.6  
34.8  
35.0  
35.7  
16.6  
17.6  
18.9  
19.6  
22.5  
23.6  
23.8  
24.4  
1.1  
IOUT1,2,3,4 = 0 A,  
VIN1,2,3,4 = lower of (VBIAS-1 V) or 3.6  
V,  
VON1,2,3,4 = 3.6 V,  
VDD = 0 V  
Quiescent current for VBIAS  
(all four channels)  
Full  
µA  
IQ, VBIAS  
8.8  
IOUT1,2,3,4 = 0 A,  
VIN1 = lower of (VBIAS-1 V) or 3.6 V,  
VON1 = 3.6 V,  
VIN2,3,4 = VON2,3,4 = 0 V,  
VDD = 0 V  
9.5  
9.9  
Quiescent current for VBIAS  
(single channel)  
Full  
µA  
11.3  
11.7  
11.7  
11.9  
0.6  
IOUT1,2,3,4 = 0 A,  
IQ, VDD  
Quiescent current for VDD  
VIN1,2,3,4 = VON1,2,3,4 = 3.6 V,  
fSCL = 0 Hz  
Full  
Full  
µA  
µA  
VDD = 3.6 V  
VDD = 1.8 V  
VDD = 3.6 V  
1.2  
7.7  
1.9  
IOUT1,2,3,4 = 0 A,  
VIN1,2,3,4 = VON1,2,3,4 = 3.6 V,  
fSCL = 1 MHz  
Average dynamic current for  
VDD during I2C  
communication  
IDYN, VDD  
19.0  
VBIAS = 3.3 V  
VBIAS = 5.2 V  
VBIAS = 7.2 V  
VBIAS = 10.8 V  
VBIAS = 12.6 V  
VBIAS = 17.2 V  
VBIAS = 3.3 V  
VBIAS = 5.2 V  
VBIAS = 7.2 V  
VBIAS = 10.8 V  
VBIAS = 12.6 V  
VBIAS = 17.2 V  
65.0  
66.9  
68.4  
68.5  
68.6  
69.1  
48.0  
58.2  
58.9  
60.2  
60.2  
60.7  
IOUT1,2,3,4 = 0 A,  
VIN1,2,3,4 = lower of (VBIAS-1 V) or 3.6  
V,  
VON1,2,3,4 = 3.6 V,  
fSCL=1 MHz  
Average dynamic current for  
VBIAS (all four channels)  
during I2C communication  
Full  
µA  
IDYN, VBIAS  
IOUT1,2,3,4 = 0 A,  
VIN1,2,3,4 = lower of (VBIAS-1 V) or 3.6  
V,  
VON1,2,3,4 = 3.6 V,  
VIN2,3,4 = VON2,3,4 = 0 V,  
fSCL= 1 MHz  
Average dynamic current for  
VBIAS (single channel) during  
I2C communication  
Full  
µA  
6
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
Electrical Characteristics (continued)  
The specification applies over the operating ambient temperature –40°C TA 85°C (Full) (unless otherwise noted). Typical  
values are for TA = 25°C. VBIAS = 7.2 V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
UNIT  
VON1,2,3,4 = 0 V, VOUT1,2,3,4 = 0 V, VDD = 3.6 V,  
VBIAS = 17.2V  
Shutdown current for VBIAS  
(all four channels)  
ISD, VBIAS  
ISD, VDD  
Full  
6.5  
12.8  
µA  
VON1,2,3,4 = 0 V, VOUT1,2,3,4 = 0 V,  
VDD = 3.6 V  
Shutdown current for VDD  
Shutdown current for VINx  
Full  
Full  
1.2  
1.9  
µA  
µA  
VINx = 3.6 V  
0.005  
0.004  
0.003  
0.003  
0.003  
0.003  
0.002  
0.002  
0.002  
1.0  
1.0  
0.5  
0.5  
0.5  
0.1  
0.2  
0.2  
0.2  
VINx = 3.3 V  
ISD, VINx  
VONx = 0 V, VOUTx = 0 V, VDD = 3.6 V VINx = 1.8 V  
VINx = 1.5 V  
VINx = 1.0 V  
IONx  
IADDx  
ISCL  
ISDA  
Leakage current for ONx  
Leakage current for ADDx  
Leakage current for SCL  
Leakage current for SDA  
VONx = 5 V  
Full  
Full  
Full  
Full  
µA  
µA  
µA  
µA  
VADDx = 3.6 V  
VSCL = 3.6 V  
VSDA = 3.6 V  
RESISTANCE CHARACTERISTICS  
25°C  
Full  
40.6  
40.5  
40.5  
40.5  
40.5  
60.4  
44.7  
41.5  
40.8  
40.6  
114.2  
64.2  
55.4  
48.0  
50.3  
58.5  
50.2  
58.5  
50.1  
58.5  
50.1  
58.5  
49.9  
58.5  
64.0  
71.0  
53.1  
65.2  
50.3  
60.9  
50.3  
60.5  
50.1  
60.3  
166.0  
175.0  
85.9  
94.4  
69.5  
81.0  
57.9  
70.0  
VIN = 3.3 V  
VIN = 2.5 V  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
25°C  
Full  
25°C  
Full  
VBIAS = 7.2 V, IOUT = –200 mA  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.0 V  
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.0 V  
VIN = 2.3 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.0 V  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
RON  
On-state resistance  
25°C  
Full  
VBIAS = 5.2 V, IOUT = –200 mA  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
VBIAS = 3.3 V, IOUT = –200 mA  
25°C  
Full  
25°C  
Full  
VIN = 3.3 V, VON = 0 V, IOUT = 1 mA, QOD[1:0] = 00  
VIN = 3.3 V, VON = 0 V, IOUT = 1 mA, QOD[1:0] = 01  
VIN = 3.3 V, VON = 0 V, IOUT = 1 mA, QOD[1:0] = 10  
VIN = 3.3 V, VON = 0 V, IOUT = 1 mA, QOD[1:0] = 11  
25°C  
25°C  
25°C  
93  
470  
940  
RPD  
Output pulldown resistance  
No  
QOD  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
The specification applies over the operating ambient temperature –40°C TA 85°C (Full) (unless otherwise noted). Typical  
values are for TA = 25°C. VBIAS = 7.2 V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
UNIT  
THRESHOLD CHARACTERISTICS  
High-level input voltage for  
ADDx  
0.7 ×  
VDD  
VIH, ADDx  
VIL, ADDx  
VIH, ONx  
VIL, ONx  
Full  
Full  
Full  
Full  
V
V
V
V
Low-level input voltage for  
ADDx  
0.3×VDD  
High-level input voltage for  
ONx  
1.05  
0
5
Low-level input voltage for  
ONx  
0.4  
VBIAS = 2.7 V  
VBIAS = 5.2 V  
VBIAS = 7.2 V  
VBIAS = 10.8 V  
VBIAS = 12.6 V  
VBIAS = 17.2 V  
107  
105  
107  
108  
109  
108  
VHYS, ONx  
Hysteresis for ONx  
25°C  
mV  
I2C CHARACTERISTICS  
(1)  
fSCL  
Clock frequency  
Full  
Full  
1
MHz  
ns  
(1)  
(1)  
tSU, SDA  
tHD, SDA  
IOL, SDA  
Setup time for SDA  
Hold time for SDA  
fSCL = 1 MHz (fast mode plus)  
VOL,SDA = 0.4 V  
50  
0
Full  
ns  
SDA output low current  
25°C  
8
mA  
High-level input voltage for  
SDA  
0.7 ×  
VDD  
VIH, SDA  
VIH, SCL  
VIL, SDA  
VIL, SCL  
Full  
Full  
Full  
Full  
VDD  
VDD  
V
V
V
V
High-level input voltage for  
SCL  
0.7 ×  
VDD  
Low-level input voltage for  
SDA  
0
0
0.3×VDD  
0.3×VDD  
Low-level input voltage for  
SCL  
(1) Parameter verified by design.  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
8.6 Switching Characteristics, VBIAS = 7.2 V  
Values below are typical values at TA = 25°C. VBIAS = 7.2V (unless otherwise noted).  
VIN VOLTAGE  
PARAMETER  
TEST CONDITION  
UNIT  
3.3 V  
10.2  
220  
1.8 V  
1.5 V  
9.9  
1.0 V  
9.9  
Slew rate[4:2] = 000  
Slew rate[4:2] = 001  
Slew rate[4:2] = 010  
Slew rate[4:2] = 011  
Slew rate[4:2] = 100  
10.0  
159  
274  
486  
967  
VBIAS = 7.2 V,  
RL= 10 Ω, CL= 0.1 µF,  
QOD[1:0] = 10,  
147  
252  
446  
888  
124  
213  
377  
749  
tON  
tOFF  
tR  
VOUTx turn-on time  
VOUTx turn-off time  
VOUTx rise time  
380  
µs  
µs  
µs  
674  
ON-delay[6:5] = 00  
1334  
VBIAS = 7.2 V, RL=10 Ω, CL=0.1 µF, QOD[1:0] = 10, ON-delay[6:5] =  
2.5  
2.5  
2.5  
2.5  
00  
Slew rate[4:2] = 000  
Slew rate[4:2] = 001  
1.4  
271  
471  
835  
1674  
0.9  
178  
309  
549  
1096  
0.8  
158  
275  
489  
976  
0.7  
125  
218  
390  
774  
VBIAS = 7.2 V, RL= 10 Ω, CL = 0.1 µF,  
QOD[1:0] = 10, ON-delay[6:5] = 00  
Slew rate[4:2] = 010  
Slew rate[4:2] = 011  
Slew rate[4:2] = 100  
VBIAS = 7.2 V, RL= 10 Ω, CL= 0.1 µF, QOD[1:0] = 10, ON-delay[6:5] =  
00  
tF  
VOUTx fall time  
2.3  
2.3  
2.3  
2.3  
µs  
µs  
ON delay[4:2] = 00  
9.6  
87  
9.6  
87  
9.6  
87  
9.6  
87  
ON delay[4:2] = 01  
ON delay[4:2] = 10  
ON delay[4:2] = 11  
VBIAS = 7.2 V, RL= 10 Ω, CL= 0.1 µF,  
QOD[1:0] = 10, Slew rate[6:5] = 000  
tD  
VOUTx ON delay time  
295  
846  
295  
846  
295  
846  
295  
846  
8.7 Switching Characteristics, VBIAS = 3.3 V  
Values below are typical values at TA = 25°C. VBIAS = 3.3 V (unless otherwise noted).  
VIN VOLTAGE  
1.5V  
8.3  
PARAMETER  
TEST CONDITION  
UNIT  
1.8V  
8.4  
1.0V  
Slew rate[4:2] = 000  
Slew rate[4:2] = 001  
Slew rate[4:2] = 010  
Slew rate[4:2] = 011  
Slew rate[4:2] = 100  
8.1  
129  
221  
389  
773  
2.8  
VBIAS = 3.3 V,  
RL=10 Ω, CL=0.1 µF,  
QOD[1:0] = 10,  
165  
283  
502  
997  
2.5  
152  
tON  
tOFF  
tR  
VOUTx turn-on time  
VOUTx turn-off time  
VOUTx rise time  
260  
µs  
µs  
µs  
460  
ON-delay[6:5] = 00  
915  
VBIAS = 3.3 V, RL=10 Ω, CL=0.1 µF, QOD[1:0] = 10, ON-delay[6:5] = 00  
Slew rate[4:2] = 000  
2.6  
2.8  
2.4  
1.8  
Slew rate[4:2] = 001  
184  
318  
565  
1126  
2.2  
163  
128  
224  
398  
791  
2.1  
VBIAS = 3.3 V, RL=10 Ω, CL=0.1 µF,  
QOD[1:0] = 10, ON-delay[6:5] = 00  
Slew rate[4:2] = 010  
283  
Slew rate[4:2] = 011  
Slew rate[4:2] = 100  
501  
1002  
2.2  
tF  
VOUTx fall time  
VBIAS = 3.3 V, RL=10 Ω, CL= 0.1 µF, QOD[1:0] = 10, ON-delay[6:5] = 00  
µs  
µs  
ON delay[4:2] = 00  
7.3  
7.3  
7.3  
ON delay[4:2] = 01  
ON delay[4:2] = 10  
ON delay[4:2] = 11  
89  
89  
89  
VBIAS = 3.3 V, RL=10 Ω, CL=0.1 µF,  
QOD[1:0] = 10, Slew rate[6:5] = 000  
tD  
VOUTx ON delay time  
296  
846  
296  
296  
846  
846  
Copyright © 2014, Texas Instruments Incorporated  
9
 
