TPS548A20RVET [TI]

1.5V 至 20V、15A 同步 SWIFT™ 降压转换器 | RVE | 28 | -40 to 125;
TPS548A20RVET
型号: TPS548A20RVET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1.5V 至 20V、15A 同步 SWIFT™ 降压转换器 | RVE | 28 | -40 to 125

转换器
文件: 总38页 (文件大小:2127K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
TPS548A20 具有 PMBus™ 接口的 1.5V 20V4.5V 25V 偏置)  
输入、15A 同步降压 SWIFT™ 转换器  
1 特性  
2 应用  
1
集成的 SWIFT™9.9mΩ 4.3mΩ 金属氧化物半导  
体场效应晶体管 (MOSFET) 支持 15A 持续 IOUT  
服务器、云计算、存储  
网络互联和电信、负载点 (POL)  
宽转换输入电压范围:1.5V 20V(采用缓冲器)  
输出电压范围:0.6V 5.5V  
IPC、工厂自动化、PLC、测试测量  
高性能数字信号处理器 (DSP)、现场可编程门阵列  
(FPGA)  
支持所有陶瓷输出电容  
基准电压:600mV±0.5% 容限(在 –40°C 至  
85°C 的环境温度范围内)  
3 说明  
TPS548A20 是一款具有自适应导通时间 D-CAP3 控制  
模式的小尺寸同步降压转换器。此器件使得空间受限类  
电源系统易于使用,并且外部组件数量较少。  
D-CAP3™控制模式,此模式具有快速负载阶跃响  
HICCUP 过流保护  
自动跳跃 Eco-mode™,可实现轻负载条件下的高  
效率  
此器件 特有 高性能集成 MOSFET、精准 0.6V 基准和  
一个集成的升压开关。具有竞争力的 特性 包括:极低  
外部组件数量、快速负载瞬态响应、自动跳跃模式操  
作、内部软启动控制,并且无需补偿。  
针对严格输出纹波和电压容差要求的强制连续传导  
模式 (FCCM)  
预充电启动功能  
8 个可通过 PMBus 接口在  
200kHz 1MHz 之间选择的频率设置  
强制持续传导模式有助于满足高性能 DSP FPGA 应  
用的严格电压调节精度要求。TPS548A20 采用 28 引  
VQFN-CLIP 封装,并且在 -40°C 125°C 的环境  
温度范围内额定运行。  
4.5mm x 3.5mm 28 引脚超薄四方扁平无引线  
(VQFN)-CLIP 封装  
WEBENCH™ 设计中心提供支持SWIFT™  
器件信息(1)  
器件型号  
TPS548A20  
封装  
封装尺寸(标称值)  
VQFN-CLIP (28)  
4.50mm x 3.50mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化应用  
PGOOD  
VIN  
Thermal  
Pad  
23  
22  
21  
20  
18  
19  
17  
16  
15  
24 VO  
PGND 14  
PGND 13  
PGND 12  
PGND 11  
PGND 10  
25 TRIP  
26 NC  
TPS548A20  
27 GND1  
28 GND2  
1
2
3
4
5
6
7
8
9
EN  
VOUT  
VREG  
Thermal  
Pad  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSC78  
 
 
 
 
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 22  
Application and Implementation ........................ 23  
8.1 Application Information............................................ 23  
8.2 Typical Application .................................................. 23  
Power Supply Recommendations...................... 28  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Electrical Characteristics........................................... 5  
6.5 Thermal Information.................................................. 7  
6.6 Typical Characteristics.............................................. 8  
6.7 Thermal Performance ............................................. 14  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagrams ..................................... 15  
8
9
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 29  
11 器件和文档支持 ..................................................... 30  
11.1 文档支持................................................................ 30  
11.2 ....................................................................... 30  
11.3 静电放电警告......................................................... 30  
11.4 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
Changes from Original (October 2015) to Revision A  
Page  
已将文档状态从产品预览更新为量产数据 .............................................................................................................................. 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
5 Pin Configuration and Functions  
28-PIN  
QFN  
(TOP VIEW)  
28  
27  
26  
25  
24  
1
2
3
4
5
6
7
8
9
23  
22  
21  
20  
19  
18  
17  
16  
15  
RF  
PGOOD  
EN  
FB  
GND  
MODE  
VREG  
VDD  
NC  
VBST  
NC  
SW  
SW  
VIN  
SW  
VIN  
Thermal Pad  
SW  
VIN  
10  
11  
12  
13  
14  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
EN  
NO.  
3
I
I
The enable pin turns on the DC-DC switching converter.  
FB  
23  
VOUT feedback input. Connect this pin to a resistor divider between the VOUT pin and GND.  
This pin is the ground of internal analog circuitry and driver circuitry. Connect GND to the PGND  
plane with a short trace (For example, connect this pin to the thermal pad with a single trace and  
connect the thermal pad to PGND pins and PGND plane).  
GND  
22  
G
GND1  
GND2  
27  
28  
Connect this pin to ground. GND1 is the input of unused internal circuitry and must connect to  
ground.  
G
I
The MODE pin sets the forced continuous-conduction mode (FCCM) or auto-skip mode operation. It  
also selects the ramp coefficient of D-CAP3 mode.  
MODE  
21  
5
NC  
18  
26  
10  
11  
12  
13  
14  
G
Not connected. These pins are floating internally.  
PGND  
These ground pins are connected to the return of the internal low-side MOSFET.  
Open-drain power-good status signal which provides startup delay after the FB voltage falls within the  
specified limits. After the FB voltage moves outside the specified limits, PGOOD goes low within 2 µs.  
PGOOD  
RF  
2
1
O
I
(1) I = Input, O = Output, P = Supply, G = Ground  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
6
7
SW  
I/O  
SW is the output switching terminal of the power converter. Connect this pin to the output inductor.  
8
9
TRIP is the OCL detection threshold setting pin. ITRIP = 10 µA at TA = 25°C, 3000 ppm/°C current is  
sourced and sets the OCL trip voltage. See the Current Sense and Overcurrent Protection section for  
detailed OCP setting.  
TRIP  
25  
I/O  
VBST is the supply rail for the high-side gate driver (boost terminal). Connect the bootstrap capacitor  
from this pin to the SW node. Internally connected to VREG via bootstrap PMOS switch.  
VBST  
VDD  
4
P
P
19  
15  
16  
17  
20  
24  
Power-supply input pin for controller. Input of the VREG LDO. The input range is from 4.5 to 25 V.  
VIN  
P
VIN is the conversion power-supply input pins.  
VREG  
VO  
O
I
VREG is the 5-V LDO output. This voltage supplies the internal circuitry and gate driver.  
VOUT voltage input to the controller.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–3  
MAX  
7.7  
25  
27  
31  
6
UNIT  
EN  
DC  
SW  
Transient < 10 ns  
–5  
VBST  
VBST(3)  
–0.3  
–0.3  
Input voltage range(2)  
V
VBST when transient < 10 ns  
33  
28  
25  
6
VDD  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
VIN  
FB, MODE, VO  
PGOOD  
TRIP, VREG  
7.7  
6
Output voltage range  
V
Junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
(3) Voltage values are with respect to the SW terminal.  
6.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.1  
–3  
MAX  
7
UNIT  
EN  
SW  
20  
VBST  
VBST(1)  
–0.1  
–0.1  
4.5  
25.5  
5.5  
25  
Input voltage range  
V
VDD  
VIN  
1.5  
20  
FB, MODE, VO  
PGOOD  
TRIP, VREG  
–0.1  
–0.1  
–0.1  
–40  
5.5  
7
Output voltage range  
V
5.5  
125  
Ambient temperature, TA  
°C  
(1) Voltage values are with respect to the SW pin.  
6.4 Electrical Characteristics  
over operating free-air temperature range, VDD = 12V, VREG = 5 V, VEN = 5 V (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C, No load  
IVDD  
VDD bias current  
1350  
850  
1850  
µA  
Power conversion enabled (no  
switching)  
TA = 25°C, No load  
Power conversion disabled  
IVDDSTBY  
VDD standby current  
VIN leakage current  
1150  
0.5  
µA  
µA  
IVIN(leak)  
TA = 25°C, VEN = 0 V  
VREF OUTPUT  
VVREF  
Reference voltage  
FB w/r/t GND, TA = 25°C  
597  
–0.5  
–1.0  
600  
603  
0.5  
1.0  
mV  
%
FB w/r/t GND, -40°C TJ 85°C  
FB w/r/t GND, –40°C TJ 125°C  
VVREFTOL  
Reference voltage tolerance  
OUTPUT VOLTAGE  
IFB  
FB input current  
VFB = 600 mV  
50  
6
100  
nA  
uA  
VVO = 0.5 V, Power Conversion  
Disabled  
IVODIS  
VO discharge current  
SMPS FREQUENCY  
VIN = 12 V, VVO = 3.3 V, RRF<0.041  
VIN = 12 V, VVO = 3.3 V, RRF=0.096  
VIN = 12 V, VVO = 3.3 V, RRF=0.16  
VIN = 12 V, VVO = 3.3 V, RRF=0.229  
VIN = 12 V, VVO = 3.3 V, RRF=0.297  
VIN = 12 V, VVO = 3.3 V, RRF=0.375  
VIN = 12 V, VVO = 3.3 V, RRF=0.461  
VIN = 12 V, VVO = 3.3 V, RRF>0.557  
TA = 25°C(1)  
250  
300  
400  
500  
600  
750  
850  
1000  
60  
fSW  
VO switching frequency  
kHz  
tON(min)  
Minimum on-time  
Minimum off-time  
ns  
ns  
tOFF(min)  
TA = 25°C  
175  
240  
310  
INTERNAL BOOTSTRAP SW  
VF  
Forward Voltage  
VVREG–VBST, TA = 25°C, IF = 10 mA  
0.15  
0.01  
0.25  
1.5  
V
TA = 25°C, VVBST = 33 V, VSW = 28  
V
IVBST  
VBST leakage current  
µA  
(1) Specified by design. Not production tested.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VDD = 12V, VREG = 5 V, VEN = 5 V (unless otherwise noted)  
PARAMETER  
LOGIC THRESHOLD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VENH  
EN enable threshold voltage  
EN disable threshold voltage  
EN hysteresis voltage  
1.3  
1.1  
1.4  
1.2  
0.22  
0
1.5  
1.3  
V
V
VENL  
VENHYST  
VENLEAK  
SOFT-START  
tSS  
V
EN input leakage current  
–1  
1
µA  
Soft-start time  
4
ms  
POWERGOOD COMPARATOR  
PGOOD in from higher  
104  
89  
108  
92  
116  
84  
1.0  
2
111  
96  
%
%
PGOOD in from lower  
PGOOD out to higher  
PGOOD out to lower  
Delay for PGOOD going in  
Delay for PGOOD coming out  
VPGOOD = 0.5 V  
VPGTH  
PGOOD threshold  
PGOOD delay time  
113  
80  
120  
87  
%
%
0.8  
1.2  
ms  
µs  
mA  
µA  
tPGDLY  
IPG  
PGOOD sink current  
4
6
IPGLK  
PGOOD leakage current  
VPGOOD = 5.0 V  
–1  
0
1
POWER-ON DELAY  
tPODLY  
Power-on delay time  
Delay from enable to switching  
1.124  
ms  
A
CURRENT DETECTION  
RTRIP = 49 kΩ  
RTRIP = 28 kΩ  
RTRIP = 49 kΩ  
RTRIP = 28 kΩ  
11.5  
6.5  
15.0  
8
17.5  
11  
IOCL  
Current limit threshold, valley  
-18.0  
-11.5  
–14.9  
-8.0  
0
-10.5  
-6.0  
Negative current limit threshold,  
valley  
IOCLN  
A
VZC  
Zero cross detection offset  
mV  
PROTECTIONS  
Wake-up  
3.25  
3.00  
4.15  
3.95  
3.34  
3.12  
4.25  
4.05  
3.41  
3.19  
4.35  
4.15  
VREG undervoltage-lockout (UVLO)  
threshold voltage  
VVREGUVLO  
V
V
Shutdown  
Wake-up (default)  
Shutdown  
VVDDUVLO  
VDD UVLO threshold voltage  
Overvoltage-protection (OVP)  
threshold voltage  
VOVP  
OVP detect voltage  
With 100-mV overdrive  
UVP detect voltage  
UVP filter delay  
116  
120  
300  
68  
124  
%
ns  
%
tOVPDLY  
VUVP  
OVP propagation delay  
Undervoltage-protection (UVP)  
threshold voltage  
64  
71  
tUVPDLY  
UVP delay  
1
ms  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
140  
40  
TSDN  
Thermal shutdown threshold(1)  
°C  
LDO VOLTAGE  
VREG  
LDO output voltage  
VIN = 12 V, ILOAD = 10 mA  
4.65  
170  
5
5.45  
365  
V
VDOVREG  
LDO low droop drop-out voltage  
VIN = 4.5 V, ILOAD = 30 mA, TA  
25°C  
=
mV  
mA  
ILDOMAX  
LDO over-current limit  
VIN = 12 V, TA = 25°C  
200  
INTERNAL MOSFETS  
RDS(on)H High-side MOSFET on-resistance  
RDS(on)L Low-side MOSFET on-resistance  
TA = 25°C  
TA = 25°C  
9.9  
4.3  
11.4  
4.94  
mΩ  
mΩ  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
6.5 Thermal Information  
TPS548A20  
RVE  
UNIT  
THERMAL METRIC(1)  
(VQFN-CLIP)  
28 PINS  
θJA  
Junction-to-ambient thermal resistance  
37.5  
34.1  
18.1  
1.8  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
18.1  
2.2  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
版权 © 2015, Texas Instruments Incorporated  
7
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
6.6 Typical Characteristics  
TA = 25°C (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VOUT (V)  
0.6  
VOUT (V)  
0.6  
1.2  
1.5  
1.8  
2.5  
3.3  
5
1.2  
1.5  
1.8  
2.5  
3.3  
5
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Output Current (A)  
Output Current (A)  
D001  
D001  
fSW = 500 kHz  
VIN = 12 V  
fSW = 500 kHz  
VIN = 12 V  
Auto-skip Mode  
FCCM  
1. Efficiency vs. Output Current  
2. Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VOUT (V)  
0.6  
VOUT (V)  
0.6  
1.2  
1.5  
1.8  
2.5  
3.3  
5
1.2  
1.5  
1.8  
2.5  
3.3  
5
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Output Current (A)  
Output Current (A)  
D001  
D001  
fSW = 970 kHz  
VIN = 12 V  
fSW = 970 kHz  
VIN = 12 V  
Auto-skip Mode  
FCCM  
3. Efficiency vs. Output Current  
4. Efficiency vs. Output Current  
1.3  
1.3  
VIN = 5  
VIN = 5  
VIN = 12  
VIN = 18  
VIN = 12  
VIN = 18  
1.275  
1.25  
1.225  
1.2  
1.275  
1.25  
1.225  
1.2  
1.175  
1.15  
1.125  
1.1  
1.175  
1.15  
1.125  
1.1  
0
3
6
9
12  
VOUT = 1.2 V  
15  
0
3
6
9
12  
15  
Output Current (A)  
Output Current (A)  
D001  
D001  
fSW = 500 kHz  
fSW = 970 kHz  
VOUT = 1.2 V  
5. DC Load Regulation  
6. DC Load Regulation  
8
版权 © 2015, Texas Instruments Incorporated  
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
Typical Characteristics (接下页)  
TA = 25°C (unless otherwise noted)  
1.3  
1.3  
1.275  
1.25  
1.225  
1.2  
VIN = 5  
VIN = 12  
VIN = 18  
VIN = 5  
VIN = 12  
VIN = 18  
1.275  
1.25  
1.225  
1.2  
1.175  
1.15  
1.125  
1.1  
1.175  
1.15  
1.125  
1.1  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
Output Current (A)  
Output Current (A)  
D001  
D001  
fSW = 500 kHz  
VOUT = 1.2 V  
fSW = 970 kHz  
VOUT = 1.2 V  
7. DC Load Regulation  
8. DC Load Regulation  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
400 LFM  
200 LFM  
100 LFM  
400 LFM  
200 LFM  
100 LFM  
60  
60  
Natural convection  
Natural convection  
50  
50  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
Output Current (A)  
Output Current (A)  
D001  
D001  
fSW = 500 kHz  
VOUT = 5 V  
VIN = 12 V  
fSW = 500 kHz  
VOUT = 1 V  
VIN = 12 V  
9. Safe Operating Area  
10. Safe Operating Area  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
250 kHz, Skip Mode  
500 kHz, Skip Mode  
970 kHz, Skip Mode  
250 kHz, FCCM  
500 kHz, FCCM  
970 kHz, FCCM  
0
3
6
9
12  
15  
Output Current (A)  
D001  
VOUT = 1.2 V  
VIN = 12 V  
11. Switching Frequency vs. Output Current  
版权 © 2015, Texas Instruments Incorporated  
9
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C (unless otherwise noted)  
fSW = 1 MHz  
VOUT = 1.2 V  
VIN = 12 V  
ILOAD = 0 A  
fSW = 1 MHz  
VOUT = 1.2 V  
VIN = 12 V  
ILOAD = 0 A  
12. Skip Mode Steady-State Operation  
13. FCCM Steady-State Operation  
fSW = 1 MHz  
VOUT = 1.2 V  
VIN = 12 V  
ILOAD = 0.1 A  
fSW = 1 MHz  
VIN = 12 V  
ILOAD = 0.1 A  
VOUT = 1.2 V  
14. Skip Mode Steady-State Operation  
15. Steady-State Operation  
10  
版权 © 2015, Texas Instruments Incorporated  
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
Typical Characteristics (接下页)  
TA = 25°C (unless otherwise noted)  
fSW = 1 MHz  
VOUT = 1.2 V  
VIN = 12 V  
ILOAD = 8 A  
fSW = 1 MHz  
VOUT = 1.2 V  
VIN = 12 V  
ILOAD = 8 A  
16. Skip Mode Steady-State Operation  
17. Skip Mode Steady-State Operation  
ILOAD from 0 A to 8 A  
VIN = 12 V  
Div = 2 A/µs  
VOUT = 1.2 V  
ILOAD from 0 A to 8 A  
VIN = 12 V  
Div = 2 A/µs  
VOUT = 1.2 V  
fSW = 1 MHz  
fSW = 1 MHz  
18. Auto-skip Mode Load Transient  
19. Load Transient  
版权 © 2015, Texas Instruments Incorporated  
11  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C (unless otherwise noted)  
fSW = 1 MHz  
VOUT = 1.2 V  
VIN = 12 V  
fSW = 1 MHz  
VOUT = 1.2 V  
VIN = 12 V  
20. Auto-skip Mode Start-Up  
21. FCCM Mode Start-Up  
ILOAD = 0 A  
VIN = 12 V  
ILOAD = 0 A  
VIN = 12 V  
VOUT = 1.2 V  
fSW = 1 MHz  
VOUT = 1.2 V  
fSW = 1 MHz  
22. Skip Mode Pre-Bias Start-Up  
23. FCCM Pre-Bias Start-Up  
12  
版权 © 2015, Texas Instruments Incorporated  
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
Typical Characteristics (接下页)  
TA = 25°C (unless otherwise noted)  
ILOAD = 8A  
VIN = 12 V  
ILOAD = 8 A  
VIN = 12 V  
VOUT = 1.2 V  
fSW = 1 MHz  
VOUT = 1.2 V  
fSW = 1 MHz  
24. Auto-skip Mode Shutdown Operation  
25. Auto-skip Mode Shutdown Operation  
ILOAD = 0 A  
VIN = 12 V  
ILOAD = 8 A  
VIN = 12 V  
fSW = 1 MHz  
VOUT = 1.2 V  
fSW = 1 MHz  
VOUT = 1.2 V  
26. FCCM Shutdown Operation  
27. FCCM Shutdown Operation  
版权 © 2015, Texas Instruments Incorporated  
13  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C (unless otherwise noted)  
28. Overcurrent Protection Hiccup  
29. Overcurrent Protection  
6.7 Thermal Performance  
fSW = 500 kHz, VIN = 12 V, VOUT = 5 V, IOUT = 12 A, COUT = 10 × 22 µF (1206, 6.3 V, X5R), RBOOT = 0 Ω, SNB = 3 Ω + 470 pF  
Inductor: LOUT = 1 µH, PCMC135T-1R0MF, 12.6 mm × 13.8 mm × 5 mm, 2.1 mΩ (typ)  
30. SP1: 68.2( TPS548A20 ), SP2: 75(Inductor)  
14  
版权 © 2015, Texas Instruments Incorporated  
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
7 Detailed Description  
7.1 Overview  
The TPS548A20 is a high-efficiency, single-channel, synchronous-buck converter. The device suits low-output  
voltage point-of-load applications with 15-A or lower output current in computing and similar digital consumer  
applications. The TPS548A20 features proprietary D-CAP3 mode control combined with adaptive on-time  
architecture. This combination builds modern low-duty-ratio and ultra-fast load-step-response DC-DC converters  
in an ideal fashion. The output voltage ranges from 0.6 V to 5.5 V. The conversion input voltage ranges from  
1.5 V to 20 V (with snubber) and the VDD input voltage ranges from 4.5 V to 25 V. D-CAP3 mode operation uses  
emulated current information to control the modulation. An advantage of this control scheme is that it does not  
require a phase-compensation network outside which makes the device easy-to-use and also allows low-external  
component count. Adaptive on-time control tracks the preset switching frequency over a wide range of input and  
output voltage while increasing switching frequency as needed during load-step transient.  
7.2 Functional Block Diagrams  
PGOOD  
+
+
0.6 V + 8/16%  
0.6 V œ 32%  
+
UV  
+
Delay  
Delay  
OV  
0.6 V œ 8/16%  
0.6 V+20%  
VREG  
Internal  
Ramp  
Control Logic  
UVP / OVP  
Logic  
0.6 V  
SS  
+
+
PWM  
OCP  
VFB  
VBST  
VIN  
10 µA  
GND  
+
+
One-  
Shot  
TRIP  
LL  
SW  
XCON  
+
ZC  
Control  
Logic  
PGND  
PGND  
VO  
SW  
FCCM / SKIP  
RC Time  
Constant  
ñ
ñ
ñ
ñ
ñ
ñ
On/Off time  
Minimum On/Off  
Light load  
OVP/UVP  
FCCM/SKIP  
Soft-Start  
MODE  
Fault  
Shut Down  
+
NC  
VREGOK  
3.34 V /  
3.12 V  
LDO  
VREG  
VDD  
GND1  
+
GND2  
EN  
VDDOK  
THOK  
4.3 V /  
4.03 V  
+
+
140°C /  
100°C  
Enable  
1.4 V / 1.2 V  
RF  
TPS548A20  
版权 © 2015, Texas Instruments Incorporated  
15  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Powergood  
The TPS548A20 has powergood output that indicates high when switcher output is within the target. The power-  
good function is activated after the soft-start operation is complete. If the output voltage becomes within ±8% of  
the target value, internal comparators detect the power-good state and the power-good signal becomes high  
after a 1-ms internal delay. If the output voltage goes outside of ±16% of the target value, the power-good signal  
becomes low after a 2-μs internal delay. The power-good output is an open-drain output and must be pulled-up  
externally.  
7.3.2 D-CAP3 Control and Mode Selection  
RR  
SW  
To comparator  
CR  
VOUT  
31. Internal RAMP Generation Circuit  
The TPS548A20 uses D-CAP3 mode control to achieve fast load transient while maintaining the ease-of-use  
feature. An internal RAMP is generated and fed to the VFB pin to reduce jitter and maintain stability. The  
amplitude of the ramp is determined by the R-C time-constant as shown in 31. At different switching  
frequencies, (fSW) the R-C time-constant varies to maintain relatively constant RAMP amplitude.  
7.3.3 D-CAP3 Mode  
From small-signal loop analysis, a buck converter using the D-CAP3 mode control architecture can be simplified  
as shown in 32.  
VO  
SW  
CC1  
RC1  
VIN  
CC2  
RC2  
Sample  
and Hold  
DRVH  
PWM  
Comparator  
Lx  
RFBH  
Control  
Logic  
and  
G
+
+
VRAMP  
VOUT  
FB  
DRVL  
Driver  
RCO  
+
VREF  
RLOAD  
COUT  
RFBL  
32. D-CAP3 Mode  
16  
版权 © 2015, Texas Instruments Incorporated  
 
 
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
Feature Description (接下页)  
The D-CAP3 control architecture includes an internal ripple generation network enabling the use of very low-ESR  
output capacitors such as multi-layered ceramic capacitors (MLCC). No external current sensing network or  
voltage compensators are required with D-CAP3 control architecture. The role of the internal ripple generation  
network is to emulate the ripple component of the inductor current information and then combine it with the  
voltage feedback signal to regulate the loop operation. For any control topologies supporting no external  
compensation design, there is a minimum and/or maximum range of the output filter it can support. The output  
filter used with the TPS548A20 device is a lowpass L-C circuit. This L-C filter has double pole that is described in  
公式 1.  
1
f =  
P
2´ p´ L  
´ C  
OUT  
OUT  
(1)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency L-C double pole has a 180 degree in phase. At the output filter frequency,  
the gain rolls off at a –40dB per decade rate and the phase drops rapidly. The internal ripple generation network  
introduces a high-frequency zero that reduces the gain roll off from –40dB to –20dB per decade and increases  
the phase to 90 degree one decade above the zero frequency.  
The inductor and capacitor selected for the output filter must be such that the double pole of 公式 1 is located  
close enough to the high-frequency zero so that the phase boost provided by the high-frequency zero provides  
adequate phase margin for the stability requirement.  
1. Locating the Zero  
SWITCHING  
FREQUENCIES  
(fSW) (kHz)  
ZERO (fZ) LOCATION (kHz)  
250 and 300  
400 and 500  
600 and 750  
850 and 1000  
6
7
9
12  
After identifying the application requirements, the output inductance should be designed so that the inductor  
peak-to-peak ripple current is approximately between 25% and 35% of the ICC(max) (peak current in the  
application). Use 1 to help locate the internal zero based on the selected switching frequency. In general,  
where reasonable (or smaller) output capacitance is desired, 公式 2 can be used to determine the necessary  
output capacitance for stable operation.  
1
f =  
= f  
Z
P
2´ p´ L  
´ C  
OUT  
OUT  
(2)  
If MLCC is used, consider the derating characteristics to determine the final output capacitance for the design.  
For example, when using an MLCC with specifications of 10-µF, X5R and 6.3 V, the deratings by DC bias and  
AC bias are 80% and 50% respectively. The effective derating is the product of these two factors, which in this  
case is 40% and 4-µF. Consult with capacitor manufacturers for specific characteristics of the capacitors to be  
used in the system/applications.  
2 shows the recommended output filter range for an application design with the following specifications:  
Input voltage, VIN = 12 V  
Switching frequency, fSW = 600 kHz  
Output current, IOUT = 8 A  
The minimum output capacitance is verified by the small signal measurement conducted on the EVM using the  
following two criteria:  
Loop crossover frequency is less than one-half the switching frequency (300 kHz)  
Phase margin at the loop crossover is greater than 50 degrees  
For the maximum output capacitance recommendation, simplify the procedure to adopt an unrealistically high  
output capacitance for this type of converter design, then verify the small signal response on the EVM using the  
following one criteria:  
版权 © 2015, Texas Instruments Incorporated  
17  
 
 
 
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Phase margin at the loop crossover is greater than 50 degrees  
As indicated by the phase margin, the actual maximum output capacitance (COUT(max)) can continue to go higher.  
However, small signal measurement (bode plot) should be done to confirm the design.  
Select a MODE pin configuration as shown in 3 to double the R-C time constant option for the maximum  
output capacitance design and application. Select a MODE pin configuration to use single R-C time constant  
option for the normal (or smaller) output capacitance design and application.  
The MODE pin also selects Auto-skip-mode or FCCM-mode operation.  
2. Recommended Component Values  
COUT(min) CROSS- PHASE COUT(max) INTERNAL  
VOUT RLOWER RUPPER  
LOUT  
(µH)  
INDUCTOR  
ΔI/ICC(max)  
ICC(max)  
(A)  
(µF)  
OVER  
(kHz)  
MARGIN  
(°)  
(µF)  
RC SETTING  
(µs)  
(V)  
(kΩ)  
(kΩ)  
(1)  
(1)  
3 × 100  
9 × 22  
4 × 22  
3 × 22  
2 × 22  
247  
48  
70  
62  
53  
84  
57  
63  
57  
59  
51  
58  
40  
80  
40  
80  
40  
80  
40  
80  
40  
80  
0.36  
0.6  
0
33%  
33%  
34%  
33%  
28%  
PIMB065T-R36MS  
30 x 100  
30 x 100  
30 x 100  
30 x 100  
30 x 100  
207  
25  
0.68  
1.2  
2.5  
3.3  
5.5  
10  
PIMB065T-R68MS  
185  
11  
1.2  
10  
31.6  
45.3  
82.5  
8
PIMB065T-1R2MS  
185  
9
1.5  
PIMB065T-1R5MS  
185  
7
2.2  
PIMB065T-2R2MS  
(1) All COUT(min) and COUT(max) capacitor specifications are 1206, X5R, 10 V.  
For higher output voltage at or above 2.0 V, additional phase boost might be required in order to secure sufficient  
phase margin due to phase delay/loss for higher output voltage (large on-time (tON)) setting in a fixed on time  
topology based operation.  
A feedforward capacitor placing in parallel with RUPPER is found to be very effective to boost the phase margin at  
loop crossover.  
3. Mode Selection and Internal RAMP RC Time Constant  
SWITCHING  
FREQUENCIES  
fSW (kHz)  
MODE  
SELECTION  
RMODE  
(kΩ)  
R-C TIME  
CONSTANT (µs)  
ACTION  
60  
50  
275  
and  
and  
and  
325  
425  
625  
850  
275  
425  
625  
850  
275  
425  
625  
850  
275  
425  
625  
850  
525  
750  
0
40  
30  
and 1000  
Auto-skip Mode  
Pull down to GND  
120  
100  
80  
and  
and  
and  
325  
525  
750  
150  
20  
60  
and 1000  
60  
and  
and  
and  
325  
525  
750  
50  
40  
30  
and 1000  
Connect to  
PGOOD  
FCCM(1)  
120  
100  
80  
and  
and  
and  
325  
525  
750  
150  
60  
and 1000  
(1) Device goes into Forced CCM (FCCM) after PGOOD becomes high.  
18  
版权 © 2015, Texas Instruments Incorporated  
 
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
3. Mode Selection and Internal RAMP RC Time Constant (接下页)  
SWITCHING  
FREQUENCIES  
fSW (kHz)  
MODE  
SELECTION  
RMODE  
(kΩ)  
R-C TIME  
CONSTANT (µs)  
ACTION  
120  
100  
80  
275  
and  
and  
and  
325  
425  
625  
850  
525  
750  
FCCM  
Connect to VREG  
0
60  
and 1000  
7.3.4 Sample and Hold Circuitry  
CSP  
Sampled_CSP  
C1  
C2  
Buffer 1  
Buffer 2  
33. Sample and Hold Circuitry  
The sample and hold circuitry is the difference between D-CAP3 and D-CAP2. The sample and hold circuitry,  
which is an advance control scheme to boost output voltage accuracy higher on the TPS548A20 , is one of  
features of the TPS548A20 . The sample and hold circuitry generates a new DC voltage of CSN instead of the  
voltage which is produced by RC2 and CC2 which allows for tight output-voltage accuracy and makes the  
TPS548A20 more competitive.  
CSP  
CSN  
CSP  
CSN  
CSN_NEW  
(sample at valley of CSP)  
CSN_NEW  
(sample at valley of CSP)  
34. Continuous Conduction Mode (CCM) With Sample  
35. Discontinuous Conduction Mode (DCM) With  
and Hold Circuitry  
Sample and Hold Circuitry  
CSP  
CSN  
CSP  
CSN  
36. Continuous Conduction Mode (CCM) Without  
37. Discontinuous Conduction Mode (DCM) Without  
Sample and Hold Circuitry  
Sample and Hold Circuitry  
版权 © 2015, Texas Instruments Incorporated  
19  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
1.25  
1.23  
1.21  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
VIN = 12 V  
1.19  
VIN = 12 V  
VDD = 5 V  
VDD = 5 V  
VOUT = 1.2 V  
fSW = 500 kHz  
TA = 25°C  
LOUT = 1 H  
VOUT = 1.2 V  
fSW = 500 kHz  
TA = 25°C  
LOUT = 1 H  
Mode = Auto-skip  
1.17  
D-CAP3  
D-CAP2  
D-CAP3  
D-CAP2  
Mode = FCCM  
1.15  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current (A)  
Output Current (A)  
C013  
C014  
38. Output Voltage vs Output Current  
39. Output Voltage vs Output Current  
7.3.5 Adaptive Zero-Crossing  
The TPS548A20 uses an adaptive zero-crossing circuit to perform optimization of the zero inductor-current  
detection during Auto-skip-mode operation. This function allows ideal low-side MOSFET turn-off timing. The  
function also compensates the inherent offset voltage of the Z-C comparator and delay time of the Z-C detection  
circuit. Adaptive zero-crossing prevents SW-node swing-up caused by too-late detection and minimizes diode  
conduction period caused by too-early detection. As a result, the device delivers better light-load efficiency.  
7.3.6 Forced Continuous-Conduction Mode  
When the MODE pin is tied to the PGOOD pin through a resistor, the controller operates in continuous  
conduction mode (CCM) during light-load conditions. During CCM, the switching frequency maintained to an  
most constant level over the entire load range which is suitable for applications requiring tight control of the  
switching frequency at the cost of lower efficiency.  
7.3.7 Current Sense and Overcurrent Protection  
The TPS548A20 has cycle-by-cycle overcurrent limiting control. The inductor current is monitored during the OFF  
state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent trip level. In order to provide good accuracy and a cost-effective solution, the TPS548A20 supports  
temperature compensated MOSFET RDS(on) sensing. Connect the TRIP pin to GND through the trip-voltage  
setting resistor, RTRIP(20kΩ<RTRIP<65kΩ ). The TRIP terminal sources ITRIP current, which is 10 μA typically at  
room temperature, and the trip level is set to the OCL trip voltage VTRIP as shown in 公式 3.  
VTRIP = RTRIP ´ITRIP  
where  
VTRIP is in mV  
RTRIP is in kΩ  
ITRIP is in µA  
(3)  
公式 4 calculates the typical DC OCP level (typical low-side on-resistance [RDS(on)] of 4.3 mΩ should be used);  
in order to design for worst case minimum OCP, maximum low-side on-resistance value of 5.7 mΩ should be  
used. The inductor current is monitored by the voltage between the GND pin and SW pin so that the SW pin is  
properly connected to the drain terminal of the low-side MOSFET. ITRIP has a 3000-ppm/°C temperature slope to  
compensate the temperature dependency of RDS(on). The GND pin acts as the positive current-sensing node.  
Connect the GND pin to the proper current sensing device, (for example, the source terminal of the low-side  
MOSFET.)  
Because the comparison occurs during the OFF state, VTRIP sets the valley level of the inductor current. Thus,  
the load current at the overcurrent threshold, IOCP, is calculated as shown in 公式 4.  
I
V
- V  
´ V  
(
)
OUT OUT  
V
IN  
V
V
TRIP  
1
IND(ripple)  
IN  
TRIP  
I
=
+
=
+
´
OCP  
2
2´L ´ f  
8´R  
8´R  
DS(on)L  
SW  
(
)
(
)
DS(on)  
where  
20  
版权 © 2015, Texas Instruments Incorporated  
 
 
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
RDS(on) is the on-resistance of the low-side MOSFET  
RTRIP is in kΩ  
(4)  
In an overcurrent condition, the current to the load exceeds the current to the output capacitor thus the output  
voltage tends to decrease. Eventually, the output voltage crosses the undervoltage-protection threshold and  
shuts down.  
7.3.8 Overvoltage and Undervoltage Protection  
The TPS548A20 monitors a resistor-divided feedback voltage to detect overvoltage and undervoltage. When the  
feedback voltage becomes lower than 68% of the target voltage, the UVP comparator output goes high and an  
internal UVP delay counter begins counting. After 1 ms, the TPS548A20 latches OFF both high-side and low-  
side MOSFETs drivers. The UVP function enables after soft-start is complete.  
When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes  
high and the circuit latches OFF the high-side MOSFET driver and turns on the low-side MOSFET until reaching  
a negative current limit. Upon reaching the negative current limit, the low-side FET is turned off and the high-side  
FET is turned on again for a minimum on-time. The TPS548A20 operates in this cycle until the output voltage is  
pulled down under the UVP threshold voltage for 1 ms. After the 1-ms UVP delay time, the high-side FET is  
latched off and low-side FET is latched on. The fault is cleared with a reset of VDD or by re-toggling EN pin.  
7.3.9 Out-of-Bounds Operation (OOB)  
The TPS548A20 has an out-of-bounds (OOB) overvoltage protection that protects the output load at a much  
lower overvoltage threshold of 8% above the target voltage. OOB protection does not trigger an overvoltage fault,  
so the device is not latched off after an OOB event. OOB protection operates as an early no-fault overvoltage-  
protection mechanism. During the OOB operation, the controller operates in forced PWM mode only by turning  
on the low-side FET. Turning on the low-side FET beyond the zero inductor current quickly discharges the output  
capacitor thus causing the output voltage to fall quickly towards the setpoint. During the operation, the cycle-by-  
cycle negative current limit is also activated to ensure the safe operation of the internal FETs.  
7.3.10 UVLO Protection  
The TPS548A20 monitors the voltage on the VDD pin. If the VDD pin voltage is lower than the UVLO off-  
threshold voltage, the switch mode power supply shuts off. If the VDD voltage increases beyond the UVLO on-  
threshold voltage, the controller turns back on. UVLO is a non-latch protection.  
7.3.11 Thermal Shutdown  
The TPS548A20 monitors internal temperature. If the temperature exceeds the threshold value (typically 140°C),  
TPS548A20 shuts off. When the temperature falls approximately 40°C below the threshold value, the device  
turns on. Thermal shutdown is a non-latch protection.  
版权 © 2015, Texas Instruments Incorporated  
21  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Auto-Skip Eco-Mode Light-Load Operation  
While the MODE pin is pulled to GND directly or through a 150-kΩ resistor, the TPS548A20 device automatically  
reduces the switching frequency at light-load conditions to maintain high efficiency. This section describes the  
operation in detail.  
As the output current decreases from heavy-load condition, the inductor current also decreases until the rippled  
valley of the inductor current touches zero level. Zero level is the boundary between the continuous-conduction  
and discontinuous-conduction modes. The synchronous MOSFET turns off when this zero inductor current is  
detected. As the load current decreases further, the converter runs into discontinuous-conduction mode (DCM).  
The on-time is maintained to a level approximately the same as during continuous-conduction mode operation so  
that discharging the output capacitor with a smaller load current to the level of the reference voltage requires  
more time. The transition point to the light-load operation IOUT(LL) (for example: the threshold between continuous-  
conduction mode and discontinuous-conduction mode) is calculated as shown in 公式 5.  
V
- V  
´ V  
(
)
OUT OUT  
V
IN  
1
IN  
I
=
´
OUT LL  
( )  
2´L ´ f  
SW  
where  
f SW is the PWM switching frequency  
(5)  
TI recommends only using ceramic capacitors for Auto-skip mode.  
7.4.2 Forced Continuous-Conduction Mode  
When the MODE pin is tied to the PGOOD pin through a resistor, the controller operates in continuous  
conduction mode (CCM) during light-load conditions. During CCM, the switching frequency maintained to an  
almost constant level over the entire load range which is suitable for applications requiring tight control of the  
switching frequency at the cost of lower efficiency.  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS548A20 device is a high-efficiency, single-channel, synchronous-buck converter. The device suits low-  
output voltage point-of-load applications with 15-A or lower output current in computing and similar digital  
consumer applications.  
8.2 Typical Application  
R1  
PGOOD  
6.65 kΩ  
R2  
C3  
C4  
2 kΩ  
1 µF  
1 µF  
VIN  
Thermal  
Pad  
R6  
150 kΩ  
CIN  
2.2 nF  
CIN  
3 × 22 µF  
23  
22  
21  
20  
19  
18  
17  
16  
15  
24 VO  
PGND 14  
PGND 13  
PGND 12  
PGND 11  
PGND 10  
25 TRIP  
26 NC  
NC  
R8  
64.9 kΩ  
TPS548A20  
27 GND1  
28 GND2  
GND1  
GND2  
1
2
3
4
5
6
7
8
9
PIRB077T-1R0MS-87  
VOUT  
R4  
249 kΩ  
R10  
100 kΩ  
1 µH  
R7  
0 Ω  
C2  
0.1 µF  
R3  
3 Ω  
Thermal Pad  
COUT  
COUT  
4 × 10 µF  
6 × 22 µF  
R5  
105 kΩ  
VREG  
EN  
C1  
470 pF  
Figure 40. Typical Application Circuit Diagram  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
This design uses the parameters listed in Table 4.  
Table 4. Design Example Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTIC  
VIN  
Voltage range  
5
12  
2.5  
1
18  
V
A
IMAX  
Maximum input current  
No load input current  
VIN = 5 V, IOUT = 8 A  
VIN = 12 V, IOUT = 0 A with auto skip mode  
mA  
OUTPUT CHARACTERISTICS  
VOUT  
Output voltage  
1.2  
V
Line regulation,  
5 V VIN –14 V with FCCM  
0.2%  
Output voltage regulation  
Load regulation,  
0.5%  
10  
VIN = 12 V, 0 A IOUT 8 A with FCCM  
VRIPPLE  
ILOAD  
IOVER  
tSS  
Output voltage ripple  
Output load current  
Output over current  
Soft-start time  
VIN = 12 V, IOUT = 8 A with FCCM  
mVPP  
A
0
12  
11  
1
ms  
SYSTEMS CHARACTERISTICS  
fSW  
η
Switching frequency  
Peak efficiency  
1
91.2%  
90.3%  
25  
MHz  
ºC  
VIN = 12 V, VOUT = 1.2 V, IOUT = 4 A  
VIN = 12 V, VOUT = 1.2 V, IOUT = 8 A  
η
Full load efficiency  
Operating temperature  
TA  
8.2.2 Detailed Design Procedure  
The external components selection is a simple process using D-CAP3 mode. Select the external components  
using the following steps.  
8.2.2.1 Choose the Switching Frequency  
The switching frequency is configured by the resistor divider on the RF pin. Select one of eight switching  
frequencies from 250 kHz to 1 MHz. Refer to for the relationship between the switching frequency and resistor-  
divider configuration.  
8.2.2.2 Choose the Operation Mode  
Select the operation mode using 3.  
8.2.2.3 Choose the Inductor  
Determine the inductance value to set the ripple current at approximately ¼ to ½ of the maximum output current.  
Larger ripple current increases output ripple voltage, improves signal-to-noise ratio, and helps to stabilize  
operation.  
V
(
IN  
max  
(
- V  
´ V  
V
- V  
max  
´ V  
OUT  
OUT  
)
)
OUT  
(
IN  
OUT  
)
)
(
)
1
3
L =  
´
=
´
I
´ f  
V
I
´ f  
V
IN(max)  
SW  
IN  
max  
(
OUT  
SW  
IND ripple  
(
max  
)
(
)
12V -1.2V ´1.2V  
)
(
3
=
´
= 1.08mH  
6´ 500kHz  
12V  
(6)  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
The inductor requires a low DCR to achieve good efficiency. The inductor also requires enough room above peak  
inductor current before saturation. The peak inductor current is estimated using Equation 7.  
V
(
IN  
max  
(
- V  
´ V  
OUT  
OUT  
)
)
12V -1.2V ´1.2V  
)
)
(
V
10mA ´R  
TRIP  
1
1
TRIP  
I
=
+
´
=
+
´
IND peak  
(
)
8´R  
L ´ f  
V
8´ 4.3mW  
1mH´500kHz  
12V  
SW  
IN  
max  
DS on  
( )  
(
(7)  
8.2.2.4 Choose the Output Capacitor  
The output capacitor selection is determined by output ripple and transient requirement. When operating in CCM,  
the output ripple has two components as shown in Equation 8. Equation 9 and Equation 10 define these  
components.  
V
= V  
+ V  
RIPPLE  
RIPPLE(C) RIPPLE(ESR)  
(8)  
IL ripple  
(
)
VRIPPLE C  
=
( )  
8´ COUT ´ fSW  
VRIPPLE ESR = IL ripple ´ESR  
(9)  
(
)
(
)
(10)  
8.2.2.5 Determine the Value of R1 and R2  
The output voltage is programmed by the voltage-divider resistors, R1 and R2, shown in Equation 11. Connect  
R1 between the VFB pin and the output, and connect R2 between the VFB pin and GND. The recommended R2  
value is from 1 kΩ to 20 kΩ. Determine R1 using Equation 11.  
V
- 0.6  
1.2V - 0.6  
OUT  
R1=  
´R2 =  
´10kW = 10kW  
0.6  
0.6  
(11)  
8.2.3 Application Curves  
TA = 25°C (unless otherwise noted)  
1.3  
1.275  
1.25  
1.225  
1.2  
100  
90  
80  
70  
60  
50  
40  
30  
VIN = 5  
VIN = 12  
VIN = 18  
1.175  
1.15  
1.125  
1.1  
VOUT (V)  
1.2  
5
0
3
6
9
12  
15  
0
2
4
6
8
10  
12  
14  
16  
Output Current (A)  
D001  
Output Current (A)  
D001  
fSW = 500 kHz  
VOUT = 1.2 V  
fSW = 500 kHz  
VIN = 12 V  
FCCM  
Figure 42. DC Load Regulation  
Figure 41. Efficiency vs. Output Current  
Copyright © 2015, Texas Instruments Incorporated  
25  
 
 
 
 
 
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
TA = 25°C (unless otherwise noted)  
1.3  
VIN = 5  
VIN = 12  
VIN = 18  
1.275  
1.25  
1.225  
1.2  
1.175  
1.15  
1.125  
1.1  
0
3
6
9
12  
15  
Output Current (A)  
D001  
fSW = 500 kHz  
VOUT = 1.2 V  
IOUT = 0 A  
Figure 43. DC Load Regulation  
Figure 44. Auto-skip Mode Steady-State Operation  
ILOAD = 0 A  
ILOAD = 8 A  
Figure 45. FCCM Steady-State Operation  
Figure 46. Auto-skip Mode Steady-State Operation  
ILOAD = 8 A  
ILOAD from 0 A to 8 A  
Div = 2 A/µs  
Figure 47. Steady-State Operation  
Figure 48. Auto-skip Mode Load Transient  
26  
Copyright © 2015, Texas Instruments Incorporated  
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
TA = 25°C (unless otherwise noted)  
ILOAD from 0 A to 8 A  
Div = 2 A/µs  
Figure 49. Load Transient  
版权 © 2015, Texas Instruments Incorporated  
27  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
This device is designed to operate from an input voltage supply between 1.5-V and 18-V (4.5-V and 25-V biased)  
Input. use only a well regulated supply. These devices are not designed for split-rail operation. The VIN and VDD  
terminals must be the same potential for accurate high-side short circuit protection. Proper bypassing of input  
supplies and internal regulators is also critical for noise performance, as is PCB layout and grounding scheme.  
See the recommendations in the Layout section.  
10 Layout  
10.1 Layout Guidelines  
Before beginning a design using the TPS548A20 , consider the following:  
Place the power components (including input and output capacitors, the inductor, and the TPS548A20 ) on  
the solder side of the PCB. In order to shield and isolate the small signal traces from noisy power lines, insert  
and connect at least one inner plane to ground.  
All sensitive analog traces and components such as VFB, PGOOD, TRIP, MODE, and ADDR must be placed  
away from high-voltage switching nodes such as SW and VBST to avoid coupling. Use internal layers as  
ground planes and shield the feedback trace from power traces and components.  
Pin 22 (GND pin) must be connected directly to the thermal pad. Connect the thermal pad to the PGND pins  
and then to the GND plane.  
Place the VIN decoupling capacitors as close to the VIN and PGND pins as possible to minimize the input  
AC-current loop.  
Place the feedback resistor near the IC to minimize the VFB trace distance.  
Place the frequency-setting resistor (ADDR), OCP-setting resistor (RTRIP) and mode-setting resistor (RMODE  
close to the device. Use the common GND via to connect the resistors to the GND plane if applicable.  
)
Place the VDD and VREG decoupling capacitors as close to the device as possible. Provide GND vias for  
each decoupling capacitor and ensure the loop is as small as possible.  
The PCB trace is defined as switch node, which connects the SW pins and high-voltage side of the inductor.  
The switch node should be as short and wide as possible.  
Use separated vias or trace to connect SW node to the snubber, bootstrap capacitor, and ripple-injection  
resistor. Do not combine these connections.  
Place one more small capacitor (2.2 nF, 0402 size) between the VIN and PGND pins. This capacitor must be  
placed as close to the IC as possible.  
TI recommends placing a snubber between the SW shape and GND shape for effective ringing reduction.  
The value of snubber design starts at 3 Ω + 470 pF.  
Consider R-C-CC network (Ripple injection network) component placement and place the AC coupling  
capacitor, CC, close to the device, and R and C close to the power stage.  
See 50 for the layout recommendation.  
28  
版权 © 2015, Texas Instruments Incorporated  
 
TPS548A20  
www.ti.com.cn  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
10.2 Layout Example  
VIN Shape  
To inner GND plane  
CIN  
HF cap.  
Cc  
2
3
2
1
2
0
1
9
1
8
1
7
1
6
1
5
To VOUT Shape  
VO  
TRIP  
DNC  
PGND  
PGND  
PGND  
PGND  
PGND  
GND Shape  
GND1  
GND2  
COUT  
1
2
3
4
5
6
7
8
9
VOUT Shape  
SW Shape  
LOUT  
To VREG Pin  
Cap.  
Res.  
Trace on bottom layer  
Trace of top layer  
RCC On Bottom layer  
Trace of bottom layer  
Trace on inner layer  
50. Layout Recommendation  
版权 © 2015, Texas Instruments Incorporated  
29  
TPS548A20  
ZHCSEL7A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
相关文档如下:  
应用报告《采用前馈电容优化内部补偿 DC-DC 转换器的瞬态响应》(文献编号:SLVA289)  
11.2 商标  
SWIFT, D-CAP3, Eco-mode, WEBENCH are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS548A20RVER  
TPS548A20RVET  
ACTIVE  
VQFN-CLIP  
VQFN-CLIP  
RVE  
28  
28  
RoHS-Exempt  
& Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
T548A20  
T548A20  
ACTIVE  
RVE  
RoHS-Exempt  
& Green  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
RVE0028A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
4.6  
4.4  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.1 0.1  
2X 1.6  
(0.2) TYP  
14  
EXPOSED  
THERMAL PAD  
10  
24X 0.4  
9
15  
2X  
29  
SYMM  
3.2  
3.1 0.1  
23  
1
0.25  
28X  
0.15  
28  
24  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
28X  
0.05  
0.5  
0.3  
4219151/A 07/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVE0028A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.1)  
SYMM  
28  
24  
28X (0.6)  
28X (0.2)  
23  
1
(1.3) TYP  
SYMM  
24X (0.4)  
29  
(4.3)  
(3.1)  
(R0.05)  
TYP  
9
15  
(
0.2) TYP  
VIA  
10  
14  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219151/A 07/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVE0028A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.94)  
(0.57) TYP  
28  
24  
28X (0.6)  
1
23  
28X (0.2)  
24X (0.4)  
(0.775)  
TYP  
29  
SYMM  
(4.3)  
(R0.05) TYP  
4X (1.35)  
9
15  
METAL  
TYP  
10  
14  
SYMM  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 29  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219151/A 07/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS548A28

具有遥感功能和 3V LDO 的 2.7V 至 16V、15A 同步降压转换器
TI

TPS548A28RWWR

具有遥感功能和 3V LDO 的 2.7V 至 16V、15A 同步降压转换器 | RWW | 21 | -40 to 125
TI

TPS548A29

具有遥感功能和 4.5V LDO 的 2.7V 至 16V、15A 同步降压转换器
TI

TPS548A29RWWR

具有遥感功能和 4.5V LDO 的 2.7V 至 16V、15A 同步降压转换器 | RWW | 21 | -40 to 125
TI

TPS548B22

具有差分遥感功能的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器
TI

TPS548B22RVFR

具有差分遥感功能的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS548B22RVFT

具有差分遥感功能的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS548B27

具有差分遥感功能的 2.7V 至 16V、20A 同步降压转换器
TI

TPS548B27RYLR

具有差分遥感功能的 2.7V 至 16V、20A 同步降压转换器 | RYL | 19 | -40 to 125
TI

TPS548B28

具有遥感功能和断续限流功能的 2.7V 至 16V 输入 20A 同步降压转换器
TI

TPS548B28RWWR

具有遥感功能和断续限流功能的 2.7V 至 16V 输入 20A 同步降压转换器 | RWW | 21 | -40 to 125
TI

TPS548C26

采用 5mm x 6mm QFN 封装的 4V 至 16V、35A 同步 D-CAP+™ 降压转换器
TI