TPS563219A [TI]

采用 SOT-23 封装且具有电源正常指示和软启动功能的 17V 输入、3A 同步降压稳压器;
TPS563219A
型号: TPS563219A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT-23 封装且具有电源正常指示和软启动功能的 17V 输入、3A 同步降压稳压器

软启动 稳压器
文件: 总28页 (文件大小:1172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
TPS56x219A 采用 8 引脚 SOT-23 封装的 4.5V 17V 输入、2A/3A  
同步降压稳压器  
1 特性  
3 说明  
1
TPS562219A:集成有  
133mΩ 80mΩ 场效应晶体管 (FET) 2A 转换  
TPS562219A TPS563219A 是采用 8 引脚 SOT-23  
封装的简单易用型 2A/3A 同步降压转换器。  
两款器件均经过优化,最大限度地减少了运行所需的外  
部组件并且可以实现低待机电流。  
TPS563219A:集成有  
68mΩ 39mΩ FET 3A 转换器  
D-CAP2™模式控制,此模式控制具有 650kHz 的  
开关频率  
这些开关模式电源 (SMPS) 器件采用 D-CAP2™ 模式  
控制,从而提供快速瞬态响应,并且在无需外部补偿组  
件的情况下支持诸如高分子聚合物等低等效串联电阻  
(ESR) 输出电容器以及超低 ESR 陶瓷电容器。  
输入电压范围:4.5V 17V  
输出电压范围:0.76V 7V  
650kHz 开关频率  
这些器件始终在连续传导模式下运行,与非连续传导模  
式相比,该模式可降低轻负载条件下的输出纹波电压。  
TPS562219A TPS563219A 采用 8 引脚 1.6mm ×  
2.9mm SOT (DDF) 封装,额定环境温度范围为 –40°C  
85°C。  
低关断电流(低于 10µA)  
1% 反馈电压精度 (25°C)  
从预偏置输出电压中启动  
逐周期过流限制  
断续模式欠压保护  
器件信息(1)  
非锁存过压保护 (OVP),欠压闭锁 (UVLO) 和热关  
(TSD) 保护  
器件型号  
TPS562219A  
TPS563219A  
封装  
封装尺寸(标称值)  
可调软启动  
SOT (8)  
1.60mm x 2.90mm  
电源正常输出  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
数字电视电源  
高清 Blu-ray Disc™播放器  
网络家庭终端设备  
数字机顶盒 (STB)  
空白  
空白  
简化原理图  
TPS562219A 瞬态响应  
TPS562219A  
TPS563219A  
VO = 50 mV / div (ac coupled)  
1
2
3
4
GND  
SW  
VIN  
PG  
VBST  
8
7
6
5
VOUT  
VOUT  
EN  
VFB  
SS  
EN  
IO = 500 mA / div  
VIN  
Load step = 0.5 A - 1.5 A  
Slew rate = 500 mA / µsec  
Copyright © 2016, Texas Instruments Incorporated  
Time = 200 µsec / div  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDT2  
 
 
 
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 5  
6.7 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ...................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 12  
8
9
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application ................................................. 13  
Power Supply Recommendations...................... 21  
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 器件支持 ............................................................... 22  
11.2 文档支持 ............................................................... 22  
11.3 相关链接................................................................ 22  
11.4 接收文档更新通知 ................................................. 22  
11.5 社区资源................................................................ 22  
11.6 ....................................................................... 22  
11.7 静电放电警告......................................................... 22  
11.8 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 11 月  
*
首次发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
5 Pin Configuration and Functions  
DDF Package  
8 Pin SOT  
Top View  
GND  
SW  
1
8
VBST  
2
3
7
6
5
EN  
VFB  
SS  
VIN  
PG  
4
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
Ground pin Source terminal of low-side power NFET as well as the ground terminal for controller circuit. Connect  
sensitive VFB to this GND at a single point.  
GND  
1
SW  
VIN  
PG  
2
3
4
5
6
7
8
Switch node connection between high-side NFET and low-side NFET.  
Input voltage supply pin. The drain terminal of high-side power NFET.  
Power good open drain output  
SS  
Soft-start control. An external capacitor should be connected to GND.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between VBST and SW pins.  
VFB  
EN  
VBST  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
TJ = -40°C to 150°C (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
19  
UNIT  
V
VIN, EN  
VBST  
25  
V
VBST (10 ns transient)  
27.5  
6.5  
6.5  
5.5  
19  
V
VBST (vs SW)  
Input voltage range  
V
VFB, PG  
V
SS  
SW  
V
V
SW (10 ns transient)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–3.5  
–40  
–55  
21  
V
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TJ = –40°C to 150°C (unless otherwise noted)  
MIN  
MAX  
17  
23  
26  
6
UNIT  
VIN  
Supply input voltage range  
VBST  
4.5  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–3.5  
–40  
V
VBST (10 ns transient)  
VBST(vs SW)  
EN  
17  
5.5  
5
VI  
Input voltage range  
V
VFB, PG  
SS  
SW  
17  
20  
85  
SW (10 ns transient)  
TA  
Operating free-air temperature  
°C  
6.4 Thermal Information  
TPS562219A  
TPS563219A  
UNIT  
THERMAL METRIC(1)  
DDF (SOT)  
8 PINS  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
106.1  
49.1  
10.9  
8.6  
87.0  
41.6  
14.6  
4.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
10.8  
14.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
6.5 Electrical Characteristics  
TJ = –40°C to 150°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
IVIN  
Operating – non-switching supply current  
Shutdown supply current  
VIN current, TA = 25°C, EN = 5 V, VFB = 0.8 V  
VIN current, TA = 25°C, EN = 0 V  
650  
3
900  
10  
µA  
µA  
IVINSDN  
LOGIC THRESHOLD  
VENH  
VENL  
REN  
EN high-level input voltage  
EN  
1.6  
V
V
EN low-level input voltage  
EN pin resistance to GND  
EN  
0.6  
VEN = 12 V  
225  
450  
765  
900  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
TA = 25°C, VO = 1.05 V  
757  
753  
751  
773  
777  
779  
±0.1  
VFBTH  
VFB threshold voltage  
VFB input current  
TA = 0°C to 85°C, VO = 1.05 V(1)  
TA = -40°C to 85°C, VO = 1.05 V(1)  
VFB = 0.8V, TA = 25°C  
mV  
µA  
IVFB  
0
MOSFET  
TA = 25°C, VBST – SW = 5.5 V, TPS562219A  
TA = 25°C, VBST – SW = 5.5 V, TPS563219A  
TA = 25°C, TPS562219A  
133  
68  
RDS(on)h  
High side switch resistance  
Low side switch resistance  
mΩ  
mΩ  
80  
RDS(on)l  
TA = 25°C, TPS563219A  
39  
CURRENT LIMIT  
DC current, VOUT = 1.05 V, L1 = 2.2 µH,  
TPS562219A  
2.5  
3.5  
3.2  
4.2  
4.3  
5.3  
IOCL  
Current limit(1)  
A
DC current, VOUT = 1.05 V, L1 = 1.5 µH,  
TPS563219A  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
155  
35  
TSDN  
Thermal shutdown threshold(1)  
°C  
SOFT START  
ISS  
SS charge current  
VSS = 1.2 V  
4.2  
85%  
0.5  
6
7.8  
µA  
POWER GOOD  
VFB rising (Good)  
VFB falling (Fault)  
PG = 0.5 V  
90%  
85%  
1
95%  
VTHPG  
PG threshold  
IPG  
PG sink current  
mA  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
125%x  
Vfbth  
VOVP  
VUVP  
Output OVP threshold  
Output UVP threshold  
OVP Detect  
65%x  
Vfbth  
Hiccup detect  
tHiccupOn  
tHiccupOff  
UVLO  
Hiccup Power On Time  
Hiccup Power Off Time  
1
7
cycle  
V
Wake up VIN voltage  
Hysteresis VIN voltage  
3.45  
0.13  
3.75  
0.32  
4.05  
0.55  
UVLO  
UVLO threshold  
(1) Not production tested.  
6.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
ON-TIME TIMER CONTROL  
tON  
On time  
VIN = 12 V, VO = 1.05 V  
TA = 25°C, VFB = 0.5 V  
150  
260  
ns  
ns  
tOFF(MIN) Minimum off time  
310  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
6.7 Typical Characteristics  
6.7.1 TPS562219A Characteristics  
VIN = 12V (unless otherwise noted)  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
5
4
3
2
1
0
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature(°C)  
Junction Temperature (°C)  
C011  
C012  
1. Supply Current vs Junction Temperature  
2. VIN Shutdown Current vs Junction Temperature  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
60  
50  
40  
30  
20  
10  
0
œ10  
0
50  
100  
150  
0
3
6
9
12  
15  
18  
œ50  
Junction Temperature (°C)  
EN Input Voltage (V)  
C013  
C014  
3. VFB Voltage vs Junction Temperature  
4. EN Current vs EN Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vout = 5V  
Vout = 3.3V  
Vout = 1.8V  
Vout = 3.3V  
Vout = 1.8V  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Output Current (A)  
Output Current (A)  
C015  
C016  
5. Efficiency vs Output Current  
6. Efficiency vs Output Current (VI= 5V)  
6
版权 © 2016, Texas Instruments Incorporated  
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
TPS562219A Characteristics (接下页)  
800  
800  
750  
700  
650  
600  
550  
500  
450  
400  
Vo = 0.76V  
Vo = 0.76V  
Vo = 1.05V  
Vo = 6.5V  
Vo = 1.05V  
750  
Vo = 6.5V  
700  
650  
600  
550  
500  
450  
400  
4
6
8
10  
12  
14  
16  
18  
0
0.5  
1
1.5  
2
Input Voltage (V)  
Output Current (A)  
C017  
C018  
7. Switching Frequency vs Input Voltage  
8. Switching Frequency vs Output Current  
版权 © 2016, Texas Instruments Incorporated  
7
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
6.7.2 TPS563219A Characteristics  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
5
4
3
2
1
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature (°C)  
Junction Temperature (°C)  
C019  
C020  
9. Supply Current vs Junction Temperature  
10. VIN Shutdown Current vs Junction Temperature  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
60  
50  
40  
30  
20  
10  
0
œ10  
-50  
0
50  
100  
150  
0
3
6
9
12  
15  
18  
Junction Temperature (°C)  
EN Input Voltage (V)  
C021  
C022  
11. VFB Voltage vs Junction Temperature  
12. EN Current vs EN Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vout = 5V  
Vout = 3.3V  
Vout = 1.8V  
Vout = 3.3V  
Vout = 1.8V  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
C023  
C024  
13. Efficiency vs Output Current  
14. Efficiency vs Output Current (VI = 5V)  
8
版权 © 2016, Texas Instruments Incorporated  
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
TPS563219A Characteristics (接下页)  
800  
800  
750  
700  
650  
600  
550  
500  
450  
400  
Vo = 0.76V  
Vo = 0.76V  
Vo = 1.05V  
Vo = 6.5V  
Vo = 1.05V  
Vo = 6.5V  
750  
700  
650  
600  
550  
500  
450  
400  
4
6
8
10  
12  
14  
16  
18  
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage (V)  
Output Current (A)  
C025  
C026  
15. Switching Frequency vs Input Voltage  
16. Switching Frequency vs Output Current  
版权 © 2016, Texas Instruments Incorporated  
9
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS562219A and TPS563219A are 2-A, 3-A synchronous step-down converters. The proprietary D-CAP2™  
mode control supports low ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic  
capacitors without complex external compensation circuits. The fast transient response of D-CAP2™ mode  
control can reduce the output capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
7
3
VIN  
V
V
+
UVP  
Hiccup  
VREG5  
UVP  
Control Logic  
Regulator  
UVLO  
+
OVP  
OVP  
VFB  
SS  
6
5
VBST  
8
PWM  
Voltage  
Reference  
Ref  
SS  
+
+
HS  
Soft Start  
2
SW  
Ton  
One - Shot  
XCON  
VREG5  
LS  
TSD  
OCL  
threshold  
PG  
4
OCL  
+
1
GND  
+
V
THPG  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 The Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS562219A and TPS563219A are adaptive on-time pulse width modulation (PWM)  
controller that supports a proprietary D-CAP2™ mode control. The D-CAP2™ mode control combines adaptive  
on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component  
count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at  
the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely  
proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence  
it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again  
when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to  
simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2™ mode control.  
10  
版权 © 2016, Texas Instruments Incorporated  
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
Feature Description (接下页)  
7.3.2 Soft Start and Pre-Biased Soft Start  
The TPS562219A and TPS563219A have adjustable soft-start. When the EN pin becomes high, the SS charge  
current (ISS) begins charging the capacitor which is connected from the SS pin to GND (CSS). Smooth control of  
the output voltage is maintained during start up. The equation for the soft start time, TSS is shown in 公式 1.  
Css´ VFBTH ´ 0.86  
Tss(ms) =  
Iss  
(1)  
where VFBTH is 0.765 V and Iss is 6 µA.  
If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converters ramp up smoothly into regulation point.  
7.3.3 Power Good  
The power good output, PG is an open drain output. The power good function becomes active after 1.7 times  
soft-start time. When the output voltage becomes within –10% of the target value, internal comparators detect  
power good state and the power good signal becomes high. If the feedback voltage goes under 15% of the target  
value, the power good signal becomes low.  
7.3.4 Current Protection  
The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner. If the over  
current condition exists consecutive switching cycles, the internal OCL threshold is set to a lower level, reducing  
the available output current. When a switching cycle occurs where the switch current is not above the lower OCL  
threshold, the counter is reset and the OCL threshold is returned to the higher value.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current may be higher than the current available  
from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. And then, the device will shut down after the UVP delay time  
(typically 14 µs) and re-start after the hiccup time.  
When the over current condition is removed, the output voltage returns to the regulated value.  
7.3.5 Over Voltage Protection  
TPS562219A and TPS563219A detect over voltage condition by monitoring the feedback voltage (VFB). When  
the feedback voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high  
and the high-side MOSFET turns off. This function is non-latch operation.  
7.3.6 UVLO Protection  
Under voltage lock out protection (UVLO) monitors the internal regulator voltage. When the voltage is lower than  
UVLO threshold voltage, the device is shut off. This protection is non-latching.  
7.3.7 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 155°C),  
the device is shut off. This is a non-latch protection.  
版权 © 2016, Texas Instruments Incorporated  
11  
 
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS562219A and TPS563219A can operate in their normal switching modes. Normal continuous conduction  
mode (CCM) occurs when the minimum switch current is above 0 A. In CCM, the TPS562219A and  
TPS563219A operate at a quasi-fixed frequency of 650 kHz.  
7.4.2 Forced CCM Operation  
When the TPS562209 and TPS563209 are in the normal CCM operating mode and the switch current falls below  
0 A, the TPS562219A and TPS563219A begin operating in forced CCM.  
7.4.3 Standby Operation  
When the TPS562219A and TPS563219A are operating in either normal CCM or forced CCM, they may be  
placed in standby by asserting the EN pin low.  
12  
版权 © 2016, Texas Instruments Incorporated  
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS562219A and TPS563219A are typically used as step down converters, which convert a voltage from  
4.5 V - 17 V to a lower voltage. Webench software is available to aid in the design and analysis of circuits.  
8.2 Typical Application  
8.2.1 Typical Application, TPS562219A  
U1  
TPS562219A  
L1 2.2uH  
VIN = 4.5 - 17 V  
C5  
VOUT = 1.05 V, 2 A  
3
7
8
VIN  
VIN  
EN  
VBST  
VOUT  
0.1µF  
R4  
100k  
R3 10.0k  
C1  
0.1µF  
C2  
10µF  
C3  
10µF  
C6  
22µF  
C7  
22µF  
C8  
22µF  
2
4
6
1
EN  
SW  
PG  
R1  
3.74k  
PG  
5
SS  
VFB  
GND  
C4  
8200pF  
R2  
10.0k  
Copyright © 2016, Texas Instruments Incorporated  
17. TPS562219A 1.05V/2A Reference Design  
8.2.1.1 Design Requirements  
For this design example, use the parameters shown in 1.  
1. Design Parameters  
PARAMETER  
Input voltage range  
VALUES  
4.5 V to 17 V  
1.05 V  
Output voltage  
Output current  
2 A  
Output voltage ripple  
20 mVpp  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use  
1% tolerance or better divider resistors. Start by using 公式 2 to calculate VOUT  
.
To improve efficiency at light loads consider using larger value resistors, too high of resistance are more  
susceptible to noise and voltage errors from the VFB input current are more noticeable.  
R1  
æ
ö
VOUT = 0.765´ 1+  
ç
÷
R2  
è
ø
(2)  
8.2.1.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
F =  
P
2p LOUT ´ COUT  
(3)  
13  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
 
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off  
at a –40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that  
reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the  
zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of 公式 3  
is located below the high frequency zero but close enough that the phase boost provided be the high frequency  
zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended  
in 2.  
2. TPS562219A Recommended Component Values  
L1(uH)  
MIN  
1.5  
C6 + C7 +  
C8(µF)  
Output Voltage (V)  
R2 (kΩ)  
R3 (kΩ)  
TYP  
2.2  
MAX  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
1.5  
2.2  
2.2  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
6.5  
3.3  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 公式 4, 公式 5 and  
公式 6. The inductor saturation current rating must be greater than the calculated peak current and the RMS or  
heating current rating must be greater than the calculated RMS current.  
Use 650 kHz for fSW. Make sure the chosen inductor is rated for the peak current of 公式 5 and the RMS current  
of 公式 6.  
V
- VOUT  
VOUT  
´
IN(MAX)  
IlP-P  
=
V
LO ´ ƒSW  
IN(MAX)  
(4)  
(5)  
IlP-P  
IlPEAK = IO +  
2
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(6)  
For this design example, the calculated peak current is 2.34 A and the calculated RMS current is 2.01 A. The  
inductor used is a TDK CLF7045T-2R2N with a peak current rating of 5.5 A and an RMS current rating of 4.3 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS562219A and  
TPS563219A are intended for use with ceramic or other low ESR capacitors. Recommended values range from  
20 µF to 68 µF. Use 公式 7 to determine the required RMS current rating for the output capacitor.  
VOUT ´ VIN - VOUT  
(
12 ´ V ´LO ´ ƒSW  
)
ICO(RMS)  
=
IN  
(7)  
For this design two TDK C3216X5R0J226M 22µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.286A and each output capacitor is rated for 4A.  
8.2.1.2.3 Input Capacitor Selection  
The TPS562219A and TPS563219A require an input decoupling capacitor and a bulk capacitor is needed  
depending on the application. A ceramic capacitor over 10 µF is recommended for the decoupling capacitor. An  
additional 0.1 µF capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The  
capacitor voltage rating needs to be greater than the maximum input voltage.  
14  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
 
 
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
8.2.1.2.4 Bootstrap capacitor Selection  
A 0.1µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is  
recommended to use a ceramic capacitor.  
8.2.1.3 Application Curves  
The following application curves were generated using the application circuit of 17.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
0
4
0.5  
1
1.5  
2
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
Output Current (A)  
D006  
D007  
18. TPS562219A Efficiency  
19. TPS562219A Light Load Efficiency  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Output Current (A)  
Output Current (A)  
D008  
D009  
20. TPS562219A Load Regulation, VI = 5 V  
21. TPS562219A Load Regulation, VI = 12 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IO = 2 A  
VI = 50 mV / div (ac coupled)  
SW = 5 V / div  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
6
8
10  
12  
14  
16  
18  
Time = 1 µsec / div  
23. TPS562219A Input Voltage Ripple  
Input Voltage (V)  
D010  
22. TPS562219A Line Regulation  
版权 © 2016, Texas Instruments Incorporated  
15  
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
IO = 2 A  
VO = 20 mV / div (ac coupled)  
VO = 50 mV / div (ac coupled)  
IO = 500 mA / div  
SW = 5 V / div  
Load step = 0.5 A - 1.5 A  
Slew rate = 500 mA / µsec  
Time = 200 µsec / div  
Time = 1 µsec / div  
25. TPS562219A Transient Response  
24. TPS562219A Output Voltage Ripple  
VI = 10V/ div  
EN = 10V/ div  
SS = 5V/ div  
SS = 5V/ div  
VO = 500mV/ div  
PG = 1V/ div  
VO = 500mV/ div  
PG = 1V/ div  
Time = 1 msec / div  
Time = 1 msec / div  
26. TPS562219A Start Up Relative To VI  
VI = 10V/ div  
27. TPS562219A Start Up Relative To EN  
EN = 10V/ div  
SS = 5V/ div  
SS = 5V/ div  
VO = 500mV/ div  
VO = 500mV/ div  
PG = 1V/ div  
PG = 1V/ div  
Time = 5 msec / div  
Time = 5 msec / div  
28. TPS562219A Shut Down Relative To VI  
29. TPS562219A Shut Down Relative To EN  
16  
版权 © 2016, Texas Instruments Incorporated  
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
8.2.2 Typical Application, TPS563219A  
U1  
TPS563219A  
L1 1.5 µH  
VIN = 4.5 - 17 V  
C5  
VOUT = 1.05 V, 3 A  
VOUT  
3
7
8
VIN  
VIN  
EN  
VBST  
R3  
10.0 kΩ  
0.1 µF  
C3  
C1  
C2  
R4  
100 kΩ  
C6  
C7  
C8  
2
4
6
1
SW  
PG  
EN  
0.1 µF  
10 µF  
10 µF  
22 µF  
22 µF  
22 µF  
R1  
3.74 kΩ  
PG  
5
SS  
VFB  
GND  
C4  
8200 pF  
R2  
10.0 kΩ  
Copyright © 2016, Texas Instruments Incorporated  
30. TPS563219A 1.05V/3A Reference Design  
8.2.2.1 Design Requirements  
For this design example, use the parameters shown in 3.  
3. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
4.5 V to 17V  
1.05V  
Output current  
3A  
Output voltage ripple  
20mVpp  
8.2.2.2 Detailed Design Procedures  
The detailed design procedure for TPS563219A is the same as for TPS562200 except for inductor selection.  
8.2.2.2.1 Output Filter Selection  
4. TPS563219A Recommended Component Values  
L1 (µH)  
MIN  
1.0  
C6 + C7 + C8  
(µF)  
Output Voltage (V)  
R2 (kΩ)  
R3 (kΩ)  
TYP  
1.5  
MAX  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
1.0  
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1.0  
1.0  
1.5  
1.5  
1.5  
2.2  
6.5  
2.2  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 公式 8, 公式 9 and  
公式 10. The inductor saturation current rating must be greater than the calculated peak current and the RMS or  
heating current rating must be greater than the calculated RMS current. Use 650 kHz for ƒSW  
.
Use 650 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of 公式 9 and the RMS current  
of 公式 10.  
V
- VOUT  
VOUT  
´
IN(MAX)  
IlP-P  
=
V
LO ´ ƒSW  
IN(MAX)  
(8)  
17  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
IlP-P  
IlPEAK = IO +  
2
(9)  
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(10)  
For this design example, the calculated peak current is 3.505 A and the calculated RMS current is 3.014 A. The  
inductor used is a TDK CLF7045T-1R5N with a peak current rating of 7.3-A and an RMS current rating of 4.9-A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS563209 is intended for  
use with ceramic or other low ESR capacitors. Recommended values range from 20 μF to 68 μF. Use 公式 6 to  
determine the required RMS current rating for the output capacitor. For this design, three TDK  
C3216X5R0J226M 22 μF output capacitors are used. The typical ESR is 2 mΩ each. The calculated RMS  
current is 0.292 A and each output capacitor is rated for 4 A.  
8.2.2.3 Application Curves  
The following application curves were generated using the application circuit of 30.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
0.5  
1
1.5  
2
2.5  
3
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
Output Current (A)  
D001  
D002  
31. TPS563219A Efficiency  
32. TPS563219A Light Load Efficiency  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
D004  
D003  
34. TPS563219A Load Regulation, VI = 12 V  
33. TPS563219A Load Regulation, VI = 5 V  
18  
版权 © 2016, Texas Instruments Incorporated  
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IO = 3 A  
VI = 50 mV / div (ac coupled)  
SW = 5 V / div  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
4
6
8
10  
12  
14  
16  
18  
Time = 1 µsec / div  
Input Voltage (V)  
D005  
36. TPS563219A Input Voltage Ripple  
35. TPS563219A Line Regulation  
IO = 3 A  
VO = 20 mV / div (ac coupled)  
VO = 50 mV / div (ac coupled)  
SW = 5 V / div  
IO = 1 A / div  
Load step = 0.75 A - 2.25 A  
Slew rate = 500 mA / µsec  
Time = 200 µsec / div  
Time = 1 µsec / div  
37. TPS563219A Output Voltage Ripple  
38. TPS563219A Transient Response  
VI = 10V/ div  
EN = 10V/ div  
SS = 5V/ div  
SS = 5V/ div  
VO = 500mV/ div  
PG = 1V/ div  
VO = 500mV/ div  
PG = 1V/ div  
Time = 1 msec / div  
39. TPS563219A Start Up Relative To VI  
Time = 1 msec / div  
40. TPS563219A Start Up Relative To EN  
版权 © 2016, Texas Instruments Incorporated  
19  
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
VI = 10V/ div  
SS = 5V/ div  
EN = 10V/ div  
SS = 5V/ div  
VO = 500mV/ div  
VO = 500mV/ div  
PG = 1V/ div  
PG = 1V/ div  
Time = 5 msec / div  
41. TPS563219A Shut Down Relative To VI  
Time = 5 msec / div  
42. TPS563219A Shut Down Relative To EN  
20  
版权 © 2016, Texas Instruments Incorporated  
TPS562219A, TPS563219A  
www.ti.com.cn  
ZHCSFR7 NOVEMBER 2016  
9 Power Supply Recommendations  
The TPS562209 and TPS563209 are designed to operate from input supply voltage in the range of 4.5V to 17V.  
Buck converters require the input voltage to be higher than the output voltage for proper operation. The  
maximum recommended operating duty cycle is 65%. Using that criteria, the minimum recommended input  
voltage is VO / 0.65.  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
GND  
VOUT  
Additional  
Vias to the  
GND plane  
OUTPUT  
CAPACITOR  
Vias to the  
internal SW  
node copper  
BOOST  
CAPACITOR  
OUTPUT  
INDUCTOR  
FEEDBACK  
RESISTORS  
GND  
SW  
VIN  
SS  
VBST  
EN  
TO ENABLE  
CONTROL  
TPS56x219A  
VFB  
PG  
VIN  
Vias to the  
internal SW  
node copper  
HIGH FREQUENCY  
INPUT BYPASS  
CAPACITOR  
POWER GOOD  
SW node copper  
pour area on internal  
or bottom layer  
INPUT BYPASS  
CAPACITOR  
PG PULL UP  
RESISTOR  
SLOW START  
CAPACITOR  
VIA TO INTERNAL  
GROUND PLANE  
TO PG PULL  
UP VOLTAGE  
版权 © 2016, Texas Instruments Incorporated  
21  
TPS562219A, TPS563219A  
ZHCSFR7 NOVEMBER 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.2 文档支持  
11.3 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访  
问。  
5. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS562219A  
TPS563219A  
11.4 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.6 商标  
D-CAP2, E2E are trademarks of Texas Instruments.  
Blu-ray Disc is a trademark of Blu-ray Disc Association.  
All other trademarks are the property of their respective owners.  
11.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS562219ADDFR  
TPS562219ADDFT  
TPS563219ADDFR  
TPS563219ADDFT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDF  
DDF  
DDF  
DDF  
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
2219A  
SN  
SN  
SN  
2219A  
3219A  
3219A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS563219ADDFR

采用 SOT-23 封装且具有电源正常指示和软启动功能的 17V 输入、3A 同步降压稳压器 | DDF | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563219ADDFT

采用 SOT-23 封装且具有电源正常指示和软启动功能的 17V 输入、3A 同步降压稳压器 | DDF | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563219DDFT

17 V Input, 3A Synchronous Step-Down Regulator in SOT-23 with Power-good and Soft-start 8-SOT-23-THIN -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563231

4.5V 至 17V 输入、3A 同步降压稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563231DRLR

4.5V 至 17V 输入、3A 同步降压稳压器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563231DRLT

4.5V 至 17V 输入、3A 同步降压稳压器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563240

17V、3A、1.4MHz 同步降压稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563240DDCR

17V、3A、1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563240DDCT

17V、3A、1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563249

17V、3A、恒定 1.4MHz 同步降压稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563249DDCR

17V、3A、恒定 1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS563249DDCT

17V、3A、恒定 1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI