TPS563209 [TI]

采用 SOT-23 封装的 17V 输入、3A 同步降压稳压器;
TPS563209
型号: TPS563209
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT-23 封装的 17V 输入、3A 同步降压稳压器

稳压器
文件: 总30页 (文件大小:1073K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
采用 6 引脚 SOT-23 封装的 TPS56x209 4.5V 17V 输入、2A3A  
同步降压稳压器  
1 特性  
3 说明  
1
TPS562209 - 集成有 122m72mFET 2A  
转换器  
TPS562209 TPS563209 是采用 6 引脚 SOT-23 封  
装的简单易用型 2A/3A 同步降压转换器。  
TPS563209 - 带有集成 68m39mFET 的  
3A 转换器  
此器件被优化为使用尽可能少的外部组件即可运行,并  
且可以实现低待机电流。  
D-CAP2™针对快速瞬态响应的模式控制  
输入电压范围:4.5V 17V  
输出电压范围:0.76V 7V  
650kHz 开关频率  
这些开关模式电源 (SMPS) 器件采用 D-CAP2™ 模式  
控制,从而提供快速瞬态响应,并且在无需外部补偿组  
件的情况下支持诸如高分子聚合物等低等效串联电阻  
(ESR) 输出电容器以及超低 ESR 陶瓷电容器。  
低于 10µA 的低关断电流  
1% 反馈电压精度 (25°C)  
从预偏置输出电压中启动  
逐周期过流限制  
TPS562209 TPS563209 始终在连续传导模式下运  
行,与非连续传导模式相比,该模式可降低轻负载条件  
下的输出纹波电压。TPS56x209 采用 6 引脚 1.6mm ×  
2.9mm SOT (DDC) 封装,结温范围为 –40°C 150°  
C。  
断续模式欠压保护  
非锁存过压保护 (OVP),欠压闭锁 (UVLO) 和热关  
(TSD) 保护  
器件信息(1)  
固定软启动时间:1.0ms  
器件型号  
封装  
封装尺寸(标称值)  
2 应用  
TPS563209TPS5  
62209  
SOT (6)  
1.60mm x 2.90mm  
数字电视电源  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
高清 Blu-ray Disc™播放器  
网络家庭终端设备  
数字机顶盒 (STB)  
空白  
空白  
简化电路原理图  
瞬态响应  
TPS563209  
TPS562209  
1
2
3
6
5
GND  
SW  
VBST  
EN  
VO = 50 mV / div (ac coupled)  
EN  
VOUT  
4
VIN  
VIN  
VOUT  
VFB  
IO = 1 A / div  
Copyright © 2016, Texas Instruments Incorporated  
Load step = 0.75 A - 2.25 A  
Slew rate = 500 mA / µsec  
Time = 200 µsec / div  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCM5  
 
 
 