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
VIN  
VOUT  
CIN = 1 µF  
ON  
+
-
ON  
CL  
(A)  
RL  
OFF  
VBIAS  
GND  
TPS22994  
GND  
GND  
Single channel shown for clarity.  
A. Rise and fall times of the control signal is 100 ns.  
B. All switching measurements are done using GPIO control only.  
Figure 1. Test Circuit  
VON  
50%  
50%  
tF  
tOFF  
tR  
VOUT  
tON  
90%  
90%  
VOUT  
50%  
50%  
10%  
10%  
10%  
tD  
Figure 2. tON/tOFF Waveforms  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
8.8 Typical Characteristics  
1.5  
1.5  
1.4  
1.3  
1.2  
1.1  
1
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1.6 1.8  
2
2.2 2.4 2.6 2.8  
VDD (V)  
3
3.2 3.4 3.6  
1.6 1.8  
2
2.2 2.4 2.6 2.8  
VDD (V)  
3
3.2 3.4 3.6  
D001  
D002  
VBIAS = 7.2 V  
VINx = 3.6 V  
VBIAS = 7.2 V  
VINx = 3.6 V  
Figure 3. IQ,VDD vs. VDD  
Figure 4. ISD,VDD vs. VDD  
24  
22  
20  
18  
16  
14  
14  
13  
12  
11  
10  
9
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
8
7
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7  
VBIAS (V)  
VBIAS (V)  
D003  
D004  
VINx = lower of  
VDD = 3.6 V  
VINx = lower of  
VDD = 3.6 V  
(VBIAS-1V) or 3.6 V  
(VBIAS-1V) or 3.6 V  
Figure 5. IQ,VBIAS vs. VBIAS (all channels)  
Figure 6. IQ,VBIAS vs. VBIAS (single channel)  
8
7.5  
7
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
-40°C  
25°C  
85°C  
6.5  
6
5.5  
5
-40°C  
25°C  
85°C  
4.5  
4
2.7  
4.7  
6.7  
8.7  
VBIAS (V)  
10.7  
12.7  
14.7  
16.7  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VIN (V)  
3
3.2 3.4 3.6  
D005  
D006  
VINx = lower of  
VDD = 3.6 V  
VBIAS = 7.2 V  
VDD = 3.6 V  
(VBIAS-1V) or 3.6 V  
Figure 8. ISD,VIN vs. VIN  
Figure 7. ISD,VBIAS vs. VBIAS  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
48  
50  
47  
44  
41  
38  
35  
32  
29  
26  
23  
44  
40  
36  
32  
28  
-40qC  
25qC  
85qC  
-40°C  
25°C  
85°C  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
3.4 3.6  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
3.4 3.6  
VIN (V)  
VIN (V)  
D007  
D008  
VBIAS = 7.2 V  
IOUT = 200 mA  
VBIAS = 7.2 V  
IOUT = 1 A  
Figure 9. RON vs. VIN  
Figure 10. RON vs. VIN (single channel)  
170  
0.825  
0.8  
VBIAS = 2.7V  
VBIAS = 3.3V  
VBIAS = 4.5V  
VBIAS = 5.2V  
VBIAS = 7.2V  
VBIAS = 10.8V  
VBIAS = 12.6V  
VBIAS = 14V  
VIL,ONx  
VIH,ONx  
150  
130  
110  
90  
VBIAS = 17.2V  
0.775  
0.75  
0.725  
0.7  
70  
0.675  
0.65  
0.625  
50  
30  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VIN (V)  
3
3.2 3.4 3.6  
2.7  
4.7  
6.7  
8.7  
VBIAS (V)  
10.7  
12.7  
14.7  
16.7  
D009  
D010-011  
TA = 25°C  
VINx = lower of  
TA = 25°C  
(VBIAS-1 V) or 3.6 V  
Figure 11. RON vs. VIN  
Figure 12. VIH/VIL for ONx vs. VBIAS  
1200  
1000  
800  
600  
400  
200  
0
0.15  
QOD = 00  
QOD = 01  
QOD = 10  
0.14  
0.13  
0.12  
0.11  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7  
VBIAS (V)  
VBIAS (V)  
D012  
D013  
VINx = lower of  
TA = 25°C  
TA = 25°C  
(VBIAS-1 V) or 3.6 V  
Figure 14. RPD vs. VBIAS  
Figure 13. VHYS, ONx vs. VBIAS  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
Typical Characteristics (continued)  
1.8  
3
2.8  
2.6  
2.4  
2.2  
2
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
1.6  
1.4  
1.2  
1
0.8  
0.6  
1.8  
1
1.3  
1.6  
1.9  
2.2  
VIN (V)  
2.5  
2.8  
3.1  
3.4 3.6  
1
1.1  
1.2  
1.2  
1.2  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.7  
1.7  
1.7  
1.8  
D014a  
D014b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
000  
Slew rate[4:2] =  
000  
Figure 15. tR vs. VIN  
Figure 16. tR vs. VIN  
350  
200  
-40°C  
25°C  
-40°C  
25°C  
85°C  
325  
190  
85°C  
300  
180  
275  
250  
225  
200  
175  
150  
125  
100  
170  
160  
150  
140  
130  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VIN (V)  
3
3.2 3.4 3.6  
1
1.1  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.8  
D015a  
D0145b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
001  
Slew rate[4:2] =  
001  
Figure 17. tR vs. VIN  
Figure 18. tR vs. VIN  
520  
340  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
480  
440  
400  
360  
320  
280  
240  
200  
320  
300  
280  
260  
240  
220  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
3.4 3.6  
1
1.1  
1.3  
1.4  
1.5  
1.6  
1.8  
VIN (V)  
VIN (V)  
D016a  
D0164b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
010  
Slew rate[4:2] =  
010  
Figure 19. tR vs. VIN  
Figure 20. tR vs. VIN  
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
960  
600  
560  
520  
480  
440  
400  
360  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
880  
800  
720  
640  
560  
480  
400  
320  
1
1.3  
1.6  
1.9  
2.2  
VIN (V)  
2.5  
2.8  
3.1  
3.4 3.6  
1
1.1  
1.2  
1.2  
6.7  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.7  
1.8  
D017a  
D0174b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
011  
Slew rate[4:2] =  
011  
Figure 21. tR vs. VIN  
Figure 22. tR vs. VIN  
1920  
-40°C  
1200  
-40°C  
25°C  
1120  
1040  
960  
25°C  
85°C  
1760  
1600  
1440  
1280  
1120  
960  
85°C  
880  
800  
800  
640  
720  
1
1.3  
1.6  
1.9  
2.2  
VIN (V)  
2.5  
2.8  
3.1  
3.4 3.6  
1
1.1  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.7  
1.8  
D018a  
D0184b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
100  
Slew rate[4:2] =  
100  
Figure 23. tR vs. VIN  
Figure 24. tR vs. VIN  
14  
12  
10  
8
94  
92  
90  
88  
86  
84  
82  
80  
6
4
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
2
0
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7  
2.7  
4.7  
8.7  
10.7  
12.7  
14.7  
16.7  
VBIAS (V)  
VBIAS (V)  
D019  
D020  
ON-delay[6:5] = 00  
VDD = 3.6 V  
RL = 10 Ω  
ON-delay[6:5] = 01  
VDD = 3.6 V  
RL = 10 Ω  
Figure 25. tD vs. VBIAS  
Figure 26. tD vs. VBIAS  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
Typical Characteristics (continued)  
310  
306  
302  
298  
294  
290  
286  
282  
278  
274  
270  
880  
870  
860  
850  
840  
830  
820  
810  
800  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7  
VBIAS (V)  
VBIAS (V)  
D021  
D022  
ON-delay[6:5] = 10  
V
VDD = 3.6 V  
RL = 10 Ω  
ON-delay[6:5] = 11  
VDD = 3.6 V  
RL = 10 Ω  
Figure 28. tD vs. VBIAS  
Figure 27. tD vs. VBIAS  
14  
10.5  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
10  
13  
12  
11  
10  
9
9.5  
9
8.5  
8
7.5  
7
8
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
3.4 3.6  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
VIN (V)  
VIN (V)  
D023a  
D023b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
000  
Slew rate[4:2] =  
000  
Figure 29. tON vs. VIN  
Figure 30. tON vs. VIN  
275  
190  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
180  
250  
225  
200  
175  
150  
125  
170  
160  
150  
140  
130  
120  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VIN (V)  
3
3.2 3.4 3.6  
1
1.1  
1.2  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.7  
1.8  
D024a  
D024b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
001  
Slew rate[4:2] =  
001  
Figure 31. tON vs. VIN  
Figure 32. tON vs. VIN  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
275  
190  
180  
170  
160  
150  
140  
130  
120  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
250  
225  
200  
175  
150  
125  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VIN (V)  
3
3.2 3.4 3.6  
1
1.1  
1.2  
1.2  
1.2  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.7  
1.8  
D024a  
D024b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
010  
Slew rate[4:2] =  
010  
Figure 33. tON vs. VIN  
Figure 34. tON vs. VIN  
800  
560  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
750  
700  
650  
600  
550  
500  
450  
400  
350  
540  
520  
500  
480  
460  
440  
420  
400  
380  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VIN (V)  
3
3.2 3.4 3.6  
1
1.1  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.7  
1.8  
D026a  
D026b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
011  
Slew rate[4:2] =  
011  
Figure 35. tON vs. VIN  
Figure 36. tON vs. VIN  
1560  
-40°C  
1125  
-40°C  
25°C  
85°C  
1100  
1075  
1050  
1025  
1000  
975  
950  
925  
900  
875  
25°C  
1440  
85°C  
1320  
1200  
1080  
960  
850  
825  
800  
775  
840  
720  
750  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VIN (V)  
3
3.2 3.4 3.6  
1
1.1  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.7  
1.8  
D027a  
D027b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Slew rate[4:2] =  
100  
Slew rate[4:2] =  
100  
Figure 37. tON vs. VIN  
Figure 38. tON vs. VIN  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
Typical Characteristics (continued)  
4
4
3.5  
3
-40°C  
25°C  
-40°C  
25°C  
85°C  
3.5  
85°C  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
VIN (V)  
3
3.2 3.4 3.6  
1
1.1  
1.2  
1.3  
1.4  
VIN (V)  
1.5  
1.6  
1.7  
1.8  
D028a  
D028b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Figure 39. tF vs. VIN  
Figure 40. tF vs. VIN  
4
3.5  
3
4
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0.5  
0
0.5  
0
1
1.3  
1.6  
1.9  
2.2  
VIN (V)  
2.5  
2.8  
3.1  
3.4 3.6  
1
1.08 1.16 1.24 1.32 1.4 1.48 1.56 1.64 1.72 1.8  
VIN (V)  
D029a  
D029b  
VBIAS = 7.2 V  
VDD = 3.6 V  
RL = 10 Ω  
VBIAS = 3.3 V  
VDD = 3.6 V  
RL = 10 Ω  
Figure 41. tOFF vs. VIN  
Figure 42. tOFF vs. VIN  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS22994 is a GPIO controllable and I2C programmable, quad-channel load switch. The device comes in a  
20-pin QFN package and is designed to handle up to 3.6 V and 1 A per channel (per VINx/VOUTx). The VBIAS  
pin of the device is designed to interface directly with battery voltages or adapter input voltages as high as 17.2  
V. To increase efficiency during standby power, the device implements each channel with an N-channel  
MOSFET without the use of a chargepump. This allows the quiescent current (IQ,VBIAS) to be much lower than  
traditional GPIO-based load switches, thus increasing efficiency during standby.  
The TPS22994 can be programmed via standard I2C commands. This allows the user to select between 5 slew  
rates, 4 on-delays, and 4 quick output discharge (QOD) options. The combination of these options allows the  
user to program the power sequencing for downstream modules via software. Each individual channel can also  
be controlled (enabling and disabling channels only) via GPIO when I2C communication is not present. The  
TPS22994 contains a special function called SwitchALLTM that allows multiple devices (either the TPS22993 or  
TPS22994) to be enabled or disabled synchronously via a single I2C command, allowing the user to switch  
system power states synchronously.  
9.2 Functional Block Diagram  
Power supply  
and bandgap  
VBIAS  
VIN1  
Driver  
VOUT1  
PD_EN  
ON1  
ON2  
ON3  
ON4  
VIN2  
GPIO ON  
Buffer  
Driver  
VOUT2  
PD_EN  
ADD1  
ADD2  
ADD3  
Address  
Buffers &  
Level Shifters  
I2C  
Digital Control  
VIN3  
Driver  
VDD  
VOUT3  
SCL  
SDA  
I2C  
PD_EN  
SCL/SDA  
Buffers &  
Level Shifters  
VIN4  
Driver  
VOUT4  
PD_EN  
* PD_EN = Pulldown Enable  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
9.3 Feature Description  
9.3.1 Operating Frequency  
The TPS22994 is designed to be compatible with fast-mode plus and operate up to 1 MHz clock frequency for  
bus communication. The device is also compatible with standard-mode (100 kHz) and fast-mode (400 kHz). This  
device can reside on the same bus as high-speed mode (3.4MHz) devices, but the device is not designed to for  
I2C commands for frequencies greater than 1 MHz. See table below for characteristics of the fast-mode plus,  
fast-mode, and standard-mode bus speeds.  
Table 1. I2C Interface Timing Requirements(1)  
STANDARD  
MODE  
FAST MODE  
PLUS (FM+)  
I2C BUS  
FAST MODE  
I2C BUS  
I2C BUS  
PARAMETER  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
I2C serial data setup time  
I2C serial data hold time  
100  
50  
400  
1000  
kHz  
μs  
μs  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
4
0.6  
1.3  
0.26  
0.5  
4.7  
50  
50  
tsds  
tsdh  
ticr  
250  
0
100  
0
50  
0
I2C input rise time  
1000  
20  
300  
120  
tbuf  
tsts  
tsth  
tsps  
I2C bus free time between Stop and Start  
I2C Start or repeater Start condition setup time  
I2C Start or repeater Start condition hold time  
I2C Stop condition setup time  
4.7  
4.7  
4
1.3  
0.6  
0.6  
0.6  
0.3  
0.5  
0.26  
0.26  
0.26  
4
tvd(data) Valid data time; SCL low to SDA output valid  
3.45  
3.45  
0.9  
0.9  
0.45  
0.45  
Valid data time of ACK condition; ACK signal from SCL  
low to SDA (out) low  
tvd(ack)  
0.3  
μs  
(1) over operating free-air temperature range (unless otherwise noted)  
Copyright © 2014, Texas Instruments Incorporated  
19  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
9.3.2 SDA/SCL Pin Configuration  
The SDA and SCL pins of the device operate use an open-drain configuration, and therefore, need pull up  
resistors to communicate on the I2C bus. The graph below shows recommended values for max pull-up resistors  
(RP) and bus capacitances (Cb) to ensure proper bus communications. The SDA and SCL pins should be pulled  
up to VDD through an appropriately sized RP based on the graphs below.  
9.3.3 Address (ADDx) Pin Configuration  
The TPS22994 can be configured with an unique I2C slave addresses by using the ADDx pins. There are 3  
ADDx pins that can be tied high to VDD or low to GND (independent of each other) to get up to 7 different slave  
addresses. The ADDx pins should be tied to GND if the I2C functionality of the device is not to be used. External  
pull-up resistors for the ADDx are optional as the ADDx inputs are high impedance. The following table shows  
the ADDx pin tie-offs with their associated slave addresses (assuming an eight bit word, where the LSB is the  
read/write bit and the device address bits are the 7 MSB bits) :  
Hex Address  
E0/E1  
ADD3  
GND  
GND  
GND  
GND  
VDD  
VDD  
VDD  
ADD2  
ADD1  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
E2/E3  
GND  
E4/E5  
VDD  
E6/E7  
VDD  
E8/E9  
GND  
EA/EB  
EC/ED  
GND  
VDD  
Invalid unique device address.  
EE  
This address is the SwitchALLTM address.  
9.3.4 On-Delay Control  
Using the I2C interface, the configuration register for each channel can be set for different ON delays for power  
sequencing. The typical options for delay are as follows (see Switching Characteristics, VBIAS = 7.2 V table):  
00 = 11 µs delay (default register value)  
01 = 105 µs delay  
10 = 330 µs delay  
11 = 950 µs delay  
It is not recommended to change the delay value for the duration of the delay that is programmed when the  
channel is enabled (except for ON-delay setting of '00' which requires a minimum of 100µs wait time before  
changing the setting). This could result in erratic behavior where the output could toggle unintentionally but would  
eventually recover by the end of the delay time programmed at the time of channel enable.  
9.3.5 Slew Rate Control  
Using the I2C interface, the configuration register for each channel can be set for different slew rates for inrush  
current control and power sequencing. The typical options for slew rate are as follows (see Switching  
Characteristics table for VOUTx rise times):  
20  
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
000 = 1 µs/V  
001 = 150 µs/V  
010 = 250 µs/V  
011 = 460 µs/V (default register value)  
100 = 890 µs/V  
101 = invalid slew rate  
110 = invalid slew rate  
111 = reserved  
9.3.6 Quick Output Discharge (QOD) Control  
Using the I2C interface, the configuration register for each channel can be set for different output discharge  
resistors. The typical options for QOD are as follows (see Electrical Characteristics table):  
00 = 110 Ω  
01 = 490 Ω  
10 = 951 Ω (default register value)  
11 = No QOD (high impedance)  
9.3.7 Mode Registers  
Using the I2C interface, the mode registers can be programmed to the desired on/off status for each channel.  
The contents of these registers are copied over to the control registers when a SwitchALL™ command is issued,  
allowing all channels of the device to transition to their desired output states synchronously. See the I2C Protocol  
section and the Application Scenario section for more information on how to use the mode registers in  
conjunction with the SwitchALLTM command.  
9.3.8 SwitchALL™ Command  
I2C controlled channels can respond to a common slave address. This feature allows multiple load switches on  
the same I2C bus to respond simultaneously. The SwitchALL™ address is EEh. During a SwitchALL™  
command, the lower four bits (bits 0 through 3) of the mode register is copied to the lower four bits (bits 0  
through 3) of the control register. The mode register to be invoked is referenced in the body of the SwitchALL™  
command. The structure of the SwitchALL™ command is as follows (as shown in Figure 43):  
<start><SwitchALL™ addr><mode addr><stop>. See the I2C Protocol section and the Application Scenario  
section for more information on how to use the SwitchALLTM command in conjunction with the mode registers.  
SCL  
SwitchALLTM Address  
Mode Register Address  
SDA ST 1  
1
1
0
1
1
1
0
A D7 D6 D5 D4 D3 D2 D1 D0 A SP  
Start  
W/R  
Ack  
from  
slave  
Ack. from slave  
Figure 43. Composition of SwitchALL™ Command  
9.3.9 VDD Supply For I2C Operation  
Stop  
The SDA and SCL pins of the device must be pulled up to the VDD voltage of the device for proper I2C bus  
communication. See Recommended Operating Conditions for VDD operating range.  
Copyright © 2014, Texas Instruments Incorporated  
21  
 
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
9.3.10 Input Capacitor (Optional)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic  
capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce  
the voltage drop during high-current application. When switching heavy loads, it is recommended to have an  
input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop. For the fastest  
slew rate setting of the device, a CIN to CL ratio of at least 100 to 1 is recommended to avoid excessive voltage  
drop.  
9.3.11 Output Capacitor (Optional)  
Due to the integrated body diode of the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of at least 10 to 1 is recommended for minimizing  
VIN dip caused by inrush currents during startup. For the fastest slew rate setting of the device, a CIN to CL ratio  
of at least 100 to 1 is recommended to minimize VIN dip caused by inrush currents during startup.  
9.3.12 I2C Protocol  
The following section will cover the standard I2C protocol used in the TPS22994. In the I2C protocol, the following  
basic blocks are present in every command (except for the SwitchALLTM command):  
Start/stop bit – marks the beginning and end of each command.  
Slave address – the unique address of the slave device.  
Sub address – this includes the register address and the auto-increment bit.  
Data byte – data being written to the register. Eight bits must always be transferred even if a single bit is  
being written or read.  
Auto-increment bit – setting this bit to ‘1’ turns on the auto-increment functionality; setting this bit to ‘0’ turns  
off the auto-increment functionality.  
Write/read bit – this bit signifies if the command being sent will result in reading from a register or writing to a  
register. Setting this bit to ‘0’ signifies a write, and setting this bit to ‘1’ signifies a read.  
Acknowledge bit – this bit signifies if the master or slave has received the preceding data byte.  
9.3.12.1 Start and Stop Bit  
In the I2C protocol, all commands contain a START bit and a STOP bit. A START bit, defined by high to low  
transition on the SDA line while SCL is high, marks the beginning of a command. A STOP bit, defined by low to  
high transition on the SDA line while SCL is high, marks the end of a command. The START and STOP bits are  
generated by the master device on the I2C bus. The START bit indicates to other devices that the bus is busy,  
and some time after the STOP bit the bus is assumed to be free.  
9.3.12.2 Auto-increment Bit  
The auto-increment feature in the I2C protocol allows users to read from and write to consecutive registers in  
fewer clock cycles. Since the register addresses are consecutive, this eliminates the need to resend the register  
address. The I2C core of the device automatically increments the register address pointer by one when the auto-  
increment bit is set to ‘1’. When this bit is set to ‘0’, the auto-increment functionality is disabled.  
9.3.12.3 Write Command  
During the write command, the write/read bit is set to ‘0’, signifying that the register in question will be written to.  
Figure 44 the composition of the write protocol to a single register:  
SCL  
Slave Address  
Sub Address  
Data Byte  
Data Byte  
SDA ST A6 A5 A4 A3 A2 A1 A0  
0
A
0
0
0
0
0
0
0
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
D7 D6 D5 D4 D3 D2 D1 D0 A SP  
Start  
W/R  
Ack. from slave  
Auto-Inc.  
Ack  
from  
slave  
Data to Register N  
Ack  
from  
slave  
Data to Register N  
Ack Stop  
from  
slave  
Register Address N  
Figure 44. Data Write to a Single Register  
22  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
Number of clock cycles for single register write: 29  
If multiple consecutive registers must be written to, a short-hand version of the write command can be used.  
Using the auto-increment functionality of I2C, the device will increment the register address after each byte.  
Figure 45 shows the composition of the write protocol to multiple consecutive registers:  
SCL  
Slave Address  
Sub Address  
Data Byte  
Data Byte  
SDA ST A6 A5 A4 A3 A2 A1 A0  
0
A
1
0
0
0
0
0
0
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
D7 D6 D5 D4 D3 D2 D1 D0 A  
Start  
W/R  
Ack. from slave  
Auto-Inc.  
Ack  
from  
slave  
Data to Register N  
Ack  
from  
slave  
Data to Register N+1 Ack  
from  
slave  
Register Address N  
Figure 45. Data Write to Consecutive Registers  
Number of clock cycles for consecutive register write: 20 + (Number of registers) x 9  
The write command is always ended with a STOP bit after the desired registers have been written to. If multiple  
non-consecutive registers must be written to, then the format in Figure 44 must be followed.  
9.3.12.4 Read Command  
During the read command, the write/read bit is set to ‘1’, signifying that the register in question will be read from.  
However, a read protocol includes a “dummy” write sequence to ensure that the memory pointer in the device is  
pointing to the correct register that will be read. Failure to precede the read command with a write command may  
result in a read from a random register. Figure 46 shows the composition of the read protocol to a single register:  
SCL  
Slave Address  
Sub Address  
Slave Address  
Data Byte  
SDA ST A6 A5 A4 A3 A2 A1 A0  
0
A
0
0
0
0
0
0
0
0
A
RS A6 A5 A4 A3 A2 A1 A0  
1
A
D7 D6 D5 D4 D3 D2 D1 D0 NA SP  
Start  
W/R  
Ack. from slave  
Auto-Inc.  
Ack Re-Start  
from  
slave  
W/R  
Data from Register N  
Stop  
Register Address  
Ack. from slave  
No Ack. from master (message ends)  
Continued  
Figure 46. Data Read to a Single Register  
Number of clock cycles for single register read: 39  
If multiple registers must be read from, a short-hand version of the read command can be used. Using the auto-  
increment functionality of I2C, the device will increment the register address after each byte. Figure 47 shows the  
composition of the read protocol to multiple consecutive registers:  
SCL  
Slave Address  
Sub Address  
Slave Address  
Data Byte  
SDA ST A6 A5 A4 A3 A2 A1 A0  
0
A
1
0
0
0
0
0
0
0
A RS A6 A5 A4 A3 A2 A1 A0  
1
A
D7 D6 D5 D4 D3 D2 D1 D0  
Start  
W/R  
Ack. from slave  
Auto-Inc.  
Ack Re-Start  
from  
slave  
W/R  
Ack. from slave  
Data from Register N  
Register Address  
Continued  
Data Byte  
Data Byte  
A
D7 D6 D5 D4 D3 D2 D1 D0  
Data from Register N+1  
A D7 D6 D5 D4 D3 D2 D1 D0 NA SP  
Data from Register N+2  
Stop  
Ack. from master  
Ack. from master  
No Ack. from master (Message ends)  
Figure 47. Data Read to Consecutive Registers  
Number of clock cycles for consecutive register write: 30 + (Number of registers) x 9  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
 
 
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
The read command is always ended with a STOP bit after the desired registers have been read from. If multiple  
non-consecutive registers must be read from, then the format in Figure 46 must be followed.  
9.3.12.5 SwitchALLTM Command  
The SwitchALLTM command allows multiple devices in the same I2C bus to respond synchronously to the same  
command from the master. Every TPS22994 device has a shared address which allows for multiple devices to  
respond or execute a pre-determined action with a single command. Figure 48 shows the composition of the  
SwitchALLTM command:  
SCL  
SwitchALLTM Address  
Mode Register Address  
SDA ST 1  
Start  
1
1
0
1
1
1
0
A D7 D6 D5 D4 D3 D2 D1 D0 A SP  
W/R  
Ack  
from  
slave  
Ack. from slave  
Stop  
Figure 48. SwitchALLTM Command Structure  
Number of clock cycles for a SwitchALLTM command: 20  
9.4 Device Functional Modes  
9.4.1 I2C Control  
When power is applied to VBIAS, the device comes up in its default mode of GPIO operation where the channel  
outputs can be controlled solely via the ON pins. At any time, if SDA and SCL are present and valid, the device  
can be configured to be controlled via I2C (if in GPIO control) or GPIO (if in I2C control).  
The control register (address 05h) can be configured for GPIO or I2C enable on a per channel basis.  
9.4.2 GPIO Control  
There are four ON pins to enable/disable the four channels. Each ON pin controls the state of the switch by  
default upon power up. Asserting ON high enables the switch. ON is active high and has a low threshold, making  
it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It  
can be used with any microcontroller with 1.2 V or higher voltage GPIO.  
24  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
9.5 Register Map  
Configuration registers (default register values shown below)  
Channel 1 configuration register (Address: 01h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QUICK OUTPUT  
DISCHARGE  
DESCRIPTION  
DEFAULT  
X
ON-DELAY  
SLEW RATE  
1
X
0
0
0
1
1
0
Channel 2 configuration register (Address: 02h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QUICK OUTPUT  
DISCHARGE  
DESCRIPTION  
DEFAULT  
X
ON-DELAY  
SLEW RATE  
1
X
0
0
0
1
1
0
Channel 3 configuration register (Address: 03h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QUICK OUTPUT  
DISCHARGE  
DESCRIPTION  
DEFAULT  
X
ON-DELAY  
SLEW RATE  
1
X
0
0
0
1
1
0
Channel 4 configuration register (Address: 04h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QUICK OUTPUT  
DISCHARGE  
DESCRIPTION  
DEFAULT  
X
ON-DELAY  
SLEW RATE  
1
X
0
0
0
1
1
0
Control register (default register values shown below)  
Control register (Address: 05h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GPIO/I2C ch GPIO/I2C ch GPIO/I2C ch GPIO/I2C ch ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
4
3
2
1
0
0
0
0
0
0
0
0
Mode registers (default register values shown below)  
Mode1 (Address: 06h)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode2 (Address: 07h)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode3 (Address: 08h)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Copyright © 2014, Texas Instruments Incorporated  
25  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Mode4 (Address: 09h)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
0
3
0
2
0
1
0
X
X
X
X
Mode5 (Address: 0Ah)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode6 (Address: 0Bh)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode7 (Address: 0Ch)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode8 (Address: 0Dh)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode9 (Address: 0Eh)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode10 (Address: 0Fh)  
BIT  
B7  
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
X
X
4
3
2
1
X
X
X
0
0
0
0
Mode11 (Address: 10h)  
BIT  
B7  
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
X
4
3
2
1
X
X
X
X
0
0
0
0
Mode12 (Address: 11h)  
BIT  
B7  
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
X
4
3
2
1
X
X
X
X
0
0
0
0
26  
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
This section will cover applications of I2C in the TPS22994. Registers discussed here are specific to the  
TPS22994.  
10.1.1 Input Capacitor (Optional)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic  
capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce  
the voltage drop during high-current application. When switching heavy loads, it is recommended to have an  
input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop. For the fastest  
slew rate setting of the device, a CIN to CL ratio of at least 100 to 1 is recommended to avoid excessive voltage  
drop.  
10.1.2 Output Capacitor (Optional)  
Due to the integrated body diode of the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of at least 10 to 1 is recommended for minimizing  
VIN dip caused by inrush currents during startup. For the fastest slew rate setting of the device, a CIN to CL ratio  
of at least 100 to 1 is recommended to minimize VIN dip caused by inrush currents during startup.  
10.1.3 Switch from GPIO Control to I2C Control (and vice versa)  
The TPS22994 can be switched from GPIO control to I2C (and vice versa) mode by writing to the control register  
of the device. Each device has a single control register and is located at register address 05h. The register’s  
composition is as follows:  
Control register (Address: 05h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DESCRIPTION  
GPIO/I2C CH GPIO/I2C CH GPIO/I2C CH GPIO/I2C CH ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
4
0
3
0
2
0
1
0
4
0
3
0
2
0
1
0
DEFAULT  
Figure 49. Control Register Composition  
The higher four bits of the control register dictates if the device is in GPIO control (bit set to ‘0’) or I2C control (bit  
set to ‘1’). The transition from GPIO control to I2C control can be made with a single write command to the  
control register. See Figure 44 for the composition of a single write command. It is recommended that the  
channel of interest is transitioned from GPIO control to I2C control with the first write command and followed by a  
second write command to enable the channel via I2C control. This will ensure a smooth transition from GPIO  
control to I2C control.  
10.1.4 Configuration of Configuration Registers  
The TPS22994 contains four configuration registers (one for each channel) and are located at register addresses  
01h through 04h. The register’s composition is as follows (single channel shown for clarity):  
Copyright © 2014, Texas Instruments Incorporated  
27  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Channel 1 configuration register (Address: 01h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DESCRIPTION  
X
ON-DELAY  
SLEW RATE  
QUICK OUTPUT  
DISCHARGE  
DEFAULT  
X
0
0
0
1
0
1
0
Figure 50. Configuration Register Composition  
10.1.4.1 Single Register Configuration  
A single configuration register can be written to using the write command sequence shown in Figure 44.  
Multiple register writes to non-consecutive registers is treated as multiple single register writes and follows the  
same write command as that of a single register write as shown in Figure 44.  
10.1.4.2 Multi-register Configuration (Consecutive Registers)  
Multiple consecutive configuration registers can be written to using the write command sequence shown in  
Figure 45.  
10.1.5 Configuration of Mode Registers  
The TPS22994 contains twelve mode registers located at register addresses 06h through 11h. These mode  
registers allow the user to turn-on or turn-off multiple channels in a single TPS22994 or multiple channels  
spanning multiple TPS22994 devices with a single SwitchALLTM command.  
For example, an application may have multiple power states (e.g. sleep, active, idle, etc.) as shown in Figure 51.  
SwitchALLTM command with Mode2  
register  
SwitchALLTM command with Mode1  
register  
Sleep  
Active  
Idle  
Figure 51. Application Example of Power States  
In each of the different power states, different combinations of channels may be on or off. Each power state may  
be associated with a single mode register (Mode1, Mode2, etc.) across multiple TPS22994 as shown in Table 2.  
For example, with 7 quad-channel devices, up to 28 rails can be enabled/disabled with a single SwitchALLTM  
command.  
Table 2. Application Example of State of Each Channel in Multiple TPS22994 in Different Power States  
Load Switch #1  
Load Switch #2  
Load Switch #N  
Mode  
Register  
Power  
State  
Ch. 1  
Off  
Ch. 2  
Off  
Ch. 3  
Off  
Ch. 4  
Off  
Ch. 1  
Off  
Ch. 2  
Off  
Ch. 3  
Off  
Ch. 4  
Off  
Ch. 1  
Off  
Ch. 2  
Off  
Ch. 3  
Off  
Ch. 4  
Off  
Mode1  
Mode2  
Mode3  
Sleep  
Active  
Idle  
On  
On  
On  
On  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
28  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
The contents of the lower four bits of the mode register is copied into the lower four bits of the control register  
during an SwitchALLTM command. The address of the mode register to be copied is specified in the SwitchALLTM  
command (see Figure 48 for the structure of the SwitchALLTM command). By executing a SwitchALLTM  
command, the application will apply the different on/off combinations for the various power states with a single  
command rather than having to turn on/off each channel individually by re-configuring the control register. This  
reduces the latency and allows the application to control multiple channels synchronously. The example above  
shows the application using three mode registers, but the TPS22994 contains twelve mode registers, allowing for  
up to twelve power states.  
The mode register’s composition is as follows (single mode register shown for clarity):  
Mode1 (Address: 06h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DESCRIPTION  
X
X
X
X
ENABLE  
CH 4  
ENABLE  
CH 3  
ENABLE  
CH 2  
ENABLE  
CH 1  
DEFAULT  
X
X
X
X
0
0
0
0
Figure 52. Mode Register Composition  
The lower four bits of the mode registers are copied into the lower four bits of the control register during an all-  
call command.  
10.1.6 Turn-on/Turn-off of Channels  
By default upon power up VBIAS, all the channels of the TPS22994 are controlled via the ONx pins. Using the  
I2C interface, each channel be controlled via I2C control as well. The channels of the TPS22994 can also be  
switched on or off by writing to the control register of the device. Each device has a single control register and is  
located at register address 05h. The register’s composition is as follows:  
Control Register (Address: 05h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GPIO/I2C CH GPIO/I2C CH GPIO/I2C CH GPIO/I2C CH ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
0
3
0
2
0
1
0
4
0
3
0
2
0
1
0
Figure 53. Control Register Composition  
The lower four bits of the control register dictate if the channels of the device are off (bit set to ‘0’) or on (bit set  
to ‘1’) during I2C control. The transition from off to on can be made with a single write command to the control  
register. See Figure 44 for the composition of a single write command.  
Copyright © 2014, Texas Instruments Incorporated  
29  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
10.2 Typical Application  
10.2.1 Tying Multiple Channels in Parallel  
Two or more channels of the device can be tied in parallel for applications that require lower RON and/or more  
continous current. Tying two channels in parallel will result in half of the RON and two times the IMAX capability.  
Tying three channels in parallel will result in one-third of the RON and three times the IMAX capability. Tying four  
channels in parallel will result in one-fourth of the RON and four times the IMAX capability. For the channels that  
are tied in parallel, it is recommended that the ONx pins be tied together for synchronous control of the channels  
when in GPIO control. In I2C control, all four channels can be enabaled or disabled synchronously by writing to  
the control register of the device. Figure 54 shows an application example of tying all four channels in parallel.  
VBIAS  
(2.7 V to 17.2 V)  
VIN1  
VOUT1  
PMIC or  
PMU  
ON1  
CL  
RL  
VIN2  
VOUT2  
VOUT3  
ON2  
TPS22994  
VIN3  
ON3  
VOUT4  
VIN4  
ON4  
ADD1  
ADD2  
ADD3  
GPIO >>  
SDA SCL  
µC  
VDD  
(1.62 to 3.6)  
Figure 54. Parallel Channels  
10.2.1.1 Design Requirements  
Refer to Design Requirements .  
10.2.1.2 Detailed Design Procedure  
Refer to Detailed Design Procedure.  
The only difference between single channel and multiple channels in parallel is the resulting RON and voltage  
drop from VINx to VOUTx. Thus, the design procedure is identical to Detailed Design Procedure. The VINx to  
VOUTx voltage drop in the device is determined by the RON of the device and the load current. The RON of the  
device depends upon the VIN conditions of the device. Refer to the RON specification of the device in the  
Electrical Characteristics table of this datasheet. Once the RON of the device is determined based upon the VINx  
conditions, use the following equation to calculate the VINx to VOUTx voltage drop:  
V = ILOAD × (RON/K)  
(1)  
Where:  
ΔV = voltage drop from VINx to VOUTx  
ILOAD = load current  
RON = On-resistance of the device for a specific VIN  
K = number of channels in parallel (2, 3, or 4)  
An appropriate ILOAD must be chosen such that the IMAX specification per channel of the device is not violated.  
10.2.1.3 Application Curves  
Refer to Application Curves.  
30  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
Typical Application (continued)  
10.2.2 Cold Boot Programming of All Registers  
Since the TPS22994 has a digital core with volatile memory, upon power cycle of the VBIAS pin, the registers  
will revert back to their default values (see register map for default values). Therefore, the application must  
reprogram the configuration registers, control register, and mode registers if non-default values are desired. The  
TPS22994 contains 17 programmable registers (4 configuration registers, 1 control register, 12 mode registers)  
in total.  
During cold boot when the microcontroller and the I2C bus is not yet up and running, the channels of the  
TPS22994 can still be enabled via GPIO control. One method to achieve this is to tie the ONx pin to the  
respective VINx pin for the channels that need to turn on by default during cold boot. With this method, when  
VINx is applied to the TPS22994, the channel will be enabled as well. Once the I2C bus is active, the channel  
can be switched over to I2C control to be disabled. See Figure 55 for an example of how the ONx pins can be  
tied to VINx for default enable during cold boot.  
VBIAS  
(2.7 V to 17.2 V)  
VIN1  
VOUT1  
ON1  
CL  
CL  
CL  
RL  
RL  
RL  
RL  
VIN2  
VOUT2  
VOUT3  
ON2  
PMIC or  
PMU  
TPS22994  
VIN3  
ON3  
VOUT4  
VIN4  
ON4  
ADD1  
CL  
ADD2  
ADD3  
SDA SCL  
µC  
VDD  
(1.62 to 3.6)  
Figure 55. Cold Boot Programming  
10.2.2.1 Design Requirements  
Refer to Design Requirements.  
10.2.2.2 Detailed Design Procedure  
Refer to Design Requirements.  
10.2.2.3 Application Curves  
Refer to Application Curves.  
Copyright © 2014, Texas Instruments Incorporated  
31  
 
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Typical Application (continued)  
10.2.3 Power Sequencing Without I2C  
It is also possible to power sequence the channels of the device during a cold boot when there is no I2C bus  
present for control. One method to accomplish this it to tie the VOUT of one channel to the ON pin of the next  
channel in the sequence. For example, if the desired power up sequence is VOUT3, VOUT1, VOUT2, and  
VOUT4 (in that order), then the device can be configured for GPIO control as shown in Figure 56. The device will  
power up with default slew rate, ON-delay, and QOD values as specified in the register map.  
VBIAS  
(2.7 V to 17.2 V)  
VIN1  
VOUT1  
ON1  
CL  
RL  
RL  
RL  
VIN2  
VOUT2  
VOUT3  
ON2  
CL  
PMIC or  
PMU  
TPS22994  
VIN3  
ON3  
CL  
VOUT4  
VIN4  
ON4  
ADD1  
CL  
RL  
ADD2  
ADD3  
SDA SCL  
µC  
VDD  
(1.62 to 3.6)  
Figure 56. Power Sequencing Without I2C Schematic  
10.2.3.1 Design Requirements  
10.2.3.1.1 Reading From the Registers  
Reading any register from the TPS22994 follows the same standard I2C read protocol as outlined in the I2C  
Protocol section of this datasheet.  
For this design example, use the following as the input parameters:  
DESIGN PARAMETER  
VINx  
EXAMPLE VALUE  
3.3 V  
1 A  
Load Current  
10.2.3.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
VINx voltage  
Load Current  
32  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
10.2.3.2.1 VIN to VOUT Voltage Drop  
The VINx to VOUTx voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN conditions of the device. Refer to the RON specification of the device in  
the Electrical Characteristics table of this datasheet. Once the RON of the device is determined based upon the  
VINx conditions, use Equation 2 to calculate the VINx to VOUTx voltage drop:  
V = ILOAD × RON  
(2)  
Where:  
ΔV = voltage drop from VINx to VOUTx  
ILOAD = load current  
RON = On-resistance of the device for a specific VIN  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
10.2.3.2.2 Inrush Current  
To determine how much inrush current will be caused by the CL capacitor, use Equation 3:  
dVOUT  
I
= CL ´  
INRUSH  
dt  
(3)  
Where:  
IINRUSH = amount of inrush caused by CL  
CL = capacitance on VOUTx  
dt = rise time in VOUT during the ramp up of VOUTx when the device is enabled  
dVOUT = change in VOUT during the ramp up of VOUTx when the device is enabled  
An appropriate CL value should be placed on VOUTx such that the IMAX specifications of the device are not  
violated.  
10.2.3.3 Application Curves  
4
3.5  
3
4
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
ONx  
Slew 000  
Slew 001  
Slew 010  
Slew 011  
Slew 100  
ONx  
On Delay 00  
On Delay 01  
On Delay 10  
On Delay 11  
0.5  
0
0.5  
0
-0.5  
-0.5  
-0.4  
0.1  
0.6  
1.1  
1.6  
Time (ms)  
2.1  
2.6  
3.1  
3.6  
-0.2  
0
0.2 0.4 0.6 0.8  
Time (s)  
1
1.2 1.4 1.6 1.8  
D00412  
D045  
VBIAS = 7.2V  
VINx = 3.6V  
TA = 25°C  
VDD = 3.6V  
VBIAS = 7.2V  
VINx = 3.6V  
TA = 25°C  
VDD = 3.6V  
RL = 10Ω  
RL = 10Ω  
Figure 57. +Power Up With Different Slew Rate Settings  
Figure 58. Power Up With Different tD Settings  
Copyright © 2014, Texas Instruments Incorporated  
33  
 
 
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
4
4
3.5  
3
ONx  
3.5  
3
QOD 00  
QOD 01  
QOD 10  
QOD 11  
2.5  
2
2.5  
2
ONx  
QOD 00  
QOD 01  
QOD 10  
QOD 11  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-1.5  
-0.5  
-1  
0
1
2
3
4
4.5  
-0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
Time (Ps)  
D043  
D044  
VBIAS = 7.2V  
VINx = 3.6V  
TA = 25°C  
VDD = 3.6V  
VBIAS = 7.2V  
RL = Open  
VINx = 3.6V  
TA = 25°C  
VDD = 3.6V  
RL = 10Ω  
Figure 59. Power Down With Different QOD Settings With  
Figure 60. Power Down With Different QOD Settings With  
RL = Open  
RL = 10 Ω  
VBIAS = 7.2V  
VINx = 3.6V  
TA = 25°C  
VDD = 3.6V  
VBIAS = 7.2V  
VINx = 3.6V  
TA = 25°C  
VDD = 3.6V  
RL = 10Ω  
RL = 10Ω  
This example shows the channel of the device being turned on  
when a I2C "enable" command is written to the register.  
This example shows the channel of the device being turned on  
when a I2C "enable" command is written to the register.  
Figure 61. I2C Read Sequence  
Figure 62. I2C Write Sequence  
VBIAS = 7.2V  
VINx = 3.6V  
TA = 25°C  
VDD = 3.6V  
RL = 10Ω  
Figure 63. Enabling Channel 1 Across Two TPS22994 Devices With the SwitchALLTM Command  
34  
Copyright © 2014, Texas Instruments Incorporated  
TPS22994  
www.ti.com.cn  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
11 Layout  
11.1 Board Layout  
VINx and VOUTx traces should be as short and wide as possible to accommodate for high current.  
Use vias under the exposed thermal pad for thermal relief for high current operation.  
The VINx terminals should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be  
placed as close to the device terminals as possible.  
The VOUTx terminals should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating.  
This capacitor should be placed as close to the device terminals as possible.  
The VBIAS terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric.  
The VDD terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric.  
ADDx pins should be tied high to VDD through a pull-up resistor or tied low to GND through a pull-down  
resistor.  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable power dissipation, PD(max) for a given output current and ambient temperature,  
use the following equation:  
T
J(max) - TA  
P
=
D(max)  
QJA  
(4)  
Where:  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature (125°C for the TPS22994)  
TA = ambient temperature of the device  
ΘJA = junction to air thermal impedance. See Thermal Information section. This parameter is highly  
dependent upon board layout.  
The figure below shows an example of a layout.  
VOUT2  
VIN2  
VOUT3  
VIN3  
To Bias Supply  
GND  
VBIAS  
VIN1  
VIN4  
VOUT4  
VOUT1  
Exposed Thermal  
Pad Area  
版权 © 2014, Texas Instruments Incorporated  
35  
TPS22994  
ZHCSCV5B AUGUST 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
SwitchALL is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
36  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22994RUKR  
TPS22994RUKT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
22994  
22994  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22994RUKR  
TPS22994RUKT  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22994RUKR  
TPS22994RUKT  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RUK0020B  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
3.1  
2.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
DIMENSION A  
OPTION 01  
OPTION 02  
(0.1)  
(0.2)  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(DIM A) TYP  
OPT 02 SHOWN  
1.7 0.05  
6
10  
EXPOSED  
THERMAL PAD  
16X 0.4  
5
11  
21  
SYMM  
4X  
1.6  
1
15  
SEE TERMINAL  
DETAIL  
0.25  
20X  
0.15  
0.1  
C A  
B
20  
16  
PIN 1 ID  
SYMM  
0.05  
(OPTIONAL)  
0.5  
0.3  
20X  
4222676/A 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUK0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.7)  
SYMM  
20  
16  
20X (0.6)  
1
15  
20X (0.2)  
(0.6)  
TYP  
21  
SYMM  
(2.8)  
16X (0.4)  
5
11  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
6
10  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222676/A 02/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUK0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.47) TYP  
16  
(R0.05) TYP  
20  
20X (0.6)  
1
15  
21  
20X (0.2)  
(0.47)  
TYP  
SYMM  
(2.8)  
16X (0.4)  
11  
5
METAL  
TYP  
6
10  
4X ( 0.75)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 21:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222676/A 02/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS22995

具有可调上升时间的 5.5V、3.5A、20mΩ 导通电阻负载开关
TI

TPS22995H-Q1

具有可调上升时间的汽车类 5.5V 3A 16mΩ 负载开关
TI

TPS22995HQDDCRQ1

具有可调上升时间的汽车类 5.5V 3A 16mΩ 负载开关 | DDC | 6 | -40 to 125
TI

TPS22995RZFR

具有可调上升时间的 5.5V、3.5A、20mΩ 导通电阻负载开关 | RZF | 6 | -40 to 125
TI

TPS22995RZGR

具有可调上升时间的 5.5V、3.5A、20mΩ 导通电阻负载开关 | RZG | 6 | -40 to 125
TI

TPS22997

具有电源正常指示功能的 5.5V、10A、4mΩ 导通电阻负载开关
TI

TPS22997RYZR

具有电源正常指示功能的 5.5V、10A、4mΩ 导通电阻负载开关 | RYZ | 10 | -40 to 125
TI

TPS22998

5.5V、10A、导通电阻为 4mΩ 的负载开关
TI

TPS22998RYZR

5.5V、10A、导通电阻为 4mΩ 的负载开关

| RYZ | 10 | -40 to 105
TI

TPS2300

DUAL HOT SWAP POWER CONTROLLER WITH INDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING
TI

TPS2300IPW

DUAL HOT-SWAP POWER CONTROLLERS WITH INDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING
TI

TPS2300IPWG4

DUAL HOT-SWAP POWER CONTROLLERS WITH INDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING
TI