TPS562242 [TI]

3-V to 17-V input voltage, 2-A, 1.4-MHz synchronous buck converter in SOT563;
TPS562242
型号: TPS562242
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3-V to 17-V input voltage, 2-A, 1.4-MHz synchronous buck converter in SOT563

文件: 总23页 (文件大小:1365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
TPS562242 SOT-563 封装3V 17V 输入、2A 同步降压转换器  
1 特性  
2 应用  
• 专用于多种应用  
电器录像机  
WLANWi-Fi 接入点调制解调器电缆、DSL、  
GFAST小型企业路由器  
电视STB DVR  
3V 17V 输入电压范围  
0.8V 10V 输出电压范围  
0.8V 基准电压  
25°C 基准精度±1%  
-40°C 125°C 温度范围内基准精度为  
±1.5%  
– 集55.0mΩ24.3mΩMOSFET  
100 µA 低静态电流  
3 说明  
TPS562242 是一款简单、易用、高效率、高功率密度  
的同步降压转换器输入电压范围为 3V 17V在  
0.8V 10V 的输出电压范围内支持高达 2A 的持续  
输出电流。  
1.4MHz 开关频率  
– 以最94% 的高占空比运行  
– 精EN 阈值电压  
TPS562242 采用 D-CAP3 控制模式提供快速瞬态响应  
并支持低 ESR 输出电容器无需外部补偿。该器件支  
持高94% 的占空比运行。  
1.6 ms 固定软启动时间典型值)  
• 解决方案尺寸小巧且易于使用  
– 轻负载下采Eco-mode  
TPS562202 引脚对引脚兼容  
D-CAP3控制模式  
TPS562242 Eco-mode 下运行可在轻负载时保持  
高效率。该器件集成了全面的断续模式 OVPOCP、  
UVLOOTP UVP 保护。  
– 支持带预偏置输出的启动  
– 非锁OVOT UVLO 保护  
UV 保护的断续模式  
该器件采1.6mm x 1.6mm SOT-563 封装。额定结温  
范围-40°C 125°C。  
封装信息  
封装(1)  
– 逐周OC 保护  
封装尺寸标称值)  
器件型号  
1.6mm × 1.6mm SOT-563 封装  
• 使TPS562242 并借WEBENCH® Power  
Designer 创建定制设计方案  
DRLSOT-563,  
6)  
TPS562242  
1.60mm × 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
1
5
4
2
6
VIN  
VIN  
EN  
BST  
SW  
FB  
CBST  
L
VOUT  
EN  
CIN  
RFBT  
COUT  
3
GND  
30%  
20%  
10%  
0
Vout = 1.05V  
Vout = 3.3V  
Vout = 5V  
RFBB  
0.001  
0.005  
0.02 0.05 0.1 0.20.3 0.5  
Iout (A)  
1
2
简化版应用  
TPS562242 VIN = 12V 时的效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEQ4  
 
 
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................11  
8 Application and Implementation..................................12  
8.1 Application Information............................................. 12  
8.2 Typical Application.................................................... 12  
8.3 Power Supply Recommendations.............................17  
8.4 Layout....................................................................... 17  
9 Device and Documentation Support............................18  
9.1 Device Support......................................................... 18  
9.2 接收文档更新通知..................................................... 18  
9.3 支持资源....................................................................18  
9.4 Trademarks...............................................................18  
9.5 静电放电警告............................................................ 18  
9.6 术语表....................................................................... 18  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description...................................................10  
Information.................................................................... 18  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2022) to Revision A (May 2023)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ4  
2
Submit Document Feedback  
Product Folder Links: TPS562242  
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
VIN  
SW  
6
5
4
FB  
EN  
GND  
BST  
5-1. 6-Pin SOT563 DRL Package (Top View)  
5-1. Pin Functions  
Pin  
Type(1)  
Description  
Name  
VIN  
SW  
NO.  
1
P
P
G
P
A
A
Input voltage supply pin. Connect the input decoupling capacitors between VIN and GND.  
Switch node pin. Connect the output inductor to this pin.  
2
GND  
BST  
EN  
3
GND pin for the controller circuit and the internal circuitry.  
4
Connect a 100-nF ceramic capacitor from this pin to the SW pin or leave it floating.  
Enable control input. Driving EN high or leaving this pin floating enables the converter.  
Converter feedback input. Connect to output voltage with a feedback resistor divider.  
5
FB  
6
(1) A = Analog, P = Power, G = Ground  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
2  
MAX  
18  
UNIT  
V
VIN  
FB, EN  
GND  
6
V
0.3  
18  
V
Pin voltage(2)  
SW  
V
SW (transient < 20 ns)  
BST  
20  
V
5.5  
2  
18  
V
BST (transient < 20 ns)  
20  
V
5.5  
40  
55  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground pin.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1), all pins  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX UNIT  
VIN  
17  
5.5  
0.1  
FB, EN  
0.1  
0.1  
1  
5  
1  
5  
0
GND  
SW  
17  
18  
Pin voltage  
V
SW (transient < 20 ns)  
BST  
17  
BST (transient < 20 ns)  
IOUT  
18  
Output current  
Temperature  
2
A
Operating junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
40  
40  
°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ4  
4
Submit Document Feedback  
Product Folder Links: TPS562242  
 
 
 
 
 
 
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.4 Thermal Information  
DRL (SOT-563)  
UNIT  
THERMAL METRIC(1)  
6 PINS  
(2)  
RθJA  
Junction-to-ambient thermal resistance  
137.4  
74  
°C/W  
°C/W  
RθJA_effective  
Junction-to-ambient thermal resistance on EVM board  
(3)  
RθJC(top)  
RθJB  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
58.8  
29.8  
1.3  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
29.4  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The value of RθJA given in this table is only valid for comparison with other packages and can not be used for design purposes. These  
values were simulated on a standard JEDEC board. These values do not represent the performance obtained in an actual application.  
(3) This RθJA_effective is tested on TPS562242EVM board (2 layer, copper thickness is 2-oz) at VIN = 12 V, VOUT =5 V, IOUT = 2A, TA  
25°C.  
=
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT SUPPLY VOLTAGE  
VIN  
IVIN  
Input voltage range  
VIN  
3
17  
V
No load, VEN = 5 V, VFB = 0.85 V, non-switching, ECO  
version  
VIN supply current  
100  
5
µA  
µA  
IINSDN  
VIN shutdown current  
No load, VEN = 0 V  
UVLO  
Rising threshold  
Falling threshold  
Hysteresis  
2.80  
2.60  
2.92  
2.72  
200  
3.00  
2.85  
V
V
Input undervoltage lockout  
threshold  
VIN_UVLO  
mV  
FEEDBACK VOLTAGE  
VREF FB voltage  
TJ = 25°C  
792  
788  
800  
800  
808  
812  
mV  
mV  
TJ = 40°C to 125°C  
INTEGRATED POWER MOSFETS  
55.0  
67.5  
24.3  
30.2  
TJ = 25°C, VIN 5 V  
TJ = 25°C, VIN = 3 V (1)  
TJ = 25°C, VIN 5 V  
TJ = 25°C, VIN = 3 V  
mΩ  
mΩ  
mΩ  
mΩ  
High-side MOSFET on-  
RDSON_HS  
resistance  
Low-side MOSFET on-  
RDSON_LS  
resistance  
SWITCHING FREQUENCY  
Fsw  
Switching frequency  
Minimum on time  
Minimum off time  
TJ = 25°C, VOUT = 3.3 V  
VFB = 0.6 V  
1.4  
60  
MHz  
ns  
(1)  
TON(MIN)  
(1)  
TOFF(MIN)  
110  
ns  
LOGIC THRESHOLD  
VENH  
VENL  
VENHYS  
IEN  
EN threshold high level  
Rising enable threshold  
Falling disable threshold  
Hysteresis  
1.14  
0.91  
1.17  
1.00  
170  
1.6  
1.22  
1.09  
V
V
EN threshold low level  
EN hystersis  
mV  
uA  
EN pull up current  
VEN = 1.0 V  
CURRENT LIMIT  
IOCL_LS  
Overcurrent threshold  
Valley current set point  
2.3  
3.0  
3.6  
A
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
 
 
 
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SOFT START  
tSS  
Internal soft start time  
1.6  
ms  
OUTPUT OVERVOLTAGE AND UNDERVOLTAGE PROTECTION  
VOVP  
OVP trip threshold  
OVP prop deglitch  
UVP trip threshold  
UVP prop deglitch  
Hiccup enable delay time  
VFB rising  
110  
55  
115  
24  
120  
65  
%
us  
%
tOVPDLY  
VUVP  
tUVPDLY  
tUVPEN  
VFB falling  
60  
220  
14  
us  
ms  
THERMAL SHUTDOWN  
(1)  
TSDN  
Shutdown temperature  
Hysteresis  
155  
20  
Thermal shutdown threshold  
°C  
(1)  
TOTPHSY  
(1) Specified by design  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ4  
6
Submit Document Feedback  
Product Folder Links: TPS562242  
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
106  
105  
104  
103  
102  
101  
100  
99  
1.174  
1.173  
1.172  
1.171  
1.17  
98  
97  
96  
1.169  
95  
-40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (C)  
Junction Temperature (C)  
6-2. Enable On Threshold Voltage  
6-1. Quiescent Current  
0.995  
34  
32  
30  
28  
26  
24  
22  
20  
18  
0.99  
0.985  
0.98  
0.975  
0.97  
0.965  
0.96  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (C)  
Junction Temperature (C)  
6-3. Enable Off Threshold Voltage  
6-4. Low-Side RDS(ON)  
0.802  
0.801  
0.8  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.799  
0.798  
0.797  
0.796  
0.795  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (C)  
Junction Temperature (C)  
6-6. VREF Voltage  
6-5. High-Side RDS(ON)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin = 3V  
Vin = 6V  
Vin = 12V  
0.001  
0.005  
0.02 0.05 0.1 0.20.3 0.5  
Iout (A)  
1
2
6-7. Efficiency at 0.8 VOUT with a 1-μH Inductor  
6-8. Efficiency at 1.05 VOUT with a 1.2-μH Inductor  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
30%  
20%  
10%  
0
Vin = 6V  
Vin = 12V  
Vin = 6V  
Vin = 12V  
0.001  
0.005  
0.02 0.05 0.1 0.20.3 0.5  
Iout (A)  
1
2
0.001  
0.005  
0.02 0.05 0.1 0.20.3 0.5  
Iout (A)  
1
2
6-9. Efficiency at 3.3 VOUT with a 2.2-μH Inductor  
1400  
6-10. Efficiency at 5 VOUT with a 3.3-μH Inductor  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1300  
1200  
1100  
1000  
900  
Vout = 1.05V  
Vout = 3.3V  
Vout = 5V  
Vout = 1.05V  
Vout = 3.3V  
Vout = 5V  
800  
700  
600  
2
4
6
8
10  
Vin (V)  
12  
14  
16  
18  
0.001  
0.005  
0.02 0.05 0.1 0.20.3 0.5  
Iout (A)  
1
2
6-11. Frequency vs Input Voltage, IOUT = 2 A  
6-12. Frequency vs Loading, VIN = 12 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ4  
8
Submit Document Feedback  
Product Folder Links: TPS562242  
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS562242 is a 2-A integrated FET synchronous buck converter that operates from 3-V to 17-V input  
voltage and 0.8-V to 10-V output voltage. The device employs a D-CAP3 control mode that provides fast  
transient response with no external compensation components and an accurate feedback voltage. The  
proprietary D-CAP3 control mode enables low external component count, ease of design, and optimization of the  
power design for cost, size, and efficiency. The topology provides a seamless transition between CCM operating  
mode at higher load condition and DCM operation mode at lighter load condition.  
The Eco-mode version allows the TPS562242 to maintain high efficiency at light load. The TPS562242 is able to  
adapt to both low equivalent series resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-  
low ESR ceramic capacitors.  
7.2 Functional Block Diagram  
UV threshold  
+
UV  
OV  
VIN  
+
+
LDO  
OV threshold  
VREGOK  
2.92 V /  
2.72 V  
6
FB  
VREF  
Internal  
VCC  
+
+
Internal  
BST  
BST  
VIN  
4
1
PWM  
+
+
Control Logic  
SS  
Internal  
Compensation  
· On/Off time  
· Minimum On/Off  
· Light load  
Internal SS  
2
3
SW  
XCON  
· OCP/OVP/UVP/TSD  
· Soft-Start  
Clock  
GND  
+
EN  
5
EN Threshold  
+
OCL  
+
THOK  
+
+
155°C /20°C  
ZC  
NOCL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
 
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3Control Mode  
The main control loop of the buck is an adaptive on-time pulse width modulation (PWM) controller that supports  
a proprietary D-CAP3 control mode. The D-CAP3 control mode combines adaptive on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. The device is stable even with virtually no ripple at the output. The  
TPS562242 also includes an error amplifier that makes the output voltage very accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after an internal  
one-shot timer expires. This one-shot duration is set proportional to the output voltage, VOUT, and is inversely  
proportional to the converter input voltage, VIN, to maintain a pseudo-fixed frequency over the input voltage  
range, hence, it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to reference voltage to emulate the output ripple, enabling the use of very low-ESR output capacitors  
such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation is  
required for D-CAP3 control mode.  
7.3.2 Eco-mode Control  
The TPS562242 is designed with advanced Eco-mode to maintain high light-load efficiency. As the output  
current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point  
that its ripple valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction mode. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load  
current further decreases, the converter runs into discontinuous conduction mode. The on time is kept almost the  
same as it was in continuous conduction mode so that it takes longer time to discharge the output capacitor with  
smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional  
to the load current, and keeps the light load efficiency high. Use the below equation to calculate the transition  
point to the light load operation IOUT(LL) current.  
(V - VOUT ) ì VOUT  
1
IN  
IOUT(LL)  
=
ì
2 ì L ì fSW  
V
IN  
(1)  
7.3.3 Soft Start and Prebiased Soft Start  
The TPS562242 has an internal fixed 1.6-ms soft-start time. The internal soft-start function begins ramping up  
the reference voltage to the PWM comparator during start-up period.  
If the output capacitor is prebiased at start-up, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes higher than the feedback voltage, VFB. This scheme makes sure that the  
converter ramps up smoothly into the regulation point.  
7.3.4 Overvoltage Protection  
The TPS562242 has the overvoltage protection feature. When the output voltage becomes higher than the OVP  
threshold, the OVP is triggered with a 24-μs deglitch time. Both the high-side MOSFET and the low-side  
MOSFET drivers are turned off. When the overvoltage condition is removed, the device returns to switching.  
7.3.5 Large Duty Operation  
The TPS562242 can support large duty operations up to 94% by smoothly dropping down the switching  
frequency. When VIN / VOUT < 1.6 and VFB is lower than internal VREF, the switching frequency is allowed to  
smoothly drop to make tON extended to implement the large duty operation and improve the performance of the  
load transient. Please refer frequency test waveform in 6-11. The minimum switching frequency is limited to  
approximately 700 kHz.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ4  
10  
Submit Document Feedback  
Product Folder Links: TPS562242  
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7.3.6 Current Protection and Undervoltage Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the off state by measuring the low-side FET drain-to-source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by the  
following:  
VIN  
VOUT  
On-time  
Output inductor value  
During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch  
current is the load current, IOUT. If the monitored valley current is above the OCL level, the converter maintains a  
low-side FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until  
the current level becomes OCL level or lower. In subsequent switching cycles, the on time is set to a fixed value  
and the current is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. The load current is higher than  
the overcurrent threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current can be higher than the current available  
from the converter, which can cause the output voltage to fall. When the FB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it and the device shuts down after the UVP delay time (typically  
220 µs) and restarts after the hiccup wait time (typically 14 ms). After the device enters the hiccup cycling, the  
hiccup on time is typically 2.2 ms.  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
7.3.7 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage,  
the device is shut off. This protection is a non-latch protection.  
7.3.8 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value, the device is shut  
off. This protection is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 Eco-mode Operation  
The TPS562242 operates in Eco-mode, which maintains high efficiency at light loading. As the output current  
decreases from heavy load conditions, the inductor current is also reduced and eventually comes to a point  
where the rippled valley touches zero level, which is the boundary between continuous conduction and  
discontinuous conduction mode. The rectifying MOSFET is turned off when the zero inductor current is detected.  
As the load current further decreases, the converter runs into discontinuous conduction mode. The on time is  
kept almost the same as it was in continuous conduction mode so that it takes longer time to discharge the  
output capacitor with smaller load current to the level of the reference voltage. This action makes the switching  
frequency lower, proportional to the load current, and keeps the light load efficiency high.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The device is a typical buck DC/DC converter that is typically used to convert a higher DC voltage to a lower DC  
voltage with a maximum available output current of 2 A. The following design procedure can be used to select  
component values for TPS562242. Alternately, the WEBENCH Power Designer software can be used to  
generate a complete design. The WEBENCH Power Designer software uses an iterative design procedure and  
accesses a comprehensive database of components when generating a design. This section presents a  
simplified discussion of the design process.  
8.2 Typical Application  
The application schematic in 8-1 was developed to meet the requirements in 8-1. This circuit is available  
as the evaluation module (EVM). The sections provide the design procedure.  
8-1 shows the TPS562242 5-V to 17-V input, 1.05-V output converter schematic.  
8-1. Schematic  
8.2.1 Design Requirements  
8-1 shows the design parameters for this application.  
8-1. Design Parameters  
Parameter  
Output voltage  
Output current  
Conditions  
MIN  
TYP  
1.05  
2
MAX  
Unit  
V
VOUT  
IOUT  
A
0.2-A 1.8-A load step, 0.8-A/μs  
slew rate  
Transient response  
±2% × VOUT  
V
ΔVOUT  
VIN  
Input voltage  
5
12  
6
17  
V
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
Ambient temperature  
CCM condition  
mV  
MHz  
°C  
1.4  
25  
TA  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ4  
12  
Submit Document Feedback  
Product Folder Links: TPS562242  
 
 
 
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the TPS562242 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the FB pin. TI recommends using 1%  
tolerance or better divider resistors. Start by using 方程2 to calculate VOUT  
.
To improve efficiency at very light loads, consider using larger value resistors. If the values are too high, the  
regulator is more susceptible to noise and voltage errors from the FB input current are noticeable. Use a 10-kΩ  
resistor for R5 to start the design.  
R
4
V
= 0 . 8 × 1 +  
(2)  
OUT  
R
5
8.2.2.3 Output Filter Selection  
The LC filter used as the output filter has a double pole at 方程式 3. In this equation, COUT uses its effective  
value after derating, not its nominal value.  
1
fP  
=
2p LOUT ì COUT  
(3)  
For any control topology that is compensated internally, there is a range of the output filter it can support. At low  
frequency, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the  
device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a 40 dB per  
decade rate and the phase drops has a 180 degree drop. The internal ripple generation network introduces a  
high-frequency zero that reduces the gain roll off from 40 dB to 20 dB per decade and leads the 90 degree  
phase boost. The internal ripple injection high-frequency zero is about 156 kHz. TI recommends the inductor and  
capacitor selected for the output filter such that the double pole is located approximately 40 kHz, so that the  
phase boost provided by this high-frequency zero provides adequate phase margin for the stability requirement.  
The crossover frequency of the overall system is usually targeted to be less than one-third of the switching  
frequency (fSW). For high output voltage condition, TI recommends to use 10-100pF feedforward capacitor for  
enough phase margin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8-2. Recommended Component Values  
Typical L1  
(μH)  
Typical COUT  
Typical COUT  
Category  
Output Voltage  
(V)  
Typical C6  
(pF)  
Typical COUT (μF)  
Nominal Value Range  
R4 (kΩ)  
R5 (kΩ)  
(μF)  
0.8  
1.05  
3.3  
5
0
10.0  
10.0  
30.0  
30.0  
30.0  
1
44  
22  
22  
22  
44  
22-88  
22-66  
22-88  
22-88  
44-88  
MLCC, 0805, 10V  
MLCC, 0805, 10V  
MLCC, 0805, 10V  
MLCC, 0805, 10V  
MLCC, 0805, 16V  
33  
33  
47  
3.12  
94.2  
158.0  
345.0  
1.2  
2.2  
3.3  
4.7  
10  
The inductor peak-to-peak ripple current, peak current, and RMS current are calculated using 方程式 4, 方程式  
5, and 方程式 6. Generally, TI recommends the peak-to-peak ripple current to be 20% 50% of output average  
current for a comprehensive benefit of efficiency and inductor volume. The inductor saturation current rating  
must be greater than the calculated peak current and the RMS or heating current rating must be greater than the  
calculated RMS current.  
V
- VOUT  
VOUT  
IN(MAX)  
IlP-P  
=
ì
V
LO ì fSW  
IN(MAX)  
(4)  
(5)  
IlP-P  
IlPEAK = IO  
+
2
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(6)  
For this design example, the calculated peak current is 2.3 A and the calculated RMS current is 2.00 A. The  
inductor used is 74438357012 with 7-A rated current and 8.8-A saturation current.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS562242 are intended for  
use with ceramic or other low-ESR capacitors. Use 方程7 to determine the required RMS current rating for the  
output capacitor.  
VOUT ì V - VOUT  
(
)
IN  
ICO(RMS)  
=
12 ì V ì LO ì fSW  
IN  
(7)  
For this design, one MuRata GRM21BR61A226ME44L 22-µF output capacitors are used. The typical ESR is 2  
mΩeach. The calculated RMS current is 0.17 A and each output capacitor is rated for 4 A.  
8.2.2.4 Input Capacitor Selection  
The TPS562242 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. TI recommends an  
additional 0.1-µF capacitor from the VIN pin to ground to provide high frequency filtering. The capacitor voltage  
rating must be greater than the maximum input voltage.  
8.2.2.5 Bootstrap Capacitor Selection  
The real BST is integrated inside by using a special charging high side FET circuit. A typical 0.1-µF ceramic  
capacitor can be connected between the BST to SW pin or leave floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ4  
14  
Submit Document Feedback  
Product Folder Links: TPS562242  
 
 
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.2.3 Application Curves  
The following data is tested with VIN = 12 V, VOUT = 1.05 V, TA = 25°C, unless otherwise specified.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
0.001  
0.005  
0.02 0.05 0.1 0.20.3 0.5  
Iout (A)  
1
2
0.001  
0.005  
0.02 0.05 0.1 0.20.3 0.5  
Iout (A)  
1
2
8-2. Efficiency vs Loading  
8-3. Frequency vs Loading  
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
Iout = 2A  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Vin (V)  
0.001  
0.005  
0.02 0.05 0.1 0.20.3 0.5  
Iout (A)  
1
2
8-5. Line Regulation vs VIN  
8-4. Load Regulation vs Loading  
Vout = 20mV/div (AC coupled)  
Vout = 20mV/div (AC coupled)  
SW = 5V/div  
SW = 5V/div  
20us/div  
1us/div  
8-6. Output Voltage Ripple with 0.01-A Loading  
8-7. Output Voltage Ripple with 2-A Loading  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Vin = 5V/div  
EN = 2V/div  
Vin = 10V/div  
EN = 2V/div  
Vout = 500mV/div  
Vout = 500mV/div  
2ms/div  
2ms/div  
8-8. Start-up Through EN, IOUT = 2 A  
8-9. Shutdown Through EN, IOUT = 2 A  
Vin = 5V/div  
Vin = 5V/div  
EN = 5V/div  
EN = 5V/div  
Vout = 500mV/div  
Vout = 500mV/div  
2ms/div  
10ms/div  
8-10. Start-up with VIN Rising, IOUT = 2 A  
8-11. Shutdown with VIN Falling, IOUT = 2 A  
Vout = 50mV/div (AC coupled)  
Vout = 50mV/div (AC coupled)  
Iout = 1A/div  
Iout = 1A/div  
200us/div  
200us/div  
8-12. Transient Response with 0.2 A to 1.8 A  
8-13. Transient Response with 0.01 A to 2 A  
Vout = 1V/div  
Vout = 500mV/div  
SW = 10V/div  
SW = 10V/div  
IL = 2A/div  
IL = 5A/div  
100us/div  
10ms/div  
8-14. Normal Operation to Output Hard Short  
8-15. Output Hard Short Hiccup  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.3 Power Supply Recommendations  
The TPS562242 are designed to operate from input supply voltages in the range of 3 V to 17 V. Buck converters  
require the input voltage to be higher than the output voltage for proper operation.  
8.4 Layout  
8.4.1 Layout Guidelines  
Keep VIN and GND traces as wide as possible to reduce trace impedance. The wide areas are also an  
advantage from the view point of heat dissipation.  
Place the input capacitor and output capacitor as close to the device as possible to minimize trace  
impedance.  
Provide sufficient vias for the input capacitor and output capacitor.  
Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
Do not allow switching current to flow under the device.  
Connect a separate VOUT path to the upper feedback resistor.  
Make a Kelvin connection to the GND pin for the feedback path.  
Place a voltage feedback loop away from the high-voltage switching trace, and preferably has ground shield.  
Make the trace of the FB node as small as possible to avoid noise coupling.  
Make the GND trace between the output capacitor and the GND pin as wide as possible to minimize its trace  
impedance.  
8.4.2 Layout Example  
VIN  
GND  
CIN  
RFBB  
RFBT  
FB  
EN  
VIN  
SW  
EN  
Control  
SW  
GND  
BST  
CBST  
VOUT  
GND  
COUT  
VIA (Connected to GND plane at bottom layer)  
VIA (Connected to SW)  
Copper  
8-16. Suggested Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS562242  
English Data Sheet: SLUSEQ4  
 
 
TPS562242  
ZHCSP82A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the TPS562242 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
D-CAP3and TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ4  
18  
Submit Document Feedback  
Product Folder Links: TPS562242  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS562242DRLR  
ACTIVE  
SOT-5X3  
DRL  
6
4000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
-40 to 125  
2242  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS5625

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS5625CPWP

SWITCHING CONTROLLER, PDSO28, PLASTIC, TSSOP-28
TI

TPS5625CPWPR

SWITCHING CONTROLLER, PDSO28, PLASTIC, TSSOP-28
TI

TPS5625PWP

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS5625PWPR

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS5625PWPRG4

2A SWITCHING CONTROLLER, 200kHz SWITCHING FREQ-MAX, PDSO28, GREEN, PLASTIC, HTSSOP-28
TI

TPS56300

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56300EVM-139

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56300PWP

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56300PWPG4

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP
TI

TPS56300PWPR

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP
TI

TPS56300PWPRG4

DUAL SWITCHING CONTROLLER, 400kHz SWITCHING FREQ-MAX, PDSO28, GREEN, PLASTIC, HTSSOP-28
TI