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Applications ............................................... 13  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics TPS562209.......................... 6  
6.7 Typical Characteristics TPS563209.......................... 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ...................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 相关链接................................................................ 22  
11.2 接收文档更新通知 ................................................. 22  
11.3 社区资源................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
Changes from Original (September 2014) to Revision A  
Page  
Updated the Pinout image in Pin Configuration and Functions ............................................................................................. 3  
Changed the "Handling Ratings" table to the ESD Ratings table .......................................................................................... 4  
Changed RθJB for TPS562209 From: 57.3 To: 13.4 in Thermal Information .......................................................................... 4  
The Adaptive On-Time Control and PWM Operation, changed text From: "proportional to the converter input  
voltage, VIN, and inversely proportional to the output voltage, VO" To: "inversely proportional to the converter input  
voltage, VIN, and proportional to the output voltage, VO"...................................................................................................... 11  
2
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
5 Pin Configuration and Functions  
DDC Package  
6 Pin (SOT)  
Top View  
GND  
SW  
1
6
5
4
VBST  
EN  
2
3
VIN  
VFB  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
Ground pin Source terminal of low-side power NFET as well as the ground terminal for controller circuit. Connect  
sensitive VFB to this GND at a single point.  
GND  
1
SW  
2
3
4
5
6
Switch node connection between high-side NFET and low-side NFET.  
VIN  
Input voltage supply pin. The drain terminal of high-side power NFET.  
VFB  
EN  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between VBST and SW pins.  
VBST  
Copyright © 2014–2016, Texas Instruments Incorporated  
3
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
TJ = –40°C to 150°C (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
19  
UNIT  
V
VIN, EN  
VBST  
25  
V
VBST (10 ns transient)  
27.5  
6.5  
6.5  
19  
V
Input voltage range  
VBST (vs SW)  
VFB,  
V
V
SW  
V
SW (10 ns transient)  
–3.5  
–40  
–55  
21  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
MIN  
MAX  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2
kV  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TJ = -40°C to 150°C (unless otherwise noted)  
MIN  
MAX  
UNIT  
VIN  
Supply input voltage range  
VBST  
4.5  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–3.5  
–40  
17  
23  
26  
6.0  
17  
5.5  
17  
20  
85  
V
VBST (10 ns transient)  
VBST(vs SW)  
Input voltage range EN  
VI  
V
VFB  
SW  
SW (10 ns transient)  
TA  
Operating free-air temperature  
°C  
6.4 Thermal Information  
TPS562209  
TPS563209  
THERMAL METRIC(1)  
UNIT  
°C/W  
DDC (6 PINS)  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
109.2  
44.5  
13.4  
2.3  
87.9  
42.2  
13.6  
1.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
60.4  
13.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
6.5 Electrical Characteristics  
TJ = -40°C to 150°C, VIN = 12V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY CURRENT  
µA  
µA  
µA  
IVIN  
Operating – non-switching supply current  
Shutdown supply current  
VIN current, TA = 25°C, EN = 5V, VFB = 0.8 V  
VIN current, TA = 25°C, EN = 0 V  
650 900  
IVINSDN  
3.0  
10  
LOGIC THRESHOLD  
VENH  
VENL  
REN  
EN high-level input voltage  
EN  
1.6  
V
V
EN low-level input voltage  
EN pin resistance to GND  
EN  
0.6  
VEN = 12 V  
225  
450 900  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
TA = 25°C, VO = 1.05 V, continuous mode  
operation  
VFBTH  
VFB threshold voltage  
VFB input current  
758  
765 772  
mV  
mA  
IVFB  
VFB = 0.8V, TA = 25°C  
0
±0.1  
MOSFET  
TA = 25°C, VBST – SW = 5.5 V (TPS562209)  
TA = 25°C, VBST – SW = 5.5 V (TPS563209)  
TA = 25°C (TPS562209)  
122  
68  
RDS(on)h  
High side switch resistance  
Low side switch resistance  
mΩ  
mΩ  
72  
RDS(on)l  
TA = 25°C (TPS563209)  
39  
CURRENT LIMIT  
DC current, VOUT = 1.05V , L1 = 2.2 µH  
DC current, VOUT = 1.05V , L1 = 1.5 µH  
2.5  
3.5  
3.2  
4.2  
4.3  
5.3  
Iocl  
Current limit(1)  
A
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
155  
35  
TSDN  
Thermal shutdown threshold(1)  
°C  
ON-TIME TIMER CONTROL  
tON  
On time  
VIN = 12 V, VO = 1.05 V  
TA = 25°C, VFB = 0.5 V  
150  
ns  
ns  
tOFF(MIN) Minimum off time  
260 310  
SOFT START  
Tss  
Soft –start time  
Internal soft-start time, TA = 25°C  
0.7  
1.0  
1.3  
ms  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
125%x  
Vfbth  
VOVP  
VUVP  
Output OVP threshold  
Output UVP threshold  
OVP Detect  
65%xVf  
bth  
Hiccup detect  
THiccupOn Hiccup Power On Time  
THiccupOff Hiccup Power Off Time  
UVLO  
Relative to soft start time  
Relative to soft start time  
1
7
ms  
ms  
Wake up VIN voltage  
Hysteresis VIN voltage  
3.45  
0.13  
3.75 4.05  
0.32 0.55  
UVLO  
UVLO threshold  
V
(1) Not production tested.  
Copyright © 2014–2016, Texas Instruments Incorporated  
5
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
6.6 Typical Characteristics TPS562209  
VIN = 12V (unless otherwise noted)  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
5
4
3
2
1
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
Figure 1. Supply Current vs Junction Temperature  
Figure 2. VIN Shutdown Current vs Junction Temperature  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
60  
50  
40  
30  
20  
10  
0
-10  
-50  
0
50  
100  
150  
0
3
6
9
12  
15  
18  
Junction Temperature (èC)  
EN Input Voltage (V)  
D003  
D004  
Figure 3. VFB Voltage vs Junction Temperature  
Figure 4. EN Current vs EN Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 5V  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 1.8V  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
Output Current (A)  
Output Current (A)  
D005  
D006  
Figure 5. Efficiency vs Output Current  
Figure 6. Efficiency vs Output current (VI = 5 V)  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
Typical Characteristics TPS562209 (continued)  
VIN = 12V (unless otherwise noted)  
800  
750  
700  
650  
600  
550  
500  
3.0  
2.5  
2.0  
1.5  
1.0  
VO = 1.05V  
VO = 1.2V  
VO = 1.8V  
VO = 3.3V  
VO = 5V  
VO = 0.76 V to 3.3 V  
0.5  
VO = 5 V  
VO = 7 V  
0.0  
4
6
8
10  
12  
14  
16  
18  
0
25  
50  
75  
100  
Input Voltage (V)  
Ambient Temperature (èC)  
D007  
D008  
Figure 7. Output Current vs Ambient Temperature  
Figure 8. Switching Frequency vs Input Voltage  
900  
VO = 1.05V  
VO = 1.8V  
VO = 3.3V  
850  
800  
750  
700  
650  
600  
550  
500  
0
0.5  
1
1.5  
2
IO - Output Current (A)  
D009  
Figure 9. Switching Frequency vs Output Current  
Copyright © 2014–2016, Texas Instruments Incorporated  
7
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
6.7 Typical Characteristics TPS563209  
VIN = 12V (unless otherwise noted)  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
5
4
3
2
1
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D010  
D011  
Figure 10. Supply Current vs Junction Temperature  
Figure 11. VIN Shutdown Current vs Junction Temperature  
60  
0.780  
50  
40  
30  
20  
10  
0
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
-10  
0
3
6
9
12  
15  
18  
-50  
0
50  
100  
150  
EN Input Voltage (V)  
Junction Temperature (èC)  
D013  
D012  
Figure 13. EN Current vs EN Voltage  
Figure 12. VFB Voltage vs Junction Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 5V  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 1.8V  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
D014  
D015  
Figure 14. Efficiency vs Output Current  
Figure 15. Efficiency vs Output current (VI = 5 V)  
8
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
Typical Characteristics TPS563209 (continued)  
VIN = 12V (unless otherwise noted)  
800  
750  
700  
650  
600  
550  
500  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
VO = 0.76V  
VO = 1.05V  
VO = 6.5V  
VO = 0.76 V to 3.3 V  
VO = 5 V  
0.5  
VO = 7 V  
0.0  
0
25  
50  
75  
100  
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Ambient Temperature (èC)  
D016  
D017  
Figure 16. Output Current vs Ambient Temperature  
Figure 17. Switching Frequency vs Input Voltage  
900  
VO = 0.76V  
VO = 1.05V  
VO = 6.5V  
850  
800  
750  
700  
650  
600  
550  
500  
0
0.5  
1
1.5  
2
2.5  
3
IO - Output Current (A)  
D018  
Figure 18. Switching Frequency vs Output Current  
Copyright © 2014–2016, Texas Instruments Incorporated  
9
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS562209 and TPS563209 are 2-A and 3-A synchronous step-down converters, respectively. The  
proprietary D-CAP2™ mode control supports low ESR output capacitors such as specialty polymer capacitors  
and multi-layer ceramic capacitors without complex external compensation circuits. The fast transient response  
of D-CAP2™ mode control can reduce the output capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
5
3
VIN  
VUVP  
+
Hiccup  
VREG5  
UVP  
Control Logic  
Regulator  
UVLO  
+
OVP  
VOVP  
VFB  
4
VBST  
SW  
6
2
PWM  
Voltage  
Reference  
Ref  
+
+
HS  
SS  
Soft Start  
Ton  
One-Shot  
XCON  
VREG5  
LS  
TSD  
OCL  
threshold  
OCL  
+
1
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. TPS56x209  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
7.3 Feature Description  
7.3.1 The Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS56x209 are adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2™ mode control. The D-CAP2™ mode control combines adaptive on-time control  
with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration  
with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot duration is set inversely proportional to the converter input voltage, VIN, and  
proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence  
it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again  
when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to  
simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2™ mode control.  
7.3.2 Soft Start and Pre-Biased Soft Start  
The TPS562209 and TPS563209 have an internal 1.0ms soft-start. When the EN pin becomes high, the internal  
soft-start function begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converters ramp up smoothly into regulation point.  
7.3.3 Current Protection  
The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated. During  
the on time of the high-side FET switch, the switch current increases at a linear rate determined by Vin, Vout, the  
on-time and the output inductor value.  
During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch  
current is the load current Iout. If the monitored current is above the OCL level, the converter maintains low-side  
FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until the current  
level becomes OCL level or lower. In subsequent switching cycles, the on-time is set to a fixed value and the  
current is monitored in the same manner. If the over current condition exists consecutive switching cycles, the  
internal OCL threshold is set to a lower level, reducing the available output current. When a switching cycle  
occurs where the switch current is not above the lower OCL threshold, the counter is reset and the OCL  
threshold is returned to the higher value.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current may be higher than the current available  
from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. And then, the device will shut down after the UVP delay time  
(typically 14µs) and re-start after the hiccup time (typically 12ms).  
When the over current condition is removed, the output voltage returns to the regulated value.  
7.3.4 Over Voltage Protection  
TPS562209 and TPS563209 detect over voltage condition by monitoring the feedback voltage (VFB). When the  
feedback voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high and  
both the high-side MOSFET and the low-side MOSFET turn off. This function is non-latch operation.  
7.3.5 UVLO Protection  
Under voltage lock out protection (UVLO) monitors the device input voltage. When the voltage is lower than  
UVLO threshold voltage, the device is shut off. This protection is non-latching.  
Copyright © 2014–2016, Texas Instruments Incorporated  
11  
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.6 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 155°C),  
the device is shut off. This is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS562209 and TPS563209 can operate in their normal switching modes. Normal continuous conduction mode  
(CCM) occurs when the minimum switch current is above 0 A. In CCM, the TPS562209 and TPS563209 operate  
at a quasi-fixed frequency of 650 kHz.  
7.4.2 Forced CCM Operation  
When the TPS562209 and TPS563209 are in the normal CCM operating mode and the switch current falls below  
0 A, the TPS562209 and TPS563209 begin operating in forced CCM.  
7.4.3 Standby Operation  
When the TPS562209 and TPS563209 are operating in either normal CCM or forced CCM, they may be placed  
in standby by asserting the EN pin low.  
12  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS562209 and TPS563209 are typically used as step down converters, which convert a voltage from 4.5V  
- 17V to a lower voltage. Webench software is available to aid in the design and analysis of circuits  
8.2 Typical Applications  
8.2.1 TPS562209 4.5-V to 17-V Input, 1.05-V Output Converter  
U1  
L1 2.2 uH  
TPS562209  
VOUT = 1.05 V, 2 A  
VIN = 4.5 V to 17 V  
3
5
4
2
6
1
VIN  
VIN  
EN  
SW  
VBST  
GND  
VOUT  
C4  
R1 10.0k  
R2  
3.74k  
EN  
C1  
10µF  
C2  
10µF  
C3  
C5  
22µF  
C6  
22µF  
0.1µF  
VFB  
R3  
10.0k  
Not Installed  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. TPS562209 1.05V/2A Reference Design  
8.2.1.1 Design Requirements  
To begin the design process, you must know a few application parameters:  
Table 1. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
4.5 V to 17 V  
1.05 V  
Output current  
2 A  
Output voltage ripple  
20 mVpp  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use  
1% tolerance or better divider resistors. Start by using Equation 1 to calculate VOUT  
.
To improve efficiency at very light loads consider using larger value resistors, too high of resistance will be more  
susceptible to noise and voltage errors from the VFB input current will be more noticeable.  
R2  
æ
ö
VOUT = 0.765 ´ 1+  
ç
÷
R3  
è
ø
(1)  
8.2.1.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
F =  
P
2p LOUT ´ COUT  
(2)  
13  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off  
at a –40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that  
reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the  
zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of  
Equation 2 is located below the high frequency zero but close enough that the phase boost provided be the high  
frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values  
recommended in Table 2.  
Table 2. Recommended Component Values  
OUTPUT  
VOLTAGE  
(V)  
L1 (µH)  
TYP  
R2  
(kΩ)  
R3  
(kΩ)  
C5 + C6 (µF)  
MIN  
MAX  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
2.2  
2.2  
2.2  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
6.5  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 3,  
Equation 4 and Equation 5. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current.  
Use 650 kHz for fSW. Make sure the chosen inductor is rated for the peak current of Equation 4 and the RMS  
current of Equation 5.  
V
- VOUT  
VOUT  
´
IN(MAX)  
IlP-P  
=
V
LO ´ ƒSW  
IN(MAX)  
(3)  
(4)  
IlP-P  
IlPEAK = IO +  
2
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(5)  
For this design example, the calculated peak current is 2.34 A and the calculated RMS current is 2.01 A. The  
inductor used is a TDK CLF7045T-2R2N with a peak current rating of 5.5-A and an RMS current rating of 4.3-A  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS562209 is intended for  
use with ceramic or other low ESR capacitors. Recommended values range from 20µF to 68µF. Use Equation 6  
to determine the required RMS current rating for the output capacitor.  
VOUT ´ VIN - VOUT  
(
12 ´ V ´LO ´ ƒSW  
)
ICO(RMS)  
=
IN  
(6)  
For this design two TDK C3216X5R0J226M 22µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.199A and each output capacitor is rated for 4A.  
8.2.1.2.3 Input Capacitor Selection  
The TPS562209 and TPS563209 require an input decoupling capacitor and a bulk capacitor is needed  
depending on the application. A ceramic capacitor over 10 µF is recommended for the decoupling capacitor. An  
additional 0.1 µF capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The  
capacitor voltage rating needs to be greater than the maximum input voltage.  
14  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
 
 
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
8.2.1.2.4 Bootstrap Capacitor Selection  
A 0.1µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is  
recommended to use a ceramic capacitor.  
8.2.1.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
0
4
0.5  
1
1.5  
2
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
Output Current (A)  
D024  
D025  
Figure 21. TPS562209 Efficiency  
Figure 22. TPS562209 Light Load Efficiency  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Output Current (A)  
Output Current (A)  
D026  
D027  
Figure 23. TPS562209 Load Regulation, VI = 5 V  
Figure 24. TPS562209 Load Regulation, VI = 12 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IO = 2 A  
VI = 100 mV / div (ac coupled)  
SW = 5 V / div  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
6
8
10  
12  
14  
16  
18  
Time = 1 µsec / div  
Input Voltage (V)  
D028  
Figure 26. TPS562209 Input Voltage Ripple  
Figure 25. TPS562209 Line Regulation  
Copyright © 2014–2016, Texas Instruments Incorporated  
15  
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
IO = 2 A  
VO = 20 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
IO = 500 mA / div  
SW = 5 V / div  
Load step = 0.5 A - 1.5 A  
Slew rate = 500 mA / µsec  
Time = 200 µsec / div  
Time = 1 µsec / div  
Figure 27. TPS562209 Output Voltage Ripple  
Figure 28. TPS562209 Transient Response  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 2 msec / div  
Figure 29. TPS562209 Start Up Relative to VI  
Time = 2 msec / div  
Figure 30. TPS562209 Start Up Relative to EN  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 2 msec / div  
Figure 31. TPS562209 Shut Down Relative to VI  
Time = 2 msec / div  
Figure 32. TPS562209 Shut Down Relative to EN  
16  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
8.2.2 TPS563209 4.5-V to 17-V Input, 1.05-V Output Converter  
U1  
L1 1.5 uH  
TPS563209  
VOUT = 1.05 V, 3 A  
VIN = 4.5 V to 17 V  
3
5
4
2
6
1
VIN  
VIN  
SW  
VBST  
GND  
VOUT  
R2  
3.74k  
C4  
R1 10.0k  
EN  
EN  
C1  
10µF  
C2  
10µF  
C3  
0.1µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
0.1µF  
VFB  
R3  
10.0k  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. TPS563209 1.05V/3A Reference Design  
8.2.2.1 Design Requirements  
To begin the design process, the user must know a few application parameters:  
Table 3. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
4.5 V to 17 V  
1.05 V  
Output current  
3 A  
Output voltage ripple  
20 mVpp  
8.2.2.2 Detailed Design Procedures  
The detailed design procedure for TPS563209 is the same as for TPS562209 except for inductor selection.  
8.2.2.2.1 Output Filter Selection  
Table 4. Recommended Component Values  
OUTPUT  
VOLTAGE  
(V)  
L1 (µH)  
TYP  
R2  
(kΩ)  
R3  
(kΩ)  
C5 +C6 + C7  
(µF)  
MIN  
MAX  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
2.2  
2.2  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
6.5  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 7,  
Equation 8 and Equation 9. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for  
ƒSW  
.
Use 650 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of Equation 8 and the RMS  
current of Equation 9.  
V
- VOUT  
VOUT  
´
IN(MAX)  
IlP-P  
=
V
LO ´ ƒSW  
IN(MAX)  
(7)  
(8)  
IlP-P  
IlPEAK = IO +  
2
Copyright © 2014–2016, Texas Instruments Incorporated  
17  
 
 
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(9)  
For this design example, the calculated peak current is 3.505 A and the calculated RMS current is 3.014 A. The  
inductor used is a TDK CLF7045T-1R5N with a peak current rating of 7.3-A and an RMS current rating of 4.9-A  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS563209 is intended for  
use with ceramic or other low ESR capacitors. Recommended values range from 20µF to 68µF. Use Equation 6  
to determine the required RMS current rating for the output capacitor.  
VOUT ´ VIN - VOUT  
(
12 ´ V ´LO ´ ƒSW  
)
ICO(RMS)  
=
IN  
(10)  
For this design three TDK C3216X5R0J226M 22µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.292A and each output capacitor is rated for 4A.  
8.2.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
0.5  
1
1.5  
2
2.5  
3
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
Output Current (A)  
D019  
D020  
Figure 34. TPS563209 Efficiency  
Figure 35. TPS563209 Light Load Efficiency  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
D021  
D022  
Figure 36. TPS563209 Load Regulation, VI = 5 V  
Figure 37. TPS563209 Load Regulation, VI = 12 V  
18  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IO = 3 A  
VI = 50 mV / div (ac coupled)  
SW = 5 V / div  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
4
6
8
10  
12  
14  
16  
18  
Time = 1 µsec / div  
Input Voltage (V)  
D029  
Figure 39. TPS563209 Input Voltage Ripple  
Figure 38. TPS563209 Line Regulation  
IO = 3 A  
VO = 50 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
SW = 5 V / div  
IO = 1 A / div  
Load step = 0.75 A - 2.25 A  
Slew rate = 500 mA / µsec  
Time = 1 µsec / div  
Figure 40. TPS563209 Output Voltage Ripple  
Time = 200 µsec / div  
Figure 41. TPS563209 Transient Response  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 1 msec / div  
Time = 1 msec / div  
Figure 42. TPS563209 Start Up Relative to VI  
Figure 43. TPS563209 Start Up Relative to EN  
Copyright © 2014–2016, Texas Instruments Incorporated  
19  
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
EN = 10 V / div  
VO = 500 mV / div  
Time = 1 msec / div  
Time = 1 msec / div  
Figure 45. TPS563209 Shut Down Relative to EN  
Figure 44. TPS563209 Shut Down Relative to VI  
9 Power Supply Recommendations  
The TPS562209 and TPS563209 are designed to operate from input supply voltage in the range of 4.5V to 17V.  
Buck converters require the input voltage to be higher than the output voltage for proper operation. The  
maximum recommended operating duty cycle is 65%. Using that criteria, the minimum recommended input  
voltage is VO / 0.65.  
20  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS562209, TPS563209  
www.ti.com.cn  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
VOUT  
GND  
Additional  
Vias to the  
internal SW  
node copper  
Vias to the  
GND plane  
OUTPUT  
CAPACITOR  
BOOST  
CAPACITOR  
OUTPUT  
INDUCTOR  
GND  
SW  
VBST  
EN  
FEEDBACK  
RESISTORS  
TO ENABLE  
CONTROL  
VFB  
Vias to the  
internal SW  
node copper  
VIN  
VIN  
INPUT BYPAS  
CAPACITOR  
SW node copper  
pour area on internal  
or bottom layer  
Figure 46. TPS562209 and TPS563209 Layout  
版权 © 2014–2016, Texas Instruments Incorporated  
21  
TPS562209, TPS563209  
ZHCSCT6A SEPTEMBER 2014REVISED NOVEMBER 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购  
买链接。  
5. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS563209  
TPS562209  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
D-CAP2, E2E are trademarks of Texas Instruments.  
Blu-ray Disc is a trademark of Blu-ray Disc Association.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2014–2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS562209DDCR  
TPS562209DDCT  
TPS563209DDCR  
TPS563209DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
209  
209  
309  
309  
Samples  
Samples  
Samples  
Samples  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS562209DDCR  
TPS562209DDCT  
TPS563209DDCR  
TPS563209DDCT  
SOT-23-  
THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
SOT-23-  
THIN  
SOT-23-  
THIN  
3000  
250  
SOT-23-  
THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS562209DDCR  
TPS562209DDCT  
TPS563209DDCR  
TPS563209DDCT  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS563209DDCR

采用 SOT-23 封装的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563209DDCT

采用 SOT-23 封装的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563210A

采用 SOT-23 封装且具有高级 Eco-mode™、PG 和软启动功能的 17V 输入、3A 同步降压稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563210ADDFR

采用 SOT-23 封装且具有高级 Eco-mode™、PG 和软启动功能的 17V 输入、3A 同步降压稳压器 | DDF | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563210ADDFT

采用 SOT-23 封装且具有高级 Eco-mode™、PG 和软启动功能的 17V 输入、3A 同步降压稳压器 | DDF | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563210DDFR

17 V Input, 3A Synchronous Step-Down Regulator in SOT-23 with Advanced Eco-mode&#153;, PG &amp; SS 8-SOT-23-THIN -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563210_15

TPS56x210, 4.5-V to 17-V Input, 2-A, 3-A Synchronous Step-Down Voltage Regulator In 8-Pin SOT-23

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563211

采用 SOT583 封装且具有 1% 精度、PG/SS 和 PFM/强制 PWM 的 4.2V 至 17V、3A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563211DRLR

采用 SOT583 封装且具有 1% 精度、PG/SS 和 PFM/强制 PWM 的 4.2V 至 17V、3A 同步降压转换器 | DRL | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563212

具有 Eco-Mode 和可选 FCCM 的 4.2V 至 18V、3A、1.2MHz 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563212DRLR

具有 Eco-Mode 和可选 FCCM 的 4.2V 至 18V、3A、1.2MHz 同步降压转换器 | DRL | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563219A

采用 SOT-23 封装且具有电源正常指示和软启动功能的 17V 输入、3A 同步降压稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI