TPS563240DDCT [TI]

17V、3A、1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125;
TPS563240DDCT
型号: TPS563240DDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

17V、3A、1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125

开关 光电二极管 输出元件 稳压器
文件: 总26页 (文件大小:1224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS563240  
ZHCSJ66 DECEMBER 2018  
TPS563240 17V3A1.4MHz 同步降压稳压器  
1 特性  
3 说明  
1
集成 70m30mFET 且支持 3.5A 瞬态电流的  
TPS563240 是一款采用 SOT-23 封装的简单易用型  
3A 转换器  
3A 同步降压稳压器。峰值瞬态输出电流可达 3.5A。  
D-CAP3™模式控制,用于快速瞬态响应  
输入电压范围:4.5V 17V  
输出电压范围:0.6V 7V  
这些器件经过优化,最大限度减少了运行所需的外部组  
件数量并且可以实现低待机电流。  
此开关稳压器采用 D-CAP3 模式控制,能够提供快速  
瞬态响应,并且在无需外部补偿组件的情况下支持诸如  
专用聚合物等低等效串联电阻 (ESR) 输出电容以及超  
ESR 陶瓷电容器。  
脉冲跳跃模式,采用 无声 ™(OOA) 模式运行,轻  
负载运行时 Fs 25kHz 以上  
1.4MHz 开关频率  
低关断电流(低于 10µA)  
1% 反馈电压精度 (25°C)  
从预偏置输出电压中启动  
逐周期过流限制  
TPS563240 在脉冲跳跃模式下运行,从而在轻载运行  
期间保持高效率。通过采用 无声 ™(OOA) 模式运  
行,TPS563240 在轻负载条件下可将 Fsw 保持在  
25kHz 以上。TPS563240 采用 6 引脚 1.6mm ×  
2.9mm SOT (DDC) 封装,额定结温范围为 –40°C 至  
125°C。  
断续模式过流保护  
非锁存欠压保护 (UVP) 和热关断 (TSD) 保护  
固定软启动时间:1.7ms  
器件信息(1)  
2 应用  
电视、机顶盒  
器件号  
TPS563240  
封装  
DDC (6)  
封装尺寸(标称值)  
1.60mm x 2.90mm  
宽带调制解调器  
接入点网络  
无线路由器  
安全监控  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
空白  
空白  
简化电路原理图  
TPS563240 效率  
Efficiency at 12V input  
TPS563240  
100%  
1
2
3
6
5
4
VBST  
EN  
GND  
SW  
90%  
80%  
70%  
60%  
EN  
VOUT  
COUT  
VIN  
VIN  
VOUT  
VFB  
CIN  
Vout = 0.9V  
Vout = 1.05V  
50%  
Vout = 1.2V  
Vout = 1.5V  
Vout = 1.8V  
Vout = 2.5V  
40%  
30%  
Vout = 3.3V  
Vout = 5V  
20%  
10%  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE74  
 
 
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application ................................................. 13  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 接收文档更新通知 ................................................. 20  
11.2 社区资源................................................................ 20  
11.3 ....................................................................... 20  
11.4 静电放电警告......................................................... 20  
11.5 术语表 ................................................................... 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
日期  
修订版本  
说明  
2018 12 月  
*
初始发行版。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
5 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
GND  
1
2
3
6
5
4
VBST  
EN  
SW  
VIN  
VFB  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Ground pin Source terminal of low-side power NFET as well as the ground terminal for  
controller circuit. Connect sensitive VFB to this GND at a single point.  
GND  
1
SW  
VIN  
VFB  
EN  
2
3
4
5
O
I
Switch node connection between high-side NFET and low-side NFET.  
Input voltage supply pin. The drain terminal of high-side power NFET.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
I
I
Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between  
VBST and SW pins.  
VBST  
6
O
Copyright © 2018, Texas Instruments Incorporated  
3
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
19  
UNIT  
V
VIN  
VBST  
24.5  
26.5  
5.5  
V
VBST (10 ns transient)  
V
VBST (vs SW)  
V
Input voltage  
VFB  
5.5  
V
SW  
SW (10 ns transient)  
19  
V
–3.5  
-0.3  
–40  
–55  
21  
V
EN  
VIN + 0.3  
150  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
17  
UNIT  
V
VIN  
EN  
TJ  
Supply input voltage range  
EN Input voltage range  
–0.1  
–40  
VIN  
V
Operating junction temperature  
125  
°C  
6.4 Thermal Information  
TPS563240  
DDC (SOT)  
6 PINS  
117.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
57.3  
31.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
11.2  
ψJB  
31.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
6.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
Operating – non-switching  
supply current  
IVIN  
VIN current, EN = 5 V, VFB = 0.7 V, TJ = 25°C  
VIN current, EN = 0 V, TJ = 25°C  
235  
2.5  
300  
10  
µA  
µA  
IVIN(SDN)  
Shutdown supply current  
LOGIC THRESHOLD  
VENH  
VENL  
REN  
Enable threshold  
Rising  
1.27  
1.15  
1000  
1.34  
V
V
Enable threshold  
Falling  
1.08  
800  
EN pin resistance to GND  
VEN = 1 V  
1200  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
Continuous mode operation, TJ = 25°C  
Continuous mode operation  
VFB = 0.7 V  
594  
588  
600  
600  
0
606  
612  
±50  
mV  
mV  
nA  
VFB  
FB voltage  
IFB  
FB input current  
MOSFET  
RDS(on)h  
RDS(on)l  
High-side switch resistance  
Low-side switch resistance  
TJ = 25°C  
TJ = 25°C  
70  
30  
mΩ  
mΩ  
CURRENT LIMIT  
High side FET source  
Current limit  
Iocl_h_source  
Iocl_l_source  
Iocl_l_sink  
5.5  
3.1  
6.3  
3.9  
0
7.1  
4.7  
A
A
A
Low side FET source  
Current limit  
Low side FET sink Current  
limit  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
160  
25  
Thermal shutdown  
TSDN  
°C  
threshold(1)  
ON-TIME TIMER CONTROL  
tON(MIN)  
Minimum on time(1)  
VIN = 12 V, load = 3 A  
Internal soft-start time  
50  
ns  
ns  
tOFF(MIN)  
SOFT START  
tss  
Minimum off time  
250  
Soft-start time  
1.7  
ms  
FREQUENCY  
Fsw  
Switching frequency  
1400  
kHz  
OUTPUT UNDERVOLTAGE PROTECTION  
VUVP  
Output UVP threshold  
UVP propagation delay  
Hiccup detect (H > L)  
65%  
0.36  
tUVPDLY  
ms  
ms  
UVP protection Hiccup Time  
before restart  
tHIC  
25  
UVLO  
Wake up VIN voltage  
Shutdown VIN voltage  
Hysteresis VIN voltage  
4.2  
3.8  
0.4  
4.4  
UVLO  
UVLO threshold  
3.6  
V
(1) Not production tested.  
版权 © 2018, Texas Instruments Incorporated  
5
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
2.96  
2.94  
2.92  
2.9  
252  
248  
244  
240  
236  
232  
228  
224  
220  
2.88  
2.86  
2.84  
2.82  
2.8  
2.78  
2.76  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
D001  
D001  
1. Shutdown Current vs Junction Temperature  
2. Supply Current vs Junction Temperature  
610  
608  
606  
604  
602  
600  
598  
596  
594  
592  
590  
1.3  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
D001  
D001  
3. VFB Voltage vs Junction Temperature  
4. EN Rising threshold vs Junction Temperature  
110  
100  
90  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.1  
80  
70  
60  
50  
40  
30  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
D001  
D001  
5. EN Falling threshold vs Junction Temperature  
6. High-Side Rds-On vs Junction Temperature  
6
版权 © 2018, Texas Instruments Incorporated  
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
Typical Characteristics (接下页)  
VIN = 12 V (unless otherwise noted)  
60  
3.4  
3.3  
3.2  
3.1  
3
50  
40  
30  
20  
10  
2.9  
2.8  
2.7  
2.6  
Iout = 3A  
Iout = 1.5A  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
5
5.2  
5.4  
5.6  
5.8  
6
6.2  
Junction Temperature (°C)  
Input Voltage (V)  
D001  
D001  
7. Low-Side Rds-On vs Junction Temperature  
8. Dropout for 3.3 V Output Voltage  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
5.2  
5
4.8  
4.6  
4.4  
4.2  
4
Vin = 5V  
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
Iout = 3A  
Iout = 1.5A  
7
7.5  
8
8.5  
9
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
Input Voltage (V)  
D001  
D001  
0.9 V Efficiency  
L = 0.56 μH  
(Wurth:7443835600  
56)  
9. Dropout for 5 V Output Voltage  
10. Efficiency vs Output Current, VOUT = 0.9 V  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin = 5V  
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
Vin = 5V  
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D001  
D001  
1.05 V Efficiency  
L = 0.56 μH  
(Wurth:7443835600  
56)  
1.2 V Efficiency  
L = 0.68 μH  
(Wurth:7443835600  
68)  
11. Efficiency vs Output Current, VOUT = 1.05 V  
12. Efficiency vs Output Current, VOUT = 1.2 V  
版权 © 2018, Texas Instruments Incorporated  
7
 
 
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 12 V (unless otherwise noted)  
90%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin = 5V  
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
Vin = 5V  
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D001  
D001  
1.5 V Efficiency  
L = 0.68 μH  
(Wurth:7443835600  
68)  
1.8 V Efficiency  
L = 1 μH  
(Wurth:744311100)  
14. Efficiency vs Output Current, VOUT = 1.8 V  
13. Efficiency vs Output Current, VOUT = 1.5 V  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin = 5V  
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
Vin = 6.5V  
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D001  
D001  
2.5 V Efficiency  
L = 1 μH  
(Wurth:744311100)  
3.3 V Efficiency  
L = 1.5 μH  
(Wurth:744311150)  
15. Efficiency vs Output Current, VOUT = 2.5 V  
16. Efficiency vs Output Current, VOUT = 3.3 V  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D001  
5 V Efficiency  
L = 1.5 μH  
17. Efficiency vs Output Current, VOUT = 5 V  
(Wurth:744311150)  
8
版权 © 2018, Texas Instruments Incorporated  
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
7 Detailed Description  
7.1 Overview  
The TPS563240 is a 3-A synchronous step-down converter. The proprietary D-CAP3 mode control supports low  
ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic capacitors without complex  
external compensation circuits. The fast transient response of D-CAP3 mode control can reduce the output  
capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
5
3
VIN  
VUVP  
+
UVP  
Hiccup  
VREG5  
Control Logic  
Regulator  
UVLO  
4
FB  
BST  
SW  
6
2
PWM  
Voltage  
Reference  
+
+
+
+
SS  
Soft Start  
HS  
Ripple Injection  
One-Shot  
TSD  
XCON  
VREG5  
LS  
On-time  
Reduction  
OCL  
threshold  
OCL  
+
1
GND  
+
ZC  
7.3 Feature Description  
7.3.1 Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS563240 is adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP3 mode control. The D-CAP3 mode control combines adaptive on-time control with  
an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely  
proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence  
it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again  
when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to  
simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP3 mode control.  
版权 © 2018, Texas Instruments Incorporated  
9
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Pulse Skip Control  
The TPS563240 is designed with advanced Eco-mode to maintain high light load efficiency. As the output current  
decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its  
rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load  
current further decreases the converter runs into discontinuous conduction mode. The on-time is kept almost the  
same as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor  
with smaller load current to the level of the reference voltage. This makes the switching frequency lower,  
proportional to the load current, and keeps the light load efficiency high. The transition point to the light load  
operation IOUT(LL) current can be calculated in 公式 1.  
(V - VOUT ) ì VOUT  
1
IN  
IOUT(LL)  
=
ì
2 ì L ì fSW  
V
IN  
(1)  
7.3.3 Out-of-Audio™ (OOA) Operation  
As the load current continues to decrease, the switching frequency can decrease into the acoustic audible  
frequency range. To prevent this from happening, Out-of-Audio™ (OOA) operation under light-load condition is  
implemented. The OOA control circuit monitors the states of both the high-side and low-side FETs. When both  
high-side and low-side FETs are off for a period longer than 30 μs, the on time generated by one shot timer is  
decreased by a little step, thus the off time of both FETs will be reduced to a length lower than 30us. If the load  
current decreases further, and cause the off time of both FETs longer than 30us again, the above described on  
time reduction process will repeat. By this means, the switching frequency is maintained higher than ~33kHz as  
load decrease. When the on time reduces to ~30% of that in CCM operation, the on time will keep at this  
minimum length. If load current decreases further, the switching frequency can't be maintained at ~33kHz  
anymore, instead, it will decrease linearly towards zero.  
When the load current increases from zero, the on time is kept at minimum length, which is~30% of that in CCM  
operation, and the switching frequency increases linearly as load increases. When the off time of both FETs  
decreases to a length lower than 20us, the on time generated by one shot timer will increase by a step, thus the  
off time of both FETs will be increased above 20us. If the load current increases further, and cause the off time  
of both FETs shorter than 20us again, the above described on time increase process will repeat. By this means,  
the switching frequency is maintained lower than ~50kHz as load increases. When the on time increases to the  
length of that in CCM operation, the on time can't be increased anymore. If load current continue increases, the  
switching frequency will increase linearly towards 1.4MHz nominal frequency. Below figure shows the frequency  
VS load curve at 12Vin/5Vout condition with 1.5uH inductor used.  
12Vin, 5Vout, 1.5uH inductor  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Full load to no load  
No load to full load  
0
5
10  
15  
20  
25  
30  
Load (mA)  
D001  
18. Frequency VS load current at 12Vin/5Vout condition with 1.5uH inductor used  
10  
版权 © 2018, Texas Instruments Incorporated  
 
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
Feature Description (接下页)  
7.3.4 Soft Start and Pre-Biased Soft Start  
The TPS563240 has an internal 1.7-ms soft-start. When the EN pin becomes high, the internal soft-start function  
begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converters ramp up smoothly into regulation point.  
7.3.5 Current Protection  
There are two kinds of current protection in TPS563240: High-side FET source current limit and low-side FET  
source current limit.  
The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the low-side FET switch, the inductor current flow through low-side FET and decreases  
linearly. The average value of the inductor current is the load current IOUT. If the monitored current is above the  
low-side FET source current limit level, the converter maintains low-side FET on and delays the creation of a  
new set pulse, even the voltage feedback loop requires one, until the current cross the low-side FET source  
current limit level. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored  
in the same manner.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current may be higher than the current available  
from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. And then, the device will shut down after the UVP delay time  
(typically 0.36 ms) and re-start after the hiccup time (typically 25 ms).  
When the over current condition is removed, the output voltage returns to the regulated value.  
During the on time of the high-side FET switch, the inductor current flow through high-side FET and increases at  
a linear rate determined by VIN, VOUT, the on-time and the output inductor value. The switch current is compared  
with high-side FET source current limit after a short blanking time. If the cross-limit event detected before the one  
shot timer expires, the high-side FET will be turn off immediately, and will not be allowed on in the following 1uS  
period.  
7.3.6 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage,  
the device is shut off. This protection is non-latching.  
7.3.7 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 160°C),  
the device is shut off. This is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS563240 can operate in normal switching modes. Normal continuous conduction mode (CCM) occurs when  
the minimum switch current is above 0 A. In CCM, the TPS563240 operates at a quasi-fixed frequency of  
1.4MHz.  
版权 © 2018, Texas Instruments Incorporated  
11  
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.2 Eco-mode Operation  
When the TPS563240 is in the normal CCM operating mode and the switch current falls to 0 A, the TPS563240  
begins operating in pulse skipping Eco-mode. Each switching cycle is followed by a period of energy saving  
sleep time. The sleep time ends when the VFB voltage falls below reference voltage. As the output current  
decreases, the sleep time between switching pulses increases.  
7.4.3 Standby Operation  
When the TPS563240 is operating in either normal CCM or Eco-mode, it may be placed in standby by asserting  
the EN pin low.  
12  
版权 © 2018, Texas Instruments Incorporated  
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The device is a typical step-down DC-DC converter. It's typically used to convert a higher dc voltage to a lower  
dc voltage with a maximum available output current of 3 A. The following design procedure can be used to select  
component values for the TPS563240. Alternately, the WEBENCH® software may be used to generate a  
complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive  
database of components when generating a design. This section presents a simplified discussion of the design  
process.  
8.2 Typical Application  
The application schematic in 19 was developed to meet the previous requirements. This circuit is available as  
the evaluation module (EVM). The sections provide the design procedure.  
19 shows the TPS563240 6.5-V to 17-V input, 3.3-V output converter schematics.  
R4 0   
C7 0.1 F  
1
2
6
5
GND  
SW  
VBST  
EN  
L1  
VOUT = 3.3V/3A  
R3 10 kꢀ  
EN  
VOUT  
1.5 H  
C9  
22 F  
C8  
NC  
3
4
VIN  
VFB  
VOUT  
R1 45.3 kꢀ  
R2  
10 kꢀ  
C4  
1
C1  
C2  
C3  
10 F  
NC  
0.1 F  
1
Not Installed  
VIN  
1
19. 3.3-V/3-A Reference Design  
版权 © 2018, Texas Instruments Incorporated  
13  
 
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
1 shows the design parameters for this application.  
1. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
6.5 to 17 V  
3.3 V  
Output voltage  
Transient response, 1.5-A load step  
Input ripple voltage  
ΔVout = ±5%  
400 mV  
Output ripple voltage  
Output current rating  
Operating frequency  
100 mV  
3 A  
1.4 MHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1%  
tolerance or better divider resistors. Start by using 公式 2 to calculate VOUT  
.
To improve efficiency at very light loads consider using larger value resistors, too high of resistance will be more  
susceptible to noise and voltage errors from the VFB input current will be more noticeable.  
R1  
R2  
VOUT = 0.6 ì(1+  
)
(2)  
8.2.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
fP =  
2p LOUT ì COUT  
(3)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –40  
dB per decade rate and the phase drops rapidly. D-CAP3 introduces a high frequency zero that reduces the gain  
roll off to –20 dB per decade and increases the phase to 90° one decade above the zero frequency. The inductor  
and capacitor for the output filter must be selected so that the double pole of 公式 3 is located below the high  
frequency zero but close enough that the phase boost provided by the high frequency zero provides adequate  
phase margin for a stable circuit. To meet this requirement use the values recommended in 2.  
2. Recommended Component Values  
L1 (µH)  
TYP  
0.56  
0.56  
0.68  
0.82  
1
OUTPUT  
VOLTAGE (V)  
R1 (kΩ)  
R2 (kΩ)  
C8 + C9 (µF)  
MIN  
0.33  
0.33  
0.47  
0.47  
0.56  
0.68  
0.82  
1
MAX  
1
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
6.65  
7.5  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10 to 44  
10 to 44  
10 to 44  
10 to 44  
10 to 44  
10 to 44  
10 to 44  
10 to 44  
10 to 44  
1
10  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
3.3  
15  
20  
31.6  
45.3  
73.2  
97.6  
1
1.5  
1.5  
6.5  
1
1.5  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 公式 4, 公式 5, and  
公式 6. The inductor saturation current rating must be greater than the calculated peak current and the RMS or  
heating current rating must be greater than the calculated RMS current.  
V
- VOUT  
VOUT  
IN(MAX)  
IlP-P  
IlPEAK = IO  
ILO(RMS)  
=
ì
V
LO ì fSW  
IN(MAX)  
(4)  
(5)  
IlP-P  
2
+
1
2
2
=
IO  
+
IlP-P  
12  
(6)  
For this design example, the calculated peak current is 3.63 A and the calculated RMS current is 3.02 A. The  
inductor used is a WE 744311150 with a rated current of 11 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS563240 is intended for  
use with ceramic or other low ESR capacitors. Recommended values range from 10 µF to 44 µF. Use 公式 7 to  
determine the required RMS current rating for the output capacitor.  
VOUT ì V - VOUT  
(
)
IN  
ICO(RMS)  
=
12 ì V ì LO ì fSW  
IN  
(7)  
For this design one Murata GRM31CR61A226KE19 22-µF output capacitor is used. The typical ESR is 2 mΩ.  
The calculated RMS current is 0.365 A and output capacitor is rated for 4 A.  
8.2.2.3 Input Capacitor Selection  
The TPS563240 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An additional 0.1-µF  
capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage  
rating needs to be greater than the maximum input voltage.  
8.2.2.4 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. TI  
recommends to use a ceramic capacitor.  
8.2.2.5 Dropout  
With a constant 1.4-MHz switching frequency, there is a minimum input voltage limit for a given output voltage to  
be regulated. This is due to the minimum off time limit. If the input voltage less than the minimum input voltage  
limit, the output voltage drops accordingly, which is called dropout condition. 8 and 9 show the typical  
dropout curve for 3.3 V and 5 V output voltage with 3 A and 1.5 A load respectively. 公式 8 can be used to  
estimate this minimum input voltage limit.  
8176  
59  
:
;
+ 4@OH + 4. × +1 × kPKBB (IEJ ) F P@1 F P@2o + (8 + 4. × +1) × (P@1 + P@2  
)
@
(
8
=
+ (4@OD + 4.) × +1  
+0(/+0)  
1
59  
F PKBB (IEJ )  
(
where  
VOUT = target output voltage  
FSW = maximum switching frequency including tolerance  
toff(min) = minimum off time including tolerance  
Rdsl = low side FET on resistance  
Rdsh = high side FET on resistance  
RL = inductor DC resistance  
IO = maximum load current  
td1 = dead time between high side FET off and low side FET on, 15nS typical  
td2 = dead time between low side FET off and high side FET on, 10nS typical  
Vd = forward voltage of low side FET body diode  
(8)  
15  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
 
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
8.2.3 Application Curves  
TA = 25°C, VIN = 12 V (unless otherwise noted)  
3.33  
3.32  
3.31  
3.3  
3.31  
3.305  
3.3  
3.295  
3.29  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.285  
3.28  
3.275  
3.27  
3.265  
3.26  
Vin = 6.5V  
Vin = 12V  
Vin = 17V  
0A Load  
1.5A Load  
3A Load  
3.255  
0
0.5  
1
1.5  
2
2.5  
3
6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.517  
Input Voltage (V)  
Output Current (A)  
D001  
D001  
20. Load Regulation  
21. Line Regulation  
23. Input Voltage Ripple  
25. Output Voltage Ripple  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin = 6.5V  
Vin = 9V  
Vin = 12V  
Vin = 15V  
Vin = 17V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D001  
IOUT = 3 A  
22. Efficiency  
IOUT = 0 A  
IOUT = 5 mA  
24. Output Voltage Ripple  
16  
版权 © 2018, Texas Instruments Incorporated  
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
IOUT = 10 mA  
IOUT = 0.25 A  
26. Output Voltage Ripple  
27. Output Voltage Ripple  
IOUT = 3 A  
Slew rate is 1.6A/µs  
29. Transient Response, 0.6 to 2.4A  
28. Output Voltage Ripple  
Slew rate is 1.6A/µs  
30. Transient Response, 0 to 3 A  
IOUT = 0 A  
31. Start Up Relative to VIN  
版权 © 2018, Texas Instruments Incorporated  
17  
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
IOUT = 3 A  
IOUT = 0 A  
33. Shutdown Relative to VIN  
32. Start-Up Relative to EN  
IOUT = 3 A  
34. Shutdown Relative to EN  
9 Power Supply Recommendations  
TPS563240 is designed to operate from input supply voltage in the range of 4.5 V to 17 V. Buck converters  
require the input voltage to be higher than the output voltage for proper operation.  
18  
版权 © 2018, Texas Instruments Incorporated  
TPS563240  
www.ti.com.cn  
ZHCSJ66 DECEMBER 2018  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not suggest routing SW copper under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
Trace on the  
GND  
bottom layer  
VOUT  
Additional  
Vias to the  
GND plane  
OUTPUT  
CAPACITOR  
BOOST  
CAPACITOR  
GND  
SW  
BST  
FEEDBACK  
RESISTORS  
TO ENABLE  
CONTROL  
EN  
FB  
OUTPUT  
INDUCTOR  
VIN  
VIN  
GND trace under IC  
On top layer  
INPUT BYPASS  
CAPACITOR  
GND  
35. Example Layout  
版权 © 2018, Texas Instruments Incorporated  
19  
TPS563240  
ZHCSJ66 DECEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
D-CAP3, 无声, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
Out-of-Audio is a trademark of #IMPLIED.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS563240DDCR  
TPS563240DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
3240  
3240  
Samples  
Samples  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
Addendum-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS563249

17V、3A、恒定 1.4MHz 同步降压稳压器
TI

TPS563249DDCR

17V、3A、恒定 1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563249DDCT

17V、3A、恒定 1.4MHz 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563252

3-V to 17-V input voltage, 3-A, 1.2-Mhz synchronous buck converter in SOT563
TI

TPS563252DRLR

3-V to 17-V input voltage, 3-A, 1.2-Mhz synchronous buck converter in SOT563 | DRL | 6 | -40 to 125
TI

TPS563257

3-V to 17-V input voltage, 3-A, 1.2-Mhz synchronous buck converter in SOT563
TI

TPS563257DRLR

3-V to 17-V input voltage, 3-A, 1.2-Mhz synchronous buck converter in SOT563 | DRL | 6 | -40 to 125
TI

TPS5633

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS563300

采用 SOT-583 封装、3.8V 至 28V 输入、3A 同步降压转换器
TI

TPS563300DRLR

采用 SOT-583 封装、3.8V 至 28V 输入、3A 同步降压转换器 | DRL | 8 | -40 to 150
TI

TPS56339

4.5V 至 24V 输入、3A 输出同步降压转换器
TI

TPS56339DDCR

4.5V 至 24V 输入、3A 输出同步降压转换器 | DDC | 6 | -40 to 125
TI