TPS563212DRLR [TI]

具有 Eco-Mode 和可选 FCCM 的 4.2V 至 18V、3A、1.2MHz 同步降压转换器 | DRL | 8 | -40 to 150;
TPS563212DRLR
型号: TPS563212DRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 Eco-Mode 和可选 FCCM 的 4.2V 至 18V、3A、1.2MHz 同步降压转换器 | DRL | 8 | -40 to 150

转换器
文件: 总33页 (文件大小:3476K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS563212  
ZHCSNA2 OCTOBER 2021  
TPS563212 SOT-5X3 封装4.2V 18V 输入、3A 同步  
降压转换器  
1 特性  
3 说明  
4.2V 18V 输入电压  
0.6V 7V 输出电压  
TPS563212 是一款具有成本效益且高度灵活的同步降  
压转化器可在可选的 Eco-mode 或强制连续导通模  
(FCCM) 下工作。另外还可以通过 MODE 引脚配置  
可选的电源正常状态指示器或外部软启动。通过正确配  
置使能引脚、电源正常状态指示器或外部软启动可以实  
现电源时序控制。4.2V 18V 的宽输入电压范围支持  
12V 15V 等各种常见的输入电压轨。该器件的输出  
电压0.6V 7V支持高3A 的持续输出电流。  
– 高3A 的持续输出电流  
– 最短打开时间45ns  
98% 最大占空比  
• 高效率  
– 集成66mΩ33mΩMOSFET  
120µA 静态电流典型值)  
• 高度灵活且易于使用  
该器件采用高级仿真电流模式 (AECM) 控制拓扑能  
够提供快速瞬态响应和真正的固定开关频率。借助内部  
智能环路带宽控制该器件无需外部补偿即可在宽输  
出电压范围内实现快速瞬态响应。  
– 可Eco-mode FCCM 操作  
– 可选的电源正常状态指示器或外部软启动  
– 精密使能输入  
• 高精度  
高侧峰值电流的逐周期电流限制可在过载情况下保护器  
并通过低侧谷值电流限制防止电流失控增强限制  
效果。在过压保护 (OVP)、欠压保护 (UVP)UVLO  
保护和热关断保护情况下将触发断续模式。  
±1% (25°C) 基准电压精度  
±8.5% 开关频率容差  
• 小解决方案尺寸  
– 内置补偿功能便于使用  
SOT-5X3 封装  
– 最小外部元件数量  
该器件采1.6mm x 2.1mm SOT-5X3 封装。  
器件信息  
封装(1)  
• 用于高侧和低MOSFET 的逐周期电流限制  
• 非锁OVPUVPUVLO TSD 保护  
• 使TPS563212 并借WEBENCH® Power  
Designer 创建定制设计方案  
器件型号  
封装尺寸标称值)  
TPS563212  
SOT-5X3 (8)  
1.6 mm × 2.1 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
机顶(STB)数字电视  
智能扬声器  
有线网络宽带  
监控  
VIN  
VIN  
BOOT  
TPS563212  
C2  
C1  
L
VOUT  
SW  
PG/SS  
FB  
MODE  
R1  
R2  
R3  
EN  
EN  
C3  
GND  
简化版原理图  
效率与输出电流间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEH9  
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................17  
8.1 Application Information............................................. 17  
8.2 Typical Application.................................................... 17  
9 Power Supply Recommendations................................25  
10 Layout...........................................................................25  
10.1 Layout Guidelines................................................... 25  
10.2 Layout Example...................................................... 25  
11 Device and Documentation Support..........................27  
11.1 Device Support........................................................27  
11.2 接收文档更新通知................................................... 27  
11.3 支持资源..................................................................27  
11.4 Trademarks............................................................. 27  
11.5 Electrostatic Discharge Caution..............................27  
11.6 术语表..................................................................... 27  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................15  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
October 2021  
*
Advance Information  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS563212  
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
PG/SS  
VIN  
1
2
3
4
8
7
6
5
FB  
MODE  
EN  
SW  
GND  
BOOT  
8-Pin SOT-5X3 DRL Package (Top View)  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
This pin can be selected as a power-good function or soft-start function depending on device  
MODE pin configuration.  
If the power-good function is selected, this is an open-drain power-good indicator.  
If the soft-start function is selected, an external capacitor connected from this pin to GND  
defines the rise time for the internal reference voltage.  
PG/SS  
1
I/O  
P
Input voltage supply pin for the control circuitry. Connect the input decoupling capacitors  
between VIN and GND.  
VIN  
2
SW  
3
4
P
Switch node terminal. Connect the output inductor to this pin.  
GND terminal for the controller circuit and the internal circuitry  
GND  
G
Supply input for the high-side MOSFET gate drive circuit. Connect a 0.1-µF capacitor between  
the BOOT and SW pins.  
BOOT  
EN  
5
6
P
Enable input control. Driving EN high or leaving this pin floating enables the converter. An  
external resistor divider can be used to imply an adjustable VIN UVLO function.  
I/O  
Device operation mode in light load (Eco-mode operation or FCCM operation) and pin 1 function  
(PG/SS) selection pin. Connect a resistor from MODE to GND to configure the device according  
to 7-1.  
MODE  
FB  
7
8
I/O  
I
Converter feedback input. Connect this pin to the output voltage with a feedback resistor divider.  
(1) I = Input, I/O = Input or Output, G = Ground, P = Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS563212  
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of 40°C to +125°C (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VIN  
20  
20  
22  
0.3  
0.3  
3  
SW, DC  
SW, transient < 10 ns  
VIN SW, DC  
20  
V
22  
0.3  
3  
Pin voltage(2)  
VIN SW, transient < 10 ns  
BOOT  
25  
6
0.3  
0.3  
0.3  
40  
65  
BOOT SW  
EN, FB, PG/SS, MODE  
Operating junction temperature(3)  
Storage temperature  
6
TJ  
150  
150  
°C  
°C  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground terminal.  
(3) Operating at junction temperatures greater than 125°C, although possible, degrades the lifetime of the device.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/  
ESDA/JEDEC JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of 40°C to +125°C (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VIN  
Input supply voltage range  
Output voltage range  
4.2  
0.6  
18  
7
V
V
VOUT  
SW, DC  
18  
0.1  
3  
SW, transient < 10 ns  
VIN - SW, DC  
20  
18  
0.1  
3  
Pin voltage  
VIN - SW, transient < 10 ns  
BOOT  
20  
V
23.5  
5.5  
5.5  
3
0.1  
0.1  
0.1  
0
BOOT - SW  
EN, FB, PG/SS, MODE  
IOUT  
TJ  
Output current range  
A
Operating junction temperature  
125  
°C  
40  
(1) Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific  
performance limits. For specified specifications, see the Electrical Characteristics.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS563212  
 
