TPS548B22RVFR [TI]

具有差分遥感功能的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125;
TPS548B22RVFR
型号: TPS548B22RVFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有差分遥感功能的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125

PC 输入元件 开关 输出元件 转换器
文件: 总46页 (文件大小:5019K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
TPS548B22 1.5V 18V VIN4.5V 22V VDD,具有全差动传感功能的  
25A SWIFT™ 同步降压转换器  
1 特性  
2 应用  
1
转换输入电压范围 (PVIN)1.5V 18V  
企业级存储、固态硬盘 (SSD)、网络附属存储  
(NAS)  
输入偏置电压 (VDD) 范围:4.5V 22V  
输出电压范围:0.6V 5.5V  
无线和有线通信基础设施  
工业 PC、自动化、自动测试设备 (ATE)、可编程  
逻辑控制器 (PLC)、视频监控  
集成型 4.1mΩ 1.9mΩ 功率 MOSFET,持续输  
出电流为 25A  
企业服务器、交换机、路由器  
基准电压范围:0.6V 1.2V(步长为 50mV),  
采用 VSEL 引脚  
AISICSoCFPGADSP 内核和 I/O 导轨  
±0.5%0.9VREF 容限范围:–40°C +125°C(结  
温)  
3 说明  
TPS548B22 器件是一款具有自适应导通时间 D-CAP3  
模式控制的紧凑型单相降压转换器。该器件针对空间受  
限类电源系统而设计,可实现高精度、高效率和快速瞬  
态响应,易于使用,且使用的外部组件较少。  
真正的差分远程感测放大器  
D-CAP3™可在无需外部补偿的情况下支持大容量  
电容和/或小型 MLCC 的控制环路  
自适应导通时间控制,具有 4 种频率设置可供选  
择:425kHz650kHz875kHz 1.05MHz  
该器件采用 全差动传感和 TI 的集成 FET,高侧导通电  
阻为 4.1mΩ,低侧导通电阻为 1.9mΩ。此外,该器件  
还具备 0.5% 的精度和 0.9V 基准电压,环境温度范围  
介于 –40°C +125°C 之间。具有竞争力的特性 包  
括:超低的外部组件数、精准的负载和线路调节、输出  
电压设定值精度、自动跳过或 FCCM 工作模式以及内  
部软启动控制。  
温度补偿,并具有可编程正负电流限制和 OC 钳位  
可选断续或闭锁过压保护 (OVP) 或欠压保护 (UVP)  
VDD 欠压锁定 (UVLO),通过精确的 EN 滞后从外  
部进行调整  
预偏置启动支持  
Eco-Mode FCCM 可供选择  
全套故障保护和 PGOOD  
7mm × 5mm × 1.5mm40 引脚、堆叠削波式  
LQFN-CLIP 封装  
TPS548B22 器件采用 7mm × 5mm40 引脚、  
LQFN-CLIP (RVF) 封装(RoHs 豁免)。  
器件信息(1)  
器件型号  
TPS548B22  
封装  
封装尺寸(标称值)  
LQFN-CLIP (40)  
7.00mm x 5.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化应用  
PVIN  
VSEL  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
MODE  
PGOOD  
REFIN  
PGOOD  
ILIM  
RESV_TRK  
RSN  
Load  
+
œ
RSP  
VOSNS  
ENABLE  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCE4  
 
 
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 16  
7.5 Programming........................................................... 16  
Applications and Implementation ...................... 22  
8.1 Application Information............................................ 22  
8.2 Typical Applications ................................................ 23  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 9  
6.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Layout Example .................................................... 34  
11 器件和文档支持 ..................................................... 37  
11.1 文档支持 ............................................................... 37  
11.2 接收文档更新通知 ................................................. 37  
11.3 社区资源................................................................ 37  
11.4 ....................................................................... 37  
11.5 静电放电警告......................................................... 37  
11.6 Glossary................................................................ 37  
12 机械、封装和可订购信息....................................... 37  
7
4 修订历史记录  
Changes from Original (January 2017) to Revision A  
Page  
Corrected package name in title of pin connection diagram from "DQP" to "RVF"................................................................ 3  
Added MIN and MAX values for VDD UVLO rising threshold................................................................................................ 6  
Added MIN and MAX for all SS settings and table notes 3 and 4 in Timing Requirements .................................................. 9  
Changed "VOUT = 5 V" to "VOUT = 5.5 V" .............................................................................................................................. 13  
Added notes for 8 ms and 4 ms in Table 4; added Application Workaround to Support 4-ms and 8-ms SS Settings ....... 19  
Added Figure 17 and Figure 18............................................................................................................................................ 19  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
5 Pin Configuration and Functions  
RVF Package  
40-Pin LQFN-CLIP With Thermal Pad  
Top View  
32  
26  
27  
21  
31 30 29 28  
25 24 23 22  
PGND  
PGND  
20  
19  
18  
17  
16  
15  
33  
34  
35  
36  
37  
38  
VSEL  
MODE  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGOOD  
ILIM  
RESV_TRK  
RSN  
Thermal Pad  
14  
13  
39  
40  
RSP  
VOSNS  
6
7
8
9
10 11 12  
1
2
3
4
5
Pin Functions  
PIN  
I/O/P(1)  
DESCRIPTION  
NO.  
NAME  
1, 2, 3  
NU  
O
I
Not used pins.  
Enable pin that can turn on the DC/DC switching converter. Use also to program the required  
PVIN UVLO when PVIN and VDD are connected together.  
4
5
EN_UVLO  
BOOT  
NC  
Supply rail for high-side gate driver (boot terminal). Connect boot capacitor from this pin to SW  
node. Internally connected to BP via bootstrap PMOS switch.  
P
6, 7, 26,  
27  
No connect.  
8, 9, 10,  
11, 12  
SW  
I/O  
P
Output switching terminal of power converter. Connect the pins to the output inductor.  
13, 14, 15,  
16, 17, 18, PGND  
19, 20  
Power ground of internal FETs.  
21, 22, 23,  
PVIN  
P
Power supply input for integrated power MOSFET pair.  
24, 25,  
28  
29  
30  
31  
32  
VDD  
P
P
G
O
I
Controller power supply input.  
DRGND  
AGND  
BP  
Internal gate driver return.  
Ground pin for internal analog circuits.  
LDO output  
FSEL  
Program switching frequency, internal ramp amplitude and SKIP or FCCM mode.  
Program the initial start-up and or reference voltage without feedback resistor dividers (from  
0.6 V to 1.2 V in 50-mV increments).  
33  
34  
VSEL  
I
I
Mode selection pin. Select the control mode (DCAP3 or DCAP), internal VREF operation,  
external REFIN and tracking operation and soft-start timing selection.  
MODE  
35  
36  
37  
38  
39  
40  
PGOOD  
ILIM  
O
Open drain power-good status signal.  
I/O  
Program overcurrent limit by connecting a resistor to ground.  
Do not connect.  
RESV_TRK  
RSN  
I
I
I
I
Inverting input of the differential remote sense amplifier.  
Non-inverting input of the differential remote sense amplifier.  
Output voltage monitor input pin.  
RSP  
VOSNS  
(1) I = input, O = output, G = GND  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
MAX  
UNIT  
PVIN  
VDD  
25  
25  
BOOT  
34  
DC  
BOOT to SW  
7.7  
9.0  
6
< 10 ns  
NU  
Input voltage  
V
EN_UVLO, VOSNS, MODE, FSEL, ILIM  
7.7  
3.6  
0.3  
0.3  
25  
RSP, RESV_TRK, VSEL  
RSN  
PGND, AGND, DRGND  
DC  
SW  
< 10 ns  
27  
Output voltage  
PGOOD, BP  
–0.3  
–55  
7.7  
150  
150  
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
PVIN with no snubber circuit:  
SW ringing peak voltage equals 23 V at 25-A output  
1.5  
14  
PVIN with snubber circuit:  
SW ringing peak voltage equals 23 V at 25-A output  
1.5  
18  
VDD  
4.5  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–5  
22  
24.5  
6.5  
7
BOOT  
DC  
BOOT to SW  
< 10 ns  
Input voltage  
V
NU  
5.5  
5.5  
3.3  
0.1  
0.1  
18  
EN_UVLO, VOSNS, MODE, FSEL, ILIM  
RSP, RESV_TRK, VSEL  
RSN  
PGND, AGND, DRGND  
DC  
SW  
< 10 ns  
27  
Output voltage  
PGOOD, BP  
–0.1  
–40  
7
V
Junction temperature, TJ  
125  
°C  
6.4 Thermal Information  
TPS548B22  
RVF (QFN)  
40 PINS  
28.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18.3  
3.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.96  
ψJB  
3.6  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017, Texas Instruments Incorporated  
5
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
MOSFET ON-RESISTANCE (RDS(on)  
)
High-side FET  
(VBOOT – VSW) = 5 V, ID = 25 A, TJ = 25°C  
VVDD = 5 V, ID = 25 A, TJ = 25°C  
4.1  
1.9  
mΩ  
mΩ  
RDS(on)  
Low-side FET  
INPUT SUPPLY AND CURRENT  
VVDD  
VDD supply voltage  
Nominal VDD voltage range  
4.5  
22  
V
IVDD  
VDD bias current  
No PVIN, EN_UVLO = High, TA = 25°C,  
No PVIN, EN_UVLO = Low, TA = 25°C  
2
mA  
µA  
IVDDSTBY  
VDD standby current  
700  
UNDERVOLTAGE LOCKOUT  
VDD UVLO rising  
threshold  
VVDD_UVLO  
4.23  
4.25  
4.34  
V
VVDD_UVLO(HYS)  
VEN_ON_TH  
VEN_HYS  
VDD UVLO hysteresis  
EN_UVLO on threshold  
EN_UVLO hysteresis  
0.2  
1.6  
V
V
1.45  
270  
1.75  
340  
300  
mV  
EN_UVLO input leakage  
current  
IEN_LKG  
VEN_UVLO = 5 V  
–1  
0
1
µA  
INTERNAL REFERENCE VOLTAGE, EXTERNAL REFIN, AND TRACKING RANGE  
VINTREF  
Internal REF voltage  
900.4  
mV  
Internal REF voltage  
tolerance  
VINTREFTOL  
–40°C TJ 125°C  
–0.5%  
0.6  
0.5%  
1.2  
Internal REF voltage  
range  
VINTREF  
V
OUTPUT VOLTAGE  
VIOS_LPCMP  
Loop comparator input  
offset voltage(1)  
–2.5  
2.5  
1
mV  
IRSP  
RSP input current  
VRSP = 600 mV  
–1  
8
µA  
IVO(dis)  
VO discharge current  
VVO = 0.5 V, power conversion disabled  
12  
7
mA  
DIFFERENTIAL REMOTE SENSE AMPLIFIER  
fUGBW  
A0  
Unity gain bandwidth(1)  
Open loop gain(1)  
Slew rate(1)  
Input range(1)  
Input offset voltage(1)  
5
MHz  
dB  
75  
SR  
±4.7  
V/µsec  
V
VIRNG  
VOFFSET  
–0.2  
–3.5  
1.8  
3.5  
mV  
INTERNAL BOOT STRAP SWITCH  
VF  
Forward voltage  
VBP-BOOT, IF = 10 mA, TA = 25°C  
0.1  
0.2  
1.5  
V
IBOOT  
VBST leakage current  
VBOOT = 30 V, VSW = 25 V, TA = 25°C  
0.01  
µA  
(1) Specified by design. Not production tested.  
6
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
MODE, VSEL, FSEL DETECTION  
Open  
VBP  
1.9091  
1.8243  
1.7438  
1.6725  
1.6042  
1.5348  
1.465  
RLOW = 187 kΩ  
RLOW = 165 kΩ  
RLOW = 147 kΩ  
RLOW = 133 kΩ  
RLOW = 121 kΩ  
RLOW = 110 kΩ  
RLOW = 100 kΩ  
RLOW = 90.9 kΩ  
RLOW = 82.5 kΩ  
RLOW = 75 kΩ  
1.3952  
1.3245  
1.2557  
1.187  
RLOW = 68.1 kΩ  
RLOW = 60.4 kΩ  
RLOW = 53.6 kΩ  
RLOW = 47.5 kΩ  
RLOW = 42.2 kΩ  
RLOW = 37.4 kΩ  
RLOW = 33.2 kΩ  
RLOW = 29.4 kΩ  
RLOW = 25.5 kΩ  
RLOW = 22.1 kΩ  
RLOW = 19.1 kΩ  
RLOW = 16.5 kΩ  
RLOW = 14.3 kΩ  
RLOW = 12.1 kΩ  
RLOW = 10 kΩ  
1.1033  
1.0224  
0.9436  
0.8695  
0.7975  
0.7303  
0.6657  
0.5953  
0.5303  
0.4699  
0.415  
VBP = 2.93 V,  
RHIGH = 100 kΩ  
MODE, VSEL, and FSEL  
detection voltage  
VDETECT_TH  
V
0.3666  
0.3163  
0.2664  
0.2138  
0.1708  
0.1299  
0.0898  
0.0512  
GND  
RLOW = 7.87 kΩ  
RLOW = 6.19 kΩ  
RLOW = 4.64 kΩ  
RLOW = 3.16 kΩ  
RLOW = 1.78 kΩ  
RLOW = 0 Ω  
PGOOD COMPARATOR  
PGOOD in from higher  
PGOOD in from lower  
PGOOD out to higher  
PGOOD out to lower  
VPGOOD = 0.5 V  
105  
89  
108  
92  
111  
95  
VPGTH  
PGOOD threshold  
%VREF  
120  
68  
IPG  
PGOOD sink current  
6.9  
0
mA  
IPGLK  
PGOOD leakage current VPGOOD = 5 V  
–1  
1
μA  
Copyright © 2017, Texas Instruments Incorporated  
7
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
CURRENT DETECTION  
VILM  
VILIM voltage range  
On-resistance (RDS(on)) sensing  
0.1  
1.2  
V
A
RLIM = 61.9 kΩ  
OC tolerance  
RLIM = 51.1 kΩ  
OC tolerance  
RLIM = 40.2 kΩ  
RLIM = 61.9 kΩ  
RLIM = 51.1 kΩ  
RLIM = 40.2 kΩ  
30  
±15%  
25  
Valley current limit  
threshold  
IOCL_VA  
A
A
A
±15%  
20  
17  
23  
–30  
Negative valley current  
limit threshold  
IOCL_VA_N  
–25  
–20  
Clamp current at VLIM  
clamp at lowest  
ICLMP_LO  
ICLMP_HI  
VZC  
VILIM_CLMP = 0.1 V, TA = 25°C  
VILIM_CLMP = 1.2 V, TA = 25°C  
5
50  
0
A
A
Clamp current at VLIM  
clamp at highest  
Zero cross detection  
offset  
mV  
PROTECTIONS AND OOB  
Wake-up  
3.32  
3.11  
120%  
68%  
8%  
V
BP UVLO threshold  
voltage  
VBPUVLO  
Shutdown  
VOVP  
OVP threshold voltage  
UVP threshold voltage  
OOB threshold voltage  
OVP detect voltage  
UVP detect voltage  
117%  
65%  
123%  
71%  
VREF  
VREF  
VREF  
VUVP  
VOOB  
BP VOLTAGE  
VBP  
BP LDO output voltage  
VIN = 12 V, 0 A ILOAD 10 mA,  
5.07  
100  
165  
V
VBPDO  
BP LDO drop-out voltage VIN = 4.5 V, ILOAD = 30 mA, TA = 25°C  
365  
30  
mV  
BP LDO over-current  
VIN = 12 V, TA = 25°C  
limit  
IBPMAX  
mA  
°C  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
155  
Built-In thermal shutdown  
TSDN  
threshold(1)  
8
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
SWITCHING FREQUENCY  
380  
585  
790  
950  
425  
650  
875  
1050  
60  
475  
740  
VO switching  
fSW  
VIN = 12 V, VVO = 1 V, TA = 25°C  
DRVH falling to rising  
kHz  
frequency(1)  
995  
1250  
tON(min)  
Minimum on time(2)  
Minimum off time(2)  
ns  
ns  
tOFF(min)  
300  
SOFT-START  
RMODE_LOW = 60.4 kΩ  
7
3.6  
1.6  
0.8  
8(3)  
4(4)  
2
10  
5.2  
2.8  
1.6  
ms  
ms  
ms  
ms  
VOUT rising from 0 V to  
95% of final set point,  
RMODE_HIGH = 100 kΩ  
RMODE_LOW = 53.6 kΩ  
RMODE_LOW = 47.5 kΩ  
RMODE_LOW = 42.2 kΩ  
tSS  
Soft-start time  
1
PGOOD COMPARATOR  
Delay for PGOOD going in  
1
ms  
µs  
tPGDLY  
PGOOD delay time  
Delay for PGOOD coming out  
2
1
POWER-ON DELAY  
tPODLY  
Power-on delay time  
1.024  
ms  
PROTECTIONS AND OOB  
tOVPDLY  
tUVPDLY  
OVP response time  
100-mV over drive  
µs  
ms  
ms  
ms  
ms  
ms  
UVP delay filter delay time  
1
16  
24  
38  
67  
tSS = 1 ms  
tSS = 2 ms  
tSS = 4 ms  
tSS = 8 ms  
tHICDLY  
Hiccup blanking time  
(1) Correlated with closed-loop EVM measurement at load current of 20 A.  
(2) Specified by design. Not production tested.  
(3) In order to use the 8-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.  
(4) In order to use the 4-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.  
Copyright © 2017, Texas Instruments Incorporated  
9
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
6.7 Typical Characteristics  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
VIN = 5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D001  
D002  
VOUT = 1 V  
VDD = VIN  
SKIP Mode  
VOUT = 1 V  
fSW = 650 kHz  
VDD = VIN  
FCCM Mode  
fSW = 650 kHz  
Figure 1. Efficiency vs Output Current  
Figure 2. Efficiency vs Output Current  
4.5  
4
1.01  
1.005  
1
3.5  
3
2.5  
2
1.5  
1
0.995  
0.99  
VIN = 5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
0.5  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D003  
D004  
VOUT = 1 V  
VDD = VIN  
SKIP Mode  
VOUT = 1 V  
VDD = VIN  
FCCM Mode  
fSW = 650 kHz  
fSW = 650 kHz  
Figure 3. Converter Power Loss vs Output Current  
Figure 4. Output Voltage Regulation vs Output Current  
2.525  
100%  
95%  
90%  
85%  
80%  
2.52  
2.515  
2.51  
2.505  
2.5  
2.495  
2.49  
VIN = 5 V  
VIN = 5 V  
2.485  
2.48  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
2.475  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
SKIP Mode  
25  
Output Current (A)  
Output Current (A)  
D005  
D006  
VDD = VIN  
fSW = 650 kHz  
L= 820 nH, 0.9 mΩ  
SKIP Mode  
VDD = VIN  
fSW = 650 kHz  
L= 820 nH, 0.9 mΩ  
VOUT = 2.5 V  
VOUT = 2.5 V  
Figure 5. Efficiency vs Output Current  
Figure 6. Output Voltage Regulation vs Output Current  
10  
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
Typical Characteristics (continued)  
100%  
6
5
4
3
2
1
0
95%  
90%  
85%  
80%  
VIN = 9 V  
VIN = 9 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
0
5
10  
15  
20  
FCCM Mode  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D007  
D008  
VDD = VIN  
fSW = 650 kHz  
L= 820 nH, 0.9 mΩ  
VDD = VIN  
fSW = 650 kHz  
FCCM Mode  
VOUT = 5 V  
VOUT = 5 V  
L= 820 nH, 0.9 mΩ  
Figure 7. Efficiency vs Output Current  
Figure 8. Power Loss vs Output Current  
IOUT = 25 A  
IOUT = 25 A  
VDD = VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
VDD = VIN = 18 V  
VOUT = 1 V  
fSW = 650 kHz  
Natural convection at room temperature  
Natural convection at room temperature  
Figure 9. Thermal Image  
Figure 10. Thermal Image  
IOUT = 25 A  
VDD = VIN = 12 V  
VOUT = 2.5 V  
fSW = 650 kHz  
IOUT = 25 A  
VDD = VIN = 12 V  
VOUT = 5 V  
fSW = 650 kHz  
Natural convection at room temperature  
Natural convection at room temperature  
Figure 11. Thermal Image  
Figure 12. Thermal Image  
Copyright © 2017, Texas Instruments Incorporated  
11  
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS548B22 device is a high-efficiency, single-channel, FET-integrated, synchronous buck converter. It is  
suitable for point-of-load applications with 25 A or lower output current in storage, telecomm and similar digital  
applications. The device features proprietary D-CAP3 mode control combined with adaptive on-time architecture.  
This combination is ideal for building modern high/low duty ratio, ultra-fast load step response DC-DC converters.  
The TPS548B22 device has integrated MOSFETs rated at 25-A TDC.  
The converter input voltage range is from 1.5 V up to 18 V, and the VDD input voltage range is from 4.5 V to  
22 V. The output voltage ranges from 0.6 V to 5.5 V.  
Stable operation with all ceramic output capacitors is supported, because the D-CAP3 mode uses emulated  
current information to control the modulation. An advantage of this control scheme is that it does not require  
phase compensation network outside which makes it easy to use and also enables low external component  
count. The designer selects the switching frequency from 4 preset values via resistor settings by FSEL pin.  
Adaptive on-time control tracks the preset switching frequency over a wide range of input and output voltage  
while increasing switching frequency as needed during load step transient.  
7.2 Functional Block Diagram  
External  
soft-start  
RESV_TRK  
VREF + 8/16 %  
PGOOD  
VREF œ 32%  
+
UV  
+
MUX  
Internal  
soft-start  
EN_UVLO  
Delay  
Control  
+
+
OV  
BOOT  
PVIN  
VREF + 20%  
RSN  
RSP  
VREF œ 8/16 %  
+
PWM  
+
+
+
XCON  
D-CAP3TM  
Ramp Generator  
VOUT  
VOSNS  
VREF  
tON  
One-Shot  
SW  
Reference  
Generator  
Control  
Logic  
VSEL  
FSEL  
Switching  
Frequency  
Programmer  
BP  
+
ZC  
x
(1/16)  
PGND  
ILIM  
x
+
LDO  
Regulator  
(œ1/16)  
AGND  
VDD  
OCP  
DRGND  
MODE  
MODE Logic  
Copyright © 2016, Texas Instruments Incorporated  
12  
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
7.3 Feature Description  
7.3.1 25-A FET  
The TPS548B22 device is a high-performance, integrated FET converter supporting current rating up to 25 A  
thermally. It integrates two N-channel NexFET™ power MOSFETs, enabling high power density and small PCB  
layout area. The drain-to-source breakdown voltage for these FETs is 25 V DC and 27 V transient for 10 ns.  
Avalanche breakdown occurs if the absolute maximum voltage rating exceeds 27 V. In order to limit the switch  
node ringing of the device, TI recommends adding a R-C snubber from the SW node to the PGND pins. Refer to  
the Layout Guidelines section for the detailed recommendations.  
7.3.2 On-Resistance  
The typical on-resistance (RDS(on)) for the high-side MOSFET is 4.1 mΩ and typical on-resistance for the low-side  
MOSFET is 1.9 mΩ with a nominal gate voltage (VGS) of 5 V.  
7.3.3 Package Size, Efficiency and Thermal Performance  
The TPS548B22 device is available in a 7 mm × 5 mm VQFN package with 40 power and I/O pins. It employs TI  
proprietary MCM packaging technology with thermal pad. With a properly designed system layout, applications  
achieve optimized safe operating area (SOA) performance. The curves shown in Figure 13 and Figure 14 are  
based on the orderable evaluation module design. (See SLUUBI9 to order the EVM.)  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
Nat Conv  
100 LFM  
200 LFM  
400 LFM  
Nat Conv  
100 LFM  
200 LFM  
400 LFM  
40  
40  
30  
30  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D012  
D011  
VIN = 12 V  
VOUT = 5.5 V  
fSW = 650 kHz  
VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
Figure 13. Safe Operating Area  
Figure 14. Safe Operating Area  
7.3.4 Soft-Start Operation  
In the TPS548B22 device the soft-start time controls the inrush current required to charge the output capacitor  
bank during start-up. The device offers selectable soft-start options of 1 ms, 2 ms, 4 ms and 8 ms. When the  
device is enabled (either by EN or VDD UVLO), the reference voltage ramps from 0 V to the final level defined by  
VSEL pin strap configuration, in a given soft-start time. The TPS548B22 device supports several soft-start times  
between 1 msec and 8 msec selected by MODE pin configuration. Refer to Table 4 for details.  
7.3.5 VDD Supply Undervoltage Lockout (UVLO) Protection  
The TPS548B22 device provides fixed VDD undervoltage lockout threshold and hysteresis. The typical VDD  
turn-on threshold is 4.25 V, and hysteresis is 0.2 V. The VDD UVLO can be used in conjunction with the  
EN_UVLO signal to provide proper power sequence to the converter design. UVLO is a non-latched protection.  
7.3.6 EN_UVLO Pin Functionality  
The EN_UVLO pin drives an input buffer with accurate threshold and can be used to program the exact required  
turnon and turnoff thresholds for switcher enable, VDD UVLO, or VIN UVLO (if VIN and VDD are tied together). If  
desired, an external resistor divider can be used to set and program the turn-on threshold for VDD or VIN UVLO.  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
Feature Description (continued)  
Figure 15 shows how to program the input voltage UVLO using the EN_UVLO pin.  
PVIN  
29  
28  
26 25 24 23 22 21  
PGND 20  
PGND 19  
PGND 18  
PGND 17  
PGND 16  
PGND 15  
PGND 14  
PGND 13  
TPS548B22  
4
PVIN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. Programming the UVLO Voltage  
7.3.7 Fault Protections  
This section describes positive and negative overcurrent limits, overvoltage protections, out-of-bounds limits,  
undervoltage protections and over temperature protections.  
7.3.7.1 Current Limit (ILIM) Functionality  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
D010  
Figure 16. Current Limit Resistance vs OCP Valley Overcurrent Limit  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
Feature Description (continued)  
The ILIM pin sets the OCP level. Connect the ILIM pin to GND through the voltage setting resistor, RILIM. In order  
to provide both good accuracy and cost effective solution, TPS548B22 supports temperature compensated  
internal MOSFET RDS(on) sensing.  
Also, the device performs both positive and negative inductor current limiting with the same magnitudes. The  
positive current limit normally protects the inductor from saturation that causes damage to the high-side FET and  
low-side FET. The negative current limit protects the low-side FET during OVP discharge.  
The voltage between GND pin and SW pin during the OFF time monitors the inductor current. The current limit  
has 1200 ppm/°C temperature slope to compensate the temperature dependency of the on-resistance (RDS(on)).  
The GND pin is used as the positive current sensing node.  
TPS548B22 uses cycle-by-cycle over-current limiting control. The inductor current is monitored during the OFF  
state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent ILIM level. VILIM sets the valley level of the inductor current.  
7.3.7.2 Overvoltage Protection (OVP) and Undervoltage Protection (UVP)  
Table 1. Overvoltage Protection Details  
REFERENCE  
VOLTAGE  
START-UP  
OVP  
THRESHOLD  
OPERATING  
OVP  
THRESHOLD  
OVP DELAY  
100 mV OD  
(µs)  
SOFT-START  
RAMP  
OVP RESET  
(VREF  
)
Internal  
Internal  
1.2 × Internal VREF  
1
UVP  
The device monitors a feedback voltage to detect overvoltage and undervoltage. When the feedback voltage  
becomes lower than 68% of the target voltage, the UVP comparator output goes high and an internal UVP delay  
counter begins counting. After 1 ms, the device latches OFF both high-side and low-side MOSFETs drivers. The  
UVP function enables after soft start is complete.  
When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes  
high and the circuit latches OFF the high-side MOSFET driver and turns on the low-side MOSFET until reaching  
a negative current limit. Upon reaching the negative current limit, the low-side FET is turned off and the high-side  
FET is turned on again for a minimum on-time. The TPS548B22 device operates in this cycle until the output  
voltage is pulled down under the UVP threshold voltage for 1 ms. After the 1-ms UVP delay time, the high-side  
FET is latched off and low-side FET is latched on. The fault is cleared with a reset of VDD or by retoggling the  
EN pin.  
7.3.7.3 Out-of-Bounds Operation  
The device has an out-of-bounds (OOB) overvoltage protection that protects the output load at a much lower  
overvoltage threshold of 8% above the target voltage. OOB protection does not trigger an overvoltage fault, so  
the device is not latched off after an OOB event. OOB protection operates as an early no-fault overvoltage-  
protection mechanism. During the OOB operation, the controller operates in forced PWM mode only by turning  
on the low-side FET. Turning on the low-side FET beyond the zero inductor current quickly discharges the output  
capacitor thus causing the output voltage to fall quickly toward the setpoint. During the operation, the cycle-by-  
cycle negative current limit is also activated to ensure the safe operation of the internal FETs.  
7.3.7.4 Overtemperature Protection  
TPS548B22 has overtemperature protection (OTP) by monitoring the die temperature. If the temperature  
exceeds the threshold value (default value 165°C), the device is shut off. When the temperature falls about 25°C  
below the threshold value, the device turns on again. The OTP is a non-latch protection.  
Copyright © 2017, Texas Instruments Incorporated  
15  
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 DCAP3 Control Topology  
The TPS548B22 employs an artificial ramp generator that stabilizes the loop. The ramp amplitude is  
automatically adjusted as a function of selected switching frequency (fSW). The ramp amplitude is a function of  
duty cycle (VOUT-to-VIN ratio). Consequently, two additional pin-strap bits (FSEL[2:1]) are provided for fine tuning  
the internal ramp amplitude. The device uses an improved DCAP3 control loop architecture that incorporates a  
steady-state error integrator. The slow integrator improves the output voltage DC accuracy greatly and presents  
minimal impact to small signal transient response. To further enhance the small signal stability of the control  
loop, the device uses a modified ramp generator that supports a wider range of output LC stage.  
7.4.2 DCAP Control Topology  
For advanced users of this device, the internal DCAP3 ramp can be disabled using the MODE[4] pin strap bit.  
This situation requires an external RCC network to ensure control loop stability. Place this RCC network across  
the output inductor. Use a range between 10 mV and 15 mV of injected RSP pin ripple. If no feedback resistor  
divider network is used, insert a 10-kΩ resistor between the VOUT pin and the RSP pin.  
7.5 Programming  
7.5.1 Programmable Pin-Strap Settings  
FSEL, VSEL and MODE. Description: a 1% or better 100-kΩ resistor is needed from BP to each of the three  
pins. The bottom resistor from each pin to ground (see Table 2) in conjunction with the top resistor defines each  
pin strap selection. The pin detection checks for external resistor divider ratio during initial power up (VDD is  
brought down below approximately 3 V) when BP LDO output is at approximately 2.9 V.  
7.5.1.1 Frequency Selection (FSEL) Pin  
The TPS548B22 device allows users to select the switching frequency, light load and internal ramp amplitude by  
using FSEL pin. Table 2 lists the divider resistor values for the selection. The 1% tolerance resistors with typical  
temperature coefficient of ±100ppm/°C are recommended. Higher performance resistors can be used if tighter  
noise margin is required for more reliable frequency selection detection.  
FSEL pin strap configuration programs the switching frequency, internal ramp compensation and light load  
conduction mode.  
.
16  
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
Programming (continued)  
Table 2. FSEL Pin Strap Configurations  
FSEL[4]  
FSEL[3]  
FSEL[2]  
FSE[L1]  
FSEL[0]  
CM  
(1)  
RFSEL (kΩ)  
FSEL[1:0]  
RCSP_FSEL[1:0]  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
Open  
187  
165  
147  
133  
121  
110  
100  
90.9  
82.5  
75  
11: R × 3  
10: R × 2  
01: R × 1  
00: R/2  
11: 1.05 MHz  
11: R × 3  
10: R×2  
01: R × 1  
00: R/2  
68.1  
60.4  
53.6  
47.5  
42.2  
37.4  
33.2  
29.4  
25.5  
22.1  
19.1  
16.5  
14.3  
12.1  
10  
10: 875 kHz  
01: 650 kHz  
00: 425 kHz  
11: R × 3  
10: R × 2  
01: R × 1  
00: R/2  
11: R × 3  
10: R × 2  
01: R × 1  
00: R/2  
7.87  
6.19  
4.64  
3.16  
1.78  
0
(1) 1% or better and connect to ground  
Copyright © 2017, Texas Instruments Incorporated  
17  
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
7.5.1.2 VSEL Pin  
VSEL pin strap configuration is used to program initial boot voltage value, hiccup mode and latch off mode. The  
initial boot voltage is used to program the main loop voltage reference point. VSEL voltage settings provide TI  
designated discrete internal reference voltages. Table 3 lists internal reference voltage selections.  
Table 3. Internal Reference Voltage Selections  
(1)  
VSEL[4]  
VSEL[3]  
VSE[L2]  
VSEL[1]  
VSEL[0]  
1: Latch-Off  
0: Hiccup  
RVSEL (kΩ)  
Open  
187  
1111: 0.975 V  
1: Latch-Off  
0: Hiccup  
165  
1110: 1.1992 V  
1101: 1.1504 V  
1100: 1.0996 V  
1011: 1.0508 V  
1010: 1.0000 V  
1001: 0.9492 V  
1000: 0.9023 V  
0111: 0.9004 V  
0110: 0.8496 V  
0101: 0.8008 V  
0100: 0.7500 V  
0011: 0.6992 V  
0010: 0.6504 V  
0001: 0.5996 V  
0000: 0.975 V  
147  
1: Latch-Off  
0: Hiccup  
133  
121  
1: Latch-Off  
0: Hiccup  
110  
100  
1: Latch-Off  
0: Hiccup  
90.9  
82.5  
75  
1: Latch-Off  
0: Hiccup  
68.1  
60.4  
53.6  
47.5  
42.2  
37.4  
33.2  
29.4  
25.5  
22.1  
19.1  
16.5  
14.3  
12.1  
10  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
7.87  
6.19  
4.64  
3.16  
1.78  
0
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
(1) 1% or better and connect to ground  
18  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
7.5.1.3 DCAP3 Control and Mode Selection  
The MODE pinstrap configuration programs the control topology and internal soft-start timing selections. The  
device supports both DCAP3 and DCAP operation modes.  
MODE[4] selection bit is used to set the control topology. If MODE[4] bit is 0, it selects DCAP operation. If  
MODE[4] bit is 1, it selects DCAP3 operation.  
MODE[1] and MODE[0] selection bits are used to set the internal soft-start timing.  
Table 4. Allowable MODE Pin Selections  
(1)  
MODE[4]  
MODE[3]  
MODE[2]  
MODE[1]  
MODE[0]  
RMODE (kΩ)  
60.4  
11: 8 ms(2)  
10: 4 ms(2)  
01: 2 ms  
53.6  
0: Internal  
Reference  
1: DCAP3  
0: Internal SS  
47.5  
00: 1 ms  
42.2  
11: 8 ms(2)  
10: 4 ms(2)  
01: 2 ms  
4.64  
3.16  
0: Internal  
Reference  
0: DCAP  
0: Internal SS  
1.78  
00: 1 ms  
0
(1) RMODE settings in lighter shade are not permitted (24 settings).  
(2) See Application Workaround to Support 4-ms and 8-ms SS Settings.  
7.5.1.4 Application Workaround to Support 4-ms and 8-ms SS Settings  
In order to properly design for 4-ms and 8-ms SS settings, additional application consideration is needed. The  
recommended application workaround to support the 4-ms and 8-ms soft-start settings is to ensure sufficient time  
delay between the VDD and EN_UVLO signals. The minimum delay between the rising maximum VDD_UVLO  
level and the minimum turnon threshold of EN_UVLO is at least TDELAY_MIN  
.
TDELAY_MIN = K × VREF  
where  
K = 9 ms/V for SS setting of 4 ms  
K = 18 ms/V for SS setting of 8 ms  
VREF is the internal reference voltage programmed by VSEL pin strap  
(1)  
For example, if SS setting is 4 ms and VREF = 1 V, program the minimum delay at least 9 ms; if SS setting is 8  
ms, the minimum delay should be programmed at least 18 ms. See Figure 17 and Figure 18 for detailed timing  
requirement.  
Figure 17. Proper Sequencing of VDD and EN_UVLO to Support the use of 4-ms SS Setting  
Copyright © 2017, Texas Instruments Incorporated  
19  
 
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
VDD  
VDD_UVLO  
Maximum Threshold  
4.34 V  
EN_UVLO  
EN_UVLO  
Minimum ON Threshold 1.45 V  
Minimum  
TDELAY_MIN  
Figure 18. Minimum Delay Between VDD and EN_UVLO to Support the use of 4-ms and 8-ms SS settings  
The workaround/consideration described previously is not required for SS settings of 1 ms and 2 ms.  
7.5.2 Programmable Analog Configurations  
7.5.2.1 RSP/RSN Remote Sensing Functionality  
RSP and RSN pins are used for remote sensing purpose. In the case where feedback resistors are required for  
output voltage programming, connect the RSP pin to the mid-point of the resistor divider; always connect the  
RSN pin to the load return. When feedback resistors are not required as when the VSEL programs the output  
voltage setpoint, always connect the RSP pin to the positive sensing point of the load, and always connect the  
RSN pin to the load return.  
RSP and RSN pins are extremely high-impedance input terminals of the true differential remote sense amplifier.  
The feedback resistor divider must use resistor values much less than 100 kΩ.  
7.5.2.1.1 Output Differential Remote Sensing Amplifier  
The examples in this section show simplified remote sensing circuitry that each use an internal reference of 1 V.  
Figure 19 shows remote sensing without feedback resistors, with an output voltage setpoint of 1 V. Figure 20  
shows remote sensing using feedback resistors, with an output voltage set point of 5 V.  
20  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
TPS548B22  
TPS548B22  
38 RSN  
38 RSN  
39 RSP  
39 RSP  
40 VOSNS  
40 VOSNS  
BOOT  
BOOT  
5
5
Load  
Load  
+
œ
+
œ
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. Remote Sensing Without Feedback  
Resistors  
Figure 20. Remote Sensing With Feedback  
Resistors  
7.5.2.2 Power Good (PGOOD Pin) Functionality  
The TPS548B22 device has power-good output that registers high when switcher output is within the target. The  
power-good function is activated after soft-start has finished. When the soft-start ramp reaches 300 mV above  
the internal reference voltage, SSend signal goes high to enable the PGOOD detection function. If the output  
voltage becomes within ±8% of the target value, internal comparators detect power-good state, and the power-  
good signal becomes high after a 1-ms programmable delay. If the output voltage goes outside of ±16% of the  
target value, the power good signal becomes low after two microsecond (2-µs) internal delay. The open-drain,  
power-good output must be pulled up externally.  
The internal N-channel MOSFET does not pull down until the VDD supply is above 1.2 V.  
Copyright © 2017, Texas Instruments Incorporated  
21  
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS548B22 device is a highly integrated synchronous step-down DC-DC converters. These devices are  
used to convert a higher DC input voltage to a lower DC output voltage, with a maximum output current of 25 A.  
Use the following design procedure to select key component values for this family of devices.  
22  
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
8.2 Typical Applications  
8.2.1 TPS548B22 1.5-V to 18-V Input, 1-V Output, 25-A Converter  
J1  
VIN = 6V - 16V  
C1  
DNP330uF  
C2  
22µF  
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
C8  
22µF  
C9  
22µF  
C10  
2200pF  
C11  
100µF  
C12  
330uF  
C13  
22µF  
C14  
DNP  
22uF  
C15  
DNP  
22uF  
C16  
DNP  
22uF  
C17  
DNP  
22uF  
C18  
DNP  
22uF  
C19  
DNP  
22uF  
C20  
DNP  
22µF  
DNP  
J2  
PGND  
VDD  
TP1  
R1  
1.00  
U1  
VDD  
28  
40  
5
VDD  
VOSNS  
NetC31_1  
VOUT = 1V  
R10  
0
TP2  
TP3  
J3  
BOOT  
C34  
1uF  
C35  
1µF TP4  
R2  
DNP  
0
R3  
DNP  
0
DNP  
21  
22  
23  
24  
25  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
I_OUT = 25A MAX  
TP5  
SW  
C22  
0.1µF  
L1  
8
SW  
SW  
SW  
SW  
SW  
9
R6  
200k  
10  
11  
12  
330nH  
DRGND  
TP6  
CHB  
R4  
0
C21  
DNP  
470pF  
R5  
1.50k  
DNP  
TP9  
BP  
C23  
DNP  
470µF  
C24  
470µF  
R11  
0
C25  
100µF  
C26  
100µF  
C27  
DNP  
100µF  
C28  
DNP  
100µF  
C29  
100µF  
C30  
DNP  
100uF  
BP  
4
R7  
0
EN_UVLO  
BP  
CNTL  
CNTL/EN_UVLO  
J4  
6
TP19  
R9  
DNP  
3.01  
NC  
NC  
NC  
NC  
TP7  
CHA  
C32  
R8  
DNP  
1.10k  
6800pF  
31  
7
26  
27  
C31  
DNP  
0.1uF  
PGOOD  
TP8  
LOW  
R13  
C33  
100µF  
R12  
100k  
35  
34  
32  
33  
36  
37  
1
C45  
4.7µF  
PGOOD  
MODE  
FSEL  
VSEL  
ILIM  
DNPC44  
1uF  
100k  
C36  
1000pF  
R14  
DNP  
DNP  
MODE  
FSEL  
VSEL  
C37  
DNP  
470uF  
C38  
470µF  
C39  
100µF  
C40  
100µF  
C41  
DNP  
100µF  
C42  
100µF  
C43  
DNP  
100uF  
39  
38  
PGND  
0
RSP  
RSN  
R15  
10.0k  
NetC31_1  
DRGND  
TP12  
ILIM  
DRGND  
R16  
J5  
0
TP14  
R19  
61.9k  
RESV_TRK  
NU  
13  
14  
15  
16  
17  
18  
19  
20  
TP10  
TP11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
R17  
DNP  
0
R18  
DNP  
DNPC46  
1000pF  
ALERT  
DATA  
CLK  
0
2
NU  
3
NU  
29  
30  
TP13  
PGND  
TP18  
PGND  
PGND  
DRGND  
AGND  
AGND  
41  
PAD  
NT1  
NT2  
TPS548B22RVFR  
Net-Tie  
Net-Tie  
DRGND AGND  
PGND AGND  
PGND  
DRGND  
----- GND NET TIES -----  
TP15  
VSEL  
TP16  
MODE  
TP17  
FSEL  
BP  
J6  
TP20  
CLK  
TP21  
DNP  
TP22  
DNP  
ALERT  
DNP  
1
3
2
DATA  
4
R20  
100k  
R21  
100k  
R22  
100k  
5
6
DNP  
7
8
9
10  
VSEL  
MODE  
FSEL  
PMBus  
R23  
37.4k  
R24  
42.2k  
R25  
25.5k  
AGND  
AGND  
Figure 21. Typical Application Schematic  
Copyright © 2017, Texas Instruments Incorporated  
23  
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
8.2.2 Design Requirements  
For this design example, use the input parameters shown in Table 5.  
Table 5. Design Example Specifications  
PARAMETER  
Input voltage  
VIN(ripple) Input ripple voltage  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VIN  
5
12  
18  
V
V
V
IOUT = 25 A  
0.4  
VOUT  
Output voltage  
1
Line regulation  
5 V VIN 18 V  
0 V IOUT 25 A  
IOUT = 25 A  
0.5%  
0.5%  
Load regulation  
VPP  
VOVER  
VUNDER  
IOUT  
tSS  
Output ripple voltage  
Transient response overshoot  
Transient response undershoot  
Output current  
10  
30  
30  
mV  
mV  
mV  
A
ISTEP = 15 A  
ISTEP = 15 A  
5 V VIN 18 V  
25  
Soft-start time  
Overcurrent trip point(1)  
1
32  
ms  
A
IOC  
η
Peak efficiency  
IOUT = 7 A  
90%  
650  
fSW  
Switching frequency  
kHz  
(1) DC overcurrent level  
8.2.3 Design Procedure  
8.2.3.1 Switching Frequency Selection  
Select a switching frequency for the regulator. There is a trade off between higher and lower switching  
frequencies. Higher switching frequencies may produce smaller a solution size using lower valued inductors and  
smaller output capacitors compared to a power supply that switches at a lower frequency. However, the higher  
switching frequency causes extra switching losses, which decrease efficiency and impact thermal performance.  
In this design, a moderate switching frequency of 650 kHz achieves both a small solution size and a high-  
efficiency operation with the frequency selected.  
Select one of four switching frequencies and FSEL resistor values from Table 6. The recommended high-side  
RFSEL value is 100 kΩ (1%). Choose a low-side resistor value from Table 6 based on the choice of switching  
frequency. For each switching frequency selection, there are multiple values of RFSEL(LS) to choose from. In order  
to select the correct value, additional considerations (internal ramp compensation and light load operation) other  
than switching frequency need to be included.  
24  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
Table 6. FSEL Pin Selection  
SWITCHING  
FREQUENCY  
fSW (kHz)  
HIGH-SIDE RESISTOR  
RFSEL(HS)  
(kΩ) 1% or better  
LOW-SIDE RESISTOR  
RFSEL(LS) (kΩ)  
FSEL VOLTAGE  
VFSEL (V)  
1% or better  
MAXIMUM  
MINIMUM  
Open  
187  
165  
147  
133  
121  
110  
100  
90.9  
82.5  
75  
1050  
875  
650  
425  
2.93  
1.465  
100  
100  
100  
100  
68.1  
60.4  
53.6  
47.5  
42.2  
37.4  
33.2  
29.4  
25.5  
22.1  
19.1  
16.5  
14.3  
12.1  
10  
1.396  
0.798  
0.317  
0.869  
0.366  
0
7.87  
6.19  
4.64  
3.16  
1.78  
0
There is some limited freedom to choose FSEL resistors that have other than the recommended values. The  
criteria is to ensure that for particular selection of switching frequency, the FSEL voltage is within the maximum  
and minimum FSEL voltage levels listed in Table 6. Use Equation 2 to calculate the FSEL voltage. Select FSEL  
resistors that include tolerances of 1% or better.  
2&3%, (,3)  
6
& 3%,  
= 6"0(§•¥) ×  
2&3%,(ꢀ3 ) + 2&3%, ( ,3 )  
where  
VBP(det) is the voltage used by the device to program the level of valid FSEL pin voltage during initial device  
start-up (2.9 V typical)  
(2)  
25  
Copyright © 2017, Texas Instruments Incorporated  
 
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
In addition to serving the frequency select purpose, the FSEL pin can also be used to program internal ramp  
compensation (DCAP3) and light-load conduction mode. When DCAP3 mode is selected (see section 8.2.3.9),  
internal ramp compensation is used for stabilizing the converter design. The internal ramp compensation is a  
function of the switching frequency (fSW) and the duty cycle range (the output voltage-to-input voltage ratio).  
Table 7 summarizes the ramp choices using these functions.  
Table 7. Switching Frequency Selection  
VOUT RANGE  
(FIXED VIN = 12 V)  
DUTY CYCLE RANGE  
(VOUT/VIN) (%)  
SWITCHING FREQUENCY  
SETTING  
RAMP  
SELECT  
OPTION  
TIME  
CONSTANT  
t (µs)  
(fSW) (kHz)  
MIN  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
MAX  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
MIN  
5
MAX  
R/2  
9
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
R/2  
16.8  
32.3  
55.6  
7
7.5  
12.5  
425  
650  
>21  
5
7.5  
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
R/2  
13.5  
25.9  
44.5  
5.6  
12.5  
>21  
5
7.5  
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
R/2  
10.4  
20  
875  
12.5  
34.4  
3.8  
>21  
5
7.5  
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
7.1  
1050  
13.6  
23.3  
12.5  
>21  
The FSEL pin programs the light-load selection. TPS548B22 device supports either SKIP mode or FCCM  
operations. For optimized light-load efficiency, it is recommended to program the device to operate in SKIP  
mode. For better load regulation from no load to full load, it is recommended to program the device to operate in  
FCCM mode.  
RFSEL(LS) can be determined after determining the switching frequency, ramp and light-load operation. Table 2  
lists the full range of choices.  
8.2.3.2 Inductor Selection  
To calculate the value of the output inductor, use Equation 3. The coefficient KIND represents the amount of  
inductor ripple current relative to the maximum output current. The output capacitor filters the inductor ripple  
current. Therefore, choosing a high inductor ripple current impacts the selection of the output capacitor since the  
output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In general,  
maintain a KIND coefficient greater than 0 and 0.4 for balanced performance. Using this target ripple current, the  
required inductor size can be calculated as shown in Equation 3:  
1 V ´ 18 V -1 V  
VOUT  
IN(max) ´ ¦SW  
V
IN - VOUT  
(
18 V ´ 650 kHz ´ 25 A ´ 0.2  
)
L1 =  
´
) (  
=
= 0.29 mH  
V
(
IOUT(max) ´ KIND  
)
(3)  
Selecting a KIND of 0.2, the target inductance L1 = 290 nH. Using the next standard value, the 330 nH is chosen  
in this application for its high current rating, low DCR, and small size. The inductor ripple current, RMS current,  
and peak current can be calculated using Equation 4, Equation 5 and Equation 6. These values should be used  
to select an inductor with approximately the target inductance value, and current ratings that allow normal  
operation with some margin.  
V
- VOUT  
1 V ´ 18 V -1 V  
VOUT  
IN(max) ´ ¦SW  
(
)
18 V ´ 650 kHz ´ 330 nH  
IN(max)  
IRIPPLE  
=
´
=
= 4.4 A  
L1  
V
(
)
(4)  
26  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
1
12  
1
2
)
2
)
IL(rms)  
=
I
(
+
´
I
= 25 A  
(
OUT  
RIPPLE  
(5)  
(6)  
IL(PEAK) = (IOUT ) +  
´ (IRIPPLE  
) = 27.2 A  
2
8.2.3.3 Output Capacitor Selection  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
affects three criteria:  
Stability  
Regulator response to a change in load current or load transient  
Output voltage ripple  
These three considerations are important when designing regulators that must operate where the electrical  
conditions are unpredictable. The output capacitance needs to be selected based on the most stringent of these  
three criteria.  
8.2.3.3.1 Minimum Output Capacitance to Ensure Stability  
To prevent sub-harmonic multiple pulsing behavior, TPS548B22 application designs must strictly follow the small  
signal stability considerations described in Equation 7.  
¥
zR  
6ꢀ%&  
6/54  
/.  
#
>
×
×
/54 (≠©Æ )  
2
,
/54  
where  
COUT(min) is the minimum output capacitance needed to meet the stability requirement of the design  
tON is the on-time information based on the switching frequency and duty cycle (in this design, 128 ns)  
τ is the ramp compensation time constant of the design based on the switching frequency and duty cycle, (in  
this design, 25.9 µs, refer to Table 7)  
LOUT is the output inductance (in the design, 0.33 µH)  
VREF is the user-selected reference voltage level (in this design, 1 V)  
VOUT is the output voltage (in this design, 1 V)  
(7)  
The minimum output capacitance calculated from Equation 7 is 40 µF. The stability is ensured when the amount  
of the output capacitance is 40 µF or greater. And when all MLCCs (multi-layer ceramic capacitors) are used,  
both DC and AC derating effects must be considered to ensure that the minimum output capacitance  
requirement is met with sufficient margin.  
8.2.3.3.2 Response to a Load Transient  
The output capacitance must supply the load with the required current when current is not immediately provided  
by the regulator. When the output capacitor supplies load current, the impedance of the capacitor greatly affects  
the magnitude of voltage deviation (such as undershoot and overshoot) during the transient.  
Use Equation 8 and Equation 9 to estimate the amount of capacitance needed for a given dynamic load step and  
release.  
NOTE  
There are other factors that can impact the amount of output capacitance for a specific  
design, such as ripple and stability.  
2
6/54 × ¥37  
,
/54  
× k¿),/!$ ≠°∏ ;o × l  
+ ¥/&& ≠©Æ ;p  
:
:
6
:
;
). ≠©Æ  
#
=
;
:
/54 ≠©Æ _µÆ§•≤  
6
;6  
:
6
). ≠©Æ  
2 × ¿6,/!$ ©Æ≥•≤¥ ; × Fl  
/54 p × ¥37 ¥/&& ≠©Æ ;G × 6  
:
/54  
:
:
;
). ≠©Æ  
(8)  
27  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
,
× k¿),/!$ ≠°∏ ;o2  
:
/54  
#
=
;
:
/54 ≠©Æ _Ø∂•≤  
2 × ¿6,/!$ ≤•¨•°≥• × 6  
:
;
/54  
where  
COUT(min_under) is the minimum output capacitance to meet the undershoot requirement  
COUT(min_over)is the minimum output capacitance to meet the overshoot requirement  
L is the output inductance value (0.33 µH)  
ILOAD(max) is the maximum transient step (15 A)  
VOUT is the output voltage value (1 V)  
tSW is the switching period (1.54 µs)  
VIN(min) is the minimum input voltage for the design (10.8 V)  
tOFF(min) is the minimum off time of the device (300 ns)  
VLOAD(insert) is the undershoot requirement (30 mV)  
VLOAD(release) is the overshoot requirement (30 mV)  
(9)  
Most of the above parameters can be found in Table 5.  
The minimum output capacitance to meet the undershoot requirement is 516 µF. The minimum output  
capacitance to meet the overshoot requirement is 1238 µF. This example uses a combination of POSCAP and  
MLCC capacitors to meet the overshoot requirement.  
POSCAP bank no. 1: 2 × 470 µF, 2.5 V, 6 mΩ per capacitor  
MLCC bank no. 2: 7 × 100 µF, 6.3 V, 2 mΩ per capacitor with DC+AC derating factor of 60%  
Recalculating the worst case overshoot using the described capacitor bank design, the overshoot is 29 mV,  
which meets the 30-mV overshoot specification requirement.  
8.2.3.3.3 Output Voltage Ripple  
The output voltage ripple is another important design consideration. Equation 10 calculates the minimum output  
capacitance required to meet the output voltage ripple specification. This criterion is the requirement when the  
impedance of the output capacitance is dominated by ESR.  
IRIPPLE  
CCOUT(min)RIPPLE  
=
= 82 mF  
8 ´ ¦SW ´ VOUT(RIPPLE)  
(10)  
In this case, the maximum output voltage ripple is 10 mV. For this requirement, the minimum capacitance for  
ripple requirement yields 82 µF. Because this capacitance value is significantly lower compared to that of  
transient requirement, determine the capacitance bank from Response to a Load Transient. Because the output  
capacitor bank consists of both POSCAP and MLCC type capacitors, it is important to consider the ripple effect  
at the switching frequency due to effective ESR. Use Equation 11 to determine the maximum ESR of the output  
capacitor bank for the switching frequency.  
V
IRIPPLE  
out ripple  
(
-
)
8 ´ ¦SW ´ COUT  
ESRMAX  
=
= 2.2 mW  
IRIPPLE  
(11)  
Estimate the effective ESR at the switching frequency by obtaining the impedance vs frequency characteristics of  
the output capacitors. The parallel impedance of capacitor bank #1 and capacitor bank #2 at the switching  
frequency of the design example is estimated to be 1.2 m, which is less than that of the maximum ESR value.  
Therefore, the output voltage ripple requirement (10 mV) can be met. For detailed calculation on the effective  
ESR please contact the factory to obtain a user-friendly Excel based design tool.  
28  
Copyright © 2017, Texas Instruments Incorporated  
 
 
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
8.2.3.4 Input Capacitor Selection  
The TPS548B22 requires a high-quality, ceramic, type X5R or X7R, input decoupling capacitor with a value of at  
least 1 μF of effective capacitance on the VDD pin, relative to AGND. The power stage input decoupling  
capacitance (effective capacitance at the PVIN and PGND pins) must be sufficient to supply the high switching  
currents demanded when the high-side MOSFET switches on, while providing minimal input voltage ripple as a  
result. This effective capacitance includes any DC bias effects. The voltage rating of the input capacitor must be  
greater than the maximum input voltage. The capacitor must also have a ripple current rating greater than the  
maximum input current ripple to the device during full load. The input ripple current can be calculated using  
Equation 12.  
V
(
- VOUT  
)
= 10 Arms  
VOUT  
IN(min)  
ICIN(rms) = IOUT(max)  
´
´
V
V
IN(min)  
IN(min)  
(12)  
The minimum input capacitance and ESR values for a given input voltage ripple specification, VIN(ripple), are  
shown in Equation 13 and Equation 14. The input ripple is composed of a capacitive portion, VRIPPLE(cap), and a  
resistive portion, VRIPPLE(esr)  
.
IOUT(max) ´ VOUT  
CIN(min)  
=
= 21.4 mF  
VRIPPLE(cap) ´ V  
´ ¦ SW  
IN(max)  
(13)  
VRIPPLE(ESR)  
ESRCIN(max)  
=
= 3.4 mW  
I
æ
ö
RIPPLE  
IOUT(max)  
+
ç
÷
2
è
ø
(14)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The input capacitor  
must also be selected with the DC bias taken into account. For this example design, a ceramic capacitor with at  
least a 25-V voltage rating is required to support the maximum input voltage. For this design, allow 0.1-V input  
ripple for VRIPPLE(cap), and 0.1-V input ripple for VRIPPLE(esr). Using Equation 13 and Equation 14, the minimum  
input capacitance for this design is 21.4 µF, and the maximum ESR is 3.4 mΩ. For this example, four 22-μF, 25-  
V ceramic capacitors and one additional 100-μF, 25-V low-ESR polymer capacitors in parallel were selected for  
the power stage.  
8.2.3.5 Bootstrap Capacitor Selection  
A ceramic capacitor with a value of 0.1 μF must be connected between the BOOT and SW pins for proper  
operation. It is recommended to use a ceramic capacitor with X5R or better grade dielectric. Use a capacitor with  
a voltage rating of 25 V or higher.  
8.2.3.6 BP Pin  
Bypass the BP pin to DRGND with 4.7-µF capacitance. In order for the regulator to function properly, it is  
important that these capacitors be localized to the , with low-impedance return paths. See Layout Guidelines  
section for more information.  
8.2.3.7 R-C Snubber and VIN Pin High-Frequency Bypass  
Though it is possible to operate the TPS548B22 within absolute maximum ratings without ringing reduction  
techniques, some designs may require external components to further reduce ringing levels. This example uses  
two approaches: a high frequency power stage bypass capacitor on the VIN pins, and an R-C snubber between  
the SW area and GND.  
The high-frequency VIN bypass capacitor is a lossless ringing reduction technique which helps minimizes the  
outboard parasitic inductances in the power stage, which store energy during the low-side MOSFET on-time, and  
discharge once the high-side MOSFET is turned on. For this example twoone 2.2-nF, 25-V, 0603-sized high-  
frequency capacitors are used. The placement of these capacitors is critical to its effectiveness. Its ideal  
placement is shown in Figure 21.  
Copyright © 2017, Texas Instruments Incorporated  
29  
 
 
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
Additionally, an R-C snubber circuit is added to this example. To balance efficiency and spike levels, a 1-nF  
capacitor and a 1-Ω resistor are chosen. In this example a 0805-sized resistor is chosen, which is rated for 0.125  
W, nearly twice the estimated power dissipation. See SLUP100 for more information about snubber circuits.  
8.2.3.8 Optimize Reference Voltage (VSEL)  
Optimize the reference voltage by choosing a value for RVSEL. The TPS548B22 device is designed with a wide  
range of precision reference voltage support from 0.6 V to 1.2 V with an available step change of 50 mV.  
Program these reference voltages using the VSEL pin strap configurations. See Table 3 for internal reference  
voltage selections. In addition to providing initial boot voltage value, use the VSEL pin to program hiccup and  
latch-off mode.  
There are two ways to program the output voltage set point. If the output voltage set point is one of the 16  
available reference and boot voltage options, no feedback resistors are required for output voltage programming.  
In the case where feedback resistors are not needed, connect the RSP pin to the positive sensing point of the  
load. Always connect the RSN pin to the load return sensing point.  
In this design example, since the output voltage set point is 1 V, selecting RVSEL(LS) of either 75 kΩ (latch off) or  
68.1 kΩ (hiccup). If the output voltage set point is NOT one of the 16 available reference or boot voltage options,  
feedback resistors are required for output voltage programming. Connect the RSP pin to the mid-point of the  
resistor divider. Always connect the RSN pin to the load return sensing point as shown in Figure 19 and  
Figure 20.  
The general guideline to select boot and internal reference voltage is to select the reference voltage closest to  
the output voltage set point. In addition, because the RSP and RSN pins are extremely high-impedance input  
terminals of the true differential remote sense amplifier, use a feedback resistor divider with values much less  
than 100 kΩ.  
8.2.3.9 MODE Pin Selection  
MODE pin strap configuration is used to program control topology and internal soft-start timing selections.  
TPS548B22 supports both DCAP3 and DCAP operation. For general POL applications, it is strongly  
recommended to configure the control topology to be DCAP3 due to its simple to use and no external  
compensation features. In the rare instance where DCAP is needed, an RCC network across the output inductor  
is needed to generate sufficient ripple voltage on the RSP pin. In this design example, RMODE(LS) of 22.1 kΩ is  
selected for DCAP3 and soft start time of 1 ms.  
8.2.3.10 Overcurrent Limit Design.  
The TPS548B22 device uses the ILIM pin to set the OCP level. Connect the ILIM pin to GND through the voltage  
setting resistor, RILIM. In order to provide both good accuracy and cost effective solution, this device supports  
temperature compensated MOSFET on-resistance (RDS(on)) sensing. Also, this device performs both positive and  
negative inductor current limiting with the same magnitudes. Positive current limit is normally used to protect the  
inductor from saturation therefore causing damage to the high-side and low-side FETs. Negative current limit is  
used to protect the low-side FET during OVP discharge.  
The inductor current is monitored by the voltage between PGND pin and SW pin during the OFF time. The ILIM  
pin has 1200 ppm/°C temperature slope to compensate the temperature dependency of the on-resistance. The  
PGND pin is used as the positive current sensing node.  
TPS548B22 has cycle-by-cycle over-current limiting control. The inductor current is monitored during the OFF  
state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent ILIM level. The voltage on the ILIM pin (VILIM) sets the valley level of the inductor current. The range  
of value of the RILIM resistor is between 9.53 kΩ and 105 kΩ. The range of valley OCL is between 5 A and 50 A  
(typical). If the RILIM resistance is outside of the recommended range, OCL accuracy and function cannot be  
assured. (see Table 8)  
30  
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
Table 8. OCP Valley Settings  
1% RILIM  
OVERCURRENT  
PROTECTION VALLEY (A)  
(kΩ)  
82.1  
71.5  
61.9  
51.1  
40.2  
30.1  
20.5  
40  
35  
30  
25  
20  
15  
10  
Use Equation 15 to relate the valley OCL to the RILIM resistance.  
RILIM = 2.0664 x OCLVALLEY – 0.6036  
where  
RILIM is in kΩ  
OCLVALLEY is in A  
(15)  
In this design example, the desired valley OCL is 30 A, the calculated RILIM is 61.9 kΩ. Use Equation 16 to  
calculate the DC OCL to be 32.1 A.  
/#,$# = /#,6!,,%9 + 0.5 × )2)ꢀꢀ,%  
where  
RILIM is in kΩ  
OCLDC is in A  
(16)  
In an overcurrent condition, the current to the load exceeds the inductor current and the output voltage falls.  
When the output voltage crosses the under-voltage fault threshold for at least 1msec, the behavior of the device  
depends on the VSEL pin strap setting. If hiccup mode is selected, the device will restart after 16-ms delay (1-ms  
soft-start option). If the overcurrent condition persists, the OC hiccup behavior repeats. During latch-off mode  
operation the device shuts down until the EN pin is toggled or VDD pin is power cycled.  
Copyright © 2017, Texas Instruments Incorporated  
31  
 
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
8.2.4 Application Curves  
1.01  
1.005  
1
0.995  
0.99  
VIN = 5 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
0
5
10  
15  
20  
25  
Output Current (A)  
D009  
SKIP Mode  
fSW = 650 kHz  
0.5 A DC with 15-A step at 40A/µs  
VDD = VIN = 5 V  
VOUT = 1 V  
VDD = VIN  
fSW = 650 kHz  
SKIP Mode  
VOUT = 1 V  
Figure 23. Transient Response Peak-to-Peak  
Figure 22. Output Voltage Regulation vs Output Current  
SKIP Mode  
fSW = 650 kHz  
0.5 A DC with 15-A step at 40A/µs  
FCCM Mode  
fSW = 650 kHz  
5 A DC with 15-A step at 40A/µs  
VDD = VIN = 12 V  
VOUT = 1 V  
VDD = VIN = 5 V  
VOUT = 1 V  
Figure 24. Transient Response Peak-to-Peak  
Figure 25. Transient Response Peak-to-Peak  
FCCM Mode  
VDD = VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
5 A DC with 15-A step at 40A/µs  
Figure 26. Transient Response Peak-to-Peak  
32  
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
9 Power Supply Recommendations  
This device is designed to operate from an input voltage supply between 1.5 V and 18 V. Ensure the supply is  
well regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance,  
as is the quality of the PCB layout and grounding scheme. See the recommendations in the Layout section.  
10 Layout  
10.1 Layout Guidelines  
Consider these layout guidelines before starting a layout work using TPS548B22.  
It is absolutely critical that all GND pins, including AGND (pin 30), DRGND (pin 29), and PGND (pins 13, 14,  
15, 16, 17, 18, 19, and 20) are connected directly to the thermal pad underneath the device via traces or  
plane.  
Include as many thermal vias as possible to support a 25-A thermal operation. For example, a total of 35  
thermal vias are used (outer diameter of 20 mil) in the TPS548B22EVM-847 available for purchase at ti.com.  
(SLUUBE4)  
Place the power components (including input/output capacitors, output inductor and TPS548B22 device) on  
one side of the PCB (solder side). Insert at least two inner layers (or planes) connected to the power ground,  
in order to shield and isolate the small signal traces from noisy power lines.  
Place the VIN pin decoupling capacitors as close as possible to the PVIN and PGND pins to minimize the  
input AC current loop. Place a high-frequency decoupling capacitor (with a value between 1 nF and 0.1 µF)  
as close to the PVIN pin and PGND pin as the spacing rule allows. This placement helps surpress the switch  
node ringing.  
Place VDD and BP decoupling capacitors as close as possible to the device pins. Do not use PVIN plane  
connection for the VDD pin. Separate the VDD signal from the PVIN signal by using separate trace  
connections. Provide GND vias for each decoupling capacitor and make the loop as small as possible.  
Ensure that the PCB trace defined as switch node (which connects the SW pins and up-stream of the output  
inductor) are as short and wide as possible. In the TPS548B22EVM-847 design, the SW trace width is 200  
mil. Use a separate via or trace to connect SW node to snubber and bootstrap capacitor. Do not combine  
these connections.  
Place all sensitive analog traces and components (including VOSNS, RSP, RSN, ILIM, MODE, VSEL and  
FSEL) far away from any high voltage switch node (itself and others), such as SW and BOOT to avoid noise  
coupling. In addition, place MODE, VSEL and FSEL programming resistors near the device pins.  
The RSP and RSN pins operate as inputs to a differential remote sense amplifier that operates with very high  
impedance. It is essential to route the RSP and RSN pins as a pair of diff-traces in Kelvin-sense fashion.  
Route them directly to either the load sense points (+ and –) or the output bulk capacitors. The internal circuit  
uses the VOSNS pin for on-time adjustment. It is critical to tie the VOSNS pin directly tied to VOUT (load  
sense point) for accurate output voltage result.  
Pins 6, 7, and 26 are not connected in the 25-A TPS548B22, while pins 6 and 7 connect to SW and pin 26  
connects to PVIN in the 40-A TPS548D22.  
Copyright © 2017, Texas Instruments Incorporated  
33  
 
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
10.2 Layout Example  
Figure 27. EVM Top View  
Figure 28. EVM Top Layer  
Figure 29. EVM Inner Layer 1  
Figure 30. EVM Inner Layer 2  
34  
Copyright © 2017, Texas Instruments Incorporated  
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
Layout Example (continued)  
Figure 31. EVM Inner Layer 3  
Figure 32. EVM Inner Layer 4  
Figure 33. EVM Bottom Layer  
Figure 34. EVM Bottom Symbols  
Copyright © 2017, Texas Instruments Incorporated  
35  
TPS548B22  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
www.ti.com.cn  
Layout Example (continued)  
10.2.1 Mounting and Thermal Profile Recommendation  
Proper mounting technique adequately covers the exposed thermal tab with solder. Excessive heat during the  
reflow process can affect electrical performance. Figure 35 shows the recommended reflow oven thermal profile.  
Proper post-assembly cleaning is also critical to device performance. See TI Application Report QFN/SON PCB  
Attachment for more information.  
tP  
TP  
TL  
TS(max)  
TS(min)  
tL  
rRAMP(up)  
rRAMP(down)  
tS  
t25P  
Time (s)  
25  
Figure 35. Recommended Reflow Oven Thermal Profile  
Table 9. Recommended Thermal Profile Parameters  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
RAMP UP AND RAMP DOWN  
rRAMP(up)  
Average ramp-up rate, TS(max) to TP  
Average ramp-down rate, TP to TS(max)  
3
6
°C/s  
°C/s  
rRAMP(down)  
PRE-HEAT  
TS  
Pre-heat temperature  
150  
60  
200  
180  
°C  
s
tS  
Pre-heat time, TS(min) to TS(max)  
REFLOW  
TL  
TP  
tL  
Liquidus temperature  
217  
°C  
°C  
s
Peak temperature  
260  
150  
40  
Time maintained above liquidus temperature, TL  
Time maintained within 5 °C of peak temperature, TP  
Total time from 25 °C to peak temperature, TP  
60  
20  
tP  
s
t25P  
480  
s
36  
版权 © 2017, Texas Instruments Incorporated  
 
TPS548B22  
www.ti.com.cn  
ZHCSGE7A JANUARY 2017REVISED JULY 2017  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
TI 用户指南 TPS548B22EVM-84725A 单相同步降压转换器  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
D-CAP3, NexFET, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS548B22RVFR  
TPS548B22RVFT  
ACTIVE  
LQFN-CLIP  
LQFN-CLIP  
RVF  
40  
40  
RoHS-Exempt  
& Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
548B22A1  
548B22A1  
ACTIVE  
RVF  
RoHS-Exempt  
& Green  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS548B22RVFR  
TPS548B22RVFT  
LQFN-  
CLIP  
RVF  
RVF  
40  
40  
2500  
250  
330.0  
16.4  
5.3  
7.3  
1.8  
8.0  
16.0  
Q1  
LQFN-  
CLIP  
180.0  
16.4  
5.3  
7.3  
1.8  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS548B22RVFR  
TPS548B22RVFT  
LQFN-CLIP  
LQFN-CLIP  
RVF  
RVF  
40  
40  
2500  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
7.1  
6.9  
C
1.52  
1.32  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.3 0.1  
EXPOSED  
THERMAL PAD  
36X 0.5  
13  
20  
12  
21  
41  
SYMM  
2X  
5.3 0.1  
5.5  
32  
1
0.3  
40X  
0.2  
40  
33  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
40X  
4222989/B 10/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.3)  
6X (1.4)  
40  
33  
40X (0.6)  
1
32  
40X (0.25)  
2X  
(1.12)  
36X (0.5)  
6X  
(1.28)  
(6.8)  
(5.3)  
41  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
12  
21  
13  
20  
SYMM  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222989/B 10/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.815) TYP  
40  
33  
40X (0.6)  
1
41  
32  
40X (0.25)  
(1.28)  
TYP  
36X (0.5)  
(0.64)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
8X  
(1.08)  
12  
21  
METAL  
TYP  
20  
13  
8X (1.43)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222989/B 10/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS548B22RVFT

具有差分遥感功能的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS548B27

具有差分遥感功能的 2.7V 至 16V、20A 同步降压转换器
TI

TPS548B27RYLR

具有差分遥感功能的 2.7V 至 16V、20A 同步降压转换器 | RYL | 19 | -40 to 125
TI

TPS548B28

具有遥感功能和断续限流功能的 2.7V 至 16V 输入 20A 同步降压转换器
TI

TPS548B28RWWR

具有遥感功能和断续限流功能的 2.7V 至 16V 输入 20A 同步降压转换器 | RWW | 21 | -40 to 125
TI

TPS548C26

采用 5mm x 6mm QFN 封装的 4V 至 16V、35A 同步 D-CAP+™ 降压转换器
TI

TPS548C26RXXR

采用 5mm x 6mm QFN 封装的 4V 至 16V、35A 同步 D-CAP+™ 降压转换器 | RXX | 37 | -40 to 125
TI

TPS548D21

具有 AVSO 和差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器
TI

TPS548D21RVFR

具有 AVSO 和差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS548D21RVFT

具有 AVSO 和差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS548D22

具有差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器
TI

TPS548D22RVFR

具有差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI