TPS61088RHLT [TI]

10A 全集成同步升压转换器 | RHL | 20 | -40 to 125;
TPS61088RHLT
型号: TPS61088RHLT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10A 全集成同步升压转换器 | RHL | 20 | -40 to 125

升压转换器 开关
文件: 总35页 (文件大小:2103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61088  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
TPS61088 10A 全集成同步升压转换器  
1 特性  
3 说明  
2.7V 12V 输入电压范围  
4.5V 12.6V 输出电压范围  
10A 开关电流  
• 效率高91%VIN = 3.3VVOUT = 9V IOUT  
3 A )  
TPS61088 是一款高功率密度的全集成同步升压转换  
配有一个 11mΩ率开关和一个 13mΩ流器开  
可为便携式系统提供高效率的小尺寸解决方案。  
TPS61088 2.7V 12V 的宽输入电压范围可支  
持由单芯或两芯锂电池供电的应用。该器件具备 10A  
开关电流能力并且能够提供高达 12.6V 的输出电  
压。  
=
• 在轻负载条件下PFM 模式和强PWM 模式  
可供选择  
• 关断期间VIN 引脚的电流1.0µA  
• 可通过电阻编程的开关峰值电流限制  
• 可调开关频率200kHz 2.2MHz  
• 可编程软启动  
13.2V 输出过压保护  
• 逐周期过流保护  
• 热关断  
20 4.50mm × 3.50mm VQFN 封装  
• 使TPS61088 并借WEBENCH Power  
Designer 创建定制设计方案  
TPS61088 采用自适应恒定关断时间峰值电流控制拓扑  
结构来调节输出电压。在中等到重负载条件下,  
TPS61088 在脉宽调制 (PWM) 模式下工作。在轻负载  
条件下该器件可通过 MODE 引脚选择下列两种工作  
模式之一。一种是可提高效率的脉宽调制 (PFM) 模  
另一种是可避免因开关频率较低而引发应用问题的  
强制 PWM 式。可通过外部电阻在 200kHz 至  
2.2MHz 围内调节 PWM 式下的开关频率。  
TPS61088 还实现了可编程的软启动功能和可调节的开  
关峰值电流限制功能。此外该器件还提供有 13.2V  
输出过压保护、逐周期过流保护和热关断保护。  
2 应用  
便携式刷卡(POS) 终端  
Bluetooth扬声器  
• 电子烟  
Thunderbolt 接口  
快充移动电源  
TPS61088 采用 20 引脚 4.50mm × 3.50mm VQFN 封  
装。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TPS61088  
封装  
VQFN (20)  
4.50mm × 3.50mm  
C6  
L1  
VIN  
VOUT  
BOOT  
SW  
VOUT  
FB  
C4  
R1  
FSW  
VIN  
R2  
R3  
C2  
C1  
R5  
R4  
C5  
VCC  
EN  
COMP  
ILIM  
C3  
ON  
OFF  
C7  
SS  
PGND  
AGND  
MODE  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCM8  
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
Table of Contents  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Application.................................................... 14  
9 Power Supply Recommendations................................22  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Example...................................................... 23  
10.3 Thermal Considerations..........................................24  
11 Device and Documentation Support..........................25  
11.1 Device Support........................................................25  
11.2 接收文档更新通知................................................... 25  
11.3 支持资源..................................................................25  
11.4 Trademarks............................................................. 25  
11.5 Electrostatic Discharge Caution..............................25  
11.6 术语表..................................................................... 25  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................12  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (February 2019) to Revision D (August 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
Changes from Revision B (September 2018) to Revision C (February 2019)  
Page  
Corrected spelling of 'resister' to 'resistor' in the Pin Functions table.................................................................3  
Added caption to Functional Block Diagram as auto-number 7-1................................................................10  
Added cross-reference hyperlink in the Enable and Startup section pointing to C7 reference in 8-1..........10  
Inserted missing cross-reference hyperlink in 8.2.2.4 section pointing to 8-1 circuit in the Typical  
Application section............................................................................................................................................15  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61088  
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
5 Pin Configuration and Functions  
EN  
FSW  
SW  
ILIM  
COMP  
FB  
SW  
VOUT  
VOUT  
VOUT  
MODE  
NC  
RHL  
SW  
SW  
PGND  
BOOT  
VIN  
5-1. 20-Pin VQFN With Thermal Pad RHL Package(Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Output of the internal regulator. A ceramic capacitor of more than 1.0 µF is required between  
this pin and ground.  
VCC  
1
O
Enable logic input. Logic high level enables the device. Logic low level disables the device  
and turns it into shutdown mode.  
EN  
2
3
I
I
I
FSW  
SW  
The switching frequency is programmed by a resistor between this pin and the SW pin.  
The switching node pin of the converter. It is connected to the drain of the internal low-side  
power MOSFET and the source of the internal high-side power MOSFET.  
4, 5, 6, 7  
Power supply for high-side MOSFET gate driver. A ceramic capacitor of 0.1 µF must be  
connected between this pin and the SW pin.  
BOOT  
VIN  
8
9
O
I
IC power supply input  
Soft-start programming pin. An external capacitor sets the ramp rate of the reference voltage  
of the internal error amplifier during soft start.  
SS  
10  
O
No connection inside the device. Connect these two pins to the ground plane on the PCB for  
good thermal dissipation.  
NC  
11, 12  
13  
Operation mode selection pin for the device in light load condition. When this pin is  
connected to ground, the device works in PWM mode. When this pin is left floating, the  
device works in PFM mode.  
MODE  
I
VOUT  
FB  
14, 15, 16  
17  
O
I
Boost converter output  
Voltage feedback. Connect to the center tape of a resistor divider to program the output  
voltage.  
Output of the internal error amplifier, the loop compensation network must be connected  
between this pin and the AGND pin.  
COMP  
ILIM  
18  
19  
O
O
Adjustable switch peak current limit. An external resistor must be connected between this pin  
and the AGND pin.  
AGND  
PGND  
20  
21  
Signal ground of the IC  
Power ground of the IC. It is connected to the source of the low-side MOSFET.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61088  
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
0.3  
40  
65  
MAX  
SW + 7  
14.5  
7
UNIT  
BOOT  
VIN, SW, FSW, VOUT  
Voltage(2)  
V
EN, VCC, SS, COMP, MODE  
ILIM, FB  
3.6  
TJ  
Operating junction temperature  
Storage temperature  
150  
°C  
°C  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
12  
UNIT  
VIN  
VOUT  
L
Input voltage range  
V
V
Output voltage range  
4.5  
12.6  
10  
Inductance, effective value  
Input capacitance, effective value  
Output capacitance, effective value  
Operating junction temperature  
0.47  
10  
2.2  
47  
µH  
µF  
µF  
°C  
CI  
CO  
TJ  
6.8  
1000  
125  
40  
6.4 Thermal Information  
TPS61088  
RHL 20 PINS  
Standard  
38.8  
TPS61088  
THERMAL METRIC(1)  
RHL 20 PINS  
UNIT  
EVM  
29.7  
N/A  
N/A  
0.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
39.8  
15.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJT  
15.5  
9.8  
ψJB  
RθJC(bot)  
3.1  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61088  
 
 
 
 
 
 
 
 
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
6.5 Electrical Characteristics  
Minimum and maximum values are at VIN = 2.7 V to 5.5 V and TJ = -40°C to 125°C. Typical values are at VIN = 3.6 V and TJ  
= 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
2.7  
12  
2.7  
2.5  
V
V
VIN rising  
VIN falling  
Undervoltage lockout (UVLO)  
threshold  
VIN_UVLO  
2.4  
200  
2.1  
V
VIN_HYS  
VIN UVLO hysteresis  
UVLO threshold  
mV  
V
VCC_UVLO  
VCC falling  
Operating quiescent current from the  
VIN pin  
1
3
µA  
µA  
IC enabled, VEN = 2 V, no load, RILIM = 100  
kΩ, VFB = 1.3 V, VOUT = 12 V, TJ up to 85°C  
IQ  
Operating quiescent current from the  
VOUT pin  
110  
250  
IC disabled, VEN = 0 V, no load, no feedback  
resistor divider connected to the VOUT pin, TJ  
up to 85°C  
ISD  
Shutdown current into the VIN pin  
1
3
µA  
V
VCC  
VCC regulation  
IVCC = 5 mA, VIN = 8 V  
5.8  
EN AND MODE INPUT  
VENH  
EN high threshold voltage  
VCC = 6 V  
VCC = 6 V  
VCC = 6 V  
VCC = 6 V  
VCC = 6 V  
VCC = 6 V  
1.2  
4.0  
V
V
VENL  
EN low threshold voltage  
0.4  
1.5  
REN  
EN internal pull-down resistance  
MODE high threshold voltage  
MODE low threshold voltage  
MODE internal pull-up resistance  
800  
800  
kΩ  
V
VMODEH  
VMODEL  
RMODE  
OUTPUT  
VOUT  
V
kΩ  
Output voltage range  
4.5  
12.6  
V
V
PWM mode  
PFM mode  
VFB = 1.2 V  
1.186  
1.204  
1.212  
1.222  
VREF  
Reference voltage at the FB pin  
ILKG_FB  
ISS  
FB pin leakage current  
100  
nA  
Soft-start charging current  
5
μA  
ERROR AMPLIFIER  
ISINK  
COMP pin sink current  
VFB = VREF +200 mV, VCOMP = 1.5 V  
VFB = VREF 200 mV, VCOMP = 1.5 V  
VFB = 1 V, RILIM = 100 kΩ  
20  
20  
µA  
µA  
ISOURCE  
VCCLPH  
VCCLPL  
GEA  
COMP pin source current  
High clamp voltage at the COMP pin  
Low clamp voltage at the COMP pin  
Error amplifier transconductance  
2.3  
1.4  
190  
V
VFB = 1.5 V, RILIM = 100 kΩ, MODE pin floating  
VCOMP = 1.5 V  
µA/V  
POWER SWITCH  
High-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
CURRENT LIMIT  
Peak switch current limit in PFM mode  
VCC = 6 V  
VCC = 6 V  
13  
11  
18  
mΩ  
mΩ  
RDS(on)  
16.5  
10.6  
9.0  
11.9  
10.3  
13  
A
A
V
RILIM = 100 kΩ, VCC = 6 V, MODE pin floating  
ILIM  
Peak switch current limit in FPWM  
mode  
RILIM = 100 kΩ, VCC = 6 V, MODE pin short to  
ground  
11.4  
VILIM  
Reference voltage at the ILIM pin  
1.204  
SWITCHING FREQUENCY  
Switching frequency  
Minimum on-time  
500  
90  
kHz  
ns  
ƒSW  
RFREQ = 301 kΩ, VIN = 3.6 V, VOUT = 12 V  
RFREQ = 301 kΩ, VIN = 3.6 V, VOUT = 12 V  
tON_min  
180  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61088  
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
Minimum and maximum values are at VIN = 2.7 V to 5.5 V and TJ = -40°C to 125°C. Typical values are at VIN = 3.6 V and TJ  
= 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PROTECTION  
Output overvoltage protection  
threshold  
VOVP  
VOUT rising  
12.7  
13.2  
0.25  
13.6  
V
V
Output overvoltage protection  
hysteresis  
VOVP_HYS  
VOUT falling below VOVP  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61088  
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
6.6 Typical Characteristics  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
5-V Output  
9-V Output  
12-V Output  
3-V Input  
3.6-V Input  
4.2-V Input  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D002  
D001  
6-2. Efficiency vs Output Current, VIN = 3.6 V,  
6-1. Efficiency vs Output Current, VOUT = 9 V,  
FPWM  
FPWM  
100%  
90%  
80%  
70%  
60%  
50%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
40%  
3-V Input  
3.6-V Input  
4.2-V Input  
5-V Output  
9-V Output  
12-V Output  
30%  
20%  
30%  
20%  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D003  
D004  
6-3. Efficiency vs Output Current, VOUT = 9 V,  
6-4. Efficiency vs Output Current, VIN = 3.6 V,  
PFM  
PFM  
14  
2500  
2000  
1500  
1000  
500  
PFM Mode  
FPWM Mode  
12  
10  
8
6
4
2
0
0
0
100 200 300 400 500 600 700 800 900  
Resistance (kW)  
80  
120  
160  
200  
240  
280  
320  
360  
D006  
Resistance (kW)  
D005  
6-6. Switching Frequency vs Setting Resistance  
6-5. Current Limit vs Setting Resistance  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61088  
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
1.21  
1.209  
1.208  
1.207  
1.206  
1.205  
1.204  
1.203  
1.202  
1.201  
1.2  
140  
120  
100  
80  
60  
40  
20  
0
-40  
-20  
0
20  
40  
60  
Temperature (°C)  
80  
100  
1201
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
D007  
D008  
6-7. Reference Voltage vs Temperature  
6-8. Quiescent Current vs Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D009  
6-9. Shutdown Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61088  
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
7 Detailed Description  
7.1 Overview  
The TPS61088 is a fully-integrated synchronous boost converter with a 11-mΩ power switch and a 13-mΩ  
rectifier switch to output high power from a single-cell or two-cell Lithium batteries. The device is capable of  
providing an output voltage of 12.6 V and delivering up to 30-W power from a single-cell Lithium battery.  
The TPS61088 uses adaptive constant off-time peak current control topology to regulate the output voltage. In  
moderate-to-heavy load condition, the TPS61088 works in the quasi-constant frequency pulse width modulation  
(PWM) mode. The switching frequency in PWM mode is adjustable ranging from 200 kHz to 2.2 MHz by an  
external resistor. In light load condition, the device has two operation modes selected by the MODE pin. When  
the MODE pin is left floating, the TPS61088 works in pulse frequency modulation (PFM) mode. The PFM mode  
brings high efficiency at the light load. When the MODE pin is short to ground, the TPS61088 works in forced  
PWM mode (FPWM). The FPWM mode can avoid the acoustic noise and other problems caused by the low  
switching frequency. The TPS61088 implements cycle-by-cycle current limit to protect the device from overload  
conditions during boost switching. The switch peak current limit is programmable by an external resistor. The  
TPS61088 uses external loop compensation, which provides flexibility to use different inductors and output  
capacitors. The adaptive off-time peak current control scheme gives excellent transient line and load response  
with minimal output capacitance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61088  
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
7.2 Functional Block Diagram  
L1  
VIN  
C3  
C1  
SW  
VIN  
BOOT  
VOUT  
VOUT  
C2  
Deadtime  
Control Logic  
C4  
LDO  
VCC  
R3  
PGND  
Comp  
Comp  
C5  
CLMIT  
FB  
FSW  
gm  
R4  
R1  
SS  
C7  
1/K  
Comp  
SW  
VIN  
COMP  
EN  
Vref  
R2  
C6  
SS Vref  
Vref  
Shutdown  
Shutdown  
Control  
AGND  
ILIM  
ON/  
OFF  
CLMIT  
OVP  
VOUT  
VIN  
UVLO  
Mode  
Selection  
R5  
Thermal  
Shutdown  
MODE  
7-1. Functional Block Diagram  
7.3 Feature Description  
7.3.1 Enable and Start-up  
The TPS61088 has an adjustable soft start function to prevent high inrush current during start-up. To minimize  
the inrush current during start-up, an external capacitor, connected to the SS pin and charged with a constant  
current, is used to slowly ramp up the internal positive input of the error amplifier. When the EN pin is pulled  
high, the soft-start capacitor CSS (C7 in 8-1) is charged with a constant current of 5 μA typically. During this  
time, the SS pin voltage is compared with the internal reference (1.204 V), the lower one is fed into the internal  
positive input of the error amplifier. The output of the error amplifier (which determines the inductor peak current  
value) ramps up slowly as the SS pin voltage goes up. The soft-start phase is completed after the SS pin voltage  
exceeds the internal reference (1.204 V). The larger the capacitance at the SS pin, the slower the ramp of the  
output voltage and the longer the soft-start time. A 47-nF capacitor is usually sufficient for most applications.  
When the EN pin is pulled low, the voltage of the soft-start capacitor is discharged to ground.  
Use 方程1 to calculate the soft-start time.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61088  
 
 
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
VREF ìCSS  
ISS  
tSS  
=
(1)  
where  
tSS is the soft start time  
VREF is the internal reference voltage of 1.204 V  
CSS is the capacitance between the SS pin and ground  
ISS is the soft-start charging current of 5 µA  
7.3.2 Undervoltage Lockout (UVLO)  
The UVLO circuit prevents the device from malfunctioning at low input voltage and the battery from excessive  
discharge. The TPS61088 has both VIN UVLO function and VCC UVLO function. It disables the device from  
switching when the falling voltage at the VIN pin trips the UVLO threshold VIN_UVLO , which is typically 2.4 V. The  
device starts operating when the rising voltage at the VIN pin is 200 mV above VIN_UVLO. It also disables the  
device when the falling voltage at the VCC pin trips the UVLO threshold VCC_UVLO, which is typically 2.1 V.  
7.3.3 Adjustable Switching Frequency  
This device features a wide adjustable switching frequency ranging from 200 kHz to 2.2 MHz. The switching  
frequency is set by a resistor connected between the FSW pin and the SW pin of the TPS61088. A resistor must  
always be connected from the FSW pin to SW pin for proper operation. The resistor value required for a desired  
frequency can be calculated using 方程2.  
VOUT  
1
4ì(  
- tDELAY  
ì
)
ƒSW  
V
IN  
RFREQ  
=
CFREQ  
(2)  
where  
RFREQ is the resistance connected between the FSW pin and the SW pin  
CFREQ is 23 pF  
• ƒSW is the desired switching frequency  
tDELAY is 89 ns  
VIN is the input voltage  
VOUT is the output voltage  
7.3.4 Adjustable Peak Current Limit  
To avoid an accidental large peak current, an internal cycle-by-cycle current limit is adopted. The low-side switch  
is turned off immediately as soon as the switch current touches the limit. The peak switch current limit can be set  
by a resistor at the ILIM pin to ground. The relationship between the current limit and the resistance depends on  
the status of the MODE pin.  
When the MODE pin is floating, namely the TPS61088, is set to work in the PFM mode at light load, use 方程式  
3 to calculate the resistor value:  
1190000  
I
=
LIM  
R
ILIM  
(3)  
where  
RILIM is the resistance between the ILIM pin and ground  
ILIM is the switch peak current limit  
When the resistor value is 100 kΩ, the typical current limit is 11.9 A.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61088  
 
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
When the MODE pin is connected to ground, namely the TPS61088 is set to work in forced PWM mode at light  
load, use 方程4 to calculate the resistor value.  
1190000  
I
=
-1.6  
LIM  
R
ILIM  
(4)  
When the resistor value is 100 kΩ, the typical current limit is 10.3 A.  
Considering the device variation and the tolerance over temperature, the minimum current limit at the worst case  
can be 1.3 A lower than the value calculated by above equations.  
7.3.5 Overvoltage Protection  
If the output voltage at the VOUT pin is detected above 13.2 V (typical value), the TPS61088 stops switching  
immediately until the voltage at the VOUT pin drops the hysteresis value lower than the output overvoltage  
protection threshold. This function prevents overvoltage on the output and secures the circuits connected to the  
output from excessive overvoltage.  
7.3.6 Thermal Shutdown  
A thermal shutdown is implemented to prevent damages due to excessive heat and power dissipation. Typically,  
the thermal shutdown happens at a junction temperature of 150°C. When the thermal shutdown is triggered, the  
device stops switching until the junction temperature falls below typically 130°C, then the device starts switching  
again.  
7.4 Device Functional Modes  
7.4.1 Operation  
The synchronous boost converter TPS61088 operates at a quasi-constant frequency pulse width modulation  
(PWM) in moderate-to-heavy load condition. Based on the VIN to VOUT ratio, a circuit predicts the required off-  
time of the switching cycle. At the beginning of each switching cycle, the low-side N-MOSFET switch, as shown  
in 7.2, is turned on, and the inductor current ramps up to a peak current that is determined by the output of  
the internal error amplifier. After the peak current is reached, the current comparator trips. It turns off the low-side  
N-MOSFET switch and the inductor current goes through the body diode of the high-side N-MOSFET in a dead-  
time duration. After the dead-time duration, the high-side N-MOSFET switch is turned on. Since the output  
voltage is higher than the input voltage, the inductor current decreases. The high-side switch is not turned off  
until the fixed off-time is reached. After a short dead-time duration, the low-side switch turns on again and the  
switching cycle is repeated.  
In light load condition, the TPS61088 implements two operation modes, PFM mode and forced PWM mode, to  
meet different application requirements. The operation mode is set by the status of the MODE pin. When the  
MODE pin is connected to ground, the device works in forced PWM mode. When the MODE pin is left floating,  
the device works in PFM mode.  
7.4.1.1 PWM Mode  
In forced PWM mode, the TPS61088 keeps the switching frequency unchanged in light load condition. When the  
load current decreases, the output of the internal error amplifier decreases as well to keep the inductor peak  
current down, delivering less power from input to output. When the output current further reduces, the current  
through the inductor decreases to zero during the off-time. The high-side N-MOSFET is not turned off even if the  
current through the MOSFET is zero. Thus, the inductor current changes its direction after it runs to zero. The  
power flow is from output side to input side. The efficiency is low in this mode. But with the fixed switching  
frequency, there is no audible noise and other problems which might be caused by low switching frequency in  
light load condition.  
7.4.1.2 PFM Mode  
The TPS61088 improves the efficiency at light load with PFM mode. When the converter operates in light load  
condition, the output of the internal error amplifier decreases to make the inductor peak current down, delivering  
less power to the load. When the output current further reduces, the current through the inductor decrease to  
zero during the off-time. Once the current through the high side N-MOSFET is zero, the high-side MOSFET is  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61088  
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
turned off until the beginning of the next switching cycle. When the output of the error amplifier continuously  
goes down and reaches a threshold with respect to the peak current of ILIM / 12, the output of the error amplifier  
is clamped at this value and does not decrease any more. If the load current is smaller than what the TPS61088  
delivers, the output voltage increases above the nominal setting output voltage. The TPS61088 extends its off-  
time of the switching period to deliver less energy to the output and regulate the output voltage to 0.7% higher  
than the nominal setting voltage. With PFM operation mode, the TPS61088 keeps the efficiency above 80%  
even when the load current decreases to 1 mA. In addition, the output voltage ripple is much smaller at light load  
due to low peak current. Refer to 7-2.  
Output Voltage  
PFM mode at light load  
1.007 × VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
7-2. PFM Mode Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61088  
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS61088 is designed for outputting voltage up to 12.6 V with 10-A switch current capability to deliver more  
than 30-W power. The TPS61088 operates at a quasi-constant frequency pulse-width modulation (PWM) in  
moderate-to-heavy load condition. In light load condition, the converter can either operate in PFM mode or in  
forced PWM mode according to the mode selection. The PFM mode brings high efficiency over entire load  
range, but PWM mode can avoid the acoustic noise as the switching frequency is fixed. The converter uses the  
adaptive constant off-time peak current control scheme, which provides excellent transient line and load  
response with minimal output capacitance. The TPS61088 can work with different inductor and output capacitor  
combination by external loop compensation. It also supports adjustable switching frequency ranging from 200  
kHz to 2.2 MHz.  
8.2 Typical Application  
C6  
0.1 µF  
VOUT = 9 V  
IOUT = 3 A  
1.2 µH  
L1  
VIN = 3.3 to 4.2 V  
VOUT  
FB  
BOOT  
C9  
C4  
SW  
R1  
360 k  
R2  
R3  
1 µF  
3× 22 µF  
FSW  
VIN  
255 kꢀ  
C1  
56 kꢀ  
C8  
10 µF  
R5  
R4  
C2  
C5  
COMP  
ILIM  
VCC  
C3  
0.1 µF  
100 kꢀ  
ON  
2.2 µF  
EN  
OFF  
C7  
PGND  
SS  
47 nF  
AGND  
MODE  
8-1. TPS61088 3.3 V to 9-V/3-A Output Converter  
8.2.1 Design Requirements  
8-1. Design Parameters  
DESIGN PARAMETERS  
Input voltage range  
EXAMPLE VALUES  
3.3 to 4.2 V  
Output voltage  
9 V  
100 mV peak to peak  
3 A  
Output voltage ripple  
Output current rating  
Operating frequency  
Operation mode at light load  
600 kHz  
PFM  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the TPS61088 device with the WEBENCH® Power Designer.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61088  
 
 
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
8.2.2.2 Setting Switching Frequency  
The switching frequency is set by a resistor connected between the FSW pin and the SW pin of the TPS61088.  
The resistor value required for a desired frequency can be calculated using 方程5.  
VOUT  
1
4ì(  
- tDELAY  
ì
)
ƒSW  
V
IN  
RFREQ  
=
CFREQ  
(5)  
where  
RFREQ is the resistance connected between the FSW pin and the SW pin  
CFREQ is 23 pF  
• ƒSW is the desired switching frequency  
tDELAY is 89 ns  
VIN is the input voltage  
VOUT is the output voltage  
8.2.2.3 Setting Peak Current Limit  
The peak input current is set by selecting the correct external resistor value correlating to the required current  
limit. Since the TPS61088 is configured to work in PFM mode in light load condition, use 方程式 6 to calculate  
the correct resistor value:  
1190000  
I
=
LIM  
R
ILIM  
(6)  
where  
RILIM is the resistance connected between the ILIM pin and ground  
ILIM is the switching peak current limit  
For a typical current limit of 11.9 A, the resistor value is 100 kΩ. Considering the device variation and the  
tolerance over temperature, the minimum current limit at the worst case can be 1.3 A lower than the value  
calculated by 方程式 6. The minimum current limit must be higher than the required peak switch current at the  
lowest input voltage and the highest output power to make sure the TPS61088 does not hit the current limit and  
can still regulate the output voltage in these conditions.  
8.2.2.4 Setting Output Voltage  
The output voltage is set by an external resistor divider (R1, R2 in 8-1). Typically, a minimum current of 20  
μA flowing through the feedback divider gives good accuracy and noise covering. A standard 56-kΩ resistor is  
typically selected for low-side resistor R2.  
The value of R1 is then calculated as:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61088  
 
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
(VOUT - VREF )ìR2  
VREF  
R1 =  
(7)  
8.2.2.5 Inductor Selection  
Because the selection of the inductor affects the steady state operation of the power supply, transient behavior,  
loop stability, and boost converter efficiency, the inductor is the most important component in switching power  
regulator design. Three most important specifications to the performance of the inductor are the inductor value,  
DC resistance, and saturation current.  
The TPS61088 is designed to work with inductor values between 0.47 and 10 µH. A 0.47-µH inductor is typically  
available in a smaller or lower-profile package, while a 10-µH inductor produces lower inductor current ripple. If  
the boost output current is limited by the peak current protection of the IC, using a 10-µH inductor can maximize  
the output current capability of the controller.  
Inductor values can have ±20% or even ±30% tolerance with no current bias. When the inductor current  
approaches saturation level, its inductance can decrease 20% to 35% from the value at 0-A current depending  
on how the inductor vendor defines saturation. When selecting an inductor, make sure its rated current,  
especially the saturation current, is larger than its peak current during the operation.  
Follow 方程式 8 to 方程式 10 to calculate the peak current of the inductor. To calculate the current in the worst  
case, use the minimum input voltage, maximum output voltage, and maximum load current of the application. To  
leave enough design margin, TI recommends using the minimum switching frequency, the inductor value with –  
30% tolerance, and a low-power conversion efficiency for the calculation.  
In a boost regulator, calculate the inductor DC current as in 方程8.  
VOUT ìIOUT  
IDC  
=
V ì h  
IN  
(8)  
where  
VOUT is the output voltage of the boost regulator  
IOUT is the output current of the boost regulator  
VIN is the input voltage of the boost regulator  
ηis the power conversion efficiency  
Calculate the inductor current peak-to-peak ripple as in 方程9.  
1
IPP  
=
1
1
L ì(  
+
)ì ƒSW  
VOUT - V  
V
IN  
IN  
(9)  
where  
IPP is the inductor peak-to-peak ripple  
L is the inductor value  
• ƒSW is the switching frequency  
VOUT is the output voltage  
VIN is the input voltage  
Therefore, the peak current, ILpeak, seen by the inductor is calculated with 方程10.  
IPP  
ILpeak = IDC  
+
2
(10)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS61088  
 
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
Set the current limit of the TPS61088 higher than the peak current ILpeak. Then select the inductor with saturation  
current higher than the setting current limit.  
Boost converter efficiency is dependent on the resistance of its current path, the switching loss associated with  
the switching MOSFETs, and the core loss of the inductor. The TPS61088 has optimized the internal switch  
resistance. However, the overall efficiency is affected significantly by the DC resistance (DCR) of the inductor,  
equivalent series resistance (ESR) at the switching frequency, and the core loss. Core loss is related to the core  
material and different inductors have different core loss. For a certain inductor, larger current ripple generates  
higher DCR and ESR conduction losses and higher core loss. Usually, a data sheet of an inductor does not  
provide the ESR and core loss information. If needed, consult the inductor vendor for detailed information.  
Generally, TI would recommend an inductor with lower DCR and ESR. However, there is a tradeoff among the  
inductance of the inductor, DCR and ESR resistance, and its footprint. Furthermore, shielded inductors typically  
have higher DCR than unshielded inductors. 8-2 lists recommended inductors for the TPS61088. Verify  
whether the recommended inductor can support your target application with the previous calculations and bench  
evaluation. In this application, the Sumida's inductor CDMC8D28NP-1R2MC is selected for its small size and  
low DCR.  
8-2. Recommended Inductors  
PART NUMBER  
L (µH)  
1.2  
DCR MAX  
(mΩ)  
SATURATION CURRENT /  
HEAT RATING CURRENT (A)  
SIZE MAX  
(L × W × H mm)  
VENDOR  
Sumida  
CDMC8D28NP-1R2MC  
744311150  
7.0  
7.2  
12.2 / 12.9  
14.0 / 11.0  
18 / 12  
9.5 x 8.7 x 3.0  
7.3 x 7.2 x 4.0  
1.5  
2.2  
2.2  
2.2  
Wurth  
Cyntec  
Cyntec  
Cyntec  
PIMB104T-2R2MS  
PIMB103T-2R2MS  
PIMB065T-2R2MS  
7.0  
11.2 × 10.3 × 4.0  
11.2 × 10.3 × 3.0  
7.4 × 6.8 × 5.0  
9.0  
16 / 13  
12.5  
12 / 10.5  
8.2.2.6 Input Capacitor Selection  
For good input voltage filtering, TI recommends low-ESR ceramic capacitors. The VIN pin is the power supply for  
the TPS61088. A 0.1-μF ceramic bypass capacitor is recommended as close as possible to the VIN pin of the  
TPS61088. The VCC pin is the output of the internal LDO. A ceramic capacitor of more than 1.0 μF is required  
at the VCC pin to get a stable operation of the LDO.  
For the power stage, because of the inductor current ripple, the input voltage changes if there is parasite  
inductance and resistance between the power supply and the inductor. It is recommended to have enough input  
capacitance to make the input voltage ripple less than 100mV. Generally, 10-μF input capacitance is sufficient  
for most applications.  
Note  
DC bias effect: High-capacitance ceramic capacitors have a DC bias effect, which has a strong  
influence on the final effective capacitance. Therefore, the right capacitor value must be chosen  
carefully. The differences between the rated capacitor value and the effective capacitance result from  
package size and voltage rating in combination with material. A 10-V rated 0805 capacitor with 10 μF  
can have an effective capacitance of less 5 μF at an output voltage of 5 V.  
8.2.2.7 Output Capacitor Selection  
For small output voltage ripple, TI recommends a low-ESR output capacitor like a ceramic capacitor. Typically,  
three 22-μF ceramic output capacitors work for most applications. Higher capacitor values can be used to  
improve the load transient response. Take care when evaluating the derating of a capacitor under DC bias. The  
bias can significantly reduce capacitance. Ceramic capacitors can lose most of their capacitance at rated  
voltage. Therefore, leave margin on the voltage rating to ensure adequate effective capacitance. From the  
required output voltage ripple, use the following equations to calculate the minimum required effective  
capacitance COUT  
:
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61088  
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
(VOUT - VIN_MIN)ìIOUT  
V
=
ripple _ dis  
VOUT ì ƒSW ìCOUT  
(11)  
(12)  
V
= ILpeak ìRC _ESR  
ripple _ESR  
where  
Vripple_dis is output voltage ripple caused by charging and discharging of the output capacitor  
Vripple_ESR is output voltage ripple caused by ESR of the output capacitor  
VIN_MIN is the minimum input voltage of boost converter  
VOUT is the output voltage  
IOUT is the output current  
ILpeak is the peak current of the inductor  
• ƒSW is the converter switching frequency  
RC_ESR is the ESR of the output capacitors  
8.2.2.8 Loop Stability  
The TPS61088 requires external compensation, which allows the loop response to be optimized for each  
application. The COMP pin is the output of the internal error amplifier. An external compensation network  
comprised of resistor R5, ceramic capacitors C5 and C8 is connected to the COMP pin.  
The power stage small signal loop response of constant off-time (COT) with peak current control can be  
modeled by 方程13.  
«
’≈  
÷∆  
÷
S
S
1 +  
1 -  
RO ì 1 - D  
2 ì p ì ƒESRZ «  
2 ì p ì ƒRHPZ ◊  
(
)
ì
GPS (S) =  
S
2 ì Rsense  
1 +  
2 ì p ì ƒP  
(13)  
where  
D is the switching duty cycle  
RO is the output load resistance  
Rsense is the equivalent internal current sense resistor, which is 0.08 Ω  
2
ƒP  
=
2p ì RO ì CO  
(14)  
(15)  
where  
CO is output capacitor  
1
ƒESRZ  
=
2p ì RESR ì CO  
where  
RESR is the equivalent series resistance of the output capacitor  
2
RO ì 1 - D  
(
)
ƒRHPZ  
=
2p ì L  
(16)  
The COMP pin is the output of the internal transconductance amplifier. 方程17 shows the small signal transfer  
function of compensation network.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61088  
 
TPS61088  
www.ti.com.cn  
Gc(S) =  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
«
÷
S
1 +  
2 ì p ì ƒCOMZ ◊  
GEA ì REA ì VREF  
VOUT  
ì
«
’≈  
÷
S
S
1 +  
1 +  
÷∆  
2 ì p ì ƒCOMP1 «  
2 ì p ì ƒCOMP2 ◊  
(17)  
where  
GEA is the transconductance of the amplifier  
REA is the output resistance of the amplifier  
VREF is the reference voltage at the FB pin  
VOUT is the output voltage  
• ƒCOMP1, ƒCOMP2 are the poles' frequency of the compensation network  
• ƒCOMZ is the zero's frequency of the compensation network  
The next step is to choose the loop crossover frequency, ƒC. The higher in frequency that the loop gain stays  
above zero before crossing over, the faster the loop response is. It is generally accepted that the loop gain cross  
over no higher than the lower of either 1/10 of the switching frequency, ƒSW, or 1/5 of the RHPZ frequency,  
ƒRHPZ  
.
Then set the value of R5, C5, and C8 (in 8-1) by following these equations.  
2pì VOUT ìRsense ì ƒC ìCO  
R5 =  
(1 œ D)ì VREF ìGEA  
(18)  
where  
• ƒC is the selected crossover frequency  
The value of C5 can be set by 方程19.  
RO ìCO  
C5 =  
2R5  
(19)  
(20)  
The value of C8 can be set by 方程20.  
RESR ì CO  
R5  
C8 =  
If the calculated value of C8 is less than 10 pF, it can be left open.  
Designing the loop for greater than 45° of phase margin and greater than 10-dB gain margin eliminates output  
voltage ringing during the line and load transient.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61088  
 
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
8.2.3 Application Curves  
Vout(AC)  
20 mV/div  
Vout(AC)  
100 mV/div  
Inductor  
Current  
2 A/div  
SW  
5 V/div  
SW  
5 V/div  
Inductor  
Current  
1 A/div  
8-3. Switching Waveforms in DCM  
8-2. Switching Waveforms in CCM  
Vout(AC)  
20 mV/div  
EN  
1 V/div  
SW  
5 V/div  
Vout  
2 V/div  
Inductor  
Current  
1 A/div  
Inductor  
Current  
2 A/div  
8-4. Switching Waveforms in PFM Mode  
8-5. Startup Waveforms  
EN  
1 V/div  
Output  
Current  
1 A/div  
Vout  
2 V/div  
Inductor  
Current  
2 A/div  
Vout(AC)  
500 mV/div  
8-7. Load Transient (VOUT = 9 V, IOUT = 1 to 2 A)  
8-6. Shutdown Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61088  
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
Input  
Voltage  
500 mV/div  
Vout(AC)  
100 mV/div  
8-8. Line Transient (VOUT = 9 V, VIN = 3.3 to 3.6 V)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61088  
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.7 V to 12 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or  
tantalum capacitor with a value of 47 μF.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61088  
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If layout is not carefully done, the regulator could suffer from instability and  
noise problems. To maximize efficiency, switch rise and fall times are very fast. To prevent radiation of high-  
frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the  
length and area of all traces connected to the SW pin, and always use a ground plane under the switching  
regulator to minimize interplane coupling.  
The input capacitor needs to be close to the VIN pin and GND pin in order to reduce the Iinput supply ripple.  
The layout should also be done with well consideration of the thermal as this is a high power density device. A  
thermal pad that improves the thermal capabilities of the package should be soldered to the large ground plate,  
using thermal vias underneath the thermal pad.  
10.2 Layout Example  
The bottom layer is a large ground plane connected to the PGND plane and AGND plane on top layer by vias.  
AGND  
L1  
EN  
FSW  
SW  
ILIM  
VIN  
COMP  
FB  
SW  
VOUT  
VOUT  
VOUT  
MODE  
NC  
SW  
SW  
VOUT  
BOOT  
VIN  
PGND  
CIN  
COUT  
PGND  
10-1. Bottom Layer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61088  
 
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
10.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions.  
Calculate the maximum allowable dissipation, PD(max), and keep the actual power dissipation less than or equal  
to PD(max). The maximum-power-dissipation limit is determined using 方程21.  
125 - TA  
RqJA  
PD(max)  
=
(21)  
where  
TA is the maximum ambient temperature for the application.  
RθJA is the junction-to-ambient thermal resistance given in the Thermal Information table.  
The TPS61088 comes in a thermally-enhanced VQFN package. This package includes a thermal pad that  
improves the thermal capabilities of the package. The real junction-to-ambient thermal resistance of the package  
greatly depends on the PCB type, layout, and thermal pad connection. Using thick PCB copper and soldering  
the thermal pad to a large ground plate enhance the thermal performance. Using more vias connects the ground  
plate on the top layer and bottom layer around the IC without solder mask also improves the thermal capability.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61088  
 
 
TPS61088  
www.ti.com.cn  
ZHCSDP8D MAY 2015 REVISED AUGUST 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the TPS61088 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
Bluetoothis a trademark of Bluetooth SIG.  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS61088  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61088RHLR  
TPS61088RHLT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHL  
RHL  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
S61088A  
S61088A  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-May-2023  
OTHER QUALIFIED VERSIONS OF TPS61088 :  
Automotive : TPS61088-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61088RHLR  
TPS61088RHLT  
VQFN  
VQFN  
RHL  
RHL  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.71  
3.71  
4.71  
4.71  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61088RHLR  
TPS61088RHLT  
VQFN  
VQFN  
RHL  
RHL  
20  
20  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
A
3.6  
3.4  
B
PIN 1 INDEX AREA  
4.6  
4.4  
C
1 MAX  
SEATING PLANE  
0.08 C  
2.05±0.1  
2X 1.5  
SYMM  
0.5  
0.3  
20X  
(0.2) TYP  
10  
11  
14X 0.5  
9
12  
SYMM  
21  
2X  
3.05±0.1  
3.5  
19  
2
0.29  
20X  
0.19  
0.1  
0.05  
20  
1
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4X (0.2)  
2X (0.55)  
4219071 / A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
1
20  
2X (0.4)  
20X (0.6)  
19  
2
20X (0.24)  
14X (0.5)  
SYMM  
21  
(3.05) (4.3)  
6X (0.525)  
2X (0.75)  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
9
12  
(R0.05) TYP  
(Ø0.2) VIA  
TYP)  
10  
11  
4X (0.2)  
4X  
(0.775)  
2X (0.55)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219071 / A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271)  
.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to theri  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
2X (1.5)  
(0.55)  
TYP  
(0.56)  
TYP  
1
20  
SOLDER MASK EDGE  
TYP  
20X (0.6)  
2
19  
20X (0.24)  
14X (0.5)  
SYMM  
(1.05)  
TYP  
(4.3)  
21  
6X  
(0.85)  
(R0.05) TYP  
METAL  
TYP  
12  
9
2X  
(0.775)  
2X (0.25)  
6X (0.92)  
11  
10  
4X (0.2)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219071 / A 05/2017  
NOTES: (continued)  
7.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61089

采用 2.0mm x 2.5mm VQFN 封装的 12.6V、7A 全集成同步升压转换器
TI

TPS61089RNRR

采用 2.0mm x 2.5mm VQFN 封装的 12.6V、7A 全集成同步升压转换器 | RNR | 11 | -40 to 125
TI

TPS61089RNRT

采用 2.0mm x 2.5mm VQFN 封装的 12.6V、7A 全集成同步升压转换器 | RNR | 11 | -40 to 125
TI

TPS61090

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61090EVM-029

EVALUATION MODULE
TI

TPS61090RSA

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61090RSAR

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61090RSARG4

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61091

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61091RSA

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61091RSAR

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61091RSARG4

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI