TPS22993 [TI]

可通 I2C 进行控制的 4 通道、3.6V、1.2A、15mΩ 负载开关;
TPS22993
型号: TPS22993
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

可通 I2C 进行控制的 4 通道、3.6V、1.2A、15mΩ 负载开关

开关
文件: 总37页 (文件大小:1985K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
TPS22993 四通道负载开关,具有通用输入输出 (GPIO) I2C 控制功能  
1 特性  
2 应用范围  
1
输入电压:1.0V 3.6V  
Ultrabook™  
超薄个人电脑  
笔记本电脑  
平板电脑  
服务器  
低导通状态电阻 (VBIAS = 7.2V)  
VIN = 3.3V 时,RON = 15mΩ  
VIN = 1.8V 时,RON = 15mΩ  
VIN = 1.5V 时,RON = 15mΩ  
VIN = 1.05V 时,RON = 15mΩ  
一体机  
VBIAS 电压范围:4.5V 17.2V  
适合于 2S/3S/4S 锂离子电池拓扑结构  
3 说明  
TPS22993 是一款多通道、低 RON 负载开关,此开关  
具有用户可编程特性。 此器件包含四个可在 1.0V 至  
3.6V 的输入电压范围内运行的 N 通道金属氧化物半导  
体场效应晶体管 (MOSFET)。 此开关可由 I2C 控制,  
从而使其非常适合与具有有限 GPIO 数量的处理器一  
同使用。 TPS22993 器件的上升时间受到内部控制以  
避免涌入电流。 TPS22993 具有五个可编程转换率选  
项、四个接通延迟选项和四个快速输出放电 (QOD) 电  
阻选项。  
每通道 1.2A 最大持续电流  
静态电流  
单通道 < 9µA  
全部四个通道 < 17µA  
关断电流(全部四个通道)< 6µA  
四个 1.2V 兼容 GPIO 控制输入  
I2C 配置(每通道)  
/关控制  
可编程转换率控制(5 个选项)  
可编程接通延迟(4 个选项)  
可编程输出放电(4 个选项)  
此器件的通道可由 GPIO I2C 控制。 缺省运行模式  
为通过 ONx 端子的 GPIO 控制。 I2C 从地址端子可接  
至高电平或低电平,以分配 7 个唯一的器件地址。  
I2C SwitchALL™ 用于多通道/多芯片控制的命令  
四方扁平无引线 (QFN)-20 封装,3mm x 3mm,高  
0.75mm  
TPS22993 采用节省空间的 RLW 封装(焊球间距  
0.4mm),并可在 -40°C 85°C 的自然通风温度范  
围内运行。  
器件信息  
订货编号  
封装  
封装尺寸  
3mm x 3mm  
超薄四方扁平无引线  
(WQFN) (20)  
TPS22993PRLWR  
4 简化电路原理图  
VBIAS  
(4.5V to 17.2V)  
VIN1  
VOUT1  
ON1  
CL  
RL  
RL  
RL  
VIN2  
VOUT2  
ON2  
CL  
PMIC or  
PMU  
TPS22993  
VOUT3  
VIN3  
ON3  
CL  
VOUT4  
VIN4  
ON4  
ADD1  
CL  
RL  
ADD2  
ADD3  
SDA SCL  
µC  
VDD  
(1.62 to 3.6)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCA3  
 
 
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 4  
7.1 Recommended Operating Conditions....................... 4  
7.2 Absolute Maximum Ratings ..................................... 5  
7.3 Handling Ratings....................................................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Switching Characteristics.......................................... 8  
7.7 Typical Characteristics.............................................. 9  
8
9
Parametric Measurement Information ............... 14  
Detailed Description ............................................ 15  
9.1 Block Diagram......................................................... 15  
9.2 Register Map........................................................... 16  
10 Application and Implementation........................ 18  
10.1 Application Information.......................................... 18  
10.2 Typical Applications .............................................. 23  
11 Layout................................................................... 29  
11.1 Board Layout......................................................... 29  
12 器件和文档支持 ..................................................... 31  
12.1 Trademarks........................................................... 31  
12.2 Electrostatic Discharge Caution............................ 31  
12.3 Glossary................................................................ 31  
13 机械封装和可订购信息 .......................................... 31  
5 修订历史记录  
Changes from Original (November 2013) to Revision A  
Page  
已将文档修改为完整版。 ....................................................................................................................................................... 1  
2
版权 © 2013–2014, Texas Instruments Incorporated  
 
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
Device Comparison Table  
TPS22993  
RON TYPICAL AT 3.3 V (VBIAS = 7.2V)  
RISE TIME(1)  
15 m  
Programmable  
Programmable  
Programmable  
1.2 A  
(1)  
ON DELAY  
QUICK OUTPUT DISCHARGE(1)(2)  
MAXIMUM OUTPUT CURRENT (per channel)  
GPIO ENABLE  
Active High  
–40°C to 85°C  
OPERATING TEMP  
(1) See Application Information section.  
(2) This feature discharges output of the switch to GND through an internal resistor, preventing the output from floating. See Application  
information section.  
6 Terminal Configuration and Functions  
Bottom View  
Top View  
11  
12  
13  
14  
15  
15  
14  
13  
12  
11  
NC  
NC  
NC  
NC  
10  
9
16  
17  
18  
ON1  
ON2  
ADD2  
SCL  
10  
9
16  
17  
18  
ON1  
ON2  
ON3  
ON4  
ADD1  
ADD2  
SCL  
8
ON3  
VDD  
SDA  
8
VDD  
SDA  
ON4  
7
6
19  
20  
7
6
19  
20  
ADD1  
ADD3  
ADD3  
NC  
NC  
NC  
NC  
5
4
3
2
1
1
2
3
4
5
20-RLW (3mm x 3mm x 0.75mm)  
20-RLW (3mm x 3mm x 0.75mm)  
Copyright © 2013–2014, Texas Instruments Incorporated  
3
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
Terminal Functions  
Terminal  
I/O  
DESCRIPTION  
NO.  
NAME  
NO  
CONNECT  
NC  
-
Attached terminal to PCB. Leave the terminals floating or tie to GND.  
1
2
VOUT2  
VIN2  
O
I
Channel 2 output.  
Channel 2 input.  
Bias voltage. Power supply to the device. Recommended voltage range for this terminal is 5.2V to 14V.  
See Application Information section.  
3
VBIAS  
I
4
5
VIN1  
I
O
I
Channel 1 input.  
VOUT1  
ADD1  
ON4  
Channel 1 output.  
6
Device address terminal. Tie high or low. See Application Information section.  
Active high channel 4 control input. Do not leave floating.  
Active high channel 3 control input. Do not leave floating.  
Active high channel 2 control input. Do not leave floating.  
Active high channel 1 control input. Do not leave floating.  
Channel 4 output.  
7
I
8
ON3  
I
9
ON2  
I
10  
11  
12  
13  
14  
15  
16  
17  
ON1  
I
VOUT4  
VIN4  
O
I
Channel 4 input.  
GND  
-
Device ground.  
VIN3  
I
Channel 3 input.  
VOUT3  
ADD2  
SCL  
O
I
Channel 3 output.  
Device address terminal. Tie high or low. See Application Information section.  
I
Serial clock input.  
I2C device supply input. Tie this terminal to the I2C SCL/SDA pull-up voltage. See Application Information  
section.  
18  
VDD  
I
19  
20  
SDA  
I/O  
I
Serial data input/output.  
ADD3  
Device address terminal. Tie high or low. See Application Information section.  
7 Specifications  
7.1 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.0  
4.5  
1.62  
0
MAX UNIT  
VINx  
Input voltage for VIN1, VIN2, VIN3, VIN4  
Supply voltage for VBIAS  
3.6  
17.2  
3.6  
3.6  
5
V
V
VBIAS  
VDD  
Supply voltage for VDD  
V
VADDx  
VONx  
VOUTx  
CINx  
Input voltage for ADD1, ADD2, ADD3  
Input voltage for ON1, ON2, ON3, ON4  
Output voltage for VOUT1, VOUT2, VOUT3, VOUT4  
Input capacitor on VIN1, VIN2, VIN3, VIN4  
V
0
V
0
VINx  
V
(1)  
1
µF  
(1) Refer to application section.  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
7.2 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
VINx  
Input voltage for VIN1, VIN2, VIN3, VIN4  
Supply voltage for VBIAS  
4
V
V
V
VBIAS  
20  
4
VOUTx  
VDD, VSCL  
VSDA, VADDx  
VONx  
IMAX  
Output voltage for VOUT1, VOUT2, VOUT3, VOUT4  
,
Input voltage for VDD, SCL, SDA, ADD1, ADD2, ADD3  
–0.3  
–0.3  
4
V
Input voltage for ON1, ON2, ON3, ON4  
Maximum continuous switch current per channel  
Operating free-air temperature(3)  
6
1.2  
85  
V
A
TA  
–40  
125  
°C  
°C  
°C  
TJ  
Maximum junction temperature  
125  
300  
TLEAD  
Maximum lead temperature (10-s soldering time)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)],  
the maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the  
part/package in the application (θJA), as given by the following equation: TA(max) = TJ(max) – (θJA × PD(max)  
)
7.3 Handling Ratings  
MIN  
MAX  
150  
UNIT  
°C  
V
Tstg  
Storage temperature  
–65  
Human-Body Model (HBM)(2)  
Charged-Device Model (CDM)(3)  
2000  
500  
ESD(1)  
Electrostatic discharge protection  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500V HBM allows safe  
manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250V CDM allows safe  
manufacturing with a standard ESD control process.  
7.4 Thermal Information  
TPS22993  
THERMAL METRIC(1)(2)  
UNIT  
RLW  
(20 TERMINALS)  
ΘJA  
Junction-to-ambient thermal resistance  
58  
24  
ΘJC(top)  
ΘJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
10  
°C/W  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.7  
10  
ΨJB  
ΘJC(bottom)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.  
Copyright © 2013–2014, Texas Instruments Incorporated  
5
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
7.5 Electrical Characteristics  
The specification applies over the operating ambient temperature –40°C TA 85°C (Full) (unless otherwise noted). Typical  
values are for TA = 25°C. VBIAS = 7.2V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES CURRENTS AND LEAKAGES  
VBIAS = 4.5V  
VBIAS = 5.2V  
VBIAS = 7.2V  
VBIAS = 10.8V  
VBIAS = 12.6V  
VBIAS = 17.2V  
VBIAS = 4.5V  
VBIAS = 5.2V  
VBIAS = 7.2V  
VBIAS = 10.8V  
VBIAS = 12.6V  
VBIAS = 17.2V  
VDD = 1.8V  
14.8  
14.9  
16.2  
16.6  
16.7  
16.8  
7.7  
26  
26  
28  
30  
30  
30  
15  
15  
16  
16  
16  
16  
2
IOUT1,2,3,4 = 0 A,  
VIN1,2,3,4 = 3.6 V,  
VON1,2,3,4 = 3.6 V,  
VDD = 0 V  
Quiescent current for VBIAS  
(all four channels)  
Full  
µA  
IQ, VBIAS  
7.8  
IOUT1,2,3,4 = 0A,  
8.5  
VIN1 = VON1 = 3.6V,  
VIN2,3,4 = VON2,3,4 = 0V,  
VDD = 0V  
Quiescent current for VBIAS  
(single channel)  
Full  
µA  
8.7  
8.8  
8.9  
IOUT1,2,3,4 = 0A,  
0.6  
IQ, VDD  
Quiescent current for VDD  
VIN1,2,3,4 = VON1,2,3,4 = 3.6V,  
fSCL = 0Hz  
Full  
Full  
µA  
µA  
VDD = 3.6V  
VDD = 1.8V  
VDD = 3.6V  
1.2  
2
20  
35  
IOUT1,2,3,4 = 0A,  
VIN1,2,3,4 = VON1,2,3,4 = 3.6V,  
fSCL = 1MHz  
Average dynamic current for  
VDD during I2C  
communication  
IDYN, VDD  
VBIAS = 5.2V  
VBIAS = 7.2V  
VBIAS = 10.8V  
VBIAS = 12.6V  
VBIAS = 5.2V  
VBIAS = 7.2V  
VBIAS = 10.8V  
VBIAS = 12.6V  
85  
85  
85  
85  
75  
75  
75  
75  
IOUT1,2,3,4 = 0A,  
VIN1,2,3,4 = VON1,2,3,4 = 3.6V,  
fSCL=1MHz  
Average dynamic current for  
VBIAS (all four channels)  
during I2C communication  
Full  
Full  
µA  
µA  
IDYN, VBIAS  
IOUT1,2,3,4 = 0A,  
Average dynamic current for  
VBIAS (single channel) during  
I2C communication  
VIN1 = VON1 = 3.6V,  
VIN2,3,4 = VON2,3,4 = 0V,  
fSCL=1MHz  
VON1,2,3,4 = 0V, VOUT1,2,3,4 = 0V, VDD = 3.6V,  
VBIAS = 17.2V  
Shutdown current for VBIAS  
(all four channels)  
ISD, VBIAS  
ISD, VDD  
Full  
Full  
5.7  
1.2  
13  
2
µA  
µA  
VON1,2,3,4 = 0V, VOUT1,2,3,4 = 0V,  
VDD = 3.6V  
Shutdown current for VDD  
VINx = 3.3V  
0.009  
0.006  
0.006  
0.006  
0.01  
4
3
VINx = 1.8V  
VINx = 1.5V  
VINx = 1.05V  
ISD, VINx  
Shutdown current for VINx  
VONx = 0V, VOUTx = 0V, VDD = 3.6V  
Full  
µA  
3
2.5  
0.1  
0.2  
0.2  
0.2  
IONx  
IADDx  
ISCL  
ISDA  
Leakage current for ONx  
Leakage current for ADDx  
Leakage current for SCL  
Leakage current for SDA  
VONx = 5V  
Full  
Full  
Full  
Full  
µA  
µA  
µA  
µA  
VADDx = 3.6V  
VSCL = 3.6V  
VSDA = 3.6V  
0.01  
0.01  
0.01  
RESISTANCE CHARACTERISTICS  
25°C  
Full  
15  
15  
15  
15  
15  
20  
22  
20  
22  
20  
22  
20  
22  
20  
22  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
VIN = 1.5V  
VIN = 1.05V  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
25°C  
Full  
25°C  
Full  
RON  
On-state resistance  
VBIAS = 7.2V, IOUT = –200mA  
25°C  
Full  
25°C  
Full  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
Electrical Characteristics (continued)  
The specification applies over the operating ambient temperature –40°C TA 85°C (Full) (unless otherwise noted). Typical  
values are for TA = 25°C. VBIAS = 7.2V (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
25  
28  
22  
24  
20  
23  
20  
22  
20  
22  
UNIT  
25°C  
Full  
18  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
VIN = 1.5V  
VIN = 1.05V  
mΩ  
25°C  
Full  
16  
15  
15  
15  
mΩ  
mΩ  
mΩ  
mΩ  
25°C  
Full  
RON  
On-state resistance  
VBIAS = 5.2V, IOUT = –200mA  
25°C  
Full  
25°C  
Full  
VIN = 3.3V, VON = 0V, IOUT = 1mA, QOD[1:0] = 00  
VIN = 3.3V, VON = 0V, IOUT = 1mA, QOD[1:0] = 01  
VIN = 3.3V, VON = 0V, IOUT = 1mA, QOD[1:0] = 10  
VIN = 3.3V, VON = 0V, IOUT = 1mA, QOD[1:0] = 11  
25°C  
25°C  
25°C  
110  
483  
949  
RPD  
Output pulldown resistance  
No  
QOD  
THRESHOLD CHARACTERISTICS  
High-level input voltage for  
ADDx  
VIH, ADDx  
VIL, ADDx  
VIH, ONx  
VIL, ONx  
Full  
Full  
Full  
Full  
0.7×VDD  
VDD  
0.3×VDD  
5
V
V
V
V
Low-level input voltage for  
ADDx  
0
1.05  
0
High-level input voltage for  
ONx  
Low-level input voltage for  
ONx  
0.4  
VBIAS = 5.2V  
VBIAS = 7.2V  
VBIAS = 10.8V  
VBIAS = 12.6V  
130  
130  
130  
130  
VHYS, ONx  
Hysteresis for ONx  
Full  
mV  
I2C CHARACTERISTICS  
(1)  
fSCL  
Clock frequency  
Full  
Full  
1
MHz  
ns  
(1)  
(1)  
tSU, SDA  
tHD, SDA  
IOL, SDA  
Setup time for SDA  
Hold time for SDA  
fSCL = 1MHz (fast mode plus)  
VOL,SDA = 0.4V  
50  
0
Full  
ns  
SDA output low current  
25°C  
8
mA  
High-level input voltage for  
SDA  
VIH, SDA  
VIH, SCL  
VIL, SDA  
VIL, SCL  
Full  
Full  
Full  
Full  
0.7×VDD  
VDD  
VDD  
V
V
V
V
High-level input voltage for  
SCL  
0.7×VDD  
Low-level input voltage for  
SDA  
0
0
0.3×VDD  
0.3×VDD  
Low-level input voltage for  
SCL  
(1) Parameter verified by design.  
Copyright © 2013–2014, Texas Instruments Incorporated  
7
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
7.6 Switching Characteristics  
Values below are typical values at TA = 25°C. VBIAS = 7.2V (unless otherwise noted).  
VIN VOLTAGE  
PARAMETER  
TEST CONDITION  
UNIT  
3.3V  
11  
1.8V  
1.5V  
11  
1.05V  
Slew rate[4:2] = 000  
Slew rate[4:2] = 001  
Slew rate[4:2] = 010  
Slew rate[4:2] = 011  
Slew rate[4:2] = 100  
11  
181  
302  
549  
1066  
2
11  
146  
243  
438  
848  
2
VBIAS = 7.2V,  
247  
416  
761  
1481  
2
167  
279  
505  
980  
2
RL=10Ω, CL=0.1µF,  
QOD[1:0] = 10,  
ON-delay[6:5] = 00  
tON  
tOFF  
tR  
VOUTx turn-on time  
VOUTx turn-off time  
VOUTx rise time  
µs  
µs  
µs  
VBIAS = 7.2V, RL=10Ω, CL=0.1µF, QOD[1:0] = 10, ON-delay[6:5] = 00  
Slew rate[4:2] = 000  
2
1.1  
1
0.8  
147  
248  
459  
888  
2
Slew rate[4:2] = 001  
307  
527  
970  
1898  
2
203  
346  
638  
1245  
2
180  
307  
566  
1105  
2
VBIAS = 7.2V, RL=10Ω, CL=0.1µF,  
QOD[1:0] = 10, ON-delay[6:5] = 00  
Slew rate[4:2] = 010  
Slew rate[4:2] = 011  
Slew rate[4:2] = 100  
tF  
VOUTx fall time  
VBIAS = 7.2V, RL=10Ω, CL=0.1µF, QOD[1:0] = 10, ON-delay[6:5] = 00  
ON delay[4:2] = 00  
µs  
µs  
11  
11  
11  
11  
ON delay[4:2] = 01  
ON delay[4:2] = 10  
ON delay[4:2] = 11  
102  
324  
923  
104  
332  
946  
105  
334  
953  
106  
338  
965  
VBIAS = 7.2V, RL=10Ω, CL=0.1µF,  
QOD[1:0] = 10, Slew rate[6:5] = 000  
tD  
VOUTx ON delay time  
8
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
7.7 Typical Characteristics  
1.6  
1.4  
1.2  
1
1.6  
-40°C  
25°C  
85°C  
-40°C  
25°C  
1.4  
85°C  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
1.5  
2
2.5  
3
3.5  
4
1.5  
4.5  
4.5  
2
2.5  
3
3.5  
4
VDD (V)  
VDD (V)  
C001  
C005  
C002  
C004  
Figure 1. IQ,VDD vs. VDD  
Figure 2. ISD,VDD vs. VDD  
25  
20  
15  
10  
5
14  
12  
10  
8
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
6
4
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
4.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
VBIAS (V)  
VBIAS (V)  
C003  
Figure 3. IQ,VBIAS vs. VBIAS (all channels)  
Figure 4. IQ,VBIAS vs. VBIAS (single channel)  
0.35  
0.3  
8
7
6
5
4
3
2
1
0
-40°C  
25°C  
85°C  
0.25  
0.2  
0.15  
0.1  
-40°C  
25°C  
85°C  
0.05  
0
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
VBIAS (V)  
C024  
Figure 6. ISD,VIN vs. VIN  
Figure 5. ISD,VBIAS vs. VDD  
Copyright © 2013–2014, Texas Instruments Incorporated  
9
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
60  
50  
40  
30  
20  
10  
0
20  
VBIAS = 4.5V  
VBIAS = 5.2V  
VBIAS = 7.2V  
VBIAS = 10.8V  
VBIAS = 12.6V  
VBIAS = 14V  
VBIAS = 17.2V  
18  
16  
14  
12  
10  
8
6
4
-40°C  
25°C  
85°C  
2
TA = 25C, IOUT = -200mA  
VBIAS = 7.2V, IOUT = -200mA  
0
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
1
1.5  
2
2.5  
3
3.5  
VIN (V)  
C010  
C009  
C006  
C008  
Figure 8. RON vs. VIN vs. VBIAS (TA = 25°C)  
Figure 7. RON vs. VIN (VBIAS = 7.2V)  
3.5  
3
3.5  
VBIAS = 4.5V  
VBIAS = 5.2V  
VBIAS = 7.2V  
VBIAS = 10.8V  
VBIAS = 12.6V  
VBIAS = 14V  
VBIAS = 17.2V  
VBIAS = 4.5V  
VBIAS = 5.2V  
3
VBIAS = 7.2V  
VBIAS = 10.8V  
2.5  
2
2.5  
VBIAS = 12.6V  
VBIAS = 14V  
VBIAS = 17.2V  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
TA = 25°C  
0.4  
TA = 25°C  
1.6  
0
0
0.8  
1.2  
1.6  
2
2
1.2  
0.8  
0.4  
0
VON (V)  
VON (V)  
C007  
Figure 9. Output voltage vs. VOUT rising  
Figure 10. Output voltage vs. VOUT falling  
0.14  
0.12  
0.1  
QOD = 00  
QOD = 01  
QOD = 10  
TA = 25°C  
1400  
1200  
1000  
800  
600  
400  
200  
0
0.08  
0.06  
0.04  
0.02  
0
25°C  
VIN = 3.3V  
4.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
4.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
VBIAS (V)  
VBIAS (V)  
C023  
Figure 12. RPD vs. VBIAS  
Figure 11. VHYS, ONx vs. VBIAS  
10  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
Typical Characteristics (continued)  
2.5  
350  
300  
250  
200  
150  
100  
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
2
1.5  
1
0.5  
Slew rate [4:2] = 000, CIN = 1µF, CL = 0.1µF, RL = 10  
Slew rate [4:2] = 001, CIN = 1µF, CL = 0.1µF, RL = 10  
0
1
1
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
C015  
C016  
C018  
C011  
Figure 13. tR vs. VIN (Slew rate [4:2] = 000)  
Figure 14. tR vs. VIN (Slew rate [4:2] = 001)  
1000  
900  
800  
700  
600  
500  
400  
300  
600  
500  
400  
300  
200  
100  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
Slew rate [4:2] = 011, CIN = 1µF, CL = 0.1µF, RL = 10  
Slew rate [4:2] -= 010, CIN = 1µF, CL = 0.1µF, RL = 10  
1.5  
2
2.5  
VIN (V)  
3
3.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
C017  
Figure 15. tR vs. VIN (Slew rate [4:2] = 010)  
Figure 16. tR vs. VIN (Slew rate [4:2] = 011)  
14  
12  
10  
8
2000  
1800  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
85°C  
6
4
-40°C  
2
25°C  
ON delay [6:5] = 00, VIN = 3.6V, CIN = 1µF,  
CL = 0.1µF, RL = 10  
85°C  
16.5  
Slew rate [4:2] = 100, CIN = 1µF, CL = 0.1µF, RL = 10  
0
600  
4.5  
6.5 8.5  
10.5  
12.5  
14.5  
1.5  
2
2.5  
VIN (V)  
3
3.5  
VBIAS (V)  
C019  
Figure 18. tD vs. VBIAS (ON delay [6:5] = 00)  
Figure 17. tR vs. VIN (Slew rate [4:2] = 100)  
Copyright © 2013–2014, Texas Instruments Incorporated  
11  
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
102  
320  
310  
300  
290  
280  
270  
260  
250  
100  
98  
96  
94  
92  
90  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
ON delay [6:5] = 10, VIN = 3.6V,  
CIN = 1µF, CL = 0.1µF, RL = 10  
ON delay [6:5] = 01, VIN = 3.6V, CIN = 1µF,  
CL = 0.1µF, RL = 10  
88  
4.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
4.5  
4.5  
1
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
VBIAS (V)  
VBIAS (V)  
C013  
C012  
C014  
C021  
Figure 19. tD vs. VBIAS (ON delay [6:5] = 01)  
Figure 20. tD vs. VBIAS (ON delay [6:5] = 10)  
900  
800  
700  
600  
500  
400  
300  
-40°C  
25°C  
85°C  
920  
900  
880  
860  
840  
820  
800  
-40°C  
25°C  
ON delay [6:5] = 11, VIN = 3.6V,  
CIN = 1µF, CL = 0.1µF, RL = 10  
Slew rate [4:2] = 011, CIN = 1µF, CL = 0.1µF, RL = 10  
85°C  
16.5  
6.5  
8.5  
10.5  
12.5  
14.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
VBIAS (V)  
C020  
Figure 21. tD vs. VBIAS (ON delay [6:5] = 11)  
Figure 22. tON vs. VIN (VBIAS = 7.2V)  
4
3.5  
3
4
3.5  
3
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
Slew rate [4:2] = 011, CIN = 1µF, CL = 0.1µF, RL = 10  
Slew rate [4:2] = 011, CIN = 1µF, CL = 0.1µF, RL = 10  
1.5  
2
2.5  
VIN (V)  
3
3.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
C022  
Figure 23. tF vs. VIN (VBIAS = 7.2V)  
Figure 24. tOFF vs. VIN (VBIAS = 7.2V)  
12  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
Typical Characteristics (continued)  
Figure 26. Power up with different tD settings  
Figure 25. +Power up with different slew rate settings  
Figure 28. Power up with default settings  
Figure 27. Power down with different QOD settings  
Figure 29. Channel 1 powered up via GPIO control, and  
control is switched over to I2C control without any glitches  
on VOUT.  
Figure 30. Enabling channel 1 across two TPS22993 devices  
with the SwitchALLTM command.  
Copyright © 2013–2014, Texas Instruments Incorporated  
13  
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
8 Parametric Measurement Information  
VINx  
VOUTx  
CIN = 1µF  
ON  
ONx  
CL  
+
-
(A)  
RL  
OFF  
VBIAS  
GND  
TPS22993  
GND  
GND  
Single channel shown for clarity.  
TEST CIRCUIT  
VONx  
50%  
50%  
tF  
tOFF  
tR  
tON  
VOUTx  
90%  
90%  
VOUTx  
50%  
50%  
10%  
10%  
10%  
tD  
tON/tOFF WAVEFORMS  
(A) Rise and fall times of the control signal is 100ns.  
(B) All switching measurements are done using GPIO control only.  
Figure 31. Test Circuit and tON/tOFF Waveforms  
14  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
9 Detailed Description  
9.1 Block Diagram  
Power supply  
and bandgap  
VBIAS  
VIN1  
Driver  
VOUT1  
PD_EN  
ON1  
ON2  
VIN2  
GPIO ON  
Buffer  
ON3  
Driver  
ON4  
VOUT2  
PD_EN  
ADD1  
Address  
Buffers &  
Level Shifters  
I2C  
Digital Control  
ADD2  
ADD3  
VIN3  
Driver  
VDD  
VOUT3  
SCL  
SDA  
I2C  
PD_EN  
SCL/SDA  
Buffers &  
Level Shifters  
VIN4  
Driver  
VOUT4  
PD_EN  
* PD_EN = Pulldown Enable  
Copyright © 2013–2014, Texas Instruments Incorporated  
15  
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
9.2 Register Map  
Configuration registers (default register values shown below)  
Channel 1 configuration register (Address: 01h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QUICK OUTPUT  
DISCHARGE  
DESCRIPTION  
DEFAULT  
X
ON-DELAY  
SLEW RATE  
1
X
0
0
0
1
1
0
Channel 2 configuration register (Address: 02h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QUICK OUTPUT  
DISCHARGE  
DESCRIPTION  
DEFAULT  
X
ON-DELAY  
SLEW RATE  
1
X
0
0
0
1
1
0
Channel 3 configuration register (Address: 03h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QUICK OUTPUT  
DISCHARGE  
DESCRIPTION  
DEFAULT  
X
ON-DELAY  
SLEW RATE  
1
X
0
0
0
1
1
0
Channel 4 configuration register (Address: 04h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
QUICK OUTPUT  
DISCHARGE  
DESCRIPTION  
DEFAULT  
X
ON-DELAY  
SLEW RATE  
1
X
0
0
0
1
1
0
Control register (default register values shown below)  
Control register (Address: 05h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GPIO/I2C ch GPIO/I2C ch GPIO/I2C ch GPIO/I2C ch ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
4
3
2
1
0
0
0
0
0
0
0
0
Mode registers (default register values shown below)  
Mode1 (Address: 06h)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode2 (Address: 07h)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode3 (Address: 08h)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
16  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
Mode4 (Address: 09h)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
0
3
0
2
0
1
0
X
X
X
X
Mode5 (Address: 0Ah)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode6 (Address: 0Bh)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode7 (Address: 0Ch)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode8 (Address: 0Dh)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode9 (Address: 0Eh)  
BIT  
B7  
X
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
3
2
1
X
X
X
X
0
0
0
0
Mode10 (Address: 0Fh)  
BIT  
B7  
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
X
X
4
3
2
1
X
X
X
0
0
0
0
Mode11 (Address: 10h)  
BIT  
B7  
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
X
4
3
2
1
X
X
X
X
0
0
0
0
Mode12 (Address: 11h)  
BIT  
B7  
B6  
X
B5  
X
B4  
X
B3  
B2  
B1  
B0  
ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
X
4
3
2
1
X
X
X
X
0
0
0
0
Copyright © 2013–2014, Texas Instruments Incorporated  
17  
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
10 Application and Implementation  
10.1 Application Information  
10.1.1 I2C Control  
When power is applied to VBIAS, the device comes up in its default mode of GPIO operation where the channel  
outputs can be controlled solely via the ON terminals. At any time, if SDA and SCL are present and valid, the  
device can be configured to be controlled via I2C (if in GPIO control) or GPIO (if in I2C control).  
The control register (address 05h) can be configured for GPIO or I2C enable on a per channel basis.  
10.1.1.1 Operating Frequency  
The TPS22993 is designed to be compatible with fast-mode plus and operate up to 1MHz clock frequency for  
bus communication. The device is also compatible with standard-mode (100kHz) and fast-mode (400kHz). This  
device can reside on the same bus as high-speed mode (3.4MHz) devices, but the device is not designed to  
respond to I2C commands for frequencies greater than 1MHz. See table below for characteristics of the fast-  
mode plus, fast-mode, and standard-mode bus speeds.  
Table 1. I2C Interface Timing Requirements(1)  
STANDARD  
MODE  
FAST MODE  
PLUS (FM+)  
I2C BUS  
FAST MODE  
I2C BUS  
I2C BUS  
PARAMETER  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
I2C serial data setup time  
I2C serial data hold time  
100  
50  
400  
1000  
kHz  
μs  
μs  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
4
0.6  
1.3  
0.26  
0.5  
4.7  
50  
50  
tsds  
tsdh  
ticr  
250  
0
100  
0
50  
0
I2C input rise time  
1000  
20  
300  
120  
tbuf  
tsts  
tsth  
tsps  
I2C bus free time between Stop and Start  
I2C Start or repeater Start condition setup time  
I2C Start or repeater Start condition hold time  
I2C Stop condition setup time  
4.7  
4.7  
4
1.3  
0.6  
0.6  
0.6  
0.3  
0.5  
0.26  
0.26  
0.26  
4
tvd(data) Valid data time; SCL low to SDA output valid  
3.45  
3.45  
0.9  
0.9  
0.45  
0.45  
Valid data time of ACK condition; ACK signal from SCL  
low to SDA (out) low  
tvd(ack)  
0.3  
μs  
(1) over operating free-air temperature range (unless otherwise noted)  
18  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
10.1.1.2 SDA/SCL Terminal Configuration  
The SDA and SCL terminals of the device operate use an open-drain configuration, and therefore, need pull up  
resistors to communicate on the I2C bus. The graph below shows recommended values for max pullup resistors  
(RP) and bus capacitances (Cb) to ensure proper bus communications. The SDA and SCL terminals should be  
pulled up to VDD through an appropriately sized RP based on the graphs below.  
10.1.1.3 Address (ADDx) Terminal Configuration  
The TPS22993 can be configured with an unique I2C slave addresses by using the ADDx terminals. There are 3  
ADDx terminals that can be tied high to VDD or low to GND (independent of each other) to get up to 7 different  
slave addresses. The ADDx terminals should be tied to GND if the I2C functionality of the device is not to be  
used. External pull-up resistors for the ADDx are optional as the ADDx inputs are high impedance. The following  
table shows the ADDx terminal tie-offs with their associated slave addresses (assuming an eight bit word, where  
the LSB is the read/write bit and the device address bits are the 7 MSB bits) :  
Hex Address  
E0/E1  
ADD3  
GND  
GND  
GND  
GND  
VDD  
VDD  
VDD  
ADD2  
ADD1  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
E2/E3  
GND  
E4/E5  
VDD  
E6/E7  
VDD  
E8/E9  
GND  
EA/EB  
EC/ED  
GND  
VDD  
Invalid unique device address.  
EE  
This address is the SwitchALLTM address.  
10.1.2 GPIO Control  
There are four ON terminals to enable/disable the four channels. Each ON terminal controls the state of the  
switch by default upon power up. Asserting ON high enables the switch. ON is active high and has a low  
threshold, making it capable of interfacing with low-voltage signals. The ON terminal is compatible with standard  
GPIO logic threshold. It can be used with any microcontroller with 1.2V or higher voltage GPIO.  
10.1.3 On-Delay Control  
Using the I2C interface, the configuration register for each channel can be set for different ON delays for power  
sequencing. The options for delay are as follows:  
00 = 11µs delay (default register value)  
01 = 105µs delay  
10 = 330µs delay  
11 = 950µs delay  
Copyright © 2013–2014, Texas Instruments Incorporated  
19  
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
10.1.4 Slew Rate Control  
Using the I2C interface, the configuration register for each channel can be set for different slew rates for inrush  
current control and power sequencing. The options for slew rate are as follows:  
000 = 1µs/V  
001 = 150µs/V  
010 = 250µs/V  
011 = 460µs/V (default register value)  
100 = 890µs/V  
101 = invalid slew rate  
110 = invalid slew rate  
111 = reserved  
10.1.5 Quick Output Discharge (QOD) Control  
Using the I2C interface, the configuration register for each channel can be set for different output discharge  
resistors. The options for QOD are as follows:  
00 = 110Ω  
01 = 490Ω  
10 = 951Ω (default register value)  
11 = No QOD (high impedance)  
10.1.6 Mode Registers  
Using the I2C interface, the mode registers can be programmed to the desired on/off status for each channel.  
The contents of these registers are copied over to the control registers when a SwitchALL™ command is issued,  
allowing all channels of the device to transition to their desired output states synchronously. See the I2C Protocol  
section and the Application Scenario section for more information on how to use the mode registers in  
conjunction with the SwitchALLTM command.  
10.1.7 SwitchALL™ Command  
I2C controlled channels can respond to a common slave address. This feature allows multiple load switches on  
the same I2C bus to respond simultaneously. The SwitchALL™ address is EEh. During a SwitchALL™  
command, the lower four bits (bits 0 through 3) of the mode register is copied to the lower four bits (bits 0  
through 3) of the control register. The mode register to be invoked is referenced in the body of the SwitchALL™  
command. The structure of the SwitchALL™ command is as follows (as shown in Figure 32):  
<start><SwitchALL™ addr><mode addr><stop>. See the I2C Protocol section and the Application Scenario  
section for more information on how to use the SwitchALLTM command in conjunction with the mode registers.  
SCL  
SwitchALLTM Address  
Mode Register Address  
SDA ST 1  
1
1
0
1
1
1
0
A D7 D6 D5 D4 D3 D2 D1 D0 A SP  
Start  
W/R  
Ack  
from  
slave  
Ack. from slave  
Figure 32. Composition of SwitchALL™ Command  
10.1.8 VDD Supply For I2C Operation  
Stop  
The SDA and SCL terminals of the device must be pulled up to the VDD voltage of the device for proper I2C bus  
communication.  
20  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
10.1.9 Input Capacitor (Optional)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic  
capacitor, CIN, placed close to the terminals, is usually sufficient. Higher values of CIN can be used to further  
reduce the voltage drop during high-current application. When switching heavy loads, it is recommended to have  
an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop. For the  
fastest slew rate setting of the device, a CIN to CL ratio of at least 100 to 1 is recommended to avoid excessive  
voltage drop.  
10.1.10 Output Capacitor (Optional)  
Due to the integrated body diode of the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of at least 10 to 1 is recommended for minimizing  
VIN dip caused by inrush currents during startup. For the fastest slew rate setting of the device, a CIN to CL ratio  
of at least 100 to 1 is recommended to minimize VIN dip caused by inrush currents during startup.  
10.1.11 I2C Protocol  
The following section will cover the standard I2C protocol used in the TPS22993. In the I2C protocol, the following  
basic blocks are present in every command (except for the SwitchALLTM command):  
Start/stop bit – marks the beginning and end of each command.  
Slave address – the unique address of the slave device.  
Sub address – this includes the register address and the auto-increment bit.  
Data byte – data being written to the register. Eight bits must always be transferred even if a single bit is  
being written or read.  
Auto-increment bit – setting this bit to ‘1’ turns on the auto-increment functionality; setting this bit to ‘0’ turns  
off the auto-increment functionality.  
Write/read bit – this bit signifies if the command being sent will result in reading from a register or writing to a  
register. Setting this bit to ‘0’ signifies a write, and setting this bit to ‘1’ signifies a read.  
Acknowledge bit – this bit signifies if the master or slave has received the preceding data byte.  
10.1.11.1 Start and Stop Bit  
In the I2C protocol, all commands contain a START bit and a STOP bit. A START bit, defined by high to low  
transition on the SDA line while SCL is high, marks the beginning of a command. A STOP bit, defined by low to  
high transition on the SDA line while SCL is high, marks the end of a command. The START and STOP bits are  
generated by the master device on the I2C bus. The START bit indicates to other devices that the bus is busy,  
and some time after the STOP bit the bus is assumed to be free.  
10.1.11.2 Auto-increment Bit  
The auto-increment feature in the I2C protocol allows users to read from and write to consecutive registers in  
fewer clock cycles. Since the register addresses are consecutive, this eliminates the need to resend the register  
address. The I2C core of the device automatically increments the register address pointer by one when the auto-  
increment bit is set to ‘1’. When this bit is set to ‘0’, the auto-increment functionality is disabled.  
10.1.11.3 Write Command  
During the write command, the write/read bit is set to ‘0’, signifying that the register in question will be written to.  
Figure 33 the composition of the write protocol to a single register:  
SCL  
Slave Address  
Sub Address  
Data Byte  
Data Byte  
SDA ST A6 A5 A4 A3 A2 A1 A0  
0
A
0
0
0
0
0
0
0
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
D7 D6 D5 D4 D3 D2 D1 D0 A SP  
Start  
W/R  
Ack. from slave  
Auto-Inc.  
Ack  
from  
slave  
Data to Register N  
Ack  
from  
slave  
Data to Register N  
Ack Stop  
from  
slave  
Register Address N  
Figure 33. Data Write to a Single Register  
Copyright © 2013–2014, Texas Instruments Incorporated  
21  
 
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
Number of clock cycles for single register write: 29  
If multiple consecutive registers must be written to, a short-hand version of the write command can be used.  
Using the auto-increment functionality of I2C, the device will increment the register address after each byte.  
Figure 34 shows the composition of the write protocol to multiple consecutive registers:  
SCL  
Slave Address  
Sub Address  
Data Byte  
Data Byte  
SDA ST A6 A5 A4 A3 A2 A1 A0  
0
A
1
0
0
0
0
0
0
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
D7 D6 D5 D4 D3 D2 D1 D0 A  
Start  
W/R  
Ack. from slave  
Auto-Inc.  
Ack  
from  
slave  
Data to Register N  
Ack  
from  
slave  
Data to Register N+1 Ack  
from  
slave  
Register Address N  
Figure 34. Data Write to Consecutive Registers  
Number of clock cycles for consecutive register write: 20 + (Number of registers) x 9  
The write command is always ended with a STOP bit after the desired registers have been written to. If multiple  
non-consecutive registers must be written to, then the format in Figure 33 must be followed.  
10.1.11.4 Read Command  
During the read command, the write/read bit is set to ‘1’, signifying that the register in question will be read from.  
However, a read protocol includes a “dummy” write sequence to ensure that the memory pointer in the device is  
pointing to the correct register that will be read. Failure to precede the read command with a write command may  
result in a read from a random register. Figure 35 shows the composition of the read protocol to a single register:  
SCL  
Slave Address  
Sub Address  
Slave Address  
Data Byte  
SDA ST A6 A5 A4 A3 A2 A1 A0  
0
A
0
0
0
0
0
0
0
0
A
RS A6 A5 A4 A3 A2 A1 A0  
1
A
D7 D6 D5 D4 D3 D2 D1 D0 NA SP  
Start  
W/R  
Ack. from slave  
Auto-Inc.  
Ack Re-Start  
from  
slave  
W/R  
Data from Register N  
Stop  
Register Address  
Ack. from slave  
No Ack. from master (message ends)  
Continued  
Figure 35. Data Read to a Single Register  
Number of clock cycles for single register read: 39  
If multiple registers must be read from, a short-hand version of the read command can be used. Using the auto-  
increment functionality of I2C, the device will increment the register address after each byte. Figure 36 shows the  
composition of the read protocol to multiple consecutive registers:  
SCL  
Slave Address  
Sub Address  
Slave Address  
Data Byte  
SDA ST A6 A5 A4 A3 A2 A1 A0  
0
A
1
0
0
0
0
0
0
0
A RS A6 A5 A4 A3 A2 A1 A0  
1
A
D7 D6 D5 D4 D3 D2 D1 D0  
Start  
W/R  
Ack. from slave  
Auto-Inc.  
Ack Re-Start  
from  
slave  
W/R  
Ack. from slave  
Data from Register N  
Register Address  
Continued  
Data Byte  
Data Byte  
A
D7 D6 D5 D4 D3 D2 D1 D0  
Data from Register N+1  
A D7 D6 D5 D4 D3 D2 D1 D0 NA SP  
Data from Register N+2  
Stop  
Ack. from master  
Ack. from master  
No Ack. from master (Message ends)  
Figure 36. Data Read to Consecutive Registers  
Number of clock cycles for consecutive register write: 30 + (Number of registers) x 9  
22  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
 
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
The read command is always ended with a STOP bit after the desired registers have been read from. If multiple  
non-consecutive registers must be read from, then the format in Figure 35 must be followed.  
10.1.11.5 SwitchALLTM Command  
The SwitchALLTM command allows multiple devices in the same I2C bus to respond synchronously to the same  
command from the master. Every TPS22993 device has a shared address which allows for multiple devices to  
respond or execute a pre-determined action with a single command. Figure 37 shows the composition of the  
SwitchALLTM command:  
SCL  
SwitchALLTM Address  
Mode Register Address  
SDA ST 1  
Start  
1
1
0
1
1
1
0
A D7 D6 D5 D4 D3 D2 D1 D0 A SP  
W/R  
Ack  
from  
slave  
Ack. from slave  
Stop  
Figure 37. SwitchALLTM Command Structure  
Number of clock cycles for a SwitchALLTM command: 20  
10.2 Typical Applications  
This section will cover applications of I2C in the TPS22993. Registers discussed here are specific to the  
TPS22993.  
10.2.1 Switch from GPIO Control to I2C Control (and vice versa)  
The TPS22993 can be switched from GPIO control to I2C (and vice versa) mode by writing to the control register  
of the device. Each device has a single control register and is located at register address 05h. The register’s  
composition is as follows:  
Control register (Address: 05h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DESCRIPTION  
GPIO/I2C CH GPIO/I2C CH GPIO/I2C CH GPIO/I2C CH ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
4
0
3
0
2
0
1
0
4
0
3
0
2
0
1
0
DEFAULT  
Figure 38. Control Register Composition  
The higher four bits of the control register dictates if the device is in GPIO control (bit set to ‘0’) or I2C control (bit  
set to ‘1’). The transition from GPIO control to I2C control can be made with a single write command to the  
control register. See Figure 33 for the composition of a single write command. It is recommended that the  
channel of interest is transitioned from GPIO control to I2C control with the first write command and followed by a  
second write command to enable the channel via I2C control. This will ensure a smooth transition from GPIO  
control to I2C control.  
10.2.2 Configuration of Configuration Registers  
The TPS22993 contains four configuration registers (one for each channel) and are located at register addresses  
01h through 04h. The register’s composition is as follows (single channel shown for clarity):  
Copyright © 2013–2014, Texas Instruments Incorporated  
23  
 
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
Channel 1 configuration register (Address: 01h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DESCRIPTION  
X
ON-DELAY  
SLEW RATE  
QUICK OUTPUT  
DISCHARGE  
DEFAULT  
X
0
0
0
1
0
1
0
Figure 39. Configuration Register Composition  
10.2.2.1 Single Register Configuration  
A single configuration register can be written to using the write command sequence shown in Figure 33.  
Multiple register writes to non-consecutive registers is treated as multiple single register writes and follows the  
same write command as that of a single register write as shown in Figure 33.  
10.2.2.2 Multi-register Configuration (Consecutive Registers)  
Multiple consecutive configuration registers can be written to using the write command sequence shown in  
Figure 34.  
10.2.3 Configuration of Mode Registers  
The TPS22993 contains twelve mode registers located at register addresses 06h through 11h. These mode  
registers allow the user to turn-on or turn-off multiple channels in a single TPS22993 or multiple channels  
spanning multiple TPS22993 devices with a single SwitchALLTM command.  
For example, an application may have multiple power states (e.g. sleep, active, idle, etc.) as shown in Figure 40.  
SwitchALLTM command with Mode2  
register  
SwitchALLTM command with Mode1  
register  
Sleep  
Active  
Idle  
Figure 40. Application Example of Power States  
In each of the different power states, different combinations of channels may be on or off. Each power state may  
be associated with a single mode register (Mode1, Mode2, etc.) across multiple TPS22993 as shown in Table 2.  
For example, with 7 quad-channel devices, up to 28 rails can be enabled/disabled with a single SwitchALLTM  
command.  
Table 2. Application Example of State of Each Channel in Multiple TPS22993 in Different Power States  
Load Switch #1  
Load Switch #2  
Load Switch #N  
Mode  
Register  
Power  
State  
Ch. 1  
Off  
Ch. 2  
Off  
Ch. 3  
Off  
Ch. 4  
Off  
Ch. 1  
Off  
Ch. 2  
Off  
Ch. 3  
Off  
Ch. 4  
Off  
Ch. 1  
Off  
Ch. 2  
Off  
Ch. 3  
Off  
Ch. 4  
Off  
Mode1  
Mode2  
Mode3  
Sleep  
Active  
Idle  
On  
On  
On  
On  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
24  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
The contents of the lower four bits of the mode register is copied into the lower four bits of the control register  
during an SwitchALLTM command. The address of the mode register to be copied is specified in the SwitchALLTM  
command (see Figure 37 for the structure of the SwitchALLTM command). By executing a SwitchALLTM  
command, the application will apply the different on/off combinations for the various power states with a single  
command rather than having to turn on/off each channel individually by re-configuring the control register. This  
reduces the latency and allows the application to control multiple channels synchronously. The example above  
shows the application using three mode registers, but the TPS22993 contains twelve mode registers, allowing for  
up to twelve power states.  
The mode register’s composition is as follows (single mode register shown for clarity):  
Mode1 (Address: 06h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DESCRIPTION  
X
X
X
X
ENABLE  
CH 4  
ENABLE  
CH 3  
ENABLE  
CH 2  
ENABLE  
CH 1  
DEFAULT  
X
X
X
X
0
0
0
0
Figure 41. Mode Register Composition  
The lower four bits of the mode registers are copied into the lower four bits of the control register during an all-  
call command.  
Copyright © 2013–2014, Texas Instruments Incorporated  
25  
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
10.2.4 Turn-on/Turn-off of Channels  
By default upon power up VBIAS, all the channels of the TPS22993 are controlled via the ONx terminals. Using  
the I2C interface, each channel be controlled via I2C control as well. The channels of the TPS22993 can also be  
switched on or off by writing to the control register of the device. Each device has a single control register and is  
located at register address 05h. The register’s composition is as follows:  
Control Register (Address: 05h)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GPIO/I2C CH GPIO/I2C CH GPIO/I2C CH GPIO/I2C CH ENABLE CH ENABLE CH ENABLE CH ENABLE CH  
DESCRIPTION  
DEFAULT  
4
0
3
0
2
0
1
0
4
0
3
0
2
0
1
0
Figure 42. Control Register Composition  
The lower four bits of the control register dictate if the channels of the device are off (bit set to ‘0’) or on (bit set  
to ‘1’) during I2C control. The transition from off to on can be made with a single write command to the control  
register. See Figure 33 for the composition of a single write command.  
10.2.5 Tying Multiple Channels in Parallel  
Two or more channels of the device can be tied in parallel for applications that require lower RON and/or more  
continous current. Tying two channels in parallel will result in half of the RON and two times the IMAX capability.  
Tying three channels in parallel will result in one-third of the RON and three times the IMAX capability. Tying four  
channels in parallel will result in one-fourth of the RON and four times the IMAX capability. For the channels that  
are tied in parallel, it is recommended that the ONx terminals be tied together for synchronous control of the  
channels when in GPIO control. In I2C control, all four channels can be enabaled or disabled synchronously by  
writing to the control register of the device. Figure 43 shows an application example of tying all four channels in  
parallel.  
VBIAS  
(4.5V to 17.2V)  
VIN1  
VOUT1  
PMIC or  
PMU  
ON1  
CL  
RL  
VIN2  
VOUT2  
VOUT3  
ON2  
TPS22993  
VIN3  
ON3  
VOUT4  
VIN4  
ON4  
ADD1  
GPIO >>  
ADD2  
ADD3  
SDA SCL  
µC  
VDD  
(1.62 to 3.6)  
Figure 43. Parallel Channels  
26  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
10.2.6 Cold Boot Programming of all Registers  
Since the TPS22993 has a digital core with volatile memory, upon power cycle of the VBIAS terminal, the  
registers will revert back to their default values (see register map for default values). Therefore, the application  
must reprogram the configuration registers, control register, and mode registers if non-default values are desired.  
The TPS22993 contains 17 programmable registers (4 configuration registers, 1 control register, 12 mode  
registers) in total.  
During cold boot when the microcontroller and the I2C bus is not yet up and running, the channels of the  
TPS22993 can still be enabled via GPIO control. One method to achieve this is to tie the ONx terminal to the  
respective VINx terminal for the channels that need to turn on by default during cold boot. With this method,  
when VINx is applied to the TPS22993, the channel will be enabled as well. Once the I2C bus is active, the  
channel can be switched over to I2C control to be disabled. See Figure 44 for an example of how the ONx  
terminals can be tied to VINx for default enable during cold boot.  
VBIAS  
(4.5V to 17.2V)  
VIN1  
VOUT1  
ON1  
CL  
CL  
CL  
RL  
RL  
RL  
VIN2  
VOUT2  
VOUT3  
ON2  
PMIC or  
PMU  
TPS22993  
VIN3  
ON3  
VOUT4  
VIN4  
ON4  
ADD1  
CL  
RL  
ADD2  
ADD3  
SDA SCL  
µC  
VDD  
(1.62 to 3.6)  
Figure 44. Cold Boot Programming  
It is also possible to power sequence the channels of the device during a cold boot when there is no I2C bus  
present for control. One method to accomplish this it to tie the VOUT of one channel to the ON terminal of the  
next channel in the sequence. For example, if the desired power up sequence is VOUT3, VOUT1, VOUT2, and  
VOUT4 (in that order), then the device can be configured for GPIO control as shown in Figure 45. The device will  
power up with default slew rate, ON-delay, and QOD values as specified in the register map.  
Copyright © 2013–2014, Texas Instruments Incorporated  
27  
 
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
VBIAS  
(4.5V to 17.2V)  
VIN1  
VOUT1  
ON1  
CL  
CL  
CL  
RL  
RL  
RL  
VIN2  
VOUT2  
VOUT3  
ON2  
PMIC or  
PMU  
TPS22993  
VIN3  
ON3  
VOUT4  
VIN4  
ON4  
ADD1  
CL  
RL  
ADD2  
ADD3  
SDA SCL  
µC  
VDD  
(1.62 to 3.6)  
Figure 45. Power Sequencing Without I2C  
10.2.7 Reading From the Registers  
Reading any register from the TPS22993 follows the same standard I2C read protocol as outlined in the I2C  
Protocol section of this datasheet.  
28  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
11 Layout  
11.1 Board Layout  
For best performance, all traces should be as short as possible. To be most effective, the input and output  
capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects  
along with minimizing the case to ambient thermal impedance.  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable power dissipation, PD(max) for a given output current and ambient temperature,  
use the following equation:  
T
J(max) - TA  
P
=
D(max)  
QJA  
(1)  
Where:  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature (125°C for the TPS22993)  
TA = ambient temperature of the device  
ΘJA = junction to air thermal impedance. See Thermal Information section. This parameter is highly  
dependent upon board layout.  
The figure below shows an example of a layout.  
Figure 46. Top View of the TPS22993 EVM  
Copyright © 2013–2014, Texas Instruments Incorporated  
29  
TPS22993  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
www.ti.com.cn  
Board Layout (continued)  
Figure 47. Bottom View of the TPS22993 EVM.  
30  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS22993  
www.ti.com.cn  
ZHCSBU6A NOVEMBER 2013REVISED MARCH 2014  
12 器件和文档支持  
12.1 Trademarks  
SwitchALL is a trademark of Texas Instruments.  
Ultrabook is a trademark of Intel.  
12.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 要获得这份数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2013–2014, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22993RLWR  
ACTIVE  
WQFN-HR  
RLW  
20  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
22993P  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22993RLWR  
WQFN-  
HR  
RLW  
20  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN-HR RLW 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
TPS22993RLWR  
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS22993RLWR

可通 I2C 进行控制的 4 通道、3.6V、1.2A、15mΩ 负载开关 | RLW | 20 | -40 to 85
TI

TPS22994

可通 I2C 进行控制的 4 通道、3.6V、1A、41mΩ 负载开关
TI

TPS22994RUKR

可通 I2C 进行控制的 4 通道、3.6V、1A、41mΩ 负载开关 | RUK | 20 | -40 to 85
TI

TPS22994RUKT

可通 I2C 进行控制的 4 通道、3.6V、1A、41mΩ 负载开关 | RUK | 20 | -40 to 85
TI

TPS22995

具有可调上升时间的 5.5V、3.5A、20mΩ 导通电阻负载开关
TI

TPS22995H-Q1

具有可调上升时间的汽车类 5.5V 3A 16mΩ 负载开关
TI

TPS22995HQDDCRQ1

具有可调上升时间的汽车类 5.5V 3A 16mΩ 负载开关 | DDC | 6 | -40 to 125
TI

TPS22995RZFR

具有可调上升时间的 5.5V、3.5A、20mΩ 导通电阻负载开关 | RZF | 6 | -40 to 125
TI

TPS22995RZGR

具有可调上升时间的 5.5V、3.5A、20mΩ 导通电阻负载开关 | RZG | 6 | -40 to 125
TI

TPS22997

具有电源正常指示功能的 5.5V、10A、4mΩ 导通电阻负载开关
TI

TPS22997RYZR

具有电源正常指示功能的 5.5V、10A、4mΩ 导通电阻负载开关 | RYZ | 10 | -40 to 125
TI

TPS22998

5.5V、10A、导通电阻为 4mΩ 的负载开关
TI