 
 
 
 
 
 
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
6.4 Thermal Information  
TPS563212  
THERMAL METRIC(1)  
DRL (SOT-5X3)  
UNIT  
8 PINS  
116.7  
41.7  
20.9  
1.0  
(2)  
RθJA  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-ambient thermal resistance on TPS563212EVM  
ΨJT  
20.8  
70  
ΨJB  
(3)  
RθJA(EVM)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953  
(2) The value of RθJA given in this table is only valid for comparison with other packages and cannot be used for design purposes. These  
values were simulated on a standard JEDEC board. They do not represent the performance obtained in an actual application.  
(3) The real RθJA on the TPS563212EVM is about 70/W, test condition: VIN = 12 V, VOUT = 5 V, IOUT = 3 A, TA = 25.  
6.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature (TJ ) range of 40°C to +125°C, unless otherwise stated.  
Minimum and maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following  
conditions apply: VIN = 4.2 V to 18 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
VIN  
Operation input voltage  
4.2  
18  
V
VIN quiescent current at power save  
mode  
Nonswitching, VEN = 1.2 V, VFB = 0.65 V,  
IOUT = 0 mA  
120  
µA  
IQ(VIN)  
Nonswitching, VEN = 1.2 V, VFB = 0.65 V,  
IOUT = 0 mA  
VIN quiescent current at FCCM  
VIN shutdown supply current  
450  
3
µA  
µA  
ISD(VIN)  
UVLO  
VIN = 12 V, VEN = 0 V  
10  
VUVLO(R)  
VUVLO(F)  
ENABLE  
VEN(R)  
VIN UVLO rising threshold  
VIN UVLO falling threshold  
VIN rising  
VIN falling  
3.8  
3.4  
4
4.2  
3.8  
V
V
3.6  
EN voltage rising threshold  
EN voltage falling threshold  
EN rising, enable switching  
EN falling, disable switching  
1.05  
0.91  
1.15  
1.01  
1.25  
1.10  
V
V
VEN(F)  
EN pin sourcing current pre-EN rising  
threshold  
IEN(P1)  
IEN(H)  
VEN = 1.0 V  
0.93  
2.4  
1.2  
3.1  
1.5  
µA  
µA  
EN pin sourcing current hysteresis  
3.81  
REFERENCE VOLTAGE  
TJ = 25°C  
0.594  
0.591  
0.1  
0.6  
0.6  
0
0.606  
0.609  
0.1  
V
V
VFB  
FB voltage  
TJ = 40°C to 125°C, VIN = 12 V  
VFB = 0.65 V, TJ = 25°C  
IFB(LKG)  
START-UP  
ISS  
FB input leakage current  
µA  
Soft-start charge current  
VSS = 0 V  
4.5  
1.5  
6.6  
2
8.3  
2.6  
µA  
ms  
From first switching pulse until target  
VOUT  
tSS  
Internal fixed soft-start time  
SWITCHING FREQUENCY  
fSW(FCCM)  
Switching frequency, FCCM operation  
1100  
1200  
66  
1300  
kHz  
POWER STAGE  
RDSON(HS)  
High-side MOSFET on-resistance  
TJ = 25°C, VIN = 12 V, VBOOT-SW = 5 V  
mΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS563212  
 
 
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature (TJ ) range of 40°C to +125°C, unless otherwise stated.  
Minimum and maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following  
conditions apply: VIN = 4.2 V to 18 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RDSON(LS)  
Low-side MOSFET on-resistance  
Minimum ON pulse width  
Maximum ON pulse width  
Minimum OFF pulse width  
TJ = 25°C, VIN = 12 V  
33  
mΩ  
ns  
(1)  
tON(min)  
45  
tON(max)  
tOFF(min)  
6
µs  
105  
ns  
OVERCURRENT PROTECTION  
IHS(OC) High-side peak current limit  
Peak current limit on HS MOSFET  
4.25  
3.0  
5
4
5.75  
4.9  
A
A
Valley current limit on LS MOSFET, VIN  
12 V  
=
ILS(OC)  
Low-side valley current limit  
Sinking current limit on LS MOSFET, VIN  
= 12 V  
ILS(NOC)  
Low-side negative current limit for FCCM  
1.1  
1.5  
2.2  
A
tHIC(WAIT)  
tHIC(RE)  
Wait time before entering Hiccup  
Hiccup time before re-start  
108  
6
µs  
Cycles  
OUTPUT OVP AND UVP  
VFB falling  
62.5%  
5%  
Undervoltage-protection (UVP) threshold  
voltage  
VUVP  
UVP hysteresis  
VFB rising  
107%  
112%  
5%  
114%  
Overvoltage-protection (OVP) threshold  
voltage  
VOVP  
OVP hysteresis  
POWER GOOD  
FB falling, PG from high to low  
FB rising, PG from low to high  
FB falling, PG from low to high  
FB rising, PG from high to low  
IPG = 0.6 mA  
82%  
87%  
87%  
92%  
92%  
97%  
112%  
114%  
0.3  
VPGTH  
Power-good threshold  
101%  
107%  
107%  
112%  
VPG(OL)  
IPG(LKG)  
PG pin output low-level voltage  
V
PG pin leakage current when open drain  
output is high  
VPG = 5.5 V  
1
µA  
1  
tPG(R)  
tPG(F)  
PG delay going from low to high  
PG delay going from high to low  
Minimum VIN for valid output(1)  
112  
48  
2
µs  
µs  
V
2.5  
VPG/SS < 0.5 V at 100 μA  
THERMAL SHUTDOWN  
(1)  
TJ(SD)  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
150  
20  
°C  
°C  
(1)  
TJ(HYS)  
(1) Not production tested  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS563212  
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 12 V, TA = 25°C, unless otherwise noted  
132  
130  
128  
126  
124  
122  
120  
118  
116  
114  
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
6-1. Quiescent Current (Eco-mode) vs Junction Temperature  
6-2. Quiescent Current (FCCM) vs Junction Temperature  
5
0.606  
4.5  
4
0.604  
0.602  
0.6  
3.5  
3
0.598  
0.596  
0.594  
2.5  
2
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
6-3. Shutdown Current vs Junction Temperature  
6-4. Reference Voltage vs Junction Temperature  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
6-5. High-Side MOSFET On-Resistance vs Junction  
6-6. Low-Side MOSFET On-Resistance vs Junction  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS563212  
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, TA = 25°C, unless otherwise noted  
4.4  
1.28  
1.2  
L--> H  
H--> L  
L ç H  
H ç L  
4.2  
4
1.12  
1.04  
0.96  
0.88  
3.8  
3.6  
3.4  
3.2  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-60  
-30  
0
30  
60  
90  
120  
150  
TJ - Junction Temperature (°C)  
TJ - Junction Temperature (èC)  
6-8. EN Threshold vs Junction Temperature  
6-7. VIN UVLO Threshold vs Junction Temperature  
5.2  
4.4  
5.15  
5.1  
5.05  
5
4.2  
4
3.8  
3.6  
3.4  
3.2  
4.95  
4.9  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
6-9. High-Side Current Limit Threshold vs Junction  
6-10. Low-Side Current Limit Threshold vs Junction  
Temperature  
Temperature  
1220  
1210  
1200  
1190  
1180  
1170  
1160  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (°C)  
6-12. Switching Frequency vs Output Current, VOUT = 3.3 V, L  
= 2.2 µH  
6-11. Switching Frequency vs Junction Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS563212  
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, TA = 25°C, unless otherwise noted  
6-13. VOUT = 1.05-V Efficiency, L = 0.68 µH  
6-14. VOUT = 3.3-V Efficiency, L = 2.2 µH  
6-15. VOUT = 5-V Efficiency, L = 3.3 µH  
6-16. VOUT = 7-V Efficiency, L = 3.3 µH  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS563212  
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The device is a 3-A synchronous buck converter that operates from 4.2-V to 18-V input voltage and 0.6-V to 7-V  
output voltage. The device employs AECM control, an emulated current control topology that combines the  
advantages of peak current mode control and D-CAP2 control, providing fast transient response with true fixed  
switching frequency.  
With the proper MODE configurations, the device supports selectable Eco-mode operation or FCCM operation  
and a selectable power-good indicator or external soft start.  
With an on-time extension function, the device supports a maximum duty cycle of 98%.  
7.2 Functional Block Diagram  
VIN  
EN  
Bias & Voltage  
Reference  
Bootstrap  
Regulator  
VCC Regulator  
UVLO  
VUVP  
+
-
BOOT  
UVP  
+
VOVP  
-
OVP  
Ripple Injection Generator  
SW  
R3  
R1  
R2  
SW  
Mode  
Detection  
Eco-mode or FCCM  
Crj  
VCC  
Control Logic  
Vripple  
PFM  
Ton  
Timer  
-
-
Vfb  
Vref_int  
FB  
+
+
-
PWM  
+
Vslp  
R
Q
S
GND  
gm  
+
+
Comparator  
Error Amp  
Oscillator &  
Slope Comp  
Generator  
HS & LS  
Current Sense  
Vref  
Soft-Start  
PG/SS  
+
-
FB  
VPGTH  
TSD  
PG or SS ?  
Mode Selection  
& PG or SS  
Selection  
Eco-mode or FCCM  
MODE  
7.3 Feature Description  
7.3.1 Advanced Emulated Current Mode Control  
The device employs AECM control, an emulated current control-based topology that combines the advantages  
of peak current mode control and D-CAP2 control, providing fast transient response with true fixed switching  
frequency. The AECM control topology supports two basic regulation modes: PFM regulation mode and PWM  
regulation mode. During PWM, the device operates at its nominal switching frequency in CCM or DCM. The  
frequency is typically approximately 1.2 MHz with a controlled frequency variation. If the load current decreases,  
the device enters PFM to sustain high efficiency down to very light loads. In PFM, the switching frequency  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS563212  
 
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
decreases with the load current. With the internal adaptive loop adjustment, the device eliminates the need for  
external compensation to provide a fast transient response over a wide output voltage range.  
7.3.2 Mode Selection and PG/SS Pin Function Configuration  
The device requires a mode resistor to select the operations mode under light load and configure the function of  
pin 1. 7-1 shows the MODE pin settings.  
7-1. MODE Pin Settings  
RECOMMENDED  
MODE RESISTOR  
VALUE  
MODE RESISTOR  
RANGE  
OPERATION MODE IN FUNCTION OF PG/SS  
LIGHT LOAD  
PIN  
0
Eco-mode  
Eco-mode  
FCCM  
Power Good  
Soft Start  
[0, 12] kΩ  
[30, 50] kΩ  
[83, 120] kΩ  
[180, ] kΩ  
47 kΩ  
100 kΩ  
Float  
Soft Start  
FCCM  
Power Good  
7-1 shows the typical start-up sequence of the device once the enable signal triggers the EN turn-on  
threshold. After the voltage of VIN crosses the UVLO rising threshold, it takes approximately 110 μs to finish  
reading and setting of the MODE pin. After this process, the MODE status is latched and does not change until  
VIN or EN toggles to restart this device. Then, the soft-start function begins to ramp up the reference voltage to  
the PWM comparator.  
EN threshold  
1.18V  
EN  
VIN  
UVLO  
4V  
Mode  
detection  
VIN  
MODE  
110µs 100µs  
Tss  
110µs  
VOUT  
PGOOD  
t
7-1. Power-Up Sequence  
7.3.3 Power Good (PG)  
This is an optional function configured by the MODE pin.  
The device has a built-in power-good (PG) function to indicate whether the output voltage has reached its  
appropriate level or not. The PG signal can be used for start-up sequencing of multiple rails. The PG/SS pin  
works as an open-drain output that requires a pullup resistor (to any voltage below 5.5 V). A pullup resistor of 10  
kΩ is recommended to pull the device up to a 5-V voltage. It can sink 0.8 mA of current and maintain its  
specified logic low level. Once the FB pin voltage is between 92% and 112% of the internal reference voltage  
(VREF) and after a deglitch time of 112 μs, the PG/SS is high impedance. The PG/SS pin is pulled low after a  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS563212  
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
deglitch time of 48 μs when the FB pin voltage is lower than UVP or greater than OVP threshold, or in events of  
thermal shutdown, EN shutdown, or UVLO conditions. VIN must remain present for the PG/SS pin to stay low.  
If the power-good output is not used when the PG function is selected, tie to GND to get better thermal  
performance.  
7-2. Power Good Indicator Logic Table  
LOGIC SIGNALS  
PG LOGIC  
STATUS  
VIN  
EN  
TSD  
VOUT  
VOUT on target  
High  
Low  
Not triggered  
VOUT > Target  
High  
VIN > UVLO  
VOUT < Target  
Low  
Triggered  
Low  
Low  
Low  
2.5 V < VIN < UVLO  
VIN < 2.5 V  
Low  
Undefined  
7.3.4 Soft Start and Pre-Biased Soft Start  
This is an optional function configured by MODE pin.  
If the PG function is selected, the device works with an internal soft-start time of 2 ms. If the SS function is  
selected, the device has the adjustable soft-start function. When the EN pin becomes high, the soft-start charge  
current, ISS, begins charging the capacitor, which is connected from the PG/SS pin to GND (CSS). Smooth  
control of the output voltage is maintained during start-up. Use 方程1 to calculate the soft-start time.  
3.5 × C nF × V  
ss REF  
V
t
ms =  
(1)  
ss  
I
uA  
ss  
where  
VREF = 0.6 V  
ISS = 6.6 µA  
The value of the external soft-start capacitor must not be lower than 4 nF typical to ensure good start-up  
behavior.  
If the output capacitor is pre-biased at start-up, the device initiates switching and starts ramping up only after the  
internal reference voltage becomes greater than the feedback voltage. This scheme makes sure the converters  
ramp up smoothly into the regulation point.  
7.3.5 Output Discharge Through PG/SS Pin  
If the PG function is selected, the device pulls the PG/SS pin low when the device is shut down by one of the  
following:  
EN  
OVP  
UVP  
UVLO  
Thermal shutdown  
In those cases, the user can connect PG/SS to VOUT through a resistor to discharge VOUT (see 7-2). The  
discharge rate can be adjusted by R3, which is also used to pull up the PG/SS pin in normal operation. The  
minimum supply voltage required for the discharge function to remain active is typically 2.5 V. For reliability, keep  
the maximum current into the PG/SS pin less than 1.8 mA. Given an output voltage, the minimum resistance of  
R3 can be calculated in 方程2.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS563212  
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
VOUT(V)  
1.8  
R3_MIN(kW) =  
- 0.4  
(2)  
VIN  
VIN  
BOOT  
TPS563212  
C2  
C1  
L
VOUT  
SW  
PG/SS  
FB  
MODE  
R1  
R2  
R3  
EN  
EN  
C3  
GND  
7-2. Discharge VOUT Through PG/SS Pin with the TPS563212  
7.3.6 Precise Enable and Adjusting Undervoltage Lockout  
The EN pin provides electrical on and off control for the device. When the EN pin voltage exceeds the threshold  
voltage, the device begins operation. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters shutdown mode.  
The EN pin has an internal pullup source current, allowing the user to float the EN pin to enable the device. If an  
application requires control of the EN pin, use external control logic interface to the EN pin like the open-drain or  
open-collector output logic.  
The device implements internal undervoltage-lockout (UVLO) circuitry on the VIN pin. The device is disabled  
when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a  
hysteresis of 400 mV.  
If an application requires a higher UVLO threshold on the VIN pin, the EN pin can be configured as shown in 图  
7-3. When using the external UVLO function, setting the hysteresis at a value greater than 400 mV is  
recommended.  
The EN pin has a small pullup current, Ip, which sets the default state of the EN pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the external  
UVLO function because it increases by Ih when the EN pin crosses the enable threshold. Use 方程式 3 and 方程  
4 to calculate the values of R1 and R2 for a specified UVLO threshold. Once R1 and R2 have settled down,  
the EN voltage can be calculated by 方程5, which must be lower than 5.5 V with the maximum VIN.  
VIN  
Device  
R1  
R2  
Ip  
Ih  
EN  
7-3. Adjustable VIN Undervoltage Lockout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS563212  
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
V
EN_FALL  
V
V  
START  
STOP  
V
EN_RISE  
R =  
(3)  
1
V
EN_FALL  
I
1 −  
+ I  
p
h
V
EN_RISE  
R
V  
1
EN_FALL  
R =  
(4)  
(5)  
2
V
V  
+ R I + I  
1 p h  
STOP  
EN_FALL  
R
V + R R  
I
+ I  
h
2
IN  
1 2  
+ R  
p
V
=
EN  
R
1
2
where  
Ip = 1.2 µA  
Ih = 3.1 µA  
VEN_FALL = 1.01 V  
VEN_RISE = 1.15 V  
VSTART = Expected input voltage enabling the device  
VSTOP = Expected input voltage disabling the device  
7.3.7 Overcurrent Limit and Undervoltage Protection  
The device is protected from overcurrent conditions by cycle-by-cycle current limiting on both the peak and  
valley of the inductor current.  
During the on time of the high-side MOSFET switch, the inductor current flows through high-side MOSFET and  
increases at a linear rate determined by the following:  
VIN  
VOUT  
On time  
Output inductor value  
The high-side switch current is sensed when the high-side MOSFET is turned on after a set of blanking time and  
then compared with the high-side MOSFET current limit threshold in every switching cycle. If the cross-limit  
event is detected after the minimum on time, the high-side MOSFET is turned off immediately. The high-side  
MOSFET current is limited by a clamped maximum peak current threshold IHS_LIMIT, which is constant.  
The current going through low-side MOSFET is also sensed and monitored. When the low-side MOSFET is  
turned on, the inductor current begins ramping down. The low-side MOSFET is not turned off at the end of a  
switching cycle if its current is above the low-side current limit, ILS_LIMIT. The low-side MOSFET is kept on for the  
next cycle so that inductor current keeps ramping down, until the inductor current ramps below the low-side  
current limit, ILS_LIMIT, and the subsequent switching cycle comes, the low-side MOSFET is turned off, and the  
high-side MOSFET is turned on after a dead time.  
There are some important considerations for this type of overcurrent protection. The load current is higher than  
the overcurrent threshold by one-half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current can be higher than the current available  
from the converter. When the VFB voltage falls below the UVP threshold voltage, the UVP comparator detects it.  
The device shuts down after the UVP delay time (typically 108 μs) and re-starts after the hiccup time (six times  
of soft start time). The hiccup behavior helps reduce the device power dissipation under severe overcurrent  
conditions.  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
7.3.8 Overvoltage Protection  
The device detects overvoltage condition by monitoring the feedback voltage. When the feedback voltage  
becomes higher than 112% of the target voltage, the OVP comparator output goes high and both the high-side  
MOSFET and low-side MOSFET turn off. This function is a non-latch operation.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS563212  
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
7.3.9 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
150°C typically. The device re-initiates the power-up sequence when the junction temperature drops below  
130°C typically.  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The EN pin provides electrical on and off control for the device. When VEN is below 1.01 V (typical), the device is  
in shutdown mode with a shutdown current of 3 μA (typical). The device also employs VIN UVLO protection. If  
VIN voltage is below their respective UVLO level, the regulator is turned off.  
7.4.2 Active Mode  
The device is in active mode when VEN is above the precision enable threshold voltage and VIN is above its  
respective UVLO level. The simplest way to enable the device is to float the EN pin, which allows self-startup  
when the input voltage is between 4.2 V to 18 V.  
Active mode depends on the load current and the configuration of the MODE pin.  
When the MODE pin is connected with a 100-kΩresistor (typical) or floated (typical) to GND, FCCM operation is  
selected. No matter what the load current is, the device works with PWM regulation with fixed switching  
frequency.  
When the MODE pin is connected with a 0-Ω resistor (typical) or 47-kΩ resistor (typical) to GND, Eco-mode  
operation is selected. The device is in one of the following modes with different loading:  
1. Continuous conduction mode (CCM) operation with fixed switching frequency when load current is above  
half of the peak-to-peak inductor current ripple. The device works with PWM regulation.  
2. Discontinuous conduction mode (DCM) operation with fixed switching frequency. When load current is lower  
than half of the peak-to-peak inductor current ripple in CCM operation, the device works with PWM  
regulation.  
3. During Eco-mode operation with switching frequency decreased at very light load, the device works with  
PFM regulation.  
7.4.3 FCCM Operation  
If FCCM operation is selected by the MODE pin, the device is set to operate in FCCM operation in light-load  
conditions and allows the inductor current to become negative. In FCCM, the device switches with a fixed  
frequency over the entire load range, which is suitable for applications requiring tight control of the switching  
frequency and output voltage ripple.  
7.4.4 CCM Operation  
CCM operation is employed in the device when the load current is higher than half of the peak-to-peak inductor  
current. In CCM operation, the frequency of operation is fixed, output voltage ripple is at a minimum in this mode,  
and the maximum continuous output current of 3 A can be supplied by the device.  
7.4.5 DCM Operation and Eco-mode Operation  
The light load running includes DCM operation and Eco-mode operation.  
As the output current decreases from heavy load condition, the inductor current reduces as well and eventually  
comes to a point that its rippled valley touches zero level, which is the boundary between CCM and DCM. The  
low-side MOSFET is turned off when the zero inductor current is detected. As the load current further decreases,  
the converter runs into DCM.  
At even lighter current loads, Eco-mode is activated to maintain high efficiency operation. The on time is kept  
almost the same as it was in CCM so that it takes longer time to discharge the output capacitor with smaller load  
current to the level of the reference voltage. This makes the switching frequency lower, proportional to the load  
current, and keeps the light load efficiency high. The transition point to the light-load operation, IOUT(LL), current  
can be calculated in 方程6.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS563212  
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
0.852  
(VIN - VOUT )VOUT  
IOUT(LL)  
=
2 L1 fsw  
V
IN  
(6)  
7.4.6 On-Time Extension for Large Duty Cycle Operation  
The minimum on time, TON_MIN, is the smallest duration of time that the high-side MOSFET can be on. TON_MIN  
is typically 45 ns in the device. The minimum off time, TOFF_MIN, is the smallest duration that the high-side  
MOSFET can be off. TOFF_MIN is typically 105 ns in the device. In CCM operation, TON_MIN and TOFF_MIN limit the  
voltage conversion range given a fixed switching frequency.  
The minimum duty cycle allowed is:  
DMIN = TON_MIN ì fSW  
(7)  
The maximum duty cycle allowed is:  
DMAX = 1- TOFF _MIN ì fSW  
(8)  
In the device, a frequency foldback scheme is employed to extend the maximum duty cycle when TOFF_MIN is  
reached. The switching frequency decreases once longer duty cycle is needed under low VIN conditions. With  
the duty increased, the on time is extended up to the maximum on time of 6 μs. A wide range of frequency  
foldback allows the device output voltage to stay in regulation with a much lower supply voltage VIN. This leads  
to a lower effective dropout voltage.  
Given an output voltage, the maximum operation supply voltage can be found by:  
VOUT  
V
=
IN_MAX  
fSW TON_MIN  
(9)  
At lower supply voltage, the switching frequency decreases once TOFF_MIN is triggered. The minimum VIN without  
frequency foldback can be approximated by:  
VOUT  
V
=
IN_MIN  
(1-fSW TOFF _MIN  
)
(10)  
Taking considerations of power losses in the system with heavy load operation, VIN_MAX is higher than the result  
calculated in 方程9. With frequency foldback, VIN_VIN is lowered by decreased fSW, as shown in 7-4.  
1400  
1200  
1000  
800  
600  
400  
Iout=0.5A  
Iout=1.5A  
200  
Iout=3A  
0
4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
Input Voltage (V)  
6
6.2 6.4 6.6  
7-4. Frequency Foldback at Dropout (VOUT = 5 V)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS563212  
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The device is a highly integrated, synchronous buck converter. This device is used to convert a higher DC input  
voltage to a lower DC output voltage, with a maximum output current of 3 A. Alternately, the WEBENCH®  
software may be used to generate a complete design. The WEBENCH software uses an iterative design  
procedure and accesses a comprehensive database of components when generating a design. This section  
presents a simplified discussion of the design process.  
8.2 Typical Application  
The application schematic of 8-1 was developed to meet the requirements of the device. This circuit is  
available as the TPS563212EVM evaluation module. The design procedure is given in this section.  
8-1. TPS563212 3.3-V, 3-A Reference Design  
8.2.1 Design Requirements  
8-1 shows the design parameters for this application.  
8-1. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4.2 to 18 V  
Output voltage  
3.3 V  
Output current rating  
Transient response, 1.5-A load step  
Output ripple voltage  
Operating frequency  
3 A  
ΔVOUT/VOUT ±3%  
10 mV at CCM  
1.2 MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS563212  
 
 
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS563212 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost.  
3. Open the advanced tab to optimize for output voltage ripple.  
4. Once in a TPS563212 design, you can enable the second stage L-C filter and change other settings from the  
drop-down on the left.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the FB pin. TI recommends using 1%  
tolerance or better divider resistors. Referring to the application schematic of 8-1, start with 10 kΩ or 20 kΩ  
for R9 and use 方程式 11 to calculate R8. To improve efficiency at light loads, consider using larger value  
resistors. If the values are too high, the regulator is more susceptible to noise and voltage errors from the FB  
input current are noticeable.  
VOUT - VREF  
VREF  
R8 =  
R9  
(11)  
8-2 shows the recommended components value for common output voltages.  
8.2.2.3 Output Inductor Selection  
To calculate the minimum value of the output inductor, use 方程式 12. KIND is a coefficient that represents the  
amount of inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by  
the output capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output  
capacitor because the output capacitor must have a ripple current rating equal to or greater than the inductor  
ripple current. In general, the inductor ripple value is at the discretion of the designer. For this part, TI  
recommends the range of KIND from 25% to 55%.  
V
- VOUT  
VOUT  
IN_MAX  
LMIN  
=
V
KIND IOUT fSW  
IN_MAX  
(12)  
where  
IOUT = 3 A  
For this design example, use KIND = 40%. The inductor value is calculated to be 1.87 μH. For this design, a  
nearest standard value of 2.2 μH was chosen. For the output filter inductor, it is important that the RMS current  
and saturation current ratings not be exceeded. The inductor peak-to-peak ripple current, peak current, and RMS  
current are calculated using 方程13, 方程14, and 方程15.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS563212  
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
V
- VOUT  
VOUT  
IN_MAX  
IRIPPLE  
=
V
L1 fSW  
IN_MAX  
(13)  
(14)  
IRIPPLE  
ILPEAK = IOUT  
+
2
1
2
2
ILRMS  
=
IOUT  
+
IRIPPLE  
12  
(15)  
For this design example, the calculated peak current is 3.5 A and the calculated RMS current is 3.01 A. The  
chosen inductor is a Wurth Elektronik 74439344022 2.2-μH. It has a saturation current rating of 16 A and a  
RMS current rating of 8 A.  
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults, or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of  
the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the peak inductor current.  
8.2.2.4 Output Capacitor Selection  
After selecting the inductor, the output capacitor needs to be optimized. The LC filter used as the output filter has  
double pole at:  
1
fP =  
2p L1 COUT _E  
(16)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –  
40 dB per decade rate and the phase drops rapidly. A high frequency zero introduced by internal circuit that  
reduces the gain roll off to 20 dB per decade and increases the phase to 90° one decade above the zero  
frequency. The inductor and capacitor for the output filter must be selected so that the double pole of fP is  
located below the high frequency zero but close enough. The phase boost provided by the high frequency zero  
provides adequate phase margin for a stable circuit. To meet this requirement, make the L1 × COUT_E value meet  
the range of L1 × COUT_E value recommended in 8-2.  
8-2. Recommended Component Values  
RANGE OF L1 ×  
R8(2)  
(kΩ)  
R9  
(kΩ)  
(4)  
OUTPUT  
L1(3)  
(µH)  
COUT  
(µF)  
C7(6)  
(pF)  
(5)  
COUT_E  
VOLTAGE (V)(1)  
(μH × μF)  
17130  
17130  
15160  
15160  
15160  
15160  
0.76  
1.05  
1.8  
2.5  
3.3  
5
5.36  
15.0  
40.0  
31.6  
45.3  
73.2  
20.0  
20.0  
20.0  
10.0  
10.0  
10.0  
0.56  
0.68  
1.0  
2×22  
2×22  
1×22  
1×22  
1×22  
1×22  
10100  
10100  
10100  
10100  
10100  
1.5  
2.2  
3.3  
(1) Use the recommended L1 and COUT combination of the higher and closest output rail for the  
unlisted output rails.  
(2) R8 = 10 kΩand R9 = Float for VOUT = 0.6 V  
(3) Inductance values are calculated based on VIN=18 V, but they can also be used for other input  
voltages. Users can calculate their preferred inductance value per 方程12.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS563212  
 
 
 
 
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
(4) COUT is the sum of nominal output capacitance. 22-μF, 0805, 10-V or higher specifications  
capacitors are recommended.  
(5) COUT_E is the effective value after derating. The value of L1 × COUT_E is recommended to be within  
the range.  
(6) R6 and C7 can be used to improve the load transient response and improve the loop-phase margin.  
The capacitor value and ESR determine the amount of output voltage ripple. The device is intended for use with  
ceramic or other low-ESR capacitors. Use 方程式 17 to determine the required RMS current rating for the output  
capacitor.  
VOUT (V  
- VOUT )  
IN_MAX  
ICORMS  
=
12 VIN_MAX L1 fSW  
(17)  
Two Murata GRM21BR61C226ME44L 22-μF, 0805, 16-V output capacitors are used for this design. From the  
data sheet, the estimated DC derating rate is 66.8% at room temperature with an AC voltage of 0.2 V. The total  
output effective capacitance is approximately 14.7 μF. The value of L1 × COUT_E is 33 μH × μF, which is within  
the recommended range.  
8.2.2.5 Input Capacitor Selection  
The device requires an input decoupling capacitor. A bulk capacitor is needed depending on the application. TI  
recommends a ceramic capacitor over 10 μF for the decoupling capacitor. An additional 0.1-μF capacitor (C3)  
from the VIN pin to ground is recommended to provide additional high frequency filtering. The capacitor voltage  
rating needs to be greater than the maximum input voltage. The capacitor must also have a ripple current rating  
greater than the maximum input current ripple of the device. The input ripple current can be calculated using 方  
18.  
V
IN_MIN - VOUT  
VOUT  
ICIRMS = IOUT  
V
V
IN_MIN  
IN_MIN  
(18)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance-to-volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
decreases as the DC bias across a capacitor increases. For this example design, a ceramic capacitor with at  
least a 25-V voltage rating is required to support the maximum input voltage. For this design, one Murata  
GRM21BR61E226ME44L (10-μF, 25-V, 0805, X5R) capacitor has been selected. The effective capacitance  
under input voltage of 12 V is 0.18 × 22 = 4 μF. The input capacitance value determines the input ripple voltage  
of the regulator. The input voltage ripple can be calculated using 方程式 19. Using the design example values,  
IOUT_MAX = 3 A, CIN_E = 4 μF, and fSW = 1.2 MHz, yields an input voltage ripple of 187.5 mV and a RMS input  
ripple current of 0.7 A.  
IOUT _MAX 0.25  
DV  
=
+ (IOUT _MAX RESR _MAX )  
IN  
CIN fSW  
(19)  
where  
RESR_MAX = Maximum series resistance of the input capacitor  
8.2.2.6 Bootstrap Capacitor Selection  
A 0.1-μF ceramic capacitor must be connected between the BOOT to SW pin for proper operation. TI  
recommends to use a ceramic capacitor with X5R or better grade dielectric. The capacitor must have a 10-V or  
higher voltage rating.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS563212  
 
 
 
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
8.2.2.7 Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) can be adjusted using the external voltage divider network of R1 and R2. R1  
is connected between VIN and the EN pin of the TPS563212 and R2 is connected between EN and GND. The  
UVLO has two thresholds, one for power up when the input voltage is rising and one for power down or  
brownouts when the input voltage is falling. For the example design, the supply should turn on and start  
switching when the input voltage increases above 6.6 V (UVLO start or enable). After the regulator starts  
switching, it must continue to do so until the input voltage falls below 5.7 V (UVLO stop or disable). 方程式 3 and  
方程式 4 can be used to calculate the values for the upper and lower resistor values. For the specified stop  
voltages, the nearest standard resistor value for R1 is 174 kΩand for R2 is 36.5 kΩ.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS563212  
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
8.2.3 Application Curves  
VIN = 12 V, L1= 2.2 μH, COUT = 22 μF, TA = 25°C (unless otherwise noted)  
8-3. Load Regulation  
8-2. Efficiency  
3.4  
3.368  
3.336  
3.304  
3.272  
3.24  
150  
130  
110  
90  
Iout=0.03A  
Iout=3A  
70  
50  
Vin=6.5V  
Vin=12V  
Vin=18V  
30  
10  
4
6
8
10  
12  
14  
16  
18  
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
Input Voltage (V)  
Output Current (A)  
8-4. Line Regulation  
8-5. Case Temperature Rise vs Load Current  
8-6. Steady State Waveforms, IOUT = 0 A  
8-7. Steady State Waveforms, IOUT = 0.1 A  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS563212  
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
8-8. Steady State Waveforms, IOUT = 1.0 A  
8-9. Steady State Waveforms, IOUT = 3 A  
8-10. Transient Response 0.3 to 2.7 A with Slew  
Rate of 2.5 A/μs  
8-11. Transient Response 0.5 to 2 A with Slew  
Rate of 2.5 A/μs  
8-12. Transient Response 1 to 2 A with Slew  
Rate of 2.5 A/μs  
8-13. Transient Response 1.5 to 3 A with Slew  
Rate of 2.5 A/μs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS563212  
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
8-14. Start-Up Relative to VIN  
8-15. Shutdown Relative to VIN  
8-16. Enable Relative to EN  
8-17. Disable Relative to EN (ECO)  
8-18. Output Short Protection (ECO)  
8-19. Output Short Recovery (ECO)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS563212  
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 4.2 V and 18 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the device or converter,  
additional bulk capacitance can be required in addition to the ceramic bypass capacitors. An electrolytic  
capacitor with a value of 47 μF is a typical choice.  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the FB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
10-1. Top Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS563212  
 
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
10-2. Bottom Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS563212  
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS563212 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost.  
3. Open the advanced tab to optimize for output voltage ripple.  
4. Once in a TPS563212 design, you can enable the second stage L-C filter and change other settings from the  
drop-down on the left.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS563212  
 
 
 
 
 
 
 
TPS563212  
ZHCSNA2 OCTOBER 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS563212  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS563212DRLR  
ACTIVE  
SOT-5X3  
DRL  
8
4000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
-40 to 150  
3212  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.3  
1.1  
B
A
PIN 1  
ID AREA  
1
8
6X 0.5  
2.2  
2.0  
2X 1.5  
NOTE 3  
5
4
0.27  
0.17  
8X  
1.7  
1.5  
0.05  
0.00  
0.1  
C A B  
0.05  
C
0.6 MAX  
SEATING PLANE  
0.05 C  
0.18  
0.08  
SYMM  
0.4  
0.2  
8X  
SYMM  
4224486/E 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4.Reference JEDEC Registration MO-293, Variation UDAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4224486/E 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224486/E 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS563219A

采用 SOT-23 封装且具有电源正常指示和软启动功能的 17V 输入、3A 同步降压稳压器
TI

TPS563219ADDFR

采用 SOT-23 封装且具有电源正常指示和软启动功能的 17V 输入、3A 同步降压稳压器 | DDF | 8 | -40 to 85
TI

TPS563219ADDFT

采用 SOT-23 封装且具有电源正常指示和软启动功能的 17V 输入、3A 同步降压稳压器 | DDF | 8 | -40 to 85
TI

TPS563219DDFT

17 V Input, 3A Synchronous Step-Down Regulator in SOT-23 with Power-good and Soft-start 8-SOT-23-THIN -40 to 125
TI

TPS563231

4.5V 至 17V 输入、3A 同步降压稳压器
TI

TPS563231DRLR

4.5V 至 17V 输入、3A 同步降压稳压器 | DRL | 6 | -40 to 125
TI

TPS563231DRLT

4.5V 至 17V 输入、3A 同步降压稳压器 | DRL | 6 | -40 to 125
TI

TPS563240

17V、3A、1.4MHz 同步降压稳压器
TI

TPS563240DDCR

17V、3A、1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563240DDCT

17V、3A、1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563249

17V、3A、恒定 1.4MHz 同步降压稳压器
TI

TPS563249DDCR

17V、3A、恒定 1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125
TI