TPS650830ZCGR [TI]

用于 Skylake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | ZCG | 159 | -40 to 85;
TPS650830ZCGR
型号: TPS650830ZCGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于 Skylake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | ZCG | 159 | -40 to 85

集成电源管理电路
文件: 总116页 (文件大小:1853K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS650830  
ZHCSDM1 DECEMBER 2014  
TPS650830 面向移动计算机的简单而灵活的宽输入电压电源管理单元  
(PMU)  
1
1 特性  
5 个可重新配置的稳压器:  
用于实时时钟 (RTC) 域的备用电池/3.1V LDO 选择  
器输出  
可在宽输入电压和宽输出电流范围内保持高效  
可更改电压、电流和序列以优化系统  
电源检测和监视:适配器、电池 1 和电池 2  
过温保护比较器,用于堆叠式正温度系数 (PTC) 热  
敏电阻或单个负温度系数 (NTC) 热敏电阻  
4 个采用外部功率金属氧化物半导体场效应晶体  
(MOSFET) 的可变输出电压降压控制器:  
1Hz 嵌入式控制器 (EC) 唤醒时钟输出  
VR1 = 1VVR3 = 3.3VVR4 =  
1.2V/1.35V/1.1V(对于 DDRx  
VDDQ),VR5 = 5V  
先进的系统复位控制  
I2C 接口:标准模式 (100kHz),快速模式  
(400kHz),快速模式+ (1000kHz)  
VIN 范围:5.4V 24V  
采用外部功率 MOSFET,连续输出电流范围  
<1A >10A  
2 应用  
NVDC 或非 NVDC 电源系统架构  
1 个带有内部功率 MOSFET 的可变输出电压降  
压转换器:  
2 节、3 节或 4 节串联锂电池供电类产品  
平板电脑、超极本、二合一电脑和笔记本电脑  
移动 PC、一体化计算机、移动因特网设备  
VR2 = 1.8V  
VIN 范围:3V 3.6V  
高达 2A 的持续输出电流  
现场可编程逻辑门阵列 (FPGA),工业计量设备,  
个人医疗产品  
输出电压直流精度 ±1%;直流 + 交流精度  
±5%,支持差分输出电压感测  
3 说明  
在超低静态电流模式下,每个控制器或转换器的  
静态电流典型值为 30μA  
TPS650830 是一款单芯片解决方案电源管理集成电路  
(IC),专为最新的 Intel 处理器而设计,主要应用于由  
2 节、3 节或 4 节串联锂离子电池组供电且采用  
NVDC 或非 NVDC 电源架构的平板电脑、超极本和笔  
记本电脑。  
3 个固定输出电压低压降线性稳压器 (LDO):  
LDO11/2 VR4 固定输出电压 LDO(对于  
DDRx VTT(Vout = VDDQ/2)  
连续输出电流高达 1A,直流 + 交流精度  
±5%,峰值电流为 2A  
器件信息(1)  
LDO33.3V 固定输出电压 LDO,直流精度  
±1%,电流 < 40mA  
器件型号  
TPS650830  
封装  
NFBGA (168)  
NFBGA (159)  
封装尺寸(标称值)  
7.00mm x 7.00mm  
9.00mm x 9.00mm  
用于外部模数转换器 (ADC) 的高精度参考电  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
用于 EC_VCC 电源轨的 3.3V 负载开关  
LDO55V 固定输出电压 LDO,直流精度  
±1%,电流 < 100mA  
简化系统图  
TPS650830 PMIC  
Non-NVDC  
用于控制器和转换器栅极驱动的电源  
FET FET  
ADAPTOR  
VBATA  
FET  
CHARGER  
FET  
FET  
VR5, 5V  
NVDC  
FET  
FET  
LOAD  
SWITCH  
可自动切换至 5V 稳压器以实现高效率  
FET  
FET  
VR3, 3.3V  
VR2, 1.8V  
+
-
LOAD  
SWITCH  
BAT1  
8 个用于外部稳压器、负载开关或 LDO 的电源正  
常状态比较器和序列逻辑  
FET  
FET  
LOAD  
SWITCH  
+
-
SKYLAKE  
PLATFORM  
LOAD  
SWITCH  
BAT2  
支持电源按钮逻辑且可编程响应时间  
LOAD  
SWITCH  
FET  
FET  
VR1, 1V  
LOAD  
SWITCH  
2 个通用电平转换器  
FET  
FET  
VR4, 1.2V  
LDO1, 0.6V  
RTC, 3.1V  
I/O  
+
-
I2C  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCF4  
 
 
 
 
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
目录  
8.5 Register Map........................................................... 48  
Application and Implementation ........................ 90  
9.1 Application Information............................................ 90  
9.2 Typical Applications ................................................ 90  
9.3 System Examples ................................................ 103  
9.4 Do's and Don'ts .................................................... 103  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications....................................................... 11  
7.1 Absolute Maximum Ratings .................................... 11  
7.2 ESD Ratings .......................................................... 12  
7.3 Recommended Operating Conditions..................... 13  
7.4 Thermal Information................................................ 14  
7.5 Electrical Characteristics......................................... 15  
7.6 Timing Requirements.............................................. 32  
7.7 Typical Characteristics............................................ 34  
Detailed Description ............................................ 38  
8.1 Overview ................................................................. 38  
8.2 Functional Block Diagram ....................................... 39  
8.3 Feature Description................................................. 40  
8.4 Device Functional Modes........................................ 46  
10 Power Supply Recommendations ................... 104  
11 Layout................................................................. 105  
11.1 Layout Guidelines ............................................... 105  
11.2 Layout Example .................................................. 107  
11.3 Thermal Considerations...................................... 108  
12 器件和文档支持 ................................................... 109  
12.1 器件支持 ............................................................. 109  
12.2 文档支持 ............................................................. 109  
12.3 ..................................................................... 109  
12.4 静电放电警告....................................................... 109  
12.5 术语表 ................................................................. 109  
13 机械、封装和可订购信息..................................... 110  
8
4 修订历史记录  
日期  
修订版本  
注释  
201412月  
*
最初发布。  
2
版权 © 2014, Texas Instruments Incorporated  
 
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
5 说明(续)  
TPS650830 应用于 Volume 系统,该系统采用合并式低电压轨,可实现体积最小且成本最低的系统电源解决方  
案。  
TPS650830 可基于 Intel 参考设计提供完整的电源解决方案。 该器件具有 5 个高效降压稳压器 (VR) 1 个灌/拉  
LDO,可与上电序列逻辑器件搭配使用以管理外部负载开关,从而提供正确的电源轨、排序和保护,其中包括  
DDR3 DDR4 存储器电源。 该稳压器支持动态电压调节 (DVS),可最大限度地提高效率(包括联网待机功  
能)。 高频稳压器采用小型电感和电容,以减小解决方案体积。 可通过 4 VR 控制器调节输出功率。 凭借 I2C  
接口,可以通过嵌入式控制器 (EC) 轻松加以控制。 每个器件版本均提供 7x7 NFBGA 9x9 NFBGA 两种封装。  
7x7 NFBGA 封装适用于类型 4 印刷电路板 (PCB),可实现最小电路板面积。 9x9 NFBGA 封装适用于类型 3  
和类型 4 PCB 板,可最大限度地降低成本并缩小电路板面积。  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
6 Pin Configuration and Functions  
168-Pin NFBGA  
7x7 ZAJ Package  
(Top View)  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
159-Pin NFBGA  
9x9 ZCG Package  
(Top View)  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
ZAJ PACKAGE  
NUMBER  
ZCG PACKAGE  
NUMBER  
NAME  
VBSTVR1  
DRVHVR1  
SWVR1  
M11  
N12  
N11  
N9  
R14  
T14  
T13  
T11  
T12  
J10  
I
O
I
VR1 Bootstrap pin  
VR1 High side gate drive output (external power FET)  
VR1 Switch node connection  
DRVLVR1  
PGNDVR1  
FBVR1P  
O
-
VR1 Low side gate drive output (external power FET)  
VR1 Power GND  
N10  
K10  
I
VR1 Remote positive feedback sense (Connect to vout of  
VR1 at output load capacitor)  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
ZAJ PACKAGE  
NUMBER  
ZCG PACKAGE  
NUMBER  
NAME  
FBVR1N  
J9  
M10  
L9  
K11  
R12  
M11  
I
I
I
VR1 Remote negative feedback sense (Connect to GND of  
VR1 at output load capacitor)  
VREGVR1  
ILIMVR1  
VR1 5V drive supply input (shorted on board with LDO5V),  
shared with VR5  
VR1 Current limit setting, low-side FET valley current  
sense  
ENVR1  
PGVR1  
VINVR2  
M12  
M9  
R15  
P11  
I
O
I
VR1 Enable  
VR1 power good comparator output  
F12, F13  
H15, H16  
VR2 Power Input voltage. Connect to a 3.3V voltage  
regulator, such as V3.3A_DSW  
SWVR2  
PGNDVR2  
FBVR2P  
H12, H13  
G12, G13  
G10  
K15, K16  
J15, J16  
G10  
I
-
I
VR2 Switch node connection  
VR2 Power GND  
VR2 Remote positive feedback sense (Connect to vout of  
VR2 at output load capacitor)  
FBVR2N  
E10  
G12  
I
VR2 Remote negative feedback sense (Connect to GND of  
VR2 at output load capacitor)  
VREGVR2  
ENVR2  
E13  
F11  
E12  
B11  
A12  
A11  
A9  
G16  
J14  
H13  
B13  
A14  
A13  
A11  
A12  
F11  
I
I
VR2 5V drive supply input (shorted on board with LDO5V)  
VR2 Enable  
PGVR2  
O
I
VR2 Power good comparator output  
VR3 Bootstrap pin  
VBSTVR3  
DRVHVR3  
SWVR3  
O
I
VR3 High side gate drive output (external power FET)  
VR3 Switch node connection  
DRVLVR3  
PGNDVR3  
FBVR3P  
O
-
VR3 Low side gate drive output (external power FET)  
VR3 Power GND  
A10  
C10  
I
VR3 Remote positive feedback sense (Connect to vout of  
VR3 at output load capacitor)  
FBVR3N  
ILIMVR3HS  
ILIMVR3LS  
VINVR3  
D7  
D10  
C9  
E8  
I
I
I
I
VR3 Remote negative feedback sense (Connect to GND of  
VR3 at output load capacitor)  
E12  
E10  
H11  
VR3 Current limit setting, high-side FET peak current  
sense  
VR3 Current limit setting, low-side FET valley current  
sense  
G9  
VR3 Input voltage sense and high-side current-sense  
kelvin (Connect to drain of high-side FET)  
ENVR3  
PGVR3  
NVDCZ  
E9  
B9  
H9  
D11  
B11  
K9  
I
O
I
VR3 Enable  
VR3 Power good comparator output  
NVDC select [two-level: Low = NVDC, High = non-NVDC].  
Connect NVDCZ to GND for NVDC, Connect NVDCZ to  
LDO3 for non-NVDC  
VBSTVR4  
DRVHVR4  
SWVR4  
B3  
A2  
A3  
A5  
A4  
C3  
C4  
A3  
A4  
A6  
A5  
F5  
I
O
I
VR4 Bootstrap pin  
VR4 High side gate drive output (external power FET)  
VR4 Switch node connection  
DRVLVR4  
PGNDVR4  
FBVR4P  
O
-
VR4 Low side gate drive output (external power FET)  
VR4 Power GND  
I
VR4 Remote positive feedback sense (Connect to vout of  
VR4 at output load capacitor)  
FBVR4N  
D5  
B4  
E6  
B5  
I
I
VR4 Remote negative feedback sense (Connect to GND of  
VR4 at output load capacitor)  
VREGVR4  
VR4 5V drive supply input (shorted on board with LDO5V),  
shared with VR3  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
ZAJ PACKAGE  
NUMBER  
ZCG PACKAGE  
NUMBER  
NAME  
ILIMVR4  
D2  
F3  
I
VR4 Current limit setting, low-side FET valley current  
sense  
ENVR4  
DDRID  
C2  
D4  
B2  
C2  
I
I
VR4 Enable  
VR4 Output voltage selection . Low = 1.2V, High = 1.35V,  
Float = 1.1V  
PGVR4  
VBSTVR5  
DRVHVR5  
SWVR5  
B5  
M3  
M1  
N2  
N4  
N3  
L7  
C6  
R4  
T3  
T4  
T6  
T5  
N8  
O
I
VR4 Power good comparator output  
VR5 Bootstrap pin  
O
I
VR5 High side gate drive output (external power FET)  
VR5 Switch node connection  
DRVLVR5  
PGNDVR5  
VINVR5  
O
-
VR5 Low side gate drive output (external power FET)  
VR5 Power GND  
I
VR5 Input voltage sense and high-side current-sense  
kelvin (Connect to drain of high-side FET)  
FBVR5P  
FBVR5N  
G4  
L4  
K5  
L5  
J6  
H5  
M7  
N6  
I
I
I
I
VR5 Remote positive feedback sense (Connect to vout of  
VR5 at output load capacitor)  
VR5 Remote negative feedback sense (Connect to GND of  
VR5 at output load capacitor)  
ILIMVR5HS  
ILIMVR5LS  
VR5 Current limit setting, high-side FET peak current  
sense  
VR5 Current limit setting, low-side FET valley current  
sense  
ENVR5  
PGVR5  
M2  
M4  
R2  
B6  
I
O
I
VR5 Enable  
VR5 Power good comparator output  
LDO1 Enable  
DDR_VTT_CTRL  
VINLDO1  
E3  
E4  
A6, B6  
F9  
A7, B7  
H9  
I
LDO1 Input supply  
VINLDO1S  
I
LDO1 Input voltage reference kelvin sense (Connect to  
vout of VR4 at output load capacitor)  
VOUTLDO1  
FBLDO1  
A8, B8  
D8  
A9, B9  
F9  
O
I
LDO1 Output voltage, VOUTLDO1 = (1/2 * VINLDO1SNS)  
LDO1 Feedback voltage kelvin sense, (Connect to vout of  
LDO1 at output load capacitor)  
PGNDLDO1  
SCLK  
A7, B7  
J1  
A8, B8  
M1  
-
I
LDO1 Power GND  
I2C Clock  
SDA  
H1  
K1  
I/O  
I
I2C Data  
SLAVEADDR  
L3  
N4  
I2C Slave Address select (low = GND = 0x30, high = 3.3V  
= 0x32, open = float = 0x34) Keep same connection during  
operation  
VDDPG  
VSA  
D1  
E7  
G2  
F7  
I
I
PGx supply, sets output level for PG pins  
Power good comparator input and discharge path for  
external rail  
ENA  
PGA  
B12  
D6  
B15  
C12  
I
Enable for VSA power good comparator  
O
Power good comparator output, OD or level shifted to  
VDDLV  
VSB  
K9  
M9  
I
Power good comparator input and discharge path for  
external rail  
ENB  
PGB  
C11  
C5  
D13  
A10  
I
Enable for VSB power good comparator  
O
Power good comparator output, OD or level shifted to  
VDDLV  
VSC  
ENC  
K8  
L8  
I
I
Power good comparator input and discharge path for  
external rail  
C12  
D15  
Enable for VSC power good comparator  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
ZAJ PACKAGE  
NUMBER  
ZCG PACKAGE  
NUMBER  
NAME  
PGC  
C6  
D7  
O
I
Power good comparator output, OD or level shifted to  
VDDLV  
VSD  
E6  
L10  
Power good comparator input and discharge path for  
external rail  
END  
PGD  
J13  
H3  
L16  
J4  
I
Enable for VSD power good comparator  
O
Power good comparator output, OD or level shifted to  
VDDLV  
VSE  
F4  
G6  
I
Power good comparator input and discharge path for  
external rail  
ENE  
PGE  
F10  
C4  
J12  
D5  
I
Enable for VSE power good comparator  
O
Power good comparator output, OD or level shifted to  
VDDLV  
VSF  
E8  
J8  
I
Power good comparator input and discharge path for  
external rail  
ENF  
PGF  
J12  
H4  
L14  
K5  
I
Enable for VSF power good comparator  
O
Power good comparator output, OD or level shifted to  
VDDLV  
VSG  
J10  
K7  
I
Power good comparator input and discharge path for  
external rail  
ENG  
PGG  
B10  
F3  
C14  
G4  
I
Enable for VSG power good comparator  
O
Power good comparator output, OD or level shifted to  
VDDLV  
VSH  
F5  
N5  
G8  
T7  
I
I
Power good comparator input and discharge path for  
external rail  
VIN5VSW  
Internal load switch from 5V switching regulator to LDO5  
output. Connect VIN5VSW to 5V switching regulator  
output.  
PGH  
M6  
R8  
O
Power good comparator output, OD or level shifted to  
VDDLV  
VDDLV  
ENLVA  
L8  
L6  
N10  
P5  
I
I
LVx buffer supply, sets output level for PG pins  
Enable level shifter A Pin not connected electrically.  
Connect to Ground. (Level Shifter A input is ACOK pin)  
LVA  
LVB  
L12  
L10  
M5  
N14  
N12  
P7  
O
O
I
Level shifter A open-drain output, used for BC_ACOK  
output level shifted to EC_VCC. Input is from ACOK pin  
Level shifter B push-pull output, level shifted to VDDLV.  
Input is from ENH pin  
EN5VSW  
Enable Internal load switch from 5V switching regulator to  
LDO5 output through VIN5VSW. Connect to powergood of  
5V switching regulator.  
ENH  
L11  
H2  
K2  
P13  
L2  
I
I
Input to LS B general purpose level shifter.  
PWRBTNIN  
Power button input (internal pull-up to LDO3) (logic low)  
PCH_PWRBTNZ  
N2  
O
Power button signal to PCH (level-shifted DSW domain)  
(logic low)  
EC_ONOFFZ  
1HZ  
K4  
K11  
H10  
J4  
M5  
M13  
L12  
L6  
O
O
O
I
Debounced version of PWRBTNIN (logic low)  
1Hz clock output for waking up embedded controller, EC.  
VCOMP comparator push-pull output  
TRIPZ  
VCOMP  
VCOMP comparator input (Also used for TMODE - > 5.5V)  
Resume Reset Power Good  
RSMRSTZ_PWR  
GD  
J11  
F16  
O
ALL_SYS_PWRG  
D
G11  
E11  
F15  
G14  
O
O
Non-core rails power good  
PCH_PWROK  
Core and Non Core Power Good  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
ZAJ PACKAGE  
NUMBER  
ZCG PACKAGE  
NUMBER  
NAME  
SYS_PWROK  
DPWROK  
DS3_VREN  
VCCST_PWRGD  
EC_RSTZ  
ACOK  
H11  
K12  
K13  
E4  
K13  
M15  
M16  
C1  
O
O
O
O
O
I
Delayed ALL_SYS_PWRGD  
Delayed version of V3.3A_DSW_PG  
DS3 VR enable (enables external power switch)  
VCCST Power Good  
J3  
L4  
EC reset (logic low)  
D11  
L1  
F13  
P1  
ACOK input  
ECVCC  
I
EC VCC supply  
BAT1  
F1  
H1  
I
Battery 1 voltage sense input  
BAT1SWONZ  
F2  
J2  
O
Battery 1 low voltage status (OD) or Battery 1 switch ON  
(PP, VIN level) (logic low)  
BAT2  
G1  
G2  
J1  
I
Battery 2 voltage sense input  
BAT2SWONZ  
K3  
O
Battery 2 low voltage status (OD) or Battery 2 switch ON  
(PP, VIN level) (logic low)  
ACIN  
E2  
J2  
H3  
M3  
I
AC Adaptor voltage sense  
ACSWONZ  
O
AC adapter low voltage status (OD) or AC adapter switch  
ON (PP, VIN level) (logic low)  
VINPP  
E5  
H7  
I
VIN for Power Path Domain. Connect to external diode OR  
from: AC, BAT1, BAT2  
VDCSNS  
PMIC_INTZ  
VBATTBKUP  
V3P3A_RTC  
VIN  
G3  
D12  
B13  
C13  
N6  
G1  
E14  
C16  
D16  
T8  
I
O
I
VDC voltage monitor  
PMIC to EC interrupt (logic low)  
RTC backup battery supply connection  
PCH RTC power supply  
O
I
IC input voltage  
VINLDO3  
AGND1  
M8  
C1  
R10  
E1  
I
LDO3 Iiput supply  
-
Analog GND1 - tie directly to the ground plane  
Analog GND2 - tie directly to the ground plane  
Analog GND3 - tie directly to the ground plane  
Analog GND4 - tie directly to the ground plane  
5V internal supply used primarily for the gate drives  
AGND2  
K1  
N1  
-
AGND3  
L13  
D13  
N7  
N16  
E16  
T9  
-
AGND4  
-
LDO5V  
O
O
LDO3V  
N8  
T10  
3.3V LDO used as a reference voltage, and as a pull-up  
supply.  
EN3V3SW  
K3  
L1  
P9  
I
Enable for load switch from LDO3V pin to VOUT3V3SW  
output pin  
VOUT3V3SW  
M7  
O
EC domain load switch output and discharge path from  
LDO3V  
STANDBYZ  
SHUTDOWNZ  
RESETZ  
D9  
C7  
C8  
C10  
C8  
I
I
Set rails in standby (low power mode)  
Set shutdown mode (all supplies off) (logic low)  
D9  
O
Global disable output for external converters/power tree  
(logic low)  
VDDIO  
E1, M13  
F1, P16  
I
Voltage supply input for I/O buffers. VDDIO should be tied  
to LDO3 (3.3V)  
VREF1V25  
B1  
L2  
D1  
P3  
O
O
decoupling cap connection for internal voltage reference  
TEMP_ALERTZ  
Open-drain output of silicon temperature sensor. Input to  
Power Monitor Unit (connect to PROCHOT# of system).  
Active low, pull-up to V1.00S with 50ohm  
VDD5  
VPROGOTP  
D3  
D3  
I
Always connect to LDO5. supply voltage for OTP  
programming (must be connected to LDO5V in normal  
operation)  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
ZAJ PACKAGE  
NUMBER  
ZCG PACKAGE  
NUMBER  
NAME  
DEPOPULATED  
BALL - PICK-N-  
PLACE  
B2  
C3 (also used for  
via - see below)  
DEPOPULATED PICK-N-PLACE INDICATOR  
BALL  
INDICATOR  
NC POPULATED A1, A13, N1, N13 A1, A2, B1, A15,  
POPULATED  
BALL  
CORNERS - solder to PCB for mechanical strength  
BALL -  
A16, B16, R16,  
T16, T15, R1, T1,  
T2  
CORNERS  
DEPOPULATED No Depopulated B3, B4, B6, B10,  
DEPOPULATED VIA PLACEMENT FOR INTERNAL BALL ROUTES - For  
BALL - FOR VIAS Balls for Vias in  
7x7. Type 4 PC  
put micro-vias  
B12, B14, C3,  
C5, C7, C9, C11,  
C13, C15, D2,  
D4, D6, D8, D10,  
D12, D14, E2,  
E3, E5, E7, E9,  
E11, E13, E15,  
F2, F4, F6, F8,  
F10, F12, F14,  
G3, G5, G7, G9,  
G11, G13, G15,  
H2, H4, H6, H8,  
H10, H12, H14,  
J3, J5, J7, J9,  
J11, J13, K2, K4,  
K6, K8, K10, K12,  
K14, L3, L5, L7,  
L9, L11, L13,  
BALL  
Type3 PCBs, put a plated through-hole (PTH) via at each  
depopulated ball, to connect to the internal row balls.  
under each ball  
pad  
L15, M2, M4, M6,  
M8, M10, M12,  
M14, N3, N5, N7,  
N9, N11, N13,  
N15, P2, P4, P6,  
P8, P10, P12,  
P14, P15, R3,  
R5, R7, R9, R11,  
R13,  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX UNIT  
CHIP  
Power input pins  
VIN, VINLDO3  
-0.3  
-0.3  
28  
V
V
Analog ground pins  
AGND1, AGND2, AGND3, AGND4  
0.3  
SWITCHING REGULATORS  
Input pins - controllers  
Switch pins - controllers  
High drive pins - controllers  
Low drive pins - controllers  
Bootstrap pins - controllers  
Bootstrap pins - controllers  
Input pin - converter  
VINVR3, VINVR5  
-0.3  
-1  
28  
28  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SWVR1 , SWVR3 , SWVR4 , SWVR5  
DRVHVR1, DRVHVR3, DRVHVR4, DRVHVR5  
DRVLVR1, DRVLVR3, DRVLVR4, DRVLVR5  
VBSTVR1, VBSTVR3, VBSTVR4, VBSTVR5  
Differential voltage between VBSTVRx and SWVRx  
VINVR2  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
32  
7
32  
7
3.6  
3.6  
0.3  
3.6  
3.6  
3.6  
5.7  
0.3  
5.7  
3.6  
3.6  
Switch pins - converter  
Power ground pins  
SWVR2  
PGNDVR1, PGNDVR2, PGNDVR3, PGNDVR4, PGNDVR5  
ENVR1, ENVR2, ENVR3, ENVR4, ENVR5  
NVDCZ  
Enable pins  
NVDC select pin  
Positive remote feedback pins  
Positive remote feedback pin  
Negative remote feedback pins  
Gate drive regulator input power pins  
Low-side current limit  
High-side current limit  
LDO REGULATOR  
FBVR1P, FBVR2P, FBVR3P, FBVR4P  
FBVR5P  
FBVR1N, FBVR2N, FBVR3N, FBVR4N, FBVR5N  
VREGVR1 (1_5), VREGVR2, VREGVR4 (3_4)  
ILIMVR1, ILIMVR3LS, ILIMVR4, ILMVR5LS  
ILMVR3HS, ILMVR5HS  
Input pin  
VINLDO1  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
3.6  
3.6  
0.3  
3.6  
3.6  
V
V
V
V
V
Output pin  
VOUTLDO1  
PGNDLDO1  
VINLDO1S  
FBLDO1  
Power ground pin  
Input feedback pin  
Output feedback pin  
I2C  
SCLK, SDAT, SLAVEADDR  
POWERGOOD COMPARATOR LOGIC  
-0.3  
-0.3  
3.6  
3.6  
V
V
Powergood (push/pull) supply for input  
pins  
VDDPG  
Powergood input voltage sense pins  
Powergood enable pins  
VSA, VSB, VSC, VSD, VDE, VSF, VSG, VSH  
ENA, ENB, ENC, END, ENE, ENF, ENG, ENH  
-0.3  
-0.3  
-0.3  
5.7  
3.6  
3.6  
V
V
V
Powergood output pins  
PGA, PGB, PGC, PGD, PGE, PGF, PGG, PGH, PGVR1, PGVR2,  
PGVR3, PGVR4, PGVR5  
POWERGOOD TREE LOGIC  
Open-drain outputs  
DPWROK, RSMRSTZ_PWRGD, VCCST_PGOOD,  
SYS_PWROK, ALL_SYS_PWRGD, PCH_PWROK  
-0.3  
-0.3  
3.6  
3.6  
V
V
DDR CONTROL  
Input pins  
DDR_VTT_CTRL, DDRID  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
MAX UNIT  
Absolute Maximum Ratings (continued)  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
LEVEL SHIFTERS  
Level shifter (push/pull) supply input pin  
Level shifter enable input pins  
Level shifter output pins  
VDDLV  
ENLVA  
-0.3  
-0.3  
-0.3  
3.6  
3.6  
3.6  
V
V
V
LVA, LVB  
POWER PATH LOGIC  
Power path comparator input voltage  
sense pins  
VCOMP, BAT1, BAT2, ACIN  
-0.3  
-0.3  
-0.3  
-0.3  
7
V
V
V
V
Power path comparator open-drain output BAT1SWONZ, BAT2SWONZ, ACSWONZ  
pins  
28  
3.6  
28  
PTC over-temperature comparator open-  
drain output pin  
TRIPZ  
Power path domain diode OR input pin  
VINPP  
POWER BUTTON  
PWRBNTIN, PCH_PWRBTNZ, EC_ONOFFZ  
RESETS  
-0.3  
-0.3  
-0.3  
3.6  
3.6  
3.6  
V
V
V
ECVCC, RESETZ, EC_RSTZ  
CLOCKS  
EC wake clock: 1HZ  
POWER MONITOR  
VDCSNS  
-0.3  
-0.3  
-0.3  
28  
3.6  
12  
V
V
V
TEMP_ALERTZ  
ACOK  
REFERENCE  
LDO output pins  
LDO5V  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
7
V
V
V
V
V
V
LDO output pins  
VREF1V25, LDO3V  
EN3V3SW  
3.6  
3.6  
3.6  
3.6  
7
3.3V load switch enable pin  
3.3V load switch output pin  
5V load switch enable pin  
5V load switch input pin  
BACKUP BATTERY RTC SELECTOR  
VBATTBKUP, V3P3A_RTC  
MISC  
VOUT3V3SW  
EN5VSW  
VIN5VSW  
-0.3  
3.6  
V
Input control pins  
STANDBYZ, SHUTDOWNZ  
PMIC_INTZ  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
3.6  
3.6  
3.6  
3.6  
7
V
V
V
V
V
Output alert pin  
Output DS3 VR enable pin  
Buffers supply input pin  
VPROGOTP  
DS3_VREN  
VDDIO  
GENERAL  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
°C  
°C  
7.2 ESD Ratings  
VALUE  
1000  
500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
CHIP  
Power input pins: VIN, VINLDO3  
-0.3  
-0.3  
21  
V
V
Analog ground pins: AGND1, AGND2, AGND3, AGND4  
SWITCHING REGULATORS  
0.3  
Input pins - controllers: VINVR3, VINVR5  
-0.3  
-1  
21  
21  
26  
5
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Switch pins - controllers: SWVR1 , SWVR3 , SWVR4 , SWVR5  
High drive pins - controllers: DRVHVR1, DRVHVR3, DRVHVR4, DRVHVR5  
Low drive pins - controllers: DRVLVR1, DRVLVR3, DRVLVR4, DRVLVR5  
Bootstrap pins - controllers: VBSTVR1, VBSTVR3, VBSTVR4, VBSTVR5  
Bootstrap pins - controllers: (differential voltage between VBSTVRx and SWVRx):  
Input pin - converter: VINVR2  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
26  
5
3.3  
3.3  
0.3  
3.3  
3.3  
5
Switch pins - Converter: SWVR2  
Power ground pins: PGNDVR1, PGNDVR2, PGNDVR3, PGNDVR4, PGNDVR5  
Enable pins: ENVR1, ENVR2, ENVR3, ENVR4, ENVR5  
NVDC select pin: NVDCZ  
Positive remote feedback pins: FBVR1P, FBVR2P, FBVR3P, FBVR4P  
Positive remote feedback pin: FBVR5P  
3.3  
0.3  
5
Negative remote feedback pins: FBVR1N, FBVR2N, FBVR3N, FBVR4N, FBVR5N  
Gate drive regulator input power pins: VREGVR1 (1_5), VREGVR2, VREGVR4 (3_4 )  
Low-side current limit: ILIMVR1, ILIMVR3LS, ILIMVR4, ILMVR5LS  
High-side current limit: ILMVR3HS, ILMVR5HS  
LDO REGULATOR  
3.3  
3.3  
Input pin: VINLDO1  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
3.3  
1.65  
0.3  
V
V
V
V
V
Output pin: VOUTLDO1  
Power ground pin: PGNDLDO1  
Input feedback pin: VINLDO1S  
3.3  
Output feedback pin: FBLDO1  
1.65  
I2C  
SCLK, SDAT, SLAVEADDR  
-0.3  
3.3  
V
POWERGOOD COMPARATOR LOGIC  
Powergood (push/pull) supply for input pins: VDDPG  
Powergood input voltage sense pins: VSA, VSB, VSC, VSD, VDE, VSF, VSG, VSH  
Powergood enable pins: ENA, ENB, ENC, END, ENE, ENF, ENG, ENH  
-0.3  
-0.3  
-0.3  
-0.3  
3.3  
5
V
V
V
V
3.3  
3.3  
Powergood output pins: PGA, PGB, PGC, PGD, PGE, PGF, PGG, PGH, PGVR1, PGVR2, PGVR3, PGVR4,  
PGVR5  
POWERGOOD TREE LOGIC  
Open-drain outputs: DPWROK, RSMRSTZ_PWRGD, VCCST_PGOOD, SYS_PWROK, ALL_SYS_PWRGD,  
PCH_PWROK  
-0.3  
-0.3  
3.3  
3.3  
V
V
DDR CONTROL  
Input pins: DDR_VTT_CTRL, DDRID  
LEVEL SHIFTERS  
Level shifter (push/pull) supply input pin: VDDLV  
Level shifter enable input pins: ENLVA  
Level shifter output pins: LVA, LVB  
-0.3  
-0.3  
-0.3  
3.3  
3.3  
3.3  
V
V
V
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
MAX UNIT  
Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
POWER PATH LOGIC  
Power path comparator input voltage sense pins: VCOMP, BAT1, BAT2, ACIN  
Power path comparator open-drain output pins: BAT1SWONZ, BAT2SWONZ, ACSWONZ  
PTC over-temperature comparator open-drain output pin: TRIPZ  
Power path domain diode or input pin: VINPP  
POWER BUTTON  
-0.3  
-0.3  
-0.3  
-0.3  
5
V
V
V
V
21  
3.3  
21  
PWRBNTIN, PCH_PWRBTNZ, EC_ONOFFZ  
RESETS  
-0.3  
-0.3  
-0.3  
3.3  
3.3  
3.3  
V
V
V
ECVCC, RESETZ, EC_RSTZ  
CLOCKS  
EC Wake Clock: 1HZ  
POWER MONITOR  
VDCSNS  
-0.3  
-0.3  
-0.3  
21  
3.3  
3.3  
V
V
V
TEMP_ALERTZ  
ACOK  
REFERENCE  
LDO output pins: LDO5V  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
5
V
V
V
V
V
V
LDO output pins: VREF1V25, LDO3V  
3.3V load switch enable pin: EN3V3SW  
3.3V load switch output pin: VOUT3V3SW  
5V load switch enable pin: EN5VSW  
5V load switch input pin: VIN5VSW  
BACKUP BATTERY RTC SELECTOR  
VBATTBKUP, V3P3A_RTC  
3.3  
3.3  
3.3  
3.3  
5
-0.3  
3.3  
V
MISC  
Input control pins: STANDBYZ, SHUTDOWNZ  
Output alert pin: PMIC_INTZ  
Output DS3 VR enable pin: DS3_VREN  
Buffers supply input pin: VDDIO  
VPROGOTP  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
3.3  
3.3  
3.3  
3.3  
5
V
V
V
V
V
GENERAL  
Operating free air temperature, TA  
Operating junction temperature, TJ  
–40  
–40  
85  
°C  
°C  
125  
7.4 Thermal Information  
TPS650830  
ZAJ (168 PINS) ZCG (159 PINS)  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
37.7  
15.1  
11.8  
0.3  
34.7  
15.1  
13.7  
0.3  
RθJC(top)  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
11.7  
N/A  
13.8  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
7.5 Electrical Characteristics  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONTROL  
CONTROL - SYSTEM  
VVDC Parametric System input voltage  
VVDC Functional System input voltage  
Parametric and functional  
5.4  
5.4  
7.4  
7.4  
21  
24  
V
V
Functional  
System quiescent current (includes  
IDDQ for LDO5V, LDO3V, and  
VREF1.25V, all registers are  
default setting)  
IQ  
Measured at VIN = 7.4V  
95  
150  
μA  
System under voltage lockout  
threshold - All IC functionality  
including 5VLDO, except LDO3  
and internal refsys  
VUVLO_5V_Main  
VVDC voltage decreasing (falling edge)  
VVDC voltage increasing  
4.95  
4.9  
5.1  
200  
5.0  
5.25  
V
mV  
V
System under voltage lockout  
threshold hysteresis  
VHys_5V_Main  
CONTROL - INTERNAL REFERENCES  
VO(VLDO5)  
VLDO5 output  
VIN = 5.4V - 21V, 10mA load  
5.1  
VIN = 5.4V to 21V, Measured as  
Line regulation  
VO(LDO5V)  
Line regulation for regulator over  
operating voltage range  
(ΔVO(LDO5V)/VO(LDO5V)) over this operating  
range with 40mA load current. measured  
at VLDO5V pin with respect to AGND pin  
0.5%  
VIN = 5.4V - 21V Measured as  
(ΔVO(LDO5V)/VO(LDO5V)) over this operating  
range with 10mA to 100mA load current.  
measured at VLDO5V pin with respect to  
AGND pin  
Load regulation Load regulation for regulator over  
2%  
VO(LDO5V)  
ISC (LDO5V)  
CO (LDO5V)  
operating current range  
Over current protection  
External output capacitance  
Measured at 0.9x the regulation voltage  
115  
2.7  
mA  
Actual capacitance after derating. ex: 2uF  
capacitance, then use a 4.7uF capacitor  
with 60% derating. Recommended Part  
number:  
4.7  
1.25  
0.22  
10  
1.256  
0.47  
μF  
See below for output capacitance.  
measured at VREF1V25 pin with respect  
to AGND pin  
VREF1V25 output - Internal  
buffered bandgap output  
VO(VREF1V25)  
1.244  
0.2  
V
Actual capacitance after derating. ex:  
0.2uF capacitance, then use a 0.47uF  
capacitor with 60% derating.  
CO (VREF1V25)  
External output capacitance  
μF  
Recommended part number:  
VI(LDO3V)  
VI(LDO3V)  
VO(LDO3V)  
LDO3V input  
LDO3V input  
LDO3V output  
Parametric and functional  
Functional  
5.4  
3.45  
7.4  
7.4  
3.3  
21  
24  
V
V
V
VIN = 7.4V, 1mA load  
3.267  
3.333  
Maximum current for external user is  
limited 40mA  
IO (LDO3V)  
Output current  
40  
0.5%  
0.5%  
mA  
mA  
ISC (LDO3V)  
Output circuit current limit  
Measured at 0.9x VOREG  
75  
VIN = 5.4V to 21V, Measured as  
Line regulation  
VO(LDO3V)  
Line regulation for regulator over  
operating voltage range  
(ΔVO(LDO3V)/VO(LDO3V)) over the operating  
range with 20mA load current. measured  
at VLDO3V pin with respect to AGND pin  
VIN = 7.4 Measured as  
(ΔVO(LDO3V)/VO(LDO3V)) over this operating  
range with 0mA to 50mA load current.  
measured at VLDO3V pin with respect to  
AGND pin  
Load regulation Load regulation for regulator over  
VO(LDO3V)  
operating current range  
CO (LDO3V)  
TR (LDO3V)  
External output capacitance  
Rise time  
2.2  
4.7  
10  
μF  
μs  
Measured from 5% to 95% of the output  
with 2.2μF  
300  
450  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONTROL - INPUT/ OUTPUT BUFFERS  
CONTROL - DDR_VTT_CTRL (Intel external connection DDR_VTT_CTRL) - 1V logic, tolerates 3V  
VIL_DDR_VTT_CTR  
L
DDR_VTT_CTRL input low voltage Input low voltage threshold  
0.49  
V
V
VIH_DDR_VTT_CTR DDR_VTT_CTRLL input high  
Input high voltage threshold  
0.61  
voltage  
L
VHYST_DDR_VTT_ DDR_VTT_CTRLL hysteresis  
Hysteresis voltage  
70  
mV  
μA  
voltage  
CTRL  
Ileakage_DDR_VTT_  
DDR_VTT_CTRL input current  
Input current, Clamped to 1.0V  
0.01  
0.2  
CTRL  
CONTROL - INPUT TTL BUFFERS (ALL INPUT PINS), (DEFAULT: SHUTDOWNZ, STANDBYZ, ENLVA, EN3V3SW, EN5VSW, ENVR1,  
ENVR2, ENVR3, ENVR4, ENVR5, ENA. ENB, ENC, END, ENE, ENF, ENG, ENH), (OPTIONAL: VSA, VSB, VSC, VSD, VSE, VSF, VSG,  
VSH, ENLVA, ENLVB)  
VIL_INPUTS  
Input low voltage  
0.4  
V
V
VIH_INPUTS  
Input high voltage  
Hysteresis voltage  
Input current  
1.2  
VHYST_INPUTS  
Ileakage_INPUTS  
VIL_PWRBTNZ  
300  
mV  
μA  
V
Clamped on 3.3V  
0.01  
0.3  
0.4  
Input low voltage for PWRBTNZ  
Internal 5kohm pull-up resistor between  
PWRBTNZ pin and VDDIO  
VIH_PWRBTNZ  
Input high voltage for PWRBTNZ  
1.6  
V
VHYST_PWRBTNZ Hysteresis voltage for PWRBTNZ  
Output current for PWRBTNZ  
580  
660  
mV  
PWRBTNZ = GND, Internal 5kohm pull-  
up resistor between PWRBTNZ pin and  
VDDIO  
when power button is pressed to  
close and pulling PWRBTNZ to  
IOutput_PWRBTNZ  
790  
μA  
GND.  
Time set to 0 ms, Measured from 0.5%  
PWBTNZ rising to 5% of the  
EC_ONOFFZ output  
TEC_ONOFFZ_Debo EC_ONOFFZ_Debounce time, 0  
0
ms  
ms  
setting  
uinc_0e  
Time set to 30 ms, Measured from 0.5%  
PWBTNZ rising to 5% of the  
EC_ONOFFZ output  
TEC_ONOFFZ_Debo EC_ONOFFZ_Debounce time, 30  
30  
ms setting  
uinc_30e  
CONTROL - PUSH-PULL OUTPUTS (ALL OUTPUT PINS), (DEFAULT: RESETZ, 1HZ, DS3_VREN), (OPTIONAL: PGVR1, PGVR2,  
PGVR3, PGVR4, PGVR5, PGA, PGB, PGC, PGD, PGE, PGF, PGG, PGH) Pull-Up Rail = VDDIO connect to LDO3 = 3.3V  
Pulled-Up to VDDIO pin which should by  
tied to LDO3 pin = 3.3V  
VPP  
Pull-up output voltage supply  
Low level output voltage  
High level output voltage  
VDDIO  
V
V
V
VOL_PP  
VOH_PP  
IOL = 3 mA  
0.6  
VDDIO  
- 0.6  
IOH = 3 mA  
CONTROL - PUSH-PULL OUTPUTS (DEFAULT: LVA, LVB) Pull-Up Rail = VDDLV  
Pulled up to VDDLV pin which could by  
tied to 3.3V or lower  
VPP_VDDLV  
VOL_PP_LV  
VOH_PP_LV  
LV pull-up output voltage supply  
LV low level output voltage  
LV high level output voltage  
VDDLV  
V
V
V
IOL = 3 mA  
0.6  
VDDLV  
- 0.6  
IOH = 3 mA  
CONTROL - OPEN-DRAIN OUTPUT(ALL OUTPUT PINS), (DEFAULT: ACSWONZ, BAT1SWONZ, BAT2SWONZ, PGVR1, PGVR2,  
PGVR3, PGVR4, PGVR5, PGA, PGB, PGC, PGD, PGE, PGF, PGG, PGH, VCCST_PWRGD, SYS_PWROK, PCH_PWROK,  
RSMRSTZ_PWRGD, ALL_SYS_PWRGD, PMIV_INTZ, EC_RSTZ, PCH_PWRBTNZ, EC_ONOFFZ, DPWROK), (OPTIONAL: LVA, LVB)  
VOL_OD1  
ILK_OD1  
OD- output voltage  
OD leakage current  
IOL = 2 mA  
0.4  
V
V(PIN) = 3.3V  
0.45  
μA  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONTROL - OPEN-DRAIN OUTPUTS (TEMP_ALERT) External pull-up resistor can be 75 ohm to 1V when connected to PROCHOTz  
of Intel System  
Open-drain low level output  
voltage  
VOL_OD  
IOL = 15 mA  
0.165  
0.35  
V
ILK_OD  
Open-drain leakage current  
V(PIN) = 3.3V  
μA  
CONTROL - TRISTATE INPUT BUFFER (SLAVEADDR, DDRID)  
VIL_TRISTATE  
VIH_TRISTATE  
ITRISTATE  
Low level input voltage  
High level input voltage  
ITRISTATE current  
IOL = 6 μA  
0.33  
V
V
IOH = 6 μA  
1.8  
Allowable current when floating  
-0.650  
0.675  
μA  
CONTROL - VSA, VSB, VSC, VSD, VSE, VSF, VSG, VSH (ALL LOADSWITCH POWERGOOD COMPARATORS)  
When VSx configured as voltage sense  
input  
VSx input voltage range  
0.7  
106%  
90%  
1.8  
5
9
V
When VSx configured as voltage sense  
input, VSx = 5.7V  
VSx input leakage current  
Power good threshold high VSx  
μA  
When VSx configured as voltage sense  
input and powergood window comparator.  
108%  
-3%  
92%  
3%  
110%  
Power good threshold high VSx  
hysteresis  
When VSx configured as voltage sense  
input and powergood window comparator.  
When VSx configured as voltage sense  
input and powergood window comparator.  
Power good threshold low VSx  
94%  
Power good threshold low VSx  
hystersis  
When VSx configured as voltage sense  
input and powergood window comparator.  
EMBEDDED CONTROLLER RESET  
VOL_OD  
EC_RSTZ output low voltage  
IOL = 2mA, VEC_RST = 3.3V  
0.4  
0.2  
V
Output buffer in open-drain mode,  
VEC_RST = 3.3V  
ILKG_OD  
EC_RSTZ leakage current  
0.01  
µA  
EC_RST time duration (Trst)  
EC_RST time duration (Trst)  
EC_RST time duration (Trst)  
Reset Timer register value: 00  
Reset Timer register value: 01  
Reset Timer register value: 10  
20  
40  
80  
ms  
ms  
ms  
EC_RST time duration (Trst) -  
Default setting  
Reset Timer register value: 11  
200  
ms  
µA  
V
ILK  
ECVCC input queiscent current  
3
Reset Voltage Threshold register value:  
000  
ECVCC voltage threshold (Vth)  
1.344  
1.44  
1.4  
1.5  
1.6  
1.7  
2.4  
2.6  
2.8  
3.0  
1.456  
Reset Voltage Threshold register value:  
001  
ECVCC voltage threshold (Vth)  
ECVCC voltage threshold (Vth)  
ECVCC voltage threshold (Vth)  
ECVCC voltage threshold (Vth)  
ECVCC voltage threshold (Vth)  
ECVCC voltage threshold (Vth)  
ECVCC voltage threshold (Vth)  
1.56  
1.664  
1.768  
2.496  
2.704  
2.912  
3.12  
V
V
V
V
V
V
V
Reset Voltage Threshold register value:  
010  
1.536  
1.632  
2.304  
2.496  
2.688  
2.88  
Reset Voltage Threshold register value:  
011  
Reset Voltage Threshold register value:  
100  
Reset Voltage Threshold register value:  
101  
Reset Voltage Threshold register value:  
110  
Reset Voltage Threshold register value:  
111  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER PATH COMPARATORS (ACIN, BAT1, BAT2)  
Output low saturation voltage for  
open-drain logic output pin  
(TRIPZ)  
Comparator input voltage > internal  
reference voltage. Output pulling low,  
Sink current = 5mA  
0.5  
V
IOUT VCOMP- internal current  
source  
Current out of the VCOMP pin when  
IOUT VCOMP enabled  
9.5  
10  
1.223  
61  
10.6  
μA  
V
VREF_VCOMP_rising, internal  
reference voltage  
Rising voltage at VCOMP pin, changes  
TRIPZ to logic low  
1.211  
1.235  
VHYST VCOMP_falling, internal  
hysteresis voltage  
Falling voltage at VCOMP pin, changes  
TRIPZ to logic high  
mV  
Output low saturation voltage for  
open-drain logic output pin  
(acswONZ, BAT1SWONZ,  
BAT2SWONZ)  
Comparator input voltage > internal  
reference voltage. Output pulling low,  
Sink current = 5mA  
0.5  
0.1  
V
Current into the ACIN, BAT1, or BAT2  
ILKG_ACIN_BAT1_BAT2 - Current pins from 5.4V-24V (when pin is below,  
leakage  
μA  
at, or above 6V internal protection  
switch.)  
VREF_ACIN_rising - Internal  
reference voltage  
Rising voltage at ACIN pin, makes  
ACSWONZ trigger low  
1.2365  
1.2365  
1.2365  
1.25 1.2645  
125  
V
mV  
V
Falling voltage with respect to  
VREF_ACIN at ACIN pin, makes  
ACSWONZ trigger high  
VHYST_ACIN_falling - Internal  
hysteresis voltage  
VREF_BAT1_rising - Internal  
reference voltage  
Rising voltage at BAT1 pin, makes  
BAT1SWONZ trigger low  
1.25 1.2645  
125  
Falling voltage with respect to  
VREF_BAT1 at BAT1 pin, makes  
BAT1SWONZ trigger high  
VHYST_BAT1_falling - Internal  
hysteresis voltage  
mV  
V
VREF_BAT2_rising - Internal  
reference voltage  
Rising voltage at BAT2 pin, makes  
BAT2SWONZ trigger low  
1.25 1.2645  
125  
Falling voltage with respect to  
VREF_BAT2 at BAT1 pin, makes  
BAT2SWONZ trigger high  
VHYST_BAT2_falling - Internal  
hysteresis voltage  
mV  
Supply voltage (VDCSNS) monitor Supply voltage monitor register value  
debounce VDLMTCRT[5:4]: 00  
10  
60  
μs  
μs  
Supply voltage(VDCSNS) monitor Supply voltage monitor register value  
debounce  
VDLMTCRT[5:4]: 11  
Critical supply voltage threshold register  
value VDLMTCRT[3:0]: 0001, Supply  
Critical supply voltage (VDCSNS) voltage decreasing. With 2S resistor  
1.18  
1.2  
20  
1.22  
V
falling threshold  
divider from VDC to VDCSNS with 4R  
top, R bottom. VDC = 6V when VDCSNS  
pin = 1.2V.  
Critical supply voltage hysteresis, Supply  
voltage increasing. With 2S resistor  
divider from VDC to VDCSNS with 4R  
top, R bottom. VDC_hyst = 100mV when  
VDCSNS_hyst pin = 20mV.  
Critical supply voltage (VDCSNS)  
rising threshold hysteresis  
mV  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
AC-ADAPTER DETECTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIL  
VIH  
ACOK input low voltage  
0.4  
V
ACOK input high voltage  
1.2  
V
ACOK input current  
ACOK = 3.3 V  
0.01  
61  
0.1  
95  
13  
25  
36  
μA  
μs  
ms  
ms  
ms  
Adapter detection debounce time  
Adapter detection debounce time  
Adapter detection debounce time  
Adapter detection debounce time  
ACOKDB register value: 00  
ACOKDB register value: 01  
ACOKDB register value: 10  
ACOKDB register value: 11 default  
50  
7
10  
15  
24  
20  
30  
CONVERTERS  
VR1 POWER  
Input voltage  
Input voltage  
Parametric and functional  
Functional  
5.4  
5.4  
7.4  
7.4  
21  
24  
V
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V100ACNT[7:6] =  
2'b00, V100ACNT[5:4] = 2'b00 (default)  
Output voltage - Default  
Output voltage  
1.05  
1.00  
V
V
V
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V100ACNT[7:6] =  
2'b00, V100ACNT[5:4] = 2'b01  
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V100ACNT[7:6] =  
2'b00, V100ACNT[5:4] = 2'b10  
Output voltage  
0.975  
0.950  
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V100ACNT[7:6] =  
2'b00, V100ACNT[5:4] = 2'b11  
Output voltage  
Power save mode enabled, SLP_S0Z =  
L , V100ACNT[7:4] = 4'b01XX  
Output voltage  
Output voltage  
Output voltage  
0.850  
0.900  
0.950  
V
V
V
Power save mode enabled, SLP_S0Z =  
L , V100ACNT[7:4] = 4'b10XX  
Power save mode enabled, SLP_S0Z =  
L , V100ACNT[7:4] = 4'b11XX  
RTRIP = 10.56k(programmable based  
on external resistor), RDSON LS FET  
7mΩ  
Low-side output valley current limit  
(programmed by external resistor)  
7300  
9400  
12000  
mA  
current limit (Vsw - PGND)  
VTRIP = 0.8V  
-110  
45  
-100  
50  
-90  
55  
mV  
µA  
ILIM - Current limit pin source  
current  
TA 25  
TCILIM - External FET Rdson  
current limit temperature  
coefficient  
With respect to 25℃  
4780  
ppm/℃  
VILIM - Current limit pin setting  
voltage range  
VILIM = RTRIP*ILIM  
0.2  
2
V
ULQ/Auto Mode, VVIN = 5.4V to 21V, IOUT  
= IMAX = 6.810A, Measured at the  
regulation point output capacitor with  
Kelvin connections made directly from the  
regulation point to the differential  
Maximum line regulation  
Maximum load regulation  
-0.5%  
0.5%  
feedback pins (FBVR1P - FBVR1N).  
ULQ/Auto Mode, VVIN = 7.4V, IOUT = 0A  
to IMAX = 6.810A, Measured at the  
regulation point output capacitor with  
Kelvin connections made directly from the  
regulation point to the differential  
-0.5%  
0.61%  
feedback pins (FBVR1P - FBVR1N).  
Copyright © 2014, Texas Instruments Incorporated  
19  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC and AC, ULQ/Auto Mode, VVIN = 5.4V  
to 21V, IOUT = 0A to 70% max load, 70%  
max load to 0mA and IOUT = 30% max  
load to max load, max load to 30% max  
load, di/dt = 2.5A/us  
Maximum total output voltage load  
transient variation  
-5%  
5%  
PWM Mode (NVDCZ= 3.3V =  
programmed to low switching frequency)  
379  
715  
500  
800  
550  
865  
150  
kHz  
kHz  
μs  
VR1_Controller switching  
frequency (7.4V)  
PWM Mode (NVDCZ= GND =  
programmed to high switching frequency)  
Delay time from enable to first switching  
pulse.  
Start-up time  
From first switching pulse to 95% of  
VO(Min), Continuous slope (no slope  
reversal).Ssee Cout spec  
Output ramp-up tIme  
1000  
μs  
VR1 MOSFET Drivers  
DRVH resistance  
DRVH resistance  
DRVL resistance  
DRVL resistance  
Dead time  
Source, IDRVH = -50mA  
Sink, IDRVH = 50mA  
3.0  
2.0  
3.0  
0.8  
10  
4.5  
3.5  
4.5  
2.0  
Ω
Ω
Source, IDRVL = -50mA  
Sink, IDRVL = 50mA  
Ω
Ω
DRVH - off to DRVL - on  
DRVL - off to DRVH - on  
ns  
ns  
ns  
ns  
Dead time  
20  
High-side driver minimum on-time DRVH - on  
High-side driver minimum off-time DRVH - off  
80  
260  
VR1 OUTPUT DISCHARGE  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Discharge register value: 00, Default  
Discharge register value: 01  
Discharge register value: 10  
Discharge register value: 11  
1000  
90  
kΩ  
Ω
125  
225  
550  
160  
315  
690  
170  
450  
Ω
Ω
VR1_Controller Feedback input  
resistance  
Controller enabled  
1
2.25  
25  
MΩ  
VR1_Bootstrap switch ON  
resistance (Rdson)  
-40 TA 125°C  
15  
Ω
VR1 CONTROL  
VR1_Power good threshold high  
Fail when Vout increasing  
105.5%  
89.5%  
130  
108% 110.5%  
-3%  
VR1_Power good threshold high  
hysteresis  
Good when Vout decreases (after a  
PGOOD fail event)  
VR1_Power good threshold low  
Fail when Vout decreasing  
92%  
3%  
94.5%  
160  
VR1_Power good threshold low  
hysteresis  
Good when Vout increases (after a  
PGOOD fail event)  
Overtemperature protection  
Overtemperature hysteresis  
145  
10  
°C  
°C  
VR2 POWER  
VVINVR2 power input voltage -  
Parametric and functional  
VVINVR2 voltage range, VVIN = 5.4V to 21V  
VVINVR2 voltage range, VVIN = 5.4V to 24V  
3.135  
2.97  
3.3  
3.3  
3.465  
3.63  
V
V
VVINVR2 power input voltage -  
Functional  
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V18ACNT[7:6] =  
2'b00, V18ACNT[5:4] = 2'b00  
Output voltage  
1.854  
V
20  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V18ACNT[7:6] =  
2'b00, V18ACNT[5:4] = 2'b01  
Output voltage  
1.836  
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V18ACNT[7:6] =  
2'b00, V18ACNT[5:4] = 2'b10 (DEFAULT)  
Output voltage - Default  
Output voltage  
1.8  
V
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V18ACNT[7:6] =  
2'b00, V18ACNT[5:4] = 2'b11  
1.764  
Power save mode enabled, SLP_S0Z =  
L , V18ACNT[7:4] = 4'b01XX  
Output voltage  
Output voltage  
Output voltage  
1.728  
1.746  
1.764  
V
Power save mode enabled, SLP_S0Z =  
L , V18ACNT[7:4] = 4'b10XX  
V
Power save mode enabled, SLP_S0Z =  
L , V18ACNT[7:4] = 4'b11XX  
V
Maximum average output current  
range  
VVINVR2 = 2.97V to 3.63V  
VVINVR2 = 2.97V to 3.63V  
VVINVR2 = 2.97V to 3.63V  
VVINVR2 = 2.97V to 3.63V  
2500  
325  
mA  
mA  
mA  
mA  
Ripple current valley positive  
current limit  
1110  
2450  
1875  
Low side valley cycle by cycle  
positive current limit  
2000  
1400  
Low side valley cycle by cycle  
negative current limit  
PFM valley current threshold  
High side switch on resistance  
Low side switch on resistance  
VVINVR2 = 2.97V to 3.63V  
90  
30  
30  
125  
105  
95  
mA  
mΩ  
mΩ  
VVINVR2 = 3.3V, 100% duty cycle  
VVINVR2 = 3.3V, 0% duty cycle  
ULQ/Auto Mode, VVINVR2 = 2.97V to  
3.63V, IOUT = Imax, ALL VOUTS,  
Measured at the regulation point output  
capacitor with Kelvin connections made  
directly from the regulation point to the  
differential feedback pins (FBVR2P -  
FBVR2N).  
Maximum line regulation  
-0.5%  
-0.5%  
0.5%  
0.5%  
1.0%  
ULQ/Auto Mode, VVINVR2 = 2.97V to  
3.63V, IOUT = 0A to Imax, ALL VOUTS,  
Measured at the regulation point output  
capacitor with Kelvin connections made  
directly from the regulation point to the  
differential feedback pins (FBVR2P -  
FBVR2N).  
Maximum load regulation - PWM  
Mode  
ULQ/Auto Mode, VVINVR2 =2.97V to  
3.63V, IOUT = 0A to Imax, ALL VOUTS,  
Measured at the regulation point output  
capacitor with Kelvin connections made  
directly from the regulation point to the  
differential feedback pins (FBVR2P -  
FBVR2N).  
Maximum load regulation - AUTO  
Mode  
-0.65%  
Copyright © 2014, Texas Instruments Incorporated  
21  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC and AC, ULQ/Auto Mode, VVINVR2  
=
V2.97V to 3.63V, IOUT = 0A to 70% max  
load, 70% max load to 0mA, di/dt = 2.5  
A/us, Measured at the regulation point  
output capacitor with Kelvin connections  
made directly from the regulation point to  
the differential feedback pins (FBVR2P -  
FBVR2N).  
-5%  
5%  
Maximum total output voltage load  
transient variation  
DC and AC, ULQ/Auto Mode, VVINVR2  
=
2.97V to 3.63V, IOUT = 30% max load to  
max load, max load to 30% max load ,  
di/dt = 2.5 A/us, Measured at the  
regulation point output capacitor with  
Kelvin connections made directly from the  
regulation point to the differential  
-5%  
5%  
feedback pins (FBVR2P - FBVR2N).  
PWM Mode, IOUT = 67% of max output  
current  
Switching frequency  
1700  
250  
80  
2000  
860  
100  
200  
500  
2300  
1450  
120  
KHz  
kΩ  
Ω
Discharge register value  
DISCHGCNT3[7:6]: 00, Default  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Discharge register value  
DISCHGCNT3[7:6]: 01  
Discharge register value  
DISCHGCNT3[7:6]: 10  
160  
400  
240  
Ω
Discharge register value  
DISCHGCNT3[7:6]: 11  
Output auto discharge resistance  
Feedback input resistance  
600  
Ω
Enabled  
3
MΩ  
μA  
Quiescent current associated with IVout = 0mA, enabled, at TA=25°C Not  
30  
55  
converter when enabled  
switching, Measured at LDO3V,  
VREGVR2  
VR2 CONTROL  
Power good threshold high  
Fail when Vout increasing  
106%  
90%  
120  
108%  
-3%  
110%  
94%  
140  
Power good threshold high  
hysteresis  
Good when Vout decreases (after a  
PGOOD fail event)  
Power good threshold low  
Fail when Vout decreasing  
92%  
3%  
Power good threshold low  
hysteresis  
Good when Vout increases (after a  
PGOOD fail event)  
Over temperature protection THOT  
°C  
°C  
Over temperature hysteresis  
THOT  
10  
10  
Over temperature  
protectionTSHUT  
130  
160  
°C  
°C  
Over temperature hysteresis  
TSHUT  
VR3 POWER  
Input voltage  
Input voltage  
Parametric and functional  
Functional  
5.4  
5.4  
7.4  
7.4  
21  
24  
V
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V33ADSWCNT[7:6] =  
2'b00, V33ADSWCNT[5:4] = 2'b00  
Output voltage  
Output voltage  
3.399  
3.366  
V
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V33ADSWCNT[7:6] =  
2'b00, V33ADSWCNT[5:4] = 2'b01  
22  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V33ADSWCNT[7:6] =  
2'b00, V33ADSWCNT[5:4] = 2'b10  
(DEFAULT)  
Output voltage - Default  
3.3  
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V33ADSWCNT[7:6] =  
2'b00, V33ADSWCNT[5:4] = 2'b11  
Output voltage  
3.234  
V
Power save mode enabled, SLP_S0Z =  
L , V33ADSWCNT[7:4] = 4'b01XX  
Output voltage  
Output voltage  
Output voltage  
3.168  
3.201  
3.234  
12645  
V
V
Power save mode enabled, SLP_S0Z =  
L , V33ADSWCNT[7:4] = 4'b10XX  
Power save mode enabled, SLP_S0Z =  
L , V33ADSWCNT[7:4] = 4'b11XX  
V
High-side output peak current limit RTRIP = 25k(programmable based on  
(programmed by external resistor) external resistor), RDSON HS FET 18mΩ  
11500  
13750  
mA  
High-side ILIM - current limit pin  
TA = 25℃  
44  
50  
-100  
3300  
56  
µA  
mV  
source current  
Current Limit (Vsw - PGND)  
VTRIP = 0.8V  
-110  
-90  
High-side TCILIM - current limit  
temperature coefficient  
With respect to 25℃  
ppm/℃  
High-side VILIM - current limit pin  
setting voltage range  
VILIM = RTRIP*ILIM  
0.2  
6400  
45  
2
10500  
55  
V
RTRIP = 9.43k(programmable based  
on external resistor), RDSON LS FET  
7mΩ  
Low-side output valley current limit  
(programmed by external resistor)  
8420  
mA  
ILIM - current limit pin source  
current  
TA = 25℃  
50  
µA  
ppm/℃  
V
Low-side TCILIM - current limit  
temperature coefficient  
With respect to 25℃  
VILIM = RTRIP*ILIM  
4780  
VILIM - current limit pin setting  
voltage range  
0.2  
-10  
2
Maximum range low side zero  
crossing threshold  
10  
mV  
ULQ/Auto Mode, VVIN = 5.4V to 21V, IOUT  
= IMAX , Measured at the regulation point  
output capacitor with Kelvin connections  
made directly from the regulation point to  
the differential feedback pins (FBVR3P -  
FBVR3N).  
Maximum line regulation  
Maximum load regulation  
-0.5%  
-0.5%  
0.65%  
0.55%  
ULQ/Auto Mode, VVIN = 7.4V, IOUT = 0A  
to IMAX , Measured at the regulation point  
output capacitor with Kelvin connections  
made directly from the regulation point to  
the differential feedback pins (FBVR3P -  
FBVR3N).  
DC and AC, ULQ/Auto Mode, VVIN = 5.4V  
to 21V, IOUT = 0A to 70% max load, 70%  
max load to 0mA and IOUT = 30% max  
load to max load, max load to 30% max  
load, di/dt = 2.5A/us , Measured at the  
regulation point output capacitor with  
Kelvin connections made directly from the  
regulation point to the differential  
Maximum total output voltage load  
transient variation  
-5%  
5%  
feedback pins (FBVR3P - FBVR3N).  
Copyright © 2014, Texas Instruments Incorporated  
23  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PWM Mode (NVDCZ= 3.3V =  
programmed to low switching frequency)  
430  
500  
550  
kHz  
VR3_Controller switching  
frequency  
PWM Mode (NVDCZ= GND =  
programmed to high switching frequency)  
715  
800  
865  
kHz  
Time to start switching from enable to  
95% of VO(Min), Continuous slope (no  
slope reversal). see Cout spec  
Total turn-on time (start-up time +  
output ramp-up time)  
1200  
μs  
VR3 MOSFET Drivers  
DRVH resistance  
DRVH resistance  
DRVL resistance  
DRVL resistance  
Dead time  
Source, IDRVH = -50mA  
Sink, IDRVH = 50mA  
3.0  
2.0  
3.0  
0.8  
10  
4.5  
3.5  
4.5  
2.0  
Ω
Ω
Source, IDRVL = -50mA  
Sink, IDRVL = 50mA  
Ω
Ω
DRVH - off to DRVL - on  
DRVL - off to DRVH - on  
ns  
ns  
ns  
ns  
Dead time  
20  
High-side driver minimum on-time DRVH - on  
High-side driver minimum off-time DRVH - off  
80  
260  
VR3 OUTPUT DISCHARGE  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Discharge register value: 00, Default  
Discharge register value: 01  
Discharge register value: 10  
Discharge register value: 11  
1000  
90  
kΩ  
Ω
125  
225  
550  
160  
315  
690  
170  
450  
Ω
Ω
VR3_Controller feedback input  
resistance  
Controller enabled  
1
2.25  
MΩ  
VR3_Bootstrap switch ON  
resistance (Rdson)  
TA = 25°C  
20  
Ω
VR3_Controller HSD leakage  
VIN = 7.4 V, Controller disabled  
1.55  
μA  
VR3 CONTROL  
VR3_Power good threshold high  
Fail when Vout increasing  
105.5%  
89.5%  
130  
108% 110.5%  
-3%  
VR3_Power good threshold high  
hysteresis  
Good when Vout decreases (after a  
PGOOD fail event)  
VR3_Power good threshold low  
Fail when Vout decreasing  
92%  
3%  
94.5%  
160  
VR3_Power good threshold low  
hysteresis  
Good when Vout increases (after a  
PGOOD fail event)  
Overtemperature protection  
Overtemperature hysteresis  
145  
10  
°C  
°C  
VR4 POWER  
Input voltage  
Input voltage  
Parametric and functional  
Functional  
5.4  
5.4  
7.4  
7.4  
21  
24  
V
V
Power save mode disabled, Output  
voltage select register value: 000  
DDRID = 0V  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
1.236  
1.224  
1.212  
1.200  
V
V
V
V
Power save mode disabled, Output  
voltage select register value: 001  
DDRID = 0V  
Power save mode disabled, Output  
voltage select register value: 010  
DDRID = 0V  
Power save mode disabled, Output  
voltage select register value: 011, default  
DDRID = 0V  
24  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power save mode disabled, Output  
voltage select register value: 100  
DDRID = 0V  
Output voltage  
1.188  
V
Power save mode disabled, Output  
voltage select register value: 101  
DDRID = 0V  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
1.176  
1.164  
1.152  
1.391  
1.377  
1.364  
1.35  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Power save mode disabled, Output  
voltage select register value: 110  
DDRID = 0V  
Power save mode disabled, Output  
voltage select register value: 111  
DDRID = 0V  
Power save mode disabled, Output  
voltage select register value: 000  
DDRID = 3.3V  
Power save mode disabled, Output  
voltage select register value: 001  
DDRID = 3.3V  
Power save mode disabled, Output  
voltage select register value: 010  
DDRID = 3.3V  
Power save mode disabled, Output  
voltage select register value: 011  
DDRID = 3.3V  
Power save mode disabled, Output  
voltage select register value: 100, default  
DDRID = 3.3V  
1.337  
1.323  
1.310  
1.296  
1.082  
1.133  
1.111  
1.1  
Power save mode disabled, Output  
voltage select register value: 101, default  
DDRID = 3.3V  
Power save mode disabled, Output  
voltage select register value: 110  
DDRID = 3.3V  
Power save mode disabled, Output  
voltage select register value: 111  
DDRID = 3.3V  
Power save mode disabled, Output  
voltage select register value: 000  
DDRID = Open  
Power save mode disabled, Output  
voltage select register value: 001  
DDRID = Open  
Power save mode disabled, Output  
voltage select register value: 010  
DDRID = Open  
Power save mode disabled, Output  
voltage select register value: 011  
DDRID = Open  
Power save mode disabled, Output  
voltage select register value: 100, default  
DDRID = Open  
1.089  
1.078  
Power save mode disabled, Output  
voltage select register value: 101, default  
DDRID = Open  
Copyright © 2014, Texas Instruments Incorporated  
25  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power save mode disabled, Output  
voltage select register value: 110  
DDRID = Open  
Output voltage  
1.067  
V
Power save mode disabled, Output  
voltage select register value: 111  
DDRID = Open  
Output voltage  
1.056  
V
Low-side output valley current limit RTRIP = 10.7k(Programmable based on  
(programmed by external resistor) external resistor), RDSON LS FET 7mΩ  
7300  
-110  
45  
9550  
-100  
50  
12000  
-90  
mA  
mV  
µA  
Current limit (Vsw - PGND)  
VTRIP = 0.8V  
ILIM - current limit pin source  
current  
TA = 25℃  
55  
Low-side TCLIM - current limit  
temperature coefficient  
With respect to 25℃  
4780  
ppm/℃  
VILIM - current limit pin setting  
voltage range  
VILIM = RTRIP*ILIM  
0.2  
2
V
ULQ/Auto Mode, VVIN = 5.4V to 21V, IOUT  
= IMAX =7.5A, Measured at the regulation  
point output capacitor with Kelvin  
connections made directly from the  
regulation point to the differential  
Maximum line regulation  
Maximum load regulation  
-0.5%  
0.5%  
feedback pins (FBVR4P - FBVR4N).  
ULQ/Auto Mode, VVIN = 7.4V, IOUT = 0A  
to IMAX =7.5A, Measured at the regulation  
point output capacitor with Kelvin  
connections made directly from the  
regulation point to the differential  
-0.5%  
0.65%  
feedback pins (FBVR4P - FBVR4N).  
DC and AC, ULQ/Auto Mode, VVIN = 5.4V  
to 21V, IOUT = 0A to 70% max load, 70%  
max load to 0mA and IOUT = 30% max  
load to max load, max load to 30% max  
load, di/dt = 2.5A/us , Measured at the  
regulation point output capacitor with  
Kelvin connections made directly from the  
regulation point to the differential  
Maximum total output voltage load  
transient variation  
-5%  
5%  
feedback pins (FBVR4P - FBVR4N).  
PWM Mode (NVDCZ= 3.3V =  
programmed to low switching frequency)  
430  
715  
500  
800  
550  
865  
200  
kHz  
kHz  
μs  
VR4_Controller switching  
frequency  
PWM Mode (NVDCZ= GND =  
programmed to high switching frequency)  
Time to start switching from enable. See  
Cout spec  
Start-up time  
Time to start switching from enable to  
95% of VO(Min), Continuous slope (no  
slope reversal). see Cout spec  
Total turn-on time (start-up time +  
output ramp-up time)  
300  
1025  
μs  
26  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
VR4 MOSFET DRIVERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DRVH resistance  
DRVH resistance  
DRVL resistance  
DRVL resistance  
Dead time  
Source, IDRVH = -50mA  
3.0  
2.0  
3.0  
0.8  
10  
4.5  
3.5  
4.5  
2.0  
Ω
Ω
Sink, IDRVH = 50mA  
Source, IDRVL = -50mA  
Sink, IDRVL = 50mA  
Ω
Ω
DRVH - off to DRVL - on  
DRVL - off to DRVH - on  
ns  
ns  
ns  
ns  
Dead time  
20  
High-side driver minimum on-time DRVH - on  
High-side driver minimum off-time DRVH - off  
80  
260  
VR4 OUTPUT DISCHARGE  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Discharge register value: 00, Default  
Discharge register value: 01  
Discharge register value: 10  
Discharge register value: 11  
1000  
90  
kΩ  
Ω
100  
225  
550  
160  
315  
690  
170  
450  
Ω
Ω
VR4_Controller feedback input  
resistance  
V10 controller enabled  
TA = 25°C  
1
2.25  
20  
MΩ  
VR4_Bootstrap switch ON  
resistance (Rdson)  
Ω
VR4 CONTROL  
VR4_Power good threshold high  
Fail when Vout increasing  
105.5%  
89.5%  
130  
108% 110.5%  
-3%  
VR4_Power good threshold high  
hysteresis  
Good when Vout decreases (after a  
PGOOD fail event)  
VR4_Power good threshold low  
Fail when Vout decreasing  
92%  
3%  
94.5%  
160  
VR4_Power good threshold low  
hysteresis  
Good when Vout increases (after a  
PGOOD fail event)  
Overtemperature protection  
Overtemperature hysteresis  
145  
10  
°C  
°C  
LDO1 POWER  
Input voltage  
Output voltage  
Input voltage  
Output voltage  
Input voltage  
Output voltage  
DDRID = 0V  
1.2  
0.6  
V
V
V
V
V
V
DDRID = 0V, VOUTLDO1 = (VINLDO1S)  
/ 2  
DDRID = 3.3V  
1.35  
0.675  
1.1  
DDRID = 3.3V, VOUTLDO1 =  
(VINLDO1S) / 2  
DDRID = Open  
DDRID = Open, VOUTLDO1 =  
(VINLDO1S)/ 2  
0.55  
IOUT 10 mA, 1.1V VINLDO1 1.35V,  
Output voltage relative to VINLDO1S / 2,  
where VINLDO1S = FBVR4 = FBV10,  
Load transient from 0mA to 70%*10mA,  
dI/dt = 2.5 A/us  
-20  
-30  
20  
30  
mV  
mV  
Output voltage tolerance - AC and  
DC transient load  
IOUT 1 A, 1.1V VINLDO1 1.35V,  
VOUTLDO1 = Output voltage relative to  
VINLDO1S / 2, where VINDO1S = FBVR4  
= FBV10, Load transient from 0mA to  
70%*1A, dI/dt = 2.5 A/us  
Leakage current  
TA = 25°C, VIN13 = 1.2V, Disabled  
5
µA  
µA  
TA = 25°C Bias current measured when  
VINLDO13 is at 1.2V  
Bias current at VIN13_SENSE  
40  
Copyright © 2014, Texas Instruments Incorporated  
27  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Max current from LDO without exceeding  
load regulation  
LDO1 source current limit  
1000  
mA  
Max current sinked into LDO without  
exceeding load regulation (raise output  
voltage above programmed value to sink  
current into LDO)  
Sink current limit  
1000  
mA  
Measured with VOUT at 0.9*Programmed  
voltage  
Source short circuit current limit  
Sink short circuit current limit  
2000  
2000  
mA  
mA  
VVIN = 1.1V, 1.2V and 1.35V, IOUT = 0A to  
1.0A, Measured at the regulation point  
output capacitor with Kelvin connections  
made directly from the regulation point to  
the differential feedback pins (FBLDO1 -  
FBVR4N).  
Maximum load regulation  
4.5%  
DC and AC, VVIN = 1.0V to 1.42V, IOUT  
0A to 1.0A, Measured at the regulation  
point output capacitor with Kelvin  
connections made directly from the  
regulation point to the differential  
feedback pins (FBLDO1 - FBVR4N).  
=
Maximum total output voltage  
variation  
5%  
35  
Measure from LDO enable to VOUT stable.  
Time to ramp from 0.3V to VO(min)  
.
Total turn-on time (enable + ramp) Continuous slope (no slope reversal).  
Assumes VVIN is present, with a 4x10µF  
µs  
output capacitor bank  
External output capacitor (Cout)  
External input capacitor (Cin)  
40  
10  
µF  
µF  
kΩ  
Ω
Output auto discharge resistance  
Output auto discharge resistance  
FBLDO1 input impedance  
Discharge register value: 0, Default  
Discharge register value: 1  
Enabled  
1000  
60  
80  
25  
100  
20  
MΩ  
μA  
μA  
Quiescent current into VVINLDO1  
VVINLDO1 = 1.35V, ILDO1 = 0 mA, Enabled  
VVINLDO1 = 1.35V, Enabled  
3.5  
5
Quiescent current from 3.3V  
reference LDO when LDO1 is  
enabled  
250  
LDO1 CONTROL  
LDO1_Power good threshold high Fail when VOUT increasing  
108%  
88%  
130  
110%  
-5%  
112%  
92%  
160  
LDO1_Power good threshold high Good when VOUT decreases (after a  
hysteresis  
PGOOD fail event)  
LDO1_Power good threshold low  
Fail when VOUT decreasing  
90%  
5%  
LDO1_Power good threshold low  
hysteresis  
Good when VOUT increases (after a  
PGOOD fail event)  
Overtemperature protection  
Overtemperature hysteresis  
145  
10  
°C  
°C  
VR5 POWER  
Input voltage  
Input voltage  
Parametric and functional  
Functional  
5.4  
5.4  
7.4  
7.4  
21  
24  
V
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V5ADS3CNT[7:6] =  
2'b00, V5ADS3CNT[5:4] = 2'b00  
Output voltage  
Output voltage  
5.15  
5.1  
V
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V5ADS3CNT[7:6] =  
2'b00, V5ADS3CNT[5:4] = 2'b01  
28  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V5ADS3CNT[7:6] =  
2'b00, V5ADS3CNT[5:4] = 2'b10  
(DEFAULT)  
Output voltage- Default  
5.0  
V
Power save mode disabled (SLPS0Z = H,  
or SLPS0Z = L & , V5ADS3CNT[7:6] =  
2'b00, V5ADS3CNT[5:4] = 2'b11  
Output voltage  
4.9  
V
Power save mode enabled, SLP_S0Z =  
L , V5ADS3CNT[7:4] = 4'b01XX  
Output voltage  
Output voltage  
Output voltage  
4.8  
4.85  
4.9  
V
V
V
Power save mode enabled, SLP_S0Z =  
L , V5ADS3CNT[7:4] = 4'b10XX  
Power save mode enabled, SLP_S0Z =  
L , V5ADS3CNT[7:4] = 4'b11XX  
High-side output peak current limit RTRIP = 13.1k(programmable based on  
(programmed by external resistor) external resistor), RDSON HS FET 18mΩ  
6600  
-110  
44  
7245  
-100  
50  
7900  
-90  
mA  
mV  
µA  
current limit (Vsw - PGND)  
VTRIP = 0.8V  
High-side ILIM - current limit pin  
source current  
TA = 25℃  
56  
High-side TCILIM - current limit  
temperature coefficient  
With respect to 25℃  
3300  
ppm/℃  
V
High-side VILIM - current limit pin  
setting voltage range  
VILIM = RTRIP*ILIM  
0.2  
3350  
45  
2
5600  
55  
Low-side output valley current limit RTRIP = 5k(programmable based on  
(programmed by external resistor) external resistor), RDSON LS FET 7mΩ  
4465  
50  
mA  
ILIM - current limit pin source  
TA = 25℃  
µA  
current  
Low-side TCILIM - current limit  
With respect to 25℃  
4780  
ppm/℃  
V
temperature coefficient  
VILIM - current limit pin setting  
VILIM = RTRIP*ILIM  
0.2  
-10  
2
voltage range  
Maximum range low side zero  
crossing threshold  
10  
mV  
ULQ/Auto Mode, VVIN = 5.4V to 21V, IOUT  
= IMAX, Measured at the regulation point  
output capacitor with Kelvin connections  
made directly from the regulation point to  
the differential feedback pins (FBVR5P -  
FBVR5N).  
Maximum line regulation  
-0.5%  
-0.5%  
1.05%  
0.75%  
ULQ/Auto Mode, VVIN = 7.4V, IOUT = 0A  
to IMAX, Measured at the regulation point  
output capacitor with Kelvin connections  
Maximum load regulation  
made directly from the regulation point to  
the differential feedback pins (FBVR5P -  
FBVR5N).  
DC and AC, ULQ/Auto Mode, VVIN = 5.7V  
to 21V (when Vout=5V), VVIN = 5.4V to  
21V (when Vout=1.8V), IOUT = 0A to 70%  
max load, 70% max load to 0mA and IOUT  
Maximum total output voltage load = 30% max load to max load, max load to  
-5%  
5%  
transient variation  
30% max load, di/dt = 2.5A/us , Measured  
at the regulation point output capacitor  
with Kelvin connections made directly  
from the regulation point to the differential  
feedback pins (FBVR5P - FBVR5N).  
Copyright © 2014, Texas Instruments Incorporated  
29  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PWM Mode (NVDCZ= 3.3V =  
programmed to low switching frequency)  
430  
500  
550  
VR5_Controller switching  
frequency  
PWM Mode (NVDCZ= GND =  
kHz  
programmed to high switching  
frequency)Frequency drops at Vin < 6V  
close to Vout = 5V to extend Ton  
25  
875  
925  
Time to start switching from enable to  
95% of VO(Min), Continuous slope (no  
slope reversal). See Cout spec  
Total turn-on time (start-up time +  
output ramp-up time)  
1200  
μs  
VR5 MOSFET Drivers  
DRVH resistance  
DRVH resistance  
DRVL resistance  
DRVL resistance  
Dead time  
Source, IDRVH = -50mA  
Sink, IDRVH = 50mA  
3.0  
2.0  
3.0  
0.8  
10  
4.5  
3.5  
4.5  
2.0  
Ω
Ω
Source, IDRVL = -50mA  
Sink, IDRVL = 50mA  
Ω
Ω
DRVH - off to DRVL - on  
DRVL - off to DRVH - on  
ns  
ns  
ns  
ns  
Dead time  
20  
High-side driver minimum on-time DRVH - on  
High-side driver minimum off-time DRVH - off  
80  
260  
VR5 OUTPUT DISCHARGE  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Output auto discharge resistance  
Discharge register value: 00, Default  
Discharge register value: 01  
Discharge register value: 10  
Discharge register value: 11  
1000  
90  
kΩ  
Ω
150  
250  
575  
190  
315  
690  
170  
450  
Ω
Ω
VR5_Controller Feedback input  
resistance  
Controller enabled  
2.5  
4.25  
MΩ  
VR5_Bootstrap switch ON  
resistance (Rdson)  
TA = 25°C  
20  
Ω
VR5_Controller HSD leakage  
VIN = 7.4 V, Controller disabled  
1.55  
μA  
VR5 CONTROL  
VR5_Power good threshold high  
Fail when Vout increasing  
105.5%  
89.5%  
130  
108% 110.5%  
-3%  
VR5_Power good threshold high  
hysteresis  
Good when Vout decreases (after a  
PGOOD fail event)  
VR5_Power good threshold low  
Fail when Vout decreasing  
92%  
3%  
94.5%  
160  
VR5_Power good threshold low  
hysteresis  
Good when Vout increases (after a  
PGOOD fail event)  
Overtemperature protection  
Overtemperature hysteresis  
145  
10  
°C  
°C  
INPUT POWER SOURCE DETECTION  
AC-ADAPTER DETECTION  
VIL  
VIH  
ACOK input low voltage  
0.4  
V
ACOK input high voltage  
1.2  
V
ACOK input current  
ACOK = 3.3 V  
0.01  
61  
0.1  
95  
13  
25  
36  
μA  
μs  
ms  
ms  
ms  
Adapter detection debounce time  
Adapter detection debounce time  
Adapter detection debounce time  
Adapter detection debounce time  
ACOKDB register value: 00  
ACOKDB register value: 01  
ACOKDB register value: 10  
ACOKDB register value: 11 Default  
50  
7
10  
15  
24  
20  
30  
30  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Electrical Characteristics (continued)  
Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient  
temperature range of 25°C) (unless otherwise noted)  
PARACTER  
POWER MONITORING  
1 Hz CLOCK  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1Hz EC CLOCK - pulled-0-up to EC_VCC Internal Pull-up Rail = EC_VCC = 1.8V or 3.3V  
Clock frequency  
0.8  
1
1.2  
Hz  
V
Duty cycle  
50%  
Pulled-Up to EC_VCC pin which should  
be tied to 3.3v LDO3 pin, can also have  
EC_VCC pull-up to 1.8V, instead of 3.3V  
EC_  
VCC  
VPP  
Pull-up output voltage supply  
VOL_PP  
VOH_PP  
Low level output voltage  
High level output voltage  
IOL = 3 mA  
0.66  
V
V
EC_VC  
C - 0.66  
IOH = 3 mA  
COINCELL SELECTOR  
VDCIN > UVLO, 3.3V and 5V LDOs up ,  
Measured at the V3P3A_RTC pin with  
respect to AGND.. Place a 1µF capacitor  
at V3P3A_RTC. (Do not exceed 2uF  
capacitance).  
V3v1LDO  
3V1 LDO regulation voltage  
3.0  
3.1  
3.2  
1
V
I3v1LDO  
Maximum 3V1 LDO output current Maximum output current out of 3V3RTC.  
mA  
VBATTBKUP quiescent current,  
when no adapter and no main  
battery connected to system,  
automatically VBATTBKUP  
internally selected. internal 3.1V  
LDO automatically off  
VVDC < UVLO, VBBC = 2.0V to 3.0V, VVDC  
= 0V  
IQ_bkup_no_Vsys  
0.03  
0.45  
0.85  
μA  
VBATTBKUP quiescent current,  
when adapter or main battery  
connected to system, automatically VVDC > UVLO, VBBC = 2.0V to 3.0V, VVDC  
VBATTBKUP internally not  
selected, internal 3.1V LDO  
automatically on and selected.  
IQ_bkup_with_Vsys  
0.15  
1
μA  
kΩ  
= 7.4V  
Place between backup battery and  
VBATTBKUP pin, for limiting current out  
of backup battery  
External resistor in series with  
backup battery  
Rext_bkup  
I2C INTERFACE(1)  
VIL  
VIH  
SDA, SCL input low voltage  
SDA, SCL input high voltage  
SDA, SCL input current  
0.4  
V
V
1.2  
Clamped on 3.3V  
0.01  
0.04  
0.3  
0.4  
μA  
ISDA = 5mA (using a 354Ω or larger  
external pull-up resistor)  
SDA output low voltage  
V
Cb  
Capacitive load for SDA and SCL  
400  
pF  
(1) All values referred to VIH min and VIH max levels.  
Copyright © 2014, Texas Instruments Incorporated  
31  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kHz  
μs  
I2C INTERFACE  
Standard-mode  
100  
400  
f(SCL)  
SCL clock frequency  
Fast-mode  
Fast-mode Plus  
Standard-mode  
Fast-mode  
1000  
4.7  
1.3  
0.5  
4
Bus free time between a STOP and  
START condition  
tBUF  
Fast-mode Plus  
Standard-mode  
Fast-mode  
μs  
ns  
ns  
μs  
ns  
ns  
Hold time (repeated) START  
condition  
tHD; STA  
600  
260  
4.7  
600  
260  
250  
100  
50  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Setup time for a repeated START  
condition  
tSU; STA  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tSU; DAT Data setup time  
tHD; DAT Data hold time  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
3.45  
0.9  
μs  
μs  
ns  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
1000  
300  
trCL  
Rise time of SCL signal  
20  
20  
ns  
Fast-mode Plus  
120  
Standard-mode (using a 2.95KΩ or smaller  
external pull-up resistor)  
1000  
Fast-mode (using an 885Ω or smaller external  
pull-up resistor)  
300  
120  
trDA  
Rise time of SDA signal  
Fall time of SDA signal  
ns  
Fast-mode Plus (using a 354Ω or smaller  
external pull-up resistor)  
Standard-mode  
300  
300  
20 x (VDD  
/
Fast-mode  
tfDA  
5.5 V)  
ns  
20 x (VDD  
/
120  
Fast-mode Plus  
5.5 V)  
Standard-mode  
Fast-mode  
4
µs  
ns  
ns  
tSU; STO Setup time for STOP condition  
600  
260  
Fast-mode Plus  
32  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
VOLUME #1 Application Block Diagram:  
VR1 = V1.00A (V11), & V085A (V12), VR2 = V1.8A (V8), VR3 = V33ADSW (V6),  
VR4 = V1.2U (V10), VR5 = V5ADS3 (V5)  
TPS650830 ± VOLUME  
COMPA = V3.3A_PCH (V7), COMPB = V1.8U_2.5U (V9), COMPC = Generic Comparator,  
COMPD = VCCIO (V4), COMPE = V3.3S, COMPF = V1.8S, COMPG = V1.00S  
S5/S4  
G3 ÆS5/S4  
S5/S4 Æ S0  
G3  
VOL#1  
VDC  
(BAT/ADP  
Insertion)  
VREF1V25  
UVLO3Z  
[UVLO2Z_LDO3EN]  
LDO3  
LDO3_PG  
UVLO5Z  
[UVLO1Z_LDO5EN]  
(Power On Dig Reset)  
LDO5  
LDO5_PGD  
OTP_LOAD  
1ms from UVLO5/Dig Reset to OTP Loaded  
I2C Ready  
PMIC I2C  
3.2V  
3.1V LDO  
Vcoin_cell_battery  
V3P3A_RTC  
[V3P3A_RTC]  
2.0V  
V3.3A_DSW_EN (V6)  
[ENVR3] (Tie to LDO3 or to GND)  
VERY IMPORTANT: This pin is ignored. The ENVR3 is driven internally for Volume  
V33ADSW (V6)  
[FBVR3P]  
PG  
V3.3A_DSW_PG (V6)  
[PGVR3]  
>10ms delay from PG  
V3.3A_DSW to DPWROK  
DPWROK  
[DPWROK]  
ext  
V1.8A_EN (V8)  
[ENVR2]  
Assumes V1.8A enabled by DPWROK.  
Could also be enabled by SLP_SUSZ later.  
V1.8A (V8)  
[FBVR2P]  
PG  
V1.8A_PG  
[PGVR2]  
DPWROK to SLP_SUSZ takes 95ms from PCH  
95ms  
SLP_SUSZ  
[ENE]  
ext  
V5ADS3_EN  
[ENVR5]  
V5ADS3_EN is copy of SLP_SUSZ  
DS3_VREN  
[DS3_VREN]  
DS3VREN is gated by  
V5ADS3_EN  
~ 1us delay  
V5ADS3 (V5)  
[FBVR5P]  
PG  
V5ADS3_PG  
[PGVR5]  
V5A_DS3_PG to V1.00A_PG  
<20mSec  
ext  
V33APCH_EN_control  
[ENA]  
int  
V33APCH_EN_qualified  
[PGE]  
± to Load Switch  
V3.3APCH (7)  
[VSA]  
PG  
V3.3APCH_PG  
[PGA]  
ext  
V085A_EN  
[ENVR1]  
/ V100A_EN  
1.00V  
PG  
V085A (V12)  
[FBVR1P]  
/ V100A (V11)  
V085A_PG  
[PGVR1]  
/ V100A_PG  
int  
RSMRSTZ  
[RSMRSTZ]  
internal  
>10mSec  
RSMRSTZ_PWRGD  
[RSMRSTZ_PWRGD]  
external  
SLP_S4Z  
[ENB]  
V1.8U_2.5U_EN  
[PGB]  
SLP_S4Z to V1.8U_2.5U ramp  
0.5ms tdelay +tramp-up 2ms  
[Load Sw turn-on time]  
=
”
”
V1.8U_2.5U (V9)  
[VSB]  
ext  
PG  
V1.8U_2.5U_PG  
[PMIC internal]  
V1.2U_EN  
[ENVR4]  
SLP_S4Z to V1.2U ramp  
>2.5ms  
[4ms]  
V1.2U (V10)  
[FBVR4P]  
PG  
V1.2U_PG  
[PGVR4]  
SLP_S3Z  
[ENF] for powergood tree only  
ext  
V100S_EN  
[ENG]  
± to Load Switch  
V1.00S  
[VSG]  
ext  
PG  
V1.00S_PG  
[PGG]  
V3.3S_EN  
[ENG]  
± to Load Switch  
V3.3S  
[VSE]  
PG  
V3.3S_PG  
[PMIC internal]  
ext  
V1.8S_EN  
[ENG]  
± to Load Switch  
V1.8S  
[VSF]  
ext  
PG  
SLP_S3Z  
[V1.2U_PG  
outputs drive same ENVR3 pin, with single  
pull-up resistor]  
&
V1.2U_PG  
& V1.00S_PG  
V1.8S_PG  
[PGF]  
&
V1.00S_PG open-drain  
ext  
VCCIO_EN  
No direct SLP_S3Z connection  
[PGD]  
± to Load Switch  
VCCIO (V4)  
[VSD]  
PG  
VCCIO_PG  
[PMIC internal]  
2ms (from the last PG)  
ALL_SYS_PWRGD  
[ALL_SYS_PWRGD]  
1.00V  
VCCST_PWRGD  
[VCCST_PWRGD]  
Prog  
Prog  
PCH_PWROK  
[PCH_PWROK]  
SYS_PWROK  
[SYS_PWROK]  
Figure 1. TPS650830 Volume Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
33  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
7.7 Typical Characteristics  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1.89  
1.87  
1.85  
1.84  
1.82  
1.80  
1.78  
1.76  
1.75  
1.73  
1.71  
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
Vin=2.97  
Vin=3.30  
Vin=3.63  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
0
0.5  
1
1.5  
2
2.5  
Iout (A)  
Iout (A)  
D001  
D001  
Figure 2. VR1 Output Voltage Load Regulation, NVDC  
Figure 3. VR2 Output Voltage Load Regulation, NVDC  
3.465  
1.272  
Vin=5.40  
Vin=8.10  
Vin=8.70  
Vin=13.50  
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
1.260  
1.248  
1.236  
1.224  
1.212  
1.200  
1.188  
1.176  
1.164  
1.152  
1.140  
3.432  
3.399  
3.366  
3.333  
3.300  
3.267  
3.234  
3.201  
3.168  
3.135  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
Iout (A)  
Iout (A)  
D001  
D001  
Figure 4. VR3 Output Voltage Load Regulation, NVDC  
Figure 5. VR4 Output Voltage Load Regulation, NVDC  
5.25  
100  
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
1
2
3
4
5
6
7
Iout (A)  
Iout (A)  
D001  
D001  
Figure 6. VR5 Output Voltage Load Regulation, NVDC  
Figure 7. VR1 Efficiency vs Load, NVDC  
34  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Typical Characteristics (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
Vin=2.97V  
Vin=3.30V  
Vin=3.63V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Iout (A)  
Iout (A)  
D001  
D001  
Figure 8. VR2 Efficiency vs Load, NVDC  
Figure 9. VR3 Efficiency vs Load, NVDC  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
Vin=13.50V  
0
1
2
3
4
5
6
7
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
Iout (A)  
Iout (A)  
D001  
D001  
Figure 10. VR4 Efficiency vs Load, NVDC  
Figure 11. VR5 Efficiency vs Load, NVDC  
900000  
800000  
700000  
600000  
500000  
400000  
300000  
200000  
100000  
0
800000  
700000  
600000  
500000  
400000  
300000  
200000  
100000  
0
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
Vin=13.50V  
0
1
2
3
4
5
6
7
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5 6.5  
6
Iout (A)  
Iout (A)  
D001  
D001  
Figure 12. VR1 Switching Frequency vs Load, NVDC  
Figure 13. VR3 Switching Frequency vs Load, NVDC  
Copyright © 2014, Texas Instruments Incorporated  
35  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
800000  
700000  
600000  
500000  
400000  
300000  
200000  
100000  
0
900000  
800000  
700000  
600000  
500000  
400000  
300000  
200000  
100000  
0
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
0
1
2
3
4
5
6
7
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Iout (A)  
Iout (A)  
D001  
D001  
Figure 14. VR4 Switching Frequency vs Load, NVDC  
Figure 15. VR5 Switching Frequency vs Load, NVDC  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
3.5  
2.00  
8
7
6
5
4
3
2
1
0
Vout (Vin=2.97V)  
Vout (Vin=3.30V)  
Vout (Vin=3.63V)  
Iout (Vin=2.97V)  
Iout (Vin=3.30V)  
Iout (Vin=3.63V)  
Vout (Vin=5.4V)  
Vout (Vin=8.7V)  
Vout (Vin=15V)  
Vout (Vin=24V)  
Iout (Vin=5.4V)  
Iout (Vin=8.7V)  
Iout (Vin=15V)  
Iout (Vin=24V)  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
8
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Iout (VR1) Programmed (A)  
Iout(VR2) Programmed (A)  
D001  
D001  
Figure 16. VR1 Current Limit: Vout and Iout vs Load, Non-  
NVDC  
Figure 17. VR2 Current Limit: Vout and Iout vs Load, Non-  
NVDC  
5.4  
4.8  
4.2  
3.6  
3
9
8
7
6
5
4
3
2
1
0
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
9
8
7
6
5
4
3
2
1
0
Vout (Vin=5.40V)  
Vout (Vin=8.70V)  
Vout (Vin=15.00V)  
Vout (Vin=24.00V)  
Iout (Vin=5.40V)  
Iout (Vin=8.70V)  
Iout (Vin=15.00V)  
Iout (Vin=24.00V)  
Vout (Vin=5.40V)  
Vout (Vin=8.70V)  
Vout (Vin=13.50V)  
Vout (Vin=24.00V)  
Iout (Vin=5.40V)  
Iout (Vin=8.70V)  
Iout (Vin=13.50V)  
Iout (Vin=24.00V)  
2.4  
1.8  
1.2  
0.6  
0
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
Iout (VR4) Programmed (A)  
Iout (VR4) Programmed (A)  
D001  
D001  
Figure 18. VR3 Current Limit: Vout and Iout vs Load, Non-  
NVDC  
Figure 19. VR4 Current Limit: Vout and Iout vs Load, Non-  
NVDC  
36  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Typical Characteristics (continued)  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Vout (Vin=5.40V)  
Vout (Vin=8.70V)  
Vout (Vin=13.50V)  
Vout (Vin=24.00V)  
Iout (Vin=5.40V)  
Iout (Vin=8.70V)  
Iout (Vin=13.50V)  
Iout (Vin=24.00V)  
9
8
7
6
5
4
3
2
1
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Iout (VR5) Programmed (A)  
D001  
Figure 20. VR5 Current Limit: Vout and Iout vs Load, Non-NVDC  
Copyright © 2014, Texas Instruments Incorporated  
37  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS650830 is a single-chip solution Power Management IC designed specifically for the latest Intel  
Processors targeted for Tablets, Ultrabooks, and Notebooks with NVDC or non-NVDC power architectures, using  
2S, 3S, or 4S Lithium-Ion battery packs.  
The TPS650830 is used for Volume systems with the low voltage rails merged for the smallest footprint and  
lowest cost system power solution.  
The TPS650830 can provide the complete power solution based on the Intel Reference Designs. Five highly  
efficient step-down voltage regulators (VRs) and a sink/source LDO, are used along with power-up sequence  
logic managing external load switches to provide the proper power rails, sequencing, and protection - including  
DDR3 and DDR4 memory power. The regulators support dynamic voltage scaling (DVS) for maximum efficiency  
including Connected Standby. The high frequency voltage regulators use small inductors and capacitors to  
achieve a small solution size. Output power is adjustable on four VR controllers. An I2C interface allows simple  
control by the embedded controller (EC). Each version is available in a 7x7 NFBGA package and a 9x9 NFBGA  
package. The 7x7 NFBGA package can be used in Type 4 PCB boards for the smallest area implementation.  
The 9x9 NFBGA package can be used in Type 3 and Type 4 PCB boards allowing to minimize cost and area.  
The Powergood Comparator Logic allows controlling and monitoring four external load switches within the  
sequence. All the VR and Load Switch Powergood signals are used in the Power Good Tree of which the outputs  
are shown with open-drain outputs. Enable inputs allow connecting externally to set the sequence, and it also  
allows using various Sleep Mode State signals. The STANDBYZ allows entering a Deep Sleep Mode, in which  
the out put voltages of the voltage regulators can be reduced to save power by DVS.  
The Power Monitoring comparators are used to detect and monitor up to three input power sources (adapter,  
battery1, battery2, or any other combination). Over temperature of the PMIC self-protects, and outputs a Status  
output, TEMPALERTZ; plus there is a dedicated comparator that can monitor system over temperature with  
multiple stacked PTC thermistors, or an NTC thermistor. The PMIC automatically swtiches between an internal  
3.1V LDO when a powersource is connected; or to a Backup Battery (Coin Cell) when all power sources are  
removed. This output RTC rail is used to maintain the always-on RTC rails for critical register data.  
38  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.2 Functional Block Diagram  
SHUTDOWNZ  
STANDBYZ  
POWER MONITOR  
VDDIO  
PGVR4  
OD/PP  
VREGVR4  
ILIMVR4  
FBVR4N  
VDDIO  
PP  
FBVR4P  
VBSTVR4  
DRVHVR4  
VR4  
PPATH  
LOGIC  
Controller  
V12U/135U/  
1.05U  
VDDIO  
RESETZ  
SWVR4  
DRVLVR4  
PGNDVR4  
Vout=1.05V-  
1.2V  
10A max  
PP  
PG  
EN  
VSET  
VSA  
VSB  
VSC  
VSD  
VSE  
REF  
EN/  
PGOOD  
LOGIC  
VDDIO  
DCH  
VDDIO  
VSF  
VSG  
DDRID  
ENVR4  
TTL  
3 L  
VSH  
VDDIO  
TTL  
ENA  
ENB  
ENC  
END  
ENE  
ENF  
ENG  
ENH  
DDR_VTT_CTRL  
SEQ  
+
INTEL  
AND  
OEM  
LOGIC  
VDDIO  
TTL  
VINDLO1S  
VINLDO1[2X]  
LDO1  
SINK/SRC LDO  
V0.6DX/0.675DX  
/0.525DX  
VOUTLDO1[2X]  
EN  
EN  
LOGIC  
FBLDO1  
PGA  
PGB  
PGC  
PGD  
PGE  
PGF  
Vout= (VR1)/2  
1A max  
VDDPG  
PGNDLDO1[2X]  
VINVR2 [2X]  
SWVR2 [2X]  
OD/PP  
PGG  
PGH  
VDDPG  
VR2  
PG  
VDDIO  
Converter  
Out range:  
0.85v-3.3v  
Vout INTEL  
FBVR2P  
ENLVA  
EN  
VSET  
TTL  
VREGVR2  
LVA  
LVB  
VDDLVS  
FBVR2N  
OD/PP  
PGNDVR2 [2X]  
EN/  
PGOOD  
LOGIC  
VDDLV  
VDDIO  
VREGVR1  
PGVR2  
ENVR2  
DIGCORE  
OD/PP  
ILIMVR1  
FBVR1N  
VDDIO  
FBVR1P  
TTL  
VR1  
Controller  
Vout range  
0.85v-5v  
Vout INTEL  
VBSTVR1  
VBATTBKUP  
BACKUP  
BATTERY  
SELECTOR  
V33ARTC  
DRVHVR1  
SWVR1  
RTC  
DIG  
EN/  
PGOOD  
LOGIC  
PG  
V3P3A_RTC  
TRIPZ  
EN  
VSET  
DRVLVR1  
OD/PP  
OEM  
VCOMP  
VCOMP  
PGVR3  
PGNDVR1  
PGVR1  
VDDIO  
OD/PP  
VDDIO  
VDDIO  
NVDCZ  
OD/PP  
TTL  
VDDIO  
VREGVR4  
ENVR1  
PGVR5  
TTL  
VINVR3  
ILIMVR3HS  
ILIMVR3LS  
FBVR3N  
EN/  
PGOOD  
LOGIC  
VDDIO  
EN/  
PGOOD  
LOGIC  
OD/PP  
PG  
VR3  
VINVR5  
FBVR3P  
EN  
VSET  
Controller  
Out range:  
0.85v-5v  
EN  
VSET  
VBSTVR3  
ILIMVR5HS  
FBVR5N  
I2C AND  
REGFILE  
Vout INTEL  
FBVR5P  
DRVHVR3  
SWVR3  
VR5  
VBSTVR5  
Controller  
Out range:  
0.85v-5v  
DRVLVR3  
DRVHVR5  
SWVR5  
Vout INTEL  
VDDIO  
PGNDVR3  
ENVR3  
TTL  
DRVLVR5  
OTP  
VREGVR1  
PGNDVR5  
VIN  
UVLO  
VINLDO3  
VDDIO  
ILIMVR5LS  
DFT AND  
AMUX  
TTL  
LDO5V  
REFSYS  
ENVR5  
VREF1V25  
LDO3V  
VIN5VSW  
EN5VSW  
TEMP_ALERTZ  
VDDIO [2X]  
DIETEMP  
OD  
PGA  
PGB  
PGC  
PGD  
SW  
TTL  
SW  
EN3V3SW  
AGND [4]  
TTL  
Copyright © 2014, Texas Instruments Incorporated  
39  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Voltage Regulator Assignment and Powergood Comparator Logic Assignment (External Voltage  
Regulator or Load Switch) for SkyLake Platform  
For the SkyLake Power Map implementation, the five PMIC voltage regulators and LDO1 are assigned with the  
low -voltage rails merged or split according to the configuration. For the Volume (merged low voltage rails)  
configuration six external load switches are controlled and monitored by using six powergood comparator logic  
blocs.  
Table 1. Voltage Regulator and Powergood Comparator Logic Assignment for Intel SkyLake Platform  
Iout  
SkyLake PLATFORM POWER SYSTEM VOLTAGE RAIL  
VOLUME (Merged Low Voltage Rails)  
OUTPUT  
VOLTAGE, Vout ACTIVE MODE  
Iout  
CONNECTED  
STANDBY  
MODE  
TPS650830  
VR1  
VR2  
VR3  
VR4  
VR5  
V1.00A / 0.85A  
V1.8A  
1.00V  
1.8V  
6.47A  
1.44A  
6.29A  
7.24A  
3.75A  
0mA  
4mA  
6mA  
8mA  
1mA  
V3.3A_DSW  
V1.2U  
3.3V  
1.2V,1.35V,1.1V  
5V  
V5A_DS3  
0.6V, 0.675V,  
0.55V  
LDO1  
V0.6Dx  
0.6A  
0mA (off)  
External VR_a  
External VR_b  
none  
none  
-
-
-
-
-
-
Powergood  
Comparator  
Logic a  
V3.3A_PCH Enable/Sense External Load Switch  
V1.8U_2.5U Enable/Sense External Load Switch  
Generic Comparator  
3.3V  
1.8V  
-
Powergood  
Comparator  
Logic b  
Powergood  
Comparator  
Logic c  
Powergood  
Comparator  
Logic d  
VCCIO Enable/Sense External Load Switch  
V3.3S Sense External Load Switch  
V1.8S Sense External Load Switch  
V1.0S Sense External Load Switch  
1.00V  
3.3V  
1.8V  
1.00V  
Powergood  
Comparator  
Logic e  
Powergood  
Comparator  
Logic f  
Powergood  
Comparator  
Logic g  
8.3.2 Converters  
Table 2. Converters  
Enable in Control section  
Power good handling in Control section  
All converters have same input voltage  
All converters have same power good scheme  
All converters have same auto discharge scheme  
*
All converters have UVLO with same shutdown voltage and hysteresis  
40  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
The PMIC has 5 built in DCDC converters. The voltage regulators are highly configurable both in terms of  
voltage and current. Of the five voltage regulators, four voltage regulators have an external power stage, with  
programmable current limit (programmed by an external resistor), which allows optimal selection of external  
passive components based on desired system load. VR2 has a completely integrated power stage, except for the  
required passive components. To maintain high efficiency, the converters are implemented as synchronous step  
down converters.  
One additional voltage regulators in the form of Low Drop Out (LDO) linear regulators are integrated as part of  
the PMIC. One of the LDOs, V6, is capable of sinking and sourcing current that regulates from the step down  
controller (for DDR memory). This LDO is designed to specifically provide the VTT power to DDR memory. Its  
output voltage tracks the output voltage of the step down controller and is set to regulate to half of the step down  
controller voltage.  
8.3.2.1 Power Save Mode  
At medium and heavy loads, the converter and the controllers operate in a PWM mode. As soon as the inductor  
current gets discontinuous, which means that the output current gets lower than half of the inductor ripple  
current, the converters enter Power Save Mode. In Power Save Mode the switching frequency decreases linearly  
with the load current and maintains a high efficiency. By default, the converters and controller operate in the  
AutoPFM mode such that the transition into and out of Power Save Mode happens within the entire regulation  
scheme and is seamless in both directions.  
PFM Mode at Light Load  
PFM Ripple  
Nominal DC Output Voltage  
PWM Mode at Heavy Load  
Figure 21. PFM and PWM Mode Operation  
The figure above shows the converter/ controller operation in PFM and PWM mode. In PFM mode the minimum  
voltage that the output falls to is the programmed regulation voltage. The output voltage ripple in PFM mode is  
determined based on the external passive components (L and C). The regulator ensures that the minimum  
voltage during PFM mode is the same as the programmed regulation voltage (within the AC and DC tolerance).  
8.3.2.2 Voltage Regulator Startup  
All the voltage regulators including the VTT LDO1 can be enabled using either pin enables or I2C commands.  
The default setting uses the pin enable. The VTT LDO1 can only be enabled using the DDR_VTT_CTRL discrete  
input. VTT LDO1 can be enabled by pin (DDR_VTT_CTRL) or by register (0xE9, MSB bit 7 masks the  
DDR_VTT_CTRL pin, and bit 6 enables the VTT LDO1). Each other Voltage Regulator (VR) can be enabled by  
the enable pin (ENAVRx) or by I2C Register (xCNT). The voltage should not be changed by register at the exact  
same time the voltage regulator is enabled. If a different voltage than the default is needed at power-up, then the  
register (xCNT) should program the voltage first, and then a separate command should enable the register  
separately. Dynamic voltage change (DVS) can be done any time after power-up.  
Each of the voltage regulators except for the VTT LDO1 are controlled by an internal softstart to make sure the  
output voltage ramps up gently and does not cause huge inrush current during startup to prevent droop on the  
input. The VTT LDO1 startup time is driven by the DDR memory requirements for the VTT voltage rail - which  
requires that the ramp up on voltage be faster than 35µs.  
Copyright © 2014, Texas Instruments Incorporated  
41  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.3.2.3 Power Good  
During operation, when the voltage regulators are enabled, the output voltage for each rail is monitored in order  
to assess if the output voltage is within a specified voltage range. A power good status bit is generated and  
stored in the PWRSTAT1 register. If the output voltage is within the specified voltage range, the respective power  
good status bit is set to a logic low. If the output voltage falls below or goes above the specified voltage range,  
the power good status bit will be set to a logic high. By default, if any of the output voltage rails experience a  
power good fault condition, the PMIC will automatically shutdown in order to protect the system unless and until  
the power fault is masked. The voltage thresholds for each of the power good comparators is a percentage  
relative to the nominal voltage setting of the output voltage - please see the parametric table for each voltage  
regulator power good for the USL and LSL limits of the power good comparators.  
If a particular voltage rail is not critical to the performance of the overall system, the respective power good  
output can be masked using the PGMASK1 and PGMASK2 registers. The masking of a power good fault will  
inhibit an automatic PMIC shutdown. This can be also very helpful for debug purposes incase of system failure to  
isolate the voltage regulator with the sensitive output voltage.  
In order to avoid an erroneous power good fault during the turn-on of the voltage regulators, the power good  
output is masked for a fixed 30µs relative to the enable whether it be from the discrete signal or from an I2C  
command. Power Good is also masked when coming out of sleep (S3 state) for a period of 100µs to ensure that  
there is no false triggering of the power good comparator.  
8.3.2.4 Current Limit  
All voltage regulators are current limited, the current limit can be set based on the application load current using  
an external resistor for all VRs except for VR2 which has an internally set current limit as it has an integrated  
power stage. The current limit controls the maximum output current. If the maximum current is reached, the  
output voltage will start to droop since the load can no longer be supplied with sufficient power. If the voltage  
drops below the power good threshold, the power fault status will be set to a logic high and if the power fault is  
not masked, the PMIC will automatically shutdown in a controlled manner to protect the system.  
For voltage regulators with an externally programmable current limit, please use the following equation to  
calculate the desired resistor value to prevent inductor saturation under nominal operation. IREF is typically in the  
order of 50µA. RDSON is the resistance of the low side FET under nominal operating conditions. A scaling factor  
of 1.5 is used to take into account for the inductor variation (±20%) and temperature coefficient differences  
between the reference current and the FET RDSON. Note that the inductor should be sized appropriately  
(dimension, saturation current, heat rating) based on the intended application load.  
REXT=RDSON* (ILOAD+Iripple/2)*1.5/IREF  
(1)  
8.3.2.5 Output Discharge Feature  
All the voltage regulators have a built in output discharge feature. The output discharge feature consists of being  
able to configure register bits to enable a discharge resistor which is only active whenever the voltage regulator  
is disabled. The discharge resistors for each of the voltage regulators can be configured using the DISCHCNT1,  
DISCHCNT2, DISCHCNT3 and DISCHCNT4 registers. The discharge resistors are disconnected when the  
voltage regulators are enabled in order to minimize any losses within the PMIC.  
8.3.2.6 Output Voltage Control  
All voltage regulators are designed to regulate a fixed output voltage. To achieve high accuracy the output  
voltage for the converters and controller is sensed using a separate feedback pin. For each of the voltage rails,  
except for the VTT LDO, the output voltage can be changed to slightly higher or lower values by changing the  
default setting in the voltage regulator control registers (see section on the Voltage Regulator Voltage Options).  
This function can be used to save power when supplying the connected load at its minimum possible supply  
voltage or to compensate for voltage drops during load transients by programming it slightly higher. In addition  
the range of the output voltage for the regulators is highly programmable. If you need a different output voltage  
configuration from the specified default, please contact TI to generate you a custom part.  
42  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.3.2.7 Converter Low Power Mode Operation  
For optimizing low power operation, the output voltage of the converters can be set to a specific value. The low  
power output voltage is set by the specific register and bits shown in the Voltage Regulator Voltage Options  
tables. Entering the low power mode is accomplished by asserting the SLP_S0# signal to a logic low. In this low  
power mode, the power good function remains active and is not affected by the transition from normal operation  
mode to the low power mode and vice versa.  
8.3.2.8 Controller Low Power Mode Operation  
For optimizing low power operation, the output voltage of the V10 controller can be set to a specific value. The  
low power output voltage is set by the specific register and bits shown in the Voltage Regulator Voltage Options  
tables. Entering the low power mode is accomplished by asserting the DDR_VTT_CTRL signal to a logic low. In  
this low power mode, the power good function remains active and is not affected by the transition from normal  
operation mode to the low power mode and vice versa.  
In situations where the output current demand from the controller is very small, the controller can be placed in an  
Ultra Low Quiescent (ULQ) mode to reduce power consumption and increase the efficiency.  
8.3.2.9 Undervoltage Lockout  
An undervoltage lockout function prevents converter start-up if the supply voltage on the VIN pin of the PMIC is  
lower than the undervoltage lockout threshold (see electrical characteristics table). When in operation, the  
converter triggers a shut down of the system if the supply voltage on the VIN pin drops below the undervoltage  
lockout threshold and the system will not automatically restart.  
8.3.3 Coincell Selector  
8.3.3.1 Functional Description of RTC Powerpath and LDO  
In case where the main system battery is removed and there is no alternate power source, the RTC data,  
configuration and status registers, oscillator and timekeeping path of the RTC block are backed up by either a  
super capacitor or a coin cell battery. If the coincell/ super capacitor battery voltage falls below the minimum  
operational voltage and there is no input voltage (AC/ DC above the PMIC UVLO), the RTC data registers will be  
invalid. As the Intel RTC cannot handle a max voltage higher than 3.2V, when AC/ DC is present and is higher  
than the UVLO threshold, the RTC is supplied by the AC/DC rather than from the coincell - thus maximizing the  
stored charge in the coincell battery. When AC/DC is present, the internal coincell selector selects the higher of  
the coincell voltage and the AC/DC voltage. When AC/DC is chosen as a source, there is a coincell LDO which  
is driven from the 5V PMIC LDO to regulate The output voltage is programmable to 2.975V, 3.0V, 3.025V, 3.05V,  
3.075V, 3.1V, 3.13V, 3.16V.  
The main power source for the RTC LDO is the 5V PMIC internal LDO, when the main system battery (VDC) is  
greater than 5.4V. The RTC LDO will be bypassed and the RTC supply will be powered by the coincell when  
VDC falls below this threshold - to maximize the coincell battery life. The coincell is used as a last resort. All  
power routing of the source selection for the RTC power is done internally and no external connections other  
than the coin cell or super cap is required.  
8.3.4 I2C - Interface  
I2C is a 2-wire serial interface developed by NXP (formerly Philips Semiconductor) (see I2C-Bus Specification  
and user manual, Rev 4, 13 February 2012). The bus consists of a data line (SDA) and a clock line (SCL) with  
pull-up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C compatible devices  
connect to the I2C bus through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or  
a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device  
addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A  
slave device receives and/or transmits data on the bus under control of the master device.  
The TPS650830 works as a slave and supports the following data transfer modes, as defined in the I2C-Bus  
Specification: standard mode (100 kbps), fast mode (400 kbps). The interface adds flexibility to the power supply  
solution, enabling most functions to be programmed to new values depending on the instantaneous application  
requirements. Register contents are loaded when voltage is applied to TPS650830 higher than the undervoltage  
lockout threshold. The I2C interface is running from an internal oscillator that is automatically enabled when there  
is an access to the interface.  
Copyright © 2014, Texas Instruments Incorporated  
43  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
The data transfer protocol for standard and fast modes is exactly the same, therefore, they are referred to as  
F/S-mode in this document.  
The TPS650830 supports 7-bit addressing; 10-bit addressing and general call address are not supported. The  
default device address is defined by the status of the SLAVEADDR pin. 3 different slave addresses are possible,  
0x30 (SLAVEADDR 0 V), 0x32 (SLAVEADDR 3.3 V) and 0x34 (SLAVEADDR floating).  
All registers are set to their default value when the supply voltage is below the UVLO threshold.  
8.3.4.1 F/S-Mode Protocol  
The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, see Figure 22. All I2C-compatible devices should recognize a  
start condition.  
The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/W  
on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires  
the SDA line to be stable during the entire high period of the clock pulse, see Figure 23. All devices recognize  
the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a  
matching address generates an acknowledge, see Figure 24, by pulling the SDA line low during the entire high  
period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that the communication link  
with a slave has been established.  
The master generates further SCL cycles to either transmit data to the slave (R/W bit = 0) or receive data from  
the slave (R/W bit = 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. An  
acknowledge signal can either be generated by the master or by the slave, depending on which one is the  
receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary.  
To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to  
high while the SCL line is high, see Figure 22. This releases the bus and stops the communication link with the  
addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of a stop  
condition, all devices know that the bus is released, and they wait for a start condition followed by a matching  
address  
Attempting to read data from register addresses not listed in this section results in FFh being read out. FS I2C  
operation does not support repeated start  
44  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
SDA  
SCL  
S
P
Start  
Stop  
Condition  
Condition  
Figure 22. START and STOP Conditions  
SDA  
SCL  
data line  
change of data allowed  
stable;  
data valid  
Figure 23. Bit Transfer on the I2C-bus  
Data Output  
by Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
SCL From  
Master  
1
2
8
9
S
Clock Pulse for  
START  
Acknowledgement  
Condition  
Figure 24. Acknowledge on the I2C-Bus  
recognize START or  
REPEATED START  
condition  
recognize STOP or  
REPEATED START  
condition  
generate ACKNOWLEDGE  
signal  
P
SDA  
MSB  
acknowledgement  
signal from slave  
Sr  
Address  
R/W  
SCL  
1
2
7
8
9
1
2
3 − 8  
9
S
or  
Sr  
Sr  
or  
P
ACK  
ACK  
byte complete,  
interrupt within slave  
clock line held low while  
interrupts are serviced  
START or  
repeated START  
condition  
STOP or  
repeated START  
condition  
Figure 25. Bus Protocol  
Copyright © 2014, Texas Instruments Incorporated  
45  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
SCL  
SDA  
...  
...  
...  
...  
...  
...  
A6  
A5 A4  
A0 R/W ACK  
R7  
R6 R5  
R0 ACK  
0
D7  
D6 D5  
D0 ACK  
0
0
0
Start  
Slave Address  
Register Address  
Data  
Stop  
NOTE: SLAVE=This Device  
Figure 26. I2C Interface WRITE to TPS650830 in F/S Mode  
SCL  
SDA  
...  
..  
...  
..  
...  
...  
..  
..  
A6  
A0 R/W ACK  
R7  
R0 ACK  
0
A6  
A0 R/W ACK D7  
D0 ACK  
0
0
1
0
Start  
Slave  
Drives  
the Data  
Stop  
Register  
Address  
Master  
Drives  
ACK and Stop  
Slave Address  
NOTE: SLAVE=This Device  
Slave Address  
Repeated  
Start  
Figure 27. I2C Interface READ from TPS650830 in F/S Mode  
8.4 Device Functional Modes  
The TPS650830 PMIC has been designed to provide the overall power solution for use with the latest Intel  
Processors. This section describes the internal state machine of the TPS650830 PMIC.  
NO POWER State: If the VIN pin of the PMIC is below the VUVLO voltage threshold and the voltage on the  
VBATTBKUP pin is below 2.3V, the PMIC will be in the NO POWER state. Naturally, in this state, all voltage  
regulators are off.  
RTC DOMAIN State: If a coincell or supercap is connected to the VBATTBKUP pin of the PMIC and its voltage  
is greater than 2.3V, the state machine will be in the RTC DOMAIN state. When entering this state, all I2C  
registers that reside in the RTC Domain will reset to their default settings.  
POWER UP State: If the voltage on the VIN pin is greater than the VUVLO voltage threshold, the PMIC will enter  
the POWER UP state. In this state, I2C control of all the registers is possible. If this is the first time entering the  
POWER UP state, it will remain in this state until a high level is detected on the SHUTDOWNZ pin which could  
be controlled by an external source. (Typically SHUTDOWNZ is connected to LDO3 to always keep it high).  
Once a high level is detected on the SHUTDOWNZ pin, the PMIC will assert the VR3 internal enable high (This  
internal signal is AND'ed with the VR3EN pin to turn on VR3). This enables the VR3 (V3.3A_DSW) regulator.  
The PMIC will generate the V3.3A_DSW power good signal, PGVR3. The PMIC will then generate the DPWROK  
signal which is a delayed version of the PGVR3 signal and sends it to the Platform Controller Hub (PCH) of the  
system.  
46  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Device Functional Modes (continued)  
POWER SEQUENCE State: The PMIC enters this state once a low to high transition is detected on the  
SLP_SUS# pin. This pin is driven by the PCH. In this state, the PMIC asserts the ENVR5 pin high to enable the  
V5A_DS3 regulator, VR5. The SLP_SUS# signal also enables an external load switch which provides 3.3V to the  
EC. The output of this load switch is monitored by the main PMIC on the ECVCC pin. Once the voltage on this  
pin is detected, the PMIC will assert the PGVR3 pin , which should be connected externally to the ENVR2 pin.  
The ENVR2 pin enables the V1.8V voltage regulator, VR2.  
NORMAL MODE State: Entering this state occurs after the RSMRST#_PWRGD is asserted high. This power  
good output is the AND of the V3.3A_DSW_PG (PGVR3), V5A_DSW_PG (PGVR3), V3.3A_PCH_PG (PGA),  
V1.8A_PG (PGVR2), V1.00A_PG (PGVR1), and the V0.85A_PG (PGVR1). The PMIC will remain in this state  
during normal operation. Only certain events will send the PMIC to other states as described in this section.  
COLD OFF State: The PMIC will enter this state if the PCH detects that the PWRBTN# has been asserted for at  
least 5 seconds. In this state, all the voltage regulators except for the V3.3A_DSW (VR3) regulator are turned off.  
The 1Hz clock is turned off. Exiting this state occurs if the PWRBTNIN pin is asserted low and the SLP_SUS#  
transitions from a logic low to a logic high. These events will send the State Machine to the POWER SEQUENCE  
state.  
EMERGENCY SHUTDOWN State: The EMERGENCY SHUTDOWN state occurs through various avenues. In  
this state, all voltage regulators and 1 Hz clock are turned off. Exiting this state requires that the PWRBTNIN pin  
detect a high to low transition or that the ACOK pin detect a low to high transition. Either of these events will  
send the State Machine to the POWER UP state.  
VOLTAGE REGULATOR FAULT: Every voltage regulator has a power good fault associated with it. If at any  
point, any power good fault is detected, the state machine will enter the EMERGENCY SHUTDOWN state. TI  
recommends that the power good faults not be masked during normal operation.  
FORCE SHUTDOWN: If the Force Shutdown command is issued via the SHDWNCTRL register, the state  
machine will enter the EMERGENCY SHUTDOWN state.  
POWER BUTTON INTERRUPT: If the PWRBTNIN pin is held low for longer than the time defined by the  
FLT[3:0] bits in the PBCONFIG register, the state machine will enter the EMERGENCY SHUTDOWN state.  
CRITICAL TEMP: If at any point the PMIC die temperature exceeds the Overtempeture Protection parameter,  
the state machine will enter the EMERGENCY SHUTDOWN state. In order to avoid the PMIC die temperature  
from reaching the Critical Temperature range, all the voltage rail power good faults default to being enabled. TI  
recommends that the power good faults not be masked during normal operation.  
DVS: When Dynamic Voltage Scaling (DVS) is programmed, include an Active State when STANDBYZ pin is Hi;  
and a Low Power Mode State when the STANDBYZ pin is low. The output voltages will typically be at a higher  
voltage setting in the Active Mode to allow a high performance operation from the system. The output voltages  
will typically be at a lower voltage setting in the Sleep Mode to allow a low-power operation from the system and  
increase battery run-time. If DVS is not programmed, then the output voltage will always be at the same value,  
regardless what the logic value is of the STANDBYZ pin.  
Copyright © 2014, Texas Instruments Incorporated  
47  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5 Register Map  
8.5.1 OTP_SPARE2 Register (address = 0xF0) [reset = 00000000]  
Figure 28. OTP_SPARE2 Register Format  
B7  
SPARE2[7]  
0
B6  
SPARE2[6]  
0
B5  
SPARE2[5]  
0
B4  
SPARE2[4]  
0
B3  
SPARE2[3]  
0
B2  
SPARE2[2]  
0
B1  
SPARE2[1]  
0
B0  
SPARE2[0]  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 3. OTP_SPARE2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
SPARE2[7:0]  
RW  
00000000 OTP SPARE BYTE for Future use  
8.5.2 OTP_SPARE1 Register (address = 0xEF) [reset = 00000000]  
Figure 29. OTP_SPARE1 Register Format  
B7  
SPARE1[7]  
0
B6  
SPARE1[6]  
0
B5  
SPARE1[5]  
0
B4  
SPARE1[4]  
0
B3  
SPARE1[3]  
0
B2  
SPARE1[2]  
0
B1  
SPARE1[1]  
0
B0  
SPARE1[0]  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4. OTP_SPARE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
SPARE1[7:0]  
RW  
00000000 OTP SPARE BYTE for future use  
48  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.3 VREN_PIN_OVR Register (address = 0xEE) [reset = 00000000]  
Figure 30. VREN_PIN_OVR Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V12_PIN_OVR V11_PIN_OVR V10_PIN_OVR V9_PIN_OVR  
V8_PIN_OVR  
V7_PIN_OVR  
V5_PIN_OVR  
V4_PIN_OVR  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 5. VREN_PIN_OVR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
V12_PIN_OVR  
RW  
0
V12 ENABLE PIN Over Ride  
0: V12 Pin controls V12 (Default)  
1: V12 is ON if VREN PIN MASK = '0'  
6
5
4
3
2
1
0
V11_PIN_OVR  
V10_PIN_OVR  
V9_PIN_OVR  
V8_PIN_OVR  
V7_PIN_OVR  
V5_PIN_OVR  
V4_PIN_OVR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
V11 ENABLE PIN Over Ride  
0: V11 Pin controls V11 (Default)  
1: V11 is ON if VREN PIN MASK = '0'  
V10 ENABLE PIN Over Ride  
0: V10 Pin controls V10 (Default)  
1: V10 is ON if VREN PIN MASK = '0'  
V9 ENABLE PIN Over Ride  
0: V9 Pin controls V9 (Default)  
1: V9 is ON if VREN PIN MASK = '0'  
V8 ENABLE PIN Over Ride  
0: V8 Pin controls V8 (Default)  
1: V8 is ON if VREN PIN MASK = '0'  
V7 ENABLE PIN Over Ride  
0: V7 Pin controls V7 (Default)  
1: V7 is ON if VREN PIN MASK = '0'  
V5 ENABLE PIN Over Ride  
0: V5 Pin controls V5 (Default)  
1: V5 is ON if VREN PIN MASK = '0'  
V4 ENABLE PIN Over Ride  
0: V4 Pin controls V4 (Default)  
1: V4 is ON if VREN PIN MASK = '0'  
Copyright © 2014, Texas Instruments Incorporated  
49  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.4 TEMPHOT Register (address = 0xEC) [reset = 00000000]  
Figure 31. TEMPHOT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_T RESERVED_T  
LDO1_HOT  
VR5_HOT  
VR4_HOT  
VR3_HOT  
VR2_HOT  
VR1_HOT  
EMPHOT[1]  
EMPHOT[0]  
0
0
0
0
0
0
0
0
R
R
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. TEMPHOT Register Field Descriptions  
Bit  
7:6  
5
Field  
Type  
R
Reset  
00  
Description  
RESERVED_TEMPHOT[1:0]  
LDO1_HOT  
Read Always Returns '1'  
RW  
0
LDO1 HOT TEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
4
3
2
1
0
VR5_HOT  
VR4_HOT  
VR3_HOT  
VR2_HOT  
VR1_HOT  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
VR5 HOT TEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
VR4 HOT TEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
VR3 HOT TEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
VR2 HOT TEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
VR1 HOT TEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
50  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.5 TEMPCRIT Register (address = 0xEB) [reset = 00000000]  
Figure 32. TEMPCRIT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_T RESERVED_T  
LDO1_CRIT  
VR5_CRIT  
VR4_CRIT  
VR3_CRIT  
VR2_CRIT  
VR1_CRIT  
EMPCRIT[1]  
EMPCRIT[0]  
0
0
0
0
0
0
0
0
R
R
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. TEMPCRIT Register Field Descriptions  
Bit  
7:6  
5
Field  
Type  
R
Reset  
00  
Description  
RESERVED_TEMPCRIT[1:0]  
LDO1_CRIT  
Read Always Returns '1'  
RW  
0
LDO1 CRITTEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
4
3
2
1
0
VR5_CRIT  
VR4_CRIT  
VR3_CRIT  
VR2_CRIT  
VR1_CRIT  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
VR5 CRITTEMPs  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
VR4 CRITTEMPs  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
VR3 CRITTEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
VR2 CRITTEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
VR1 CRITTEMP  
0: Not asserted (Default)  
1: Asserted, write '1' to clear  
8.5.6 STDBY_CTRL Register (address = 0xEA) [reset = 11111110]  
Figure 33. STDBY_CTRL Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_S RESERVED_S RESERVED_S RESERVED_S RESERVED_S EN_VCOMP_1  
VCOMP_EN  
QLSLPS0_ACT  
IVE  
TDBY_CTRL[4] TDBY_CTRL[3] TDBY_CTRL[2] TDBY_CTRL[1] TDBY_CTRL[0]  
0U  
1
1
1
1
1
1
1
0
R
R
R
R
R
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. STDBY_CTRL Register Field Descriptions  
Bit  
7:3  
2
Field  
Type  
R
Reset  
11111  
1
Description  
RESERVED_STDBY_CTRL[4:0]  
EN_VCOMP_10U  
Read Always Returns '1'  
RW  
VCOMP Current Source Control bit:  
0: Disable  
1: Enable (Default)  
1
0
VCOMP_EN  
RW  
RW  
1
0
VCOMP Enable Control bit:  
0: Disable  
1: Enable (Default)  
QLSLPS0_ACTIVE  
SLP_S0 & DDR_VTT_CTRL Detect logic Control  
0: Normal Operation DELAY_ALL_SYS_PG is used in  
QSLPS0Z (Default)  
1: DELAY_ALL_SYS_PG is ignored for QSLPS0Z  
Copyright © 2014, Texas Instruments Incorporated  
51  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.7 MISC_BITS Register (address = 0xE9) [reset = 00010000]  
Figure 34. MISC_BITS Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V13_PIN_OVR  
MV13EN  
V6_PIN_OVR  
MV6EN  
msLP_S3ZPG msLP_SUSZP  
G
SPARE  
V13DISCHG  
0
0
0
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. MISC_BITS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
V13_PIN_OVR  
RW  
0
V13 ENABLE PIN Over Ride  
0: V13 is OFF if MV13EN is '1' (Default)  
1: V13 is ON if MV13EN is '1'  
6
5
4
3
MV13EN  
RW  
RW  
RW  
RW  
0
0
1
0
V13 Enable Pin Mask  
0: DDR_VT_CTRL Pin controls V13 (Default)  
1: V13_EN_PIN Bit [Bit(3)] controls V13  
V6_PIN_OVR  
MV6EN  
V6 ENABLE PIN Over Ride  
0: V6 Pin controls V6 (Default)  
1: V6 is ON if VREN PIN MASK = '0'  
V6 Enable Pin Mask  
0: VR Enable Pin controls VR enable  
1: VR Enable Pin masked V*CTLV controls VR enable (Default)  
msLP_S3ZPG  
SLP_S3Z is part of the power good tree  
0: SLP_S3Z is part of Power Good Tree (Default)  
1: SLP_S3Z is masked and set to 1 (not part of the Power Good  
tree)  
2
1
msLP_SUSZPG  
BC_ACOK_EN  
RW  
RW  
0
1
SLP_SUSZ is part of the power good tree  
0: SLP_SUSZ is part of Power Good Tree (Default)  
1: SLP_SUSZ is masked and set to 1 (not part of the Power  
Good tree)  
Enables BC_ACOK output out of LVA pin. The in put is ACOK  
pin, instead of ENLVA pin.  
0: LVA pin is not BC_ACOK, and ENLVA is the input for LVA  
output, behaving as a general purpose level-shifter.  
1: LVA pin is BC_ACOK, and ACOK is the input, and ENLVA is  
not functional. BC_ACOK is a level-shifted version of ACOK.  
(Default)  
0
V13DISCHG  
RW  
0
V0.6DX discharge resistance (V13)  
0: no discharge (Default)  
1: 100 Ω  
52  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.8 PGOOD_STAT2 Register (address = 0xE8) [reset = 00000000]  
Figure 35. PGOOD_STAT2 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_P RESERVED_P RESERVED_P V12_PGOOD  
GOOD_STAT2[ GOOD_STAT2[ GOOD_STAT2[  
V11_PGOOD  
V11_SPGD  
V8_SPGD  
V6_SPGD  
2]  
1]  
0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. PGOOD_STAT2 Register Field Descriptions  
Bit  
7:5  
4
Field  
Type  
R
Reset  
000  
0
Description  
RESERVED_PGOOD_STAT2[2:0]  
V12_PGOOD  
Read Always Returns '1'  
R
V12 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
3
2
1
0
V11_PGOOD  
V11_SPGD  
V8_SPGD  
R
R
R
R
0
0
0
0
V11 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V11S PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V8S PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V6_SPGD  
V6S PGOOD STATUS  
0: Fail (Default)  
1: Pass  
Copyright © 2014, Texas Instruments Incorporated  
53  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.9 PGOOD_STAT1 Register (address = 0xE7) [reset = 00000000]  
Figure 36. PGOOD_STAT1 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V13_PGOOD  
V10_PGOOD  
V9_PGOOD  
V8_PGOOD  
V7_PGOOD  
V6_PGOOD  
V5_PGOOD  
V4_PGOOD  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. PGOOD_STAT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
V13_PGOOD  
R
0
V13 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
6
5
4
3
2
1
0
V10_PGOOD  
V9_PGOOD  
V8_PGOOD  
V7_PGOOD  
V6_PGOOD  
V5_PGOOD  
V4_PGOOD  
R
R
R
R
R
R
R
0
0
0
0
0
0
0
V10 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V9 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V8 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V7 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V6 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V5 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
V4 PGOOD STATUS  
0: Fail (Default)  
1: Pass  
8.5.10 PWFAULT_MASK2 Register (address = 0xE6) [reset = 00000000]  
Figure 37. PWFAULT_MASK2 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_P RESERVED_P RESERVED_P RESERVED_P RESERVED_P RESERVED_P V11_FLTmsK  
WFAULT_MAS WFAULT_MAS WFAULT_MAS WFAULT_MAS WFAULT_MAS WFAULT_MAS  
V12_FLTmsK  
K2[5]  
K2[4]  
K2[3]  
K2[2]  
K2[1]  
K2[0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. PWFAULT_MASK2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
RESERVED_PWFAULT_MASK2[5:  
0]  
000000  
Read Always Returns '1'  
1
0
V11_FLTmsK  
0
0
V11 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
V12_FLTmsK  
V12 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
54  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.11 PWFAULT_MASK1 Register (address = 0xE5) [reset = 00000000]  
Figure 38. PWFAULT_MASK1 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V4_FLTmsK  
V5_FLTmsK  
V6_FLTmsK  
V7_FLTmsK  
V8_FLTmsK  
V9_FLTmsK  
V10_FLTmsK  
V13_FLTmsK  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. PWFAULT_MASK1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
V4_FLTmsK  
RW  
0
V4 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
6
5
4
3
2
1
0
V5_FLTmsK  
V6_FLTmsK  
V7_FLTmsK  
V8_FLTmsK  
V9_FLTmsK  
V10_FLTmsK  
V13_FLTmsK  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
V5 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
V6 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
V7 Power Fault Masked  
0: Not Masked  
1: Masked  
V8 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
V9 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
V10 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
V13 Power Fault Masked  
0: Not Masked (Default)  
1: Masked  
8.5.12 COMPH_REF Register (address = 0xE4) [reset = 00000000]  
Figure 39. COMPH_REF Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
COMP_H_DIS COMP_H_REF[ COMP_H_REF[ COMP_H_REF[ COMP_H_REF[ COMP_H_REF[ COMP_H_REF[ COMP_H_REF[  
CHG  
6]  
5]  
4]  
3]  
2]  
1]  
0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. COMPH_REF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
COMP_H_DISCHG  
RW  
0
Comparator H Discharge value  
0: No discharge  
1: 100 Ω  
6:0  
COMP_H_REF[6:0]  
RW  
0000000  
Comparator Ref:  
Bits(2:0) => Reference Voltage  
Bits(6:3) => Feedback selection  
Copyright © 2014, Texas Instruments Incorporated  
55  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.13 COMPG_REF Register (address = 0xE3) [reset = 00011110]  
Figure 40. COMPG_REF Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_C COMP_G_REF COMP_G_REF COMP_G_REF COMP_G_REF COMP_G_REF COMP_G_REF COMP_G_REF  
OMPG_REF  
[6]  
0
[5]  
0
[4]  
1
[3]  
1
[2]  
1
[1]  
1
[0]  
0
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. COMPG_REF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Comparator PGOOD Mode[7]  
RW  
0
Comparator Ref:  
0: PGOOD Mode  
1: Comparator Mode  
6:0  
COMP_G_REF[6:0]  
RW  
R
0011110  
0
Comparator Ref:  
Bits(2:0) => Reference Voltage  
Bits(6:3) => Feedback selection  
RESERVED_COMPG_REF  
8.5.14 COMPF_REF Register (address = 0xE2) [reset = 00011110]  
Figure 41. COMPF_REF Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_C COMP_F_REF[ COMP_F_REF[ COMP_F_REF[ COMP_F_REF[ COMP_F_REF[ COMP_F_REF[ COMP_F_REF[  
OMPF_REF  
6]  
5]  
4]  
3]  
2]  
1]  
0]  
0
0
0
1
1
1
1
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. COMPF_REF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Comparator PGOOD Mode[7]  
RW  
0
Comparator Ref:  
0: PGOOD Mode  
1: Comparator Mode  
6:0  
7
COMP_F_REF[6:0]  
RW  
R
0011110  
0
Comparator Ref:  
Bits(2:0) => Reference Voltage  
Bits(6:3) => Feedback selection  
RESERVED_COMPF_REF  
56  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.15 COMPE_REF Register (address = 0xE1) [reset = 00011110]  
Figure 42. COMPE_REF Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_C COMP_E_REF[ COMP_E_REF[ COMP_E_REF[ COMP_E_REF[ COMP_E_REF[ COMP_E_REF[ COMP_E_REF[  
OMPE_REF  
6]  
0
5]  
0
4]  
1
3]  
1
2]  
1
1]  
1
0]  
0
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. COMPE_REF Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0
Description  
RESERVED_COMPE_REF  
COMP_E_REF[6:0]  
6:0  
RW  
0011110  
Comparator Ref:  
Bits(2:0) => Reference Voltage  
Bits(6:3) => Feedback selection  
Comparator PGOOD Mode[7]  
Comparator Ref:  
0: PGOOD Mode  
1: Comparator Mode  
8.5.16 COMPD_REF Register (address = 0xE0) [reset = 00011110]  
Figure 43. COMPD_REF Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_C COMP_D_REF[ COMP_D_REF[ COMP_D_REF[ COMP_D_REF[ COMP_D_REF[ COMP_D_REF[ COMP_D_REF[  
OMPD_REF  
6]  
5]  
4]  
3]  
2]  
1]  
0]  
0
0
0
1
1
1
1
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. COMPD_REF Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0
Description  
RESERVED_COMPD_REF  
COMP_D_REF[6:0]  
6:0  
RW  
0011110  
Comparator Ref:  
Bits(2:0) => Reference Voltage  
Bits(6:3) => Feedback selection  
Comparator PGOOD Mode[7]  
Comparator Ref:  
0: PGOOD Mode  
1: Comparator Mode  
Copyright © 2014, Texas Instruments Incorporated  
57  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.17 COMPC_REF Register (address = 0xDF) [reset = 00011110]  
Figure 44. COMPC_REF Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_C COMP_C_REF[ COMP_C_REF[ COMP_C_REF[ COMP_C_REF[ COMP_C_REF[ COMP_C_REF[ COMP_C_REF[  
OMPC_REF  
6]  
0
5]  
0
4]  
1
3]  
1
2]  
1
1]  
1
0]  
0
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. COMPC_REF Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0
Description  
RESERVED_COMPC_REF  
COMP_C_REF[6:0]  
6:0  
RW  
0011110  
Comparator Ref:  
Bits(2:0) => Reference Voltage  
Bits(6:3) => Feedback selection  
Comparator PGOOD Mode[7]  
Comparator Ref:  
0: PGOOD Mode  
1: Comparator Mode  
8.5.18 COMPB_REF Register (address = 0xDE) [reset = 00011110]  
Figure 45. COMPB_REF Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_C COMP_B_REF[ COMP_B_REF[ COMP_B_REF[ COMP_B_REF[ COMP_B_REF[ COMP_B_REF[ COMP_B_REF[  
OMPB_REF  
6]  
5]  
4]  
3]  
2]  
1]  
0]  
0
0
0
1
1
1
1
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. COMPB_REF Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0
Description  
RESERVED_COMPB_REF  
COMP_B_REF[6:0]  
6:0  
RW  
0011110  
Comparator Ref:  
Bits(2:0) => Reference Voltage  
Bits(6:3) => Feedback selection  
Comparator PGOOD Mode[7]  
Comparator Ref:  
0: PGOOD Mode  
1: Comparator Mode  
58  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.19 COMPA_REF Register (address = 0xDD) [reset = 00011110]  
Figure 46. COMPA_REF Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_C COMP_A_REF[ COMP_A_REF[ COMP_A_REF[ COMP_A_REF[ COMP_A_REF[ COMP_A_REF[ COMP_A_REF[  
OMPA_REF  
6]  
0
5]  
0
4]  
1
3]  
1
2]  
1
1]  
1
0]  
0
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. COMPA_REF Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0
Description  
RESERVED_COMPA_REF  
COMP_A_REF[6:0]  
6:0  
RW  
0011110  
Comparator Ref:  
Bits(2:0) => Reference Voltage  
Bits(6:3) => Feedback selection  
Comparator PGOOD Mode[7]  
Comparator Ref:  
0: PGOOD Mode  
1: Comparator Mode  
8.5.20 CLKCTRL1 Register (address = 0xD0) [reset = 00000000]  
Figure 47. CLKCTRL1 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_C RESERVED_C RESERVED_C RESERVED_C RESERVED_C RESERVED_C RESERVED_C  
ECWAKEEN  
LKCTRL1[6]  
LKCTRL1[5]  
LKCTRL1[4]  
LKCTRL1[3]  
LKCTRL1[2]  
LKCTRL1[1]  
LKCTRL1[0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. CLKCTRL1 Register Field Descriptions  
Bit  
7:1  
0
Field  
Type  
RW  
Reset  
0000000  
0
Description  
RESERVED_CLKCTRL1[6:0]  
ECWAKEEN  
RW  
1 Hz clock  
0: clock OFF (Default)  
1: Clock ON  
Copyright © 2014, Texas Instruments Incorporated  
59  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.21 SPWRSRCINT Register (address = 0x6F) [reset = 00000000]  
Figure 48. SPWRSRCINT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED1_  
SPWRSRCINT  
SLOWBATT2  
SLOWBATT1  
SACOK  
RESERVED_S RESERVED_S RESERVED_S RESERVED_S  
PWRSRCINT[3 PWRSRCINT[2 PWRSRCINT[1 PWRSRCINT[0  
]
]
]
]
0
0
0
0
0
R
0
R
0
R
0
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. SPWRSRCINT Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
RESERVED1_SPWRSRCINT  
SLOWBATT2  
0
0
6
R
LOWBATT2 detection status  
0: BATT2 above threshold (Default)  
1: BATT2 below threshold  
5
4
SLOWBATT1  
R
R
R
0
LOWBATT1 detection status  
0: BATT1 above threshold (Default)  
1: BATT1 below threshold  
SACOK  
0
AC adapter (ACOK) detection status  
0:Aadapter removed (Default)  
1: Adapter inserted  
3:0  
RESERVED_SPWRSRCINT[3:0]  
0000  
8.5.22 LOWBATTDET Register (address = 0x6A) [reset = 11111000]  
Figure 49. LOWBATTDET Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
LOWBATTDB[1 LOWBATTDB[0 LOWBATT2_E LOWBATT1_E  
ACIN_EN  
RESERVED_L RESERVED_L RESERVED_L  
OWBATTDET[2 OWBATTDET[1 OWBATTDET[0  
]
]
N
N
]
]
]
1
1
1
1
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. LOWBATTDET Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
LOWBATTDB[1:0]  
RW  
11  
Low battery detection debounce time  
00: 4 RTC periods (120 us)  
01: 32 RTC periods (960us)  
10: 64 RTC periods (1920 us)  
11: 128 RTC periods (3840us) (Default)  
5
4
LOWBATT2_EN  
RW  
RW  
RW  
RW  
1
Low battery Two detection Enable  
0: Disable  
1: Enable (Default)  
LOWBATT1_EN  
1
Low battery One detection Enable  
0: Disable  
1: Enable (Default)  
3
ACIN_EN  
1
AC IN Comparator  
0: Disable  
1: Enable (Default)  
2:0  
RESERVED_LOWBATTDET[2:0]  
000  
60  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.23 ACOKDBDM Register (address = 0x69) [reset = 00001111]  
Figure 50. ACOKDBDM Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_A RESERVED_A RESERVED_A RESERVED_A  
ACOKDB[1]  
ACOKDB[0]  
ACOKDM[1]  
ACOKDM[0]  
COKDBDM[3]  
COKDBDM[2]  
COKDBDM[1]  
COKDBDM[0]  
0
0
0
0
1
1
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. ACOKDBDM Register Field Descriptions  
Bit  
7:4  
3:2  
Field  
Type  
RW  
Reset  
0000  
11  
Description  
RESERVED_ACOKDBDM[3:0]  
ACOKDB[1:0]  
RW  
Adapter detection debounce time  
00: 81 us  
01: 10 ms  
10: 20 ms  
11: 30 ms (Default)  
1:0  
ACOKDM[1:0]  
RW  
11  
Adapter detection mode  
00: reserved  
01: low-to-high  
10: high-to-low  
11: both, low-to-high and high-to-low (Default)  
Copyright © 2014, Texas Instruments Incorporated  
61  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.24 VDLMTCRT Register (address = 0x51) [reset = 00000101]  
Figure 51. VDLMTCRT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_V VDLMTCOMP TDBNCVDLMT TDBNCVDLMT VDLMTCRTH[3 VDLMTCRTH[2 VDLMTCRTH[1 VDLMTCRTH[0  
DLMTCRT  
CRT[1]  
0
CRT[0]  
0
]
]
]
]
0
0
0
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. VDLMTCRT Register Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
Description  
RESERVED_VDLMTCRT  
VDLMTCOMP  
0
0
6
RW  
Critical supply voltage comparator for VDCSNS pin input voltage  
sense. Connect voltage divider resistors from VIN to detect  
when input voltage is low  
0: disable (Default)  
1: enable  
5:4  
3:0  
TDBNCVDLMTCRT[1:0]  
VDLMTCRTH[3:0]  
RW  
RW  
00  
Supply voltage monitor debounce of VDCSNS input voltage  
sense pin  
00: No Deglitch disable (Default)  
01: 10 us  
10: 1x RTC (30us)  
11: 2x RTC (60us)  
0101  
Critical supply voltage falling threshold on VDCSNS pin.  
Connect voltage divider resistors from VIN to detect when input  
voltage is low. For 2S should be 4X top resistor, X bottom  
resistor. [rising hysteresis = 20mV]  
0000: no limit  
0001: 1.2 V  
0010: 1.18 V  
0011: 1.16 V  
0100: 1.14 V  
0101: 1.12 V (Default)  
0110: 1.10 V  
0111: 1.08 V  
1000: NA  
1001: NA  
1010: NA  
1011: NA  
1100: NA  
1101: NA  
1110: NA  
1111: NA  
62  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.25 SDWNCTRL Register (address = 0x49) [reset = 00000000]  
Figure 52. SDWNCTRL Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_S RESERVED_S RESERVED_S RESERVED_S RESERVED_S RESERVED_S RESERVED_S  
SDWN  
DWNCTRL[6]  
DWNCTRL[5]  
DWNCTRL[4]  
DWNCTRL[3]  
DWNCTRL[2]  
DWNCTRL[1]  
DWNCTRL[0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. SDWNCTRL Register Field Descriptions  
Bit  
7:1  
0
Field  
Type  
R
Reset  
0000000  
0
Description  
RESERVED_SDWNCTRL[6:0]  
SDWN  
RW  
Forced emergency reset, bit is self clearing  
0: No action  
1: Force emergency reset  
8.5.26 RSTCTRL Register (address = 0x48) [reset = 00011100]  
Figure 53. RSTCTRL Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_R RESERVED_R RESERVED_R  
TRST[1]  
TRST[0]  
VTHRST[2]  
VTHRST[1]  
VTHRST[0]  
STCTRL[2]  
STCTRL[1]  
STCTRL[0]  
0
0
0
1
1
1
0
0
R
R
R
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. RSTCTRL Register Field Descriptions  
Bit  
7:5  
4:3  
Field  
Type  
R
Reset  
000  
11  
Description  
RESERVED_RSTCTRL[2:0]  
TRST[1:0]  
RW  
Reset time duration  
00: 20 ms  
01: 40 ms  
10: 80 ms  
11: 200 ms (Default)  
2:0  
VTHRST[2:0]  
RW  
100  
Reset voltage threshold  
000: 1.4 V  
001: 1.5 V  
010: 1.6 V  
011: 1.7 V  
100: 2.4 V (Default)  
101: 2.6 V  
110: 2.8 V  
111: 3.0 V  
Copyright © 2014, Texas Instruments Incorporated  
63  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.27 VRENPINMASK Register (address = 0x43) [reset = 00000000]  
Figure 54. VRENPINMASK Register Format  
B7  
MV12EN  
0
B6  
MV11EN  
0
B5  
MV10EN  
0
B4  
MV9EN  
0
B3  
MV8EN  
0
B2  
MV7EN  
0
B1  
MV5EN  
0
B0  
MV4EN  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. VRENPINMASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MV12EN  
RW  
0
V12 Enable Pin Mask  
0: VR Enable Pin controls VR enable (Default)  
1: VR Enable Pin masked V*CTLV controls VR enable  
6
5
4
3
2
1
0
MV11EN  
MV10EN  
MV9EN  
MV8EN  
MV7EN  
MV5EN  
MV4EN  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
V11 Enable Pin Mask  
0: VR Enable Pin controls VR enable (Default)  
1: VR Enable Pin masked V*CTLV controls VR enable  
V10 Enable Pin Mask  
0: VR Enable Pin controls VR enable (Default)  
1: VR Enable Pin masked V*CTLV controls VR enable  
V9 Enable Pin Mask  
0: VR Enable Pin controls VR enable (Default)  
1: VR Enable Pin masked V*CTLV controls VR enable  
V8 Enable Pin Mask  
0: VR Enable Pin controls VR enable (Default)  
1: VR Enable Pin masked V*CTLV controls VR enable  
V7 Enable Pin Mask  
0: VR Enable Pin controls VR enable (Default)  
1: VR Enable Pin masked V*CTLV controls VR enable  
V5 Enable Pin Mask  
0: VR Enable Pin controls VR enable  
1: VR Enable Pin masked V*CTLV controls VR enable  
V4 Enable Pin Mask  
0: VR Enable Pin controls VR enable (Default)  
1: VR Enable Pin masked V*CTLV controls VR enable  
8.5.28 REGLOCK Register (address = 0x42) [reset = 00000000]  
Figure 55. REGLOCK Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
CNTLOCK  
0
RESERVED[6] RESERVED[5] RESERVED[4] RESERVED[3] RESERVED[2] RESERVED[1] RESERVED[0]  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. REGLOCK Register Field Descriptions  
Bit  
7:1  
0
Field  
Type  
R
Reset  
0000000  
0
Description  
RESERVED[6:0]  
CNTLOCK  
RW  
Locks all V*CNT registers  
0: All V*CNT registers are unlocked and can be overwritten  
(Default)  
1: All V*CNT registers are locked and can't be overwritten  
64  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.29 VREN Register (address = 0x41) [reset = 00000000]  
Figure 56. VREN Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_V RESERVED_V RESERVED_V RESERVED_V RESERVED_V RESERVED_V  
EC_SLP_S4  
EC_DS4  
REN[5]  
0
REN[4]  
0
REN[3]  
0
REN[2]  
0
REN[1]  
0
REN[0]  
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. VREN Register Field Descriptions  
Bit  
7:2  
1
Field  
Type  
RW  
Reset  
000000  
0
Description  
RESERVED_VREN[5:0]  
EC_SLP_S4  
RW  
0: Disable (Default)  
1: Enable  
0
EC_DS4  
RW  
0
0: Disable (Default)  
1: Enable  
8.5.30 PWRGDCNT1 Register (address = 0x40) [reset = 01011111]  
Figure 57. PWRGDCNT1 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_P RSMRSTN_PW RSMRSTN_PW PCH_PWROK[ PCH_PWROK[ DEL_ALL_SYS DEL_ALL_SYS DEL_ALL_SYS  
WRGDCNT1  
RGD[1]  
RGD[0]  
1]  
0]  
_PWRGD[2]  
_PWRGD[1]  
_PWRGD[0]  
0
1
0
1
1
1
1
1
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. PWRGDCNT1 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0
Description  
RESERVED_PWRGDCNT1  
RSMRSTN_PWRGD[1:0]  
6:5  
RW  
10  
Delay of RSMRSTN_PWRGD  
00: No Delay  
01: 164x RTC (about 5 ms)  
10: 328x RTC (about 10 ms) (Default)  
11: 656x RTC (about 20 ms)  
4:3  
2:0  
PCH_PWROK[1:0]  
RW  
RW  
11  
Delay of PCH_PWROK compared to ALL_SYS_PWRGD  
00: 82x RTC (about 2.5 ms)  
01: 164x RTC (about 5 ms)  
10: 328x RTC (about 10 ms)  
11: 656x RTC (about 20 ms) (Default)  
DEL_ALL_SYS_PWRGD[2:0]  
111  
Delay of SYS_PWR_OK compared to ALL_SYS_PWRGD  
000: 82x RTC (about 2.5 ms)  
001: 164x RTC (about 5 ms)  
010: 328x RTC (about 10 ms)  
011: 492x RTC (about 15 ms)  
100: 656x RTC (about 20 ms)  
101: 1640x RTC (about 50 ms)  
110: 2460x RTC (about 75 ms)  
111: 3280x RTC (about 100 ms) (Default)  
Copyright © 2014, Texas Instruments Incorporated  
65  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.31 DISCHCNT4 Register (address = 0x3F) [reset = 00000000]  
Figure 58. DISCHCNT4 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_DI RESERVED_DI V33SDISCHG[ V33SDISCHG[ V18SDISCHG[ V18SDISCHG[ V100SDISCH[1 V100SDISCH[0  
SCHCNT4[1]  
SCHCNT4[0]  
1]  
0
0]  
0
1]  
0
0]  
0
]
]
0
0
0
0
R
R
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. DISCHCNT4 Register Field Descriptions  
Bit  
7:6  
5:4  
Field  
Type  
R
Reset  
00  
Description  
RESERVED_DISCHCNT4[1:0]  
V33SDISCHG[1:0]  
RW  
00  
V3.3S discharge resistance (V6S)  
00:No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
3:2  
1:0  
V18SDISCHG[1:0]  
V100SDISCH[1:0]  
RW  
RW  
00  
00  
V18S discharge resistance (V8S)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
V100S discharge resistance (V11S)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
66  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.32 DISCHCNT3 Register (address = 0x3E) [reset = 00000000]  
Figure 59. DISCHCNT3 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V18U25UDISC V18U25UDISC V12UDISCHG[ V12UDISCHG[ V100ADISCHG V100ADISCHG V085ADISCH[1 V085ADISCH[0  
HG[1]  
0
HG[0]  
0
1]  
0
0]  
0
[1]  
0
[0]  
0
]
]
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. DISCHCNT3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
V18U25UDISCHG[1:0]  
RW  
00  
V1.8U_2.5U discharge resistance (V9)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
5:4  
3:2  
1:0  
V12UDISCHG[1:0]  
V100ADISCHG[1:0]  
V085ADISCH[1:0]  
RW  
RW  
RW  
00  
00  
00  
V1.2U discharge resistance (V10)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
V100A discharge resistance (V11)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
V085A discharge resistance (V12)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
Copyright © 2014, Texas Instruments Incorporated  
67  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.33 DISCHCNT2 Register (address = 0x3D) [reset = 00000000]  
Figure 60. DISCHCNT2 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V5ADS3DISCH V5ADS3DISCH V33ADSWDIS V33ADSWDIS V33PCHDISCH V33PCHDISCH V18ADISCH[1] V18ADISCH[0]  
G[1]  
0
G[0]  
0
CHG[1]  
0
CHG[0]  
0
G[1]  
0
G[0]  
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. DISCHCNT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
V5ADS3DISCHG[1:0]  
RW  
00  
V5ADS3 discharge resistance (V5)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
5:4  
3:2  
1:0  
V33ADSWDISCHG[1:0]  
V33PCHDISCHG[1:0]  
V18ADISCH[1:0]  
RW  
RW  
RW  
00  
00  
00  
V33A_DSW discharge resistance (V6)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
V33PCH discharge resistance (V7)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
V18A discharge resistance (V8)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
8.5.34 DISCHCNT1 Register (address = 0x3C) [reset = 00000000]  
Figure 61. DISCHCNT1 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_DI RESERVED_DI RESERVED_DI RESERVED_DI RESERVED_DI RESERVED_DI VCCIODISCHG VCCIODISCHG  
SCHCNT1[5]  
SCHCNT1[4]  
SCHCNT1[3]  
SCHCNT1[2]  
SCHCNT1[1]  
SCHCNT1[0]  
[1]  
[0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. DISCHCNT1 Register Field Descriptions  
Bit  
7:2  
1:0  
Field  
Type  
R
Reset  
000000  
00  
Description  
RESERVED_DISCHCNT1[5:0]  
VCCIODISCHG[1:0]  
RW  
VCCIO discharge resistance (V4)  
00: No discharge (Default)  
01: 100 Ohm  
10: 200 Ohm  
11: 500 Ohm  
68  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.35 VRMODECTRL Register (address = 0x3B) [reset = 00111111]  
Figure 62. VRMODECTRL Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_V RESERVED_V V33ADSW_LP  
VCCIO_LPM  
V085A_LPM  
V12U_LPM  
V100A_LPM  
V5ADS3_LPM  
RMODECTRL[ RMODECTRL[  
M
1]  
0]  
0
0
1
1
1
1
1
1
R
R
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. VRMODECTRL Register Field Descriptions  
Bit  
7:6  
5
Field  
Type  
R
Reset  
00  
Description  
RESERVED_VRMODECTRL[1:0]  
V33ADSW_LPM  
RW  
1
Force low power mode (LPM mode)  
0: Force Auto mode when SLP_S0# is asserted (low)  
1: LPM & Mode set by CTLV bits, ignore SLP_S0# (Default)  
4
3
2
1
0
VCCIO_LPM  
V085A_LPM  
V12U_LPM  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
Force low power mode (Auto mode)  
0: Force Auto mode when SLP_S0# is asserted (low)  
1: Mode set by CTLV bits, ignore SLP_S0# (Default)  
Force low power mode (Auto mode)  
0: Force Auto mode when SLP_S0# is asserted (low)  
1: Mode set by CTLV bits, ignore SLP_S0# (Default)  
Force low power mode (LPM mode)  
0: Force Auto mode when DDR_VTT_CTRL is low  
1: LPM & Mode set by CTLV bits, ignore SLP_S0# (Default)  
V100A_LPM  
V5ADS3_LPM  
Force low power mode (Auto mode)  
0: Force Auto mode when SLP_S0# is asserted (low)  
1: Mode set by CTLV bits, ignore SLP_S0# (Default)  
Force low power mode (LPM mode)  
0: Force Auto mode when SLP_S0# is asserted (low)  
1: LPM & Mode set by CTLV bits, ignore SLP_S0# (Default)  
Copyright © 2014, Texas Instruments Incorporated  
69  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.36 V085ACNT Register (address = 0x38) [reset = 00101010]  
Figure 63. V085ACNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V085ALVSEL[1 V085ALVSEL[0 V085AVSEL[1] V085AVSEL[0] AOACCNTV08 AOACCNTV08  
CTLV085A[1]  
CTLV085A[0]  
]
]
5A[1]  
1
5A[0]  
0
0
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. V085ACNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
V085ALVSEL[1:0]  
RW  
00  
V085A low power mode output voltage set point - set at  
assertion of SLP_S0#  
00: Disabled, voltage stays at value set by V085AVSEL[1:0]  
(Default)  
01: 0.70V  
10: 0.75V  
11: 0.80V  
5:4  
3:2  
V085AVSEL[1:0]  
RW  
RW  
00  
10  
Output voltage select  
00: 0.95V (Default)  
01: 0.90V  
10: 0.85V  
11: 0.80V  
AOACCNTV085A[1:0]  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: No change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01, forced PFM/ Auto  
10: Bits D[1:0] set to 10, forced Auto/ Forced PWM (Default)  
11: Bits D[1:0] set to 11, forced PWM operation  
1:0  
CTLV085A[1:0]  
RW  
10  
Mode control (V12)  
00: Converter disabled  
01: Forced PFM/ Auto  
10: Auto/ forced PWM enabled (If auto mode not present)  
(Default)  
11: Forced PWM operation  
70  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.37 V100ACNT Register (address = 0x37) [reset = 00101010]  
Figure 64. V100ACNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V100ALVSEL[1 V100ALVSEL[0 V100AVSEL[1] V100AVSEL[0] AOACCNTV10 AOACCNTV10  
CTLV100A[1]  
CTLV100A[0]  
]
]
0A[1]  
1
0A[0]  
0
0
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 39. V100ACNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
V100ALVSEL[1:0]  
RW  
00  
V100A low power mode output voltage set point - set at  
assertion of SLP_S0#  
00: Disabled, voltage stays at value set by V100AVSEL[1:0]  
(Default)  
01: Vnom - 4%  
10: Vnom - 3%  
11: Vnom - 2%  
5:4  
3:2  
V100AVSEL[1:0]  
RW  
RW  
10  
10  
Output voltage select  
00: Vnom + 5 % (1.05V)  
01: Vnom (1 V)  
10: Vnom -2.5 % (0.975V) (Default)  
11: Vnom - 5 % (0.95V)  
AOACCNTV100A[1:0]  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: No change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01, forced PFM/ Auto  
10: Bits D[1:0] set to 10, forced Auto/ Forced PWM (Default)  
11: Bits D[1:0] set to 11, forced PWM operation  
1:0  
CTLV100A[1:0]  
RW  
10  
Mode control (V11)  
00: Converter disabled  
01: Forced PFM/ Auto  
10: Auto/ forced PWM enabled (If auto mode not present)  
(Default)  
11: Forced PWM operation  
Copyright © 2014, Texas Instruments Incorporated  
71  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.38 V1P2UCNT Register (address = 0x36) [reset = 00111010]  
Figure 65. V1P2UCNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V1P2ULVSEL V1P2UVSEL[2] V1P2UVSEL[1] V1P2UVSEL[0] AOACCNTV1P AOACCNTV1P CTLV1P2U[1]  
CTLV1P2U[0]  
2U[1]  
1
2U[0]  
0
0
0
1
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 40. V1P2UCNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
V1P2ULVSEL  
RW  
0
V1.2U low power mode output voltage set point - set at  
assertion of SLP_S0#  
0: Disabled, voltage stays at value set by V1P2UVSEL (Default)  
1: Vnom - 3%  
6:4  
V1P2UVSEL[2:0]  
RW  
011  
Output voltage select  
000: Vnom + 3%  
001: Vnom + 2%  
010: Vnom + 1%  
011: Vnom +0% (Default)  
100: Vnom - 1%  
101: Vnom -2%  
110: Vnom -3%  
111: Vnom -4%  
3:2  
1:0  
AOACCNTV1P2U[1:0]  
CTLV1P2U[1:0]  
RW  
RW  
10  
10  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: no change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01, forced PFM/ Auto  
10: Bits D[1:0] set to 10, forced Auto/ Forced PWM (Default)  
11: Bits D[1:0] set to 11, forced PWM operation  
Mode control (V10)  
00: Converter disabled  
01: Forced PFM/ Auto  
10: Auto/ forced PWM enabled (If auto mode not present)  
(Default)  
11: Forced PWM operation  
72  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.39 V18U25UCNT Register (address = 0x35) [reset = 00001010]  
Figure 66. V18U25UCNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_V RESERVED_V RESERVED_V RESERVED_V AOACCNTV18 AOACCNTV18 CTLV18U25U[1 CTLV18U25U[0  
18U25UCNT[3] 18U25UCNT[2] 18U25UCNT[1] 18U25UCNT[0]  
U25U[1]  
U25U[0]  
]
]
0
0
0
0
1
0
1
0
R
R
R
R
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 41. V18U25UCNT Register Field Descriptions  
Bit  
7:4  
3:2  
Field  
Type  
R
Reset  
0000  
10  
Description  
RESERVED_V18U25UCNT[3:0]  
AOACCNTV18U25U[1:0]  
RW  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: No change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01  
10: Bits D[1:0] set to 10 (Default)  
11: Bits D[1:0] set to 11  
1:0  
CTLV18U25U[1:0]  
RW  
10  
Mode control (V9)  
00: Disabled  
01: Enabled  
10: Enabled (Default)  
11: Enabled  
Copyright © 2014, Texas Instruments Incorporated  
73  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.40 V18ACNT Register (address = 0x34) [reset = 00101010]  
Figure 67. V18ACNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V18ALVSEL[1] V18ALVSEL[0] V18AVSEL[1]  
V18AVSEL[0] AOACCNTV18 AOACCNTV18  
CTLV18A[1]  
CTLV18A[0]  
A[1]  
1
A[0]  
0
0
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 42. V18ACNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
V18ALVSEL[1:0]  
RW  
00  
V18A low power mode output voltage set point - set at assertion  
of SLP_S0#  
00: Disabled, voltage stays at value set by V18AVSEL[1:0]  
(Default)  
01: Vnom - 4%  
10: Vnom - 3%  
11: Vnom - 2%  
5:4  
3:2  
V18AVSEL[1:0]  
RW  
RW  
10  
10  
Output voltage select  
00: Vnom + 3 %  
01: Vnom + 2 %  
10: Vnom (Default)  
11: Vnom - 2 %  
AOACCNTV18A[1:0]  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: No change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01, forced PFM/ Auto  
10: Bits D[1:0] set to 10, forced Auto/ Forced PWM (Default)  
11: Bits D[1:0] set to 11, forced PWM operation  
1:0  
CTLV18A[1:0]  
RW  
10  
Mode control (V8)  
00: Converter disabled  
01: Forced PFM/ Auto  
10: Auto/ forced PWM enabled (If auto mode not present)  
(Default)  
11: Forced PWM operation  
74  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.41 V33APCHCNT Register (address = 0x33) [reset = 00001010]  
Figure 68. V33APCHCNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_V RESERVED_V RESERVED_V RESERVED_V AOACCNTV33 AOACCNTV33 CTLV33APCH[ CTLV33APCH[  
33APCHCNT[3] 33APCHCNT[2] 33APCHCNT[1] 33APCHCNT[0]  
APCH[1]  
APCH[0]  
1]  
1
0]  
0
0
0
0
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 43. V33APCHCNT Register Field Descriptions  
Bit  
7:4  
3:2  
Field  
Type  
RW  
Reset  
0000  
10  
Description  
RESERVED_V33APCHCNT[3:0]  
AOACCNTV33APCH[1:0]  
RW  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: No change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01  
10: Bits D[1:0] set to 10 (Default)  
11: Bits D[1:0] set to 11  
1:0  
CTLV33APCH[1:0]  
RW  
10  
Mode control (V7)  
00: Disabled  
01: Enabled  
10: Enabled (Default)  
11: Enabled  
Copyright © 2014, Texas Instruments Incorporated  
75  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.42 V33ADSWCNT Register (address = 0x32) [reset = 00101010]  
Figure 69. V33ADSWCNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V33ADSWLVS V33ADSWLVS V33ADSWVSE V33ADSWVSE AOACCNTV33 AOACCNTV33 CTLV33ADSW[ CTLV33ADSW[  
EL[1]  
0
EL[0]  
0
L[1]  
1
L[0]  
0
ADSW[1]  
ADSW[0]  
1]  
1
0]  
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 44. V33ADSWCNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
V33ADSWLVSEL[1:0]  
RW  
00  
V33A_DSW low power mode output voltage set point - set at  
assertion of SLP_S0#  
00: Disabled, voltage stays at value set by V33ADSWVSEL[1:0]  
(Default)  
01: Vnom - 4%  
10: Vnom - 3%  
11: Vnom - 2%  
5:4  
3:2  
V33ADSWVSEL[1:0]  
RW  
RW  
10  
10  
Output voltage select  
00: Vnom + 3 %  
01: Vnom + 2 %  
10: Vnom (Default)  
11: Vnom - 2 %  
AOACCNTV33ADSW[1:0]  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: No change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01, forced PFM/ Auto  
10: Bits D[1:0] set to 10, forced Auto/ Forced PWM (Default)  
11: Bits D[1:0] set to 11, forced PWM operation  
1:0  
CTLV33ADSW[1:0]  
RW  
10  
Mode control (V6)  
00: Converter disabled  
01: Forced PFM/ Auto  
10: Auto/ forced PWM enabled (If auto mode not present)  
(Default)  
11: Forced PWM operation  
76  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.43 V5ADS3CNT Register (address = 0x31) [reset = 00101010]  
Figure 70. V5ADS3CNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V5ADS3LVSEL V5ADS3LVSEL V5ADS3VSEL[ V5ADS3VSEL[ AOACCNTV5A AOACCNTV5A CTLV5ADS3[1] CTLV5ADS3[0]  
[1]  
0
[0]  
0
1]  
1
0]  
0
DS3[1]  
1
DS3[0]  
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 45. V5ADS3CNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
V5ADS3LVSEL[1:0]  
RW  
00  
V5ADS3 low power mode output voltage set point - set at  
assertion of SLP_S0#  
00: Disabled, voltage stays at value set by V5ADS3VSEL[1:0]  
(Default)  
01: Vnom - 4%  
10: Vnom - 3%  
11: Vnom - 2%  
5:4  
3:2  
V5ADS3VSEL[1:0]  
RW  
RW  
10  
10  
Output voltage select  
00: Vnom + 3 %  
01: Vnom + 2 %  
10: Vnom (Default)  
11: Vnom - 2 %  
AOACCNTV5ADS3[1:0]  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: No change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01, forced PFM/ Auto  
10: Bits D[1:0] set to 10, forced Auto/ Forced PWM (Default)  
11: Bits D[1:0] set to 11, forced PWM operation  
1:0  
CTLV5ADS3[1:0]  
RW  
10  
Mode control (V5)  
00: Converter disabled  
01: Forced PFM/ Auto  
10: Auto/ forced PWM enabled (If auto mode not present)  
(Default)  
11: Forced PWM operation  
Copyright © 2014, Texas Instruments Incorporated  
77  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.44 VCCIOCNT Register (address = 0x30) [reset = 00001010]  
Figure 71. VCCIOCNT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_V CSDECAYEN VCCIOVSEL[1] VCCIOVSEL[0] AOACCNTVCC AOACCNTVCC CTLVVCCIO[1] CTLVVCCIO[0]  
CCIOCNT  
IO[1]  
1
IO[0]  
0
0
0
0
0
1
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 46. VCCIOCNT Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
RESERVED_VCCIOCNT  
CSDECAYEN  
0
0
6
RW  
Enables VCCIO decay when SLP_S0# is asserted. [wait 2us  
after removing FPWM, before entering DECAY mode. Direct  
FPWM to DECAY by SLP0Z may cause ringing. Decay exit time  
within 100us not guaranteed for Vout > 1V.]  
0: VCCIO stays at voltage set by VCCIOVSEL independent of  
state of SLP_S0# (Default)  
1: VCCIO decays to 0V, PGOOD is maintained when SLP_S0#  
is asserted (low)  
5:4  
3:2  
VCCIOVSEL[1:0]  
RW  
RW  
00  
10  
Output voltage select  
00: 0.975V (Default)  
01: 0.950V  
10: 0.875V  
11: 0.850V  
AOACCNTVCCIO[1:0]  
Mode control for exit standby (rising edge of SLP_S0#) -  
changes bits D[1:0] on exit  
00: No change in bits D[1:0] - fast change mode disabled  
01: Bits D[1:0] set to 01, forced PFM/ Auto  
10: Bits D[1:0] set to 10, forced Auto/ Forced PWM (Default)  
11: Bits D[1:0] set to 11, forced PWM operation  
1:0  
CTLVVCCIO[1:0]  
RW  
10  
Mode control (V4)  
00: Converter disabled  
01: Forced PFM/ Auto  
10: Auto/ forced PWM enabled (If auto mode not present)  
(Default)  
11: Forced PWM operation  
78  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.45 PGMASK2 Register (address = 0x19) [reset = 00000000]  
Figure 72. PGMASK2 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_P RESERVED_P RESERVED_P RESERVED_P  
V18U25UPG  
MV12UPG  
MV33SPG  
MV18SPG  
GMASK2[3]  
GMASK2[2]  
GMASK2[1]  
GMASK2[0]  
0
0
0
0
0
0
0
0
R
R
R
R
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 47. PGMASK2 Register Field Descriptions  
Bit  
7:4  
3
Field  
Type  
R
Reset  
0000  
0
Description  
RESERVED_PGMASK2[3:0]  
V18U25UPG  
RW  
V1.8_2.5U PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
2
1
0
MV12UPG  
MV33SPG  
MV18SPG  
RW  
RW  
RW  
0
0
0
V1.2U PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
V3.3S PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
V1.8S PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
Copyright © 2014, Texas Instruments Incorporated  
79  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.46 PGMASK1 Register (address = 0x18) [reset = 00000000]  
Figure 73. PGMASK1 Register Format  
B7  
B6  
B5  
B4  
MV18APG  
0
B3  
B2  
B1  
B0  
MVCCIOPG  
MV085APG  
MV100APG  
MV33APCHPG MV5ADS3PG MV33ADSWPG  
MV100SPG  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 48. PGMASK1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MVCCIOPG  
RW  
0
VCCIO PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
6
5
4
3
2
1
0
MV085APG  
MV100APG  
MV18APG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
V0.85A PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
V100A PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
V1.8A PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
MV33APCHPG  
MV5ADS3PG  
MV33ADSWPG  
MV100SPG  
V3.3A PCH PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
V5A DS3 PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
V3.3A DSW PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
V100S PG is part of the power good tree  
0: Power Good function is enabled (Default)  
1: Power Good function is masked and set to 1 (not part of the  
Power Good tree)  
80  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.47 PWRSTAT2 Register (address = 0x17) [reset = 00000000]  
Figure 74. PWRSTAT2 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED[5] RESERVED[4] RESERVED[3] RESERVED[2] RESERVED[1] RESERVED[0] V100A_FAULT V085A_FAULT  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 49. PWRSTAT2 Register Field Descriptions  
Bit  
7:2  
1
Field  
Type  
R
Reset  
000000  
0
Description  
RESERVED[5:0]  
V100A_FAULT  
RW  
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
0
V085A_FAULT  
RW  
0
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
8.5.48 PWRSTAT1 Register (address = 0x16) [reset = 00000000]  
Figure 75. PWRSTAT1 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VCCIO_FAULT V5A_DS3_FAU V33A_DSW_F V33A_PCH_FA V18A_FAULT V18U_25U_FA V12U_FAULT V06DX_FAULT  
LT  
AULT  
ULT  
ULT  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 50. PWRSTAT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VCCIO_FAULT  
RW  
0
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
6
5
4
3
2
1
0
V5A_DS3_FAULT  
V33A_DSW_FAULT  
V33A_PCH_FAULT  
V18A_FAULT  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
V18U_25U_FAULT  
V12U_FAULT  
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
These bits indicate that the VR has lost regulation  
0: Clears register  
1: Indicates power fault  
V06DX_FAULT  
These bits indicate that the VR has lost regulation  
0: Clears register (Default)  
1: Indicates power fault  
Copyright © 2014, Texas Instruments Incorporated  
81  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.49 PBSTATUS Register (address = 0x15) [reset = 00000000]  
Figure 76. PBSTATUS Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED_P  
BSTATUS  
LVL  
HT[5]  
HT[4]  
HT[3]  
HT[2]  
HT[1]  
HT[0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 51. PBSTATUS Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
RESERVED_PBSTATUS  
LVL  
0
0
6
R
Power button present level  
0: Power button held (Default)  
1: Power button released  
5:0  
HT[5:0]  
R
000000  
Time that the button has been held  
00000: Disabled (Default)  
00001: Disabled  
000010: 2 s  
000011: 3 s  
000100: 4 s  
000101: 5 s  
000110: 6 s  
000111: 7 s  
001000: 8 s  
001001: 9 s  
001010: 10 s  
..  
...  
111100: 60 s  
111101: 61 s  
111110: 62 s  
111111: 63 s  
82  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.50 PBCONFIG Register (address = 0x14) [reset = 00011111]  
Figure 77. PBCONFIG Register Format  
B7  
B6  
CLRHT  
0
B5  
FLT[5]  
0
B4  
FLT[4]  
1
B3  
FLT[3]  
1
B2  
FLT[2]  
1
B1  
FLT[1]  
1
B0  
FLT[0]  
1
PWRBTNDBN  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 52. PBCONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWRBTNDBN  
RW  
0
Power button debounce  
0: 30 ms (Default)  
1: 0 ms (no debounce)  
6
CLRHT  
RW  
RW  
0
Reset of power button timer logic  
0: No action (Default)  
1: Reset of HT, bit is self clearing  
5:0  
FLT[5:0]  
011111  
Time that the button must be held to force an emergency reset  
000000: 0 s  
000001: 1 s  
000010: 2 s  
000011: 3 s  
000100: 4 s  
000101: 5 s  
000110: 6 s  
000111: 7 s  
001000: 8 s  
001001: 9 s  
001010: 10 s  
..  
011111: 31 s (Default)  
...  
111100: 60 s  
111101: 61 s  
111110: 62 s  
111111: 63 s  
Copyright © 2014, Texas Instruments Incorporated  
83  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.51 IRQLVL1msK Register (address = 0x13) [reset = 10100101]  
Figure 78. IRQLVL1msK Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MRESET  
RESERVED2_I  
RQLVL1msK  
MPMU  
RESERVED1_I RESERVED1_I  
RQLVL1msK[1] RQLVL1msK[0]  
MPWRSRC  
RESERVED_IR  
QLVL1msK  
MPWRBTN  
1
0
1
0
0
1
0
1
RW  
R
RW  
R
R
RW  
R
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 53. IRQLVL1msK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MRESET  
RW  
1
RESET mask interrupt  
0: Not masked  
1: Masked (Default)  
6
5
RESERVED2_IRQLVL1msK  
MPMU  
R
0
1
RW  
Power monitor mask interrupt  
0: Not masked  
1: Masked (Default)  
4:3  
2
RESERVED1_IRQLVL1msK[1:0]  
MPWRSRC  
R
00  
1
RW  
Power source mask interrupt  
0: Not masked  
1: Masked (Default)  
1
0
RESERVED_IRQLVL1msK  
MPWRBTN  
R
0
1
RW  
Power button mask interrupt  
0: Not masked  
1: Masked (Default)  
8.5.52 RESETIRQ2MASK Register (address = 0x12) [reset = 00000010]  
Figure 79. RESETIRQ2MASK Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED1_ RESERVED1_ RESERVED1_ RESERVED1_ RESERVED1_ RESERVED1_  
RESETIRQ2M RESETIRQ2M RESETIRQ2M RESETIRQ2M RESETIRQ2M RESETIRQ2M  
MCRITTEMP  
RESERVED_R  
ESETIRQ2MAS  
K
ASK[5]  
ASK[4]  
ASK[3]  
ASK[2]  
ASK[1]  
ASK[0]  
0
0
0
0
0
0
1
0
R
R
R
R
R
R
RW  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 54. RESETIRQ2MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
RESERVED1_RESETIRQ2MASK[5:  
0]  
R
000000  
1
0
MCRITTEMP  
RW  
R
1
0
Temperature triggered reset mask interrupt  
0: Not masked  
1: Masked (Default)  
RESERVED_RESETIRQ2 MASK  
84  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.53 RESETIRQ1MASK Register (address = 0x11) [reset = 00110000]  
Figure 80. RESETIRQ1MASK Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED1_ RESERVED1_  
RESETIRQ1M RESETIRQ1M  
MFCO  
MVRFAULT  
RESERVED_R RESERVED_R RESERVED_R RESERVED_R  
ESETIRQ1MAS ESETIRQ1MAS ESETIRQ1MAS ESETIRQ1MAS  
ASK[1]  
ASK[0]  
K[3]  
K[2]  
K[1]  
K[0]  
0
0
1
1
0
0
0
0
R
R
RW  
RW  
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 55. RESETIRQ1MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
RESERVED1_RESETIRQ1MASK[1:  
0]  
R
00  
5
4
MFCO  
RW  
RW  
R
1
Power button triggered reset mask interrupt  
0: Not masked  
1: Masked (Default)  
MVRFAULT  
1
Voltage regulator triggered reset mask interrupt  
0: Not masked  
1: Masked (Default)  
3:0  
RESERVED_RESETIRQ1MASK[3:0  
]
0000  
8.5.54 MPWRSRCINT Register (address = 0x0C) [reset = 01111000]  
Figure 81. MPWRSRCINT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED1_  
MPWRSRCINT  
MLOWBAT2  
MLOWBAT1  
MACOK  
MPMICHOT  
RESERVED_M RESERVED_M RESERVED_M  
PWRSRCINT[2 PWRSRCINT[1 PWRSRCINT[0  
]
]
]
0
1
1
1
1
0
R
0
R
0
R
R
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 56. MPWRSRCINT Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
RESERVED1_MPWRSRCINT  
MLOWBAT2  
0
1
6
RW  
Low battery voltage mask interrupt  
0: Not masked  
1: Masked (Default)  
5
4
MLOWBAT1  
RW  
RW  
RW  
R
1
Low battery voltage mask interrupt  
0: Not masked  
1: Masked (Default)  
MACOK  
1
AC/DC adapter detection mask interrupt  
0: Not masked  
1: Masked (Default)  
3
MPMICHOT  
1
PMIC internal temperature mask interrupt  
0: Not masked  
1: Masked (Default)  
2:0  
RESERVED_MPWRSRCINT[2:0]  
000  
Copyright © 2014, Texas Instruments Incorporated  
85  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.55 MPMUINT Register (address = 0x0B) [reset = 00010100]  
Figure 82. MPMUINT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED2_ RESERVED2_ RESERVED2_  
MPMUACOK  
RESERVED1_  
MPMUINT  
MPMUVDC  
RESERVED_M RESERVED_M  
MPMUINT[2]  
MPMUINT[1]  
MPMUINT[0]  
PMUINT[1]  
PMUINT[0]  
0
0
0
1
0
1
0
0
R
R
R
RW  
R
RW  
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 57. MPMUINT Register Field Descriptions  
Bit  
7:5  
4
Field  
Type  
R
Reset  
000  
1
Description  
RESERVED2_MPMUINT[2:0]  
MPMUACOK  
RW  
Power monitor critical supply voltage (adapter) mask interrupt  
0: Not masked  
1: Masked (Default)  
3
2
RESERVED1_MPMUINT  
MPMUVDC  
R
0
1
RW  
Power monitor critical supply voltage mask interrupt  
0: Not masked  
1: Masked (Default)  
1:0  
RESERVED_MPMUINT[1:0]  
R
00  
8.5.56 RESETIRQ2 Register (address = 0x09) [reset = 00000000]  
Figure 83. RESETIRQ2 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED1[5 RESERVED1[4 RESERVED1[3 RESERVED1[2 RESERVED1[1 RESERVED1[0  
CRITTEMP  
RESERVED_R  
ESETIRQ2  
]
]
]
]
]
]
0
R
0
R
0
R
0
R
0
R
0
R
0
0
RW  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 58. RESETIRQ2 Register Field Descriptions  
Bit  
7:2  
1
Field  
Type  
R
Reset  
000000  
0
Description  
RESERVED1[5:0]  
CRITTEMP  
RW  
Temperature triggered reset interrupt  
0: Critical temperature not reached (Default)  
1: Critical temperature reached, forcing emergency shutdown  
0
RESERVED_RESETIRQ2  
R
0
86  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.57 RESETIRQ1 Register (address = 0x08) [reset = 00000000]  
Figure 84. RESETIRQ1 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED1_ RESERVED1_  
RESETIRQ1[1] RESETIRQ1[0]  
FCO  
VRFAULT  
RESERVED[3] RESERVED[2] RESERVED[1] RESERVED[0]  
0
0
0
0
0
0
0
0
R
R
RW  
RW  
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 59. RESETIRQ1 Register Field Descriptions  
Bit  
7:6  
5
Field  
Type  
R
Reset  
00  
Description  
RESERVED1_RESETIRQ1[1:0]  
FCO  
RW  
0
Power button triggered reset interrupt  
0: Power button counter has not forced an emergency reset  
(Default)  
1: Power button counter has forced an emergency reset  
4
VRFAULT  
RW  
0
Voltage regulator triggered reset interrupt  
0: Voltage regulator fault has not triggered an emergency reset  
(Default)  
1: Voltage regulator fault has triggered an emergency reset  
3:0  
RESERVED[3:0]  
R
0000  
8.5.58 PMUINT Register (address = 0x05) [reset = 00000000]  
Figure 85. PMUINT Register Format  
B7  
B6  
B5  
B4  
PMUACOK  
B3  
RESERVED1_  
B2  
B1  
B0  
RESERVED2[2 RESERVED2[1 RESERVED2[0  
PMUVDC  
RESERVED_P RESERVED_P  
]
]
]
PMUINT  
MUINT[1]  
MUINT[0]  
0
R
0
R
0
R
0
0
0
0
0
RW  
R
RW  
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 60. PMUINT Register Field Descriptions  
Bit  
7:5  
4
Field  
Type  
R
Reset  
000  
0
Description  
RESERVED2[2:0]  
PMUACOK  
RW  
Adapter detection interrupt  
0: No Interrupt Pending (Default)  
1: AC Adapter removed (SACOK H -> L)  
3
2
RESERVED1_PMUINT  
PMUVDC  
R
0
0
RW  
Power monitor critical supply voltage interrupt  
0: Critical supply voltage over threshold limit (Default)  
1: Critical supply voltage below threshold limit  
1:0  
RESERVED_PMUINT[1:0]  
R
00  
Copyright © 2014, Texas Instruments Incorporated  
87  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
8.5.59 PWRSRCINT Register (address = 0x04) [reset = 00000000]  
Figure 86. PWRSRCINT Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESERVED1_  
PWRSRCINT  
LOWBATT2  
LOWBATT1  
ACOK  
PMICHOT  
RESERVED[2] RESERVED[1] RESERVED[0]  
0
0
0
0
0
0
0
0
R
RW  
RW  
RW  
RW  
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 61. PWRSRCINT Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
RESERVED1_PWRSRCINT  
LOWBATT2  
0
0
6
RW  
Low battery2 interrupt [rising-edge detect threshold =1.25V;  
falling-edge hysteresis = 125mV]  
0: No battery2 detected (Default)  
1: Battery2 detected  
5
4
LOWBATT1  
ACOK  
RW  
RW  
0
0
Low battery1 interrupt [rising-edge detect threshold =1.25V;  
falling-edge hysteresis = 125mV]  
0: No battery1 detected (Default)  
1: Battery1 detected  
AC/DC adapter detection interrupt. [rising-edge detect threshold  
=1.25V; falling-edge hysteresis = 125mV]  
0: No adapter detected (Default)  
1: Adapter detected  
3
PMICHOT  
RW  
R
0
PMIC internal temperature interrupt  
0: PMIC temperature normal (Default)  
1: PMIC temperature hot  
2:0  
RESERVED[2:0]  
000  
8.5.60 IRQLVL1 Register (address = 0x02) [reset = 00000000]  
Figure 87. IRQLVL1 Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RESET  
RESERVED2  
PMU  
RESERVED1[1 RESERVED1[0  
PWRSRC  
RESERVED  
PWRBTN  
]
]
0
0
0
0
R
0
R
0
0
0
RW  
R
RW  
RW  
R
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 62. IRQLVL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
R
0
RESET interrupt  
0: Not asserted  
1: Asserted  
6
5
RESERVED2  
PMU  
R
R
0
0
Power monitor interrupt  
0: Not asserted  
1: Asserted  
4:3  
2
RESERVED1[1:0]  
PWRSRC  
R
R
00  
0
Power source interrupt  
0: Not asserted  
1: Asserted  
1
0
RESERVED  
PWRBTN  
R
0
0
RW  
Power button interrupt  
0: Not asserted  
1: Asserted, write '1' to clear  
88  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
8.5.61 REVID Register (address = 0x01) [reset = 00000000]  
Figure 88. REVID Register Format  
B7  
MINREV[3]  
0
B6  
MINREV[2]  
0
B5  
MINREV[1]  
0
B4  
MINREV[0]  
0
B3  
B2  
B1  
B0  
MAJREV[3]  
MAJREV[2]  
MAJREV[1]  
MAJREV[0]  
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 63. REVID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
MINREV[3:0]  
RW  
0000  
Major revision ID  
1010: A  
1011: B  
1100: C  
1101: D  
1110: E  
1111: F  
3:0  
MAJREV[3:0]  
RW  
0000  
Minor revision ID  
0000: 0  
0001: 1  
0010: 2  
0011: 3  
0100: 4  
0101: 5  
0110: 6  
0111: 7  
8.5.62 VENDORID Register (address = 0x00) [reset = 00100010]  
Figure 89. VENDORID Register Format  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VENDORID[7] VENDORID[6] VENDORID[5] VENDORID[4] VENDORID[3] VENDORID[2] VENDORID[1] VENDORID[0]  
0
0
1
0
0
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 64. VENDORID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
VENDORID[7:0]  
RW  
00100010 Vendor ID: 0x22  
Copyright © 2014, Texas Instruments Incorporated  
89  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS65083x can be used in several different applications from computing, industrial interfacing and much  
more. This section describes the general application information and provides more detailed description on the  
TPS65083x powering the Intel SkyLake system.  
9.2 Typical Applications  
9.2.1 General Application  
The TPS65083x can be used in any system that needs multiple voltage rails. A DC supply voltage in between  
5.4V and 21V is required. If the supply voltage is less than this range then a small boost can be added to supply  
the VIN and VINLDO3.  
Along with the 5 DCDCs and 1 LDO, the TPS65083x has 8 general purpose comparators, 2 level shifters, board  
temperature monitoring system and 3 power path comparators. latter 2 can be used as simple comparators if  
desired increasing the total comparators available for use to 12 on the TPS65083x.  
90  
Copyright © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Typical Applications (continued)  
Cin  
VIN  
TPS65083x  
DRVHVR1  
VBSTVR1  
System Level Power Goods  
Comparator Block  
Vout  
0.1 PF  
SWVR1  
VSx [A-H]  
8
VR1  
Controller  
Cout  
DRVLVR1  
PGNDVR1  
ENx [A-H]  
8
FBVR1P  
FBVR1N  
PGx [A-H]  
8
Cin  
VIN  
ILIMVR1  
Rcs  
DRVHVR3  
VBSTVR3  
2
Level Shifters  
2
Vout  
0.1 PF  
SWVR3  
Cout  
VR3  
Controller  
DRVLVR3  
PGNDVR3  
VIN5VSW  
EN5VSW  
FBVR3P  
FBVR3N  
Load Switches  
ILIMVR3LS  
ILIMVR3HS  
Rcs  
EN3V3SW  
Cin  
VIN  
Digital & Control  
Block  
Rcs (HS)  
VOUT3V3SW  
VIN  
VINLDO3  
DRVHVR5  
VBSTVR5  
VIN  
1 PF  
0.1 PF  
Vout  
SWVR5  
LDO3V  
Internal LDOs &  
4.7 PF  
Supplies  
Cout  
LDO5V  
VR5  
Controller  
DRVLVR5  
PGNDVR5  
10 PF  
VREF1V25  
FBVR5P  
FBVR5N  
0.47 PF  
ILIMVR5LS  
ILIMVR5HS  
Rcs  
Cin  
VIN  
Rcs (HS)  
3.3V  
I2C Block  
VINVR2  
DRVHVR4  
VBSTVR4  
Cin  
PGNDVR2  
VR2  
Converter  
Vout  
0.1 PF  
100 Q  
SWVR4  
FBVR2N  
FBVR2P  
Cout  
VR4  
Controller  
Cout  
DRVLVR4  
PGNDVR4  
SWVR2  
Lout  
Vout  
LDO1  
FBVR4N  
FBVR4P  
FBVR4N  
ILIMVR4  
Rcs  
Cout  
Cin  
Figure 90. Simplifed General Block Diagram  
9.2.1.1 Design Requirements  
The TPS65083x requires decoupling caps on the supply pins. Follow the Electrical Characteristics for  
recommended capacitance on these supplies.  
The controllers, converter, LDO, and some other features can be adujusted to meet the application needs. The  
following describes how to design and adjust the external components to achieve desired performances.  
Copyright © 2014, Texas Instruments Incorporated  
91  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Controller Design Procedure  
Designing the controller breaks down into several steps: designing the output filter, selecting the FETs, bootstrap  
capacitor, and input capacitors and setting the current limits.  
Controllers VR1 and VR4 require VREG supply and capacitors. VREG should be connected to the 5V LDO and a  
1uF, X5R, 20%, 10V or similar capacitor should be used for decoupling.  
Cin  
VIN  
DRVHVRx  
VBSTVRx  
Lout  
LDO5V  
Vout  
VREGVRx  
0.1 PF  
SWVRx  
1 PF  
Cout  
Controller  
DRVLVRx  
PGNDVRx  
ENVRx  
FBVRxP  
FBVRxN  
ILIMVRx  
PGVRx  
Rcs  
Figure 91. Controller Diagram  
9.2.1.2.1.1 Selecting the Inductor  
An inductor is required to be placed between the external FETs and the output capacitors. The inductor and  
output capacitors together make the double-pole which contributes towards stability. In addition, the inductor is  
directly responsible for the output ripple, efficiency, and transient performance. With an increase in inductance  
used the ripple current decreases which, typically increases efficiency. However, with an increase in inductance  
used, the transient performance decreases. Finally, the inductor selected has to be rated for appropriate  
saturation current, core losses and DC resistance (DCR).  
Use the equation below to calculate the recommended inductance for the controller. Let KIND be the ratio of ILripple  
to the IoutMAX. It is recommended that KIND is set to a value between 0.2 and 0.4.  
:
;
8176 × 8 F 8176  
+0  
. =  
8 × B × +KQP/#: × -+0&  
+0  
59  
(2)  
With the chosen inductance value, the peak current for the inductor in steady state operation, ILmax, can be  
calculated using the equation below. The rated saturation current of the inductor must be higher than the ILmax  
current.  
:
;
8 F 8176 × 8176  
+0  
+
= +KQPI=T + J  
K
.I=T  
2 × 8 × B × .  
+0  
59  
(3)  
Following these equations the preferred inductor selected for the controllers are listed below in the Table 65.  
92  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Typical Applications (continued)  
Table 65. Recommended Inductors  
MANUFACTURER  
Cyntec  
PART NUMBER  
PIME031B  
VALUE  
SIZE  
HEIGHT  
0.47 µH - 1 µH  
0.33 µH - 2.2 µH  
1 µH - 3.3 µH  
3.3 mm x 3.7 mm  
1.2 mm  
Cyntec  
PIMB041B  
PIMB051B  
PIME051E  
PIMB051H  
PIME061B  
PIME061E  
PIMB061H  
4.45 mm x 4.75 mm  
5.4 mm x 5.75 mm  
5.4 mm x 5.75 mm  
5.4 mm x 5.75 mm  
6.8 mm x 7.3 mm  
6.8 mm x 7.3 mm  
6.8 mm x 7.3 mm  
1.2 mm  
1.2 mm  
1.5 mm  
1.8 mm  
1.2 mm  
1.5 mm  
1.8 mm  
Cyntec  
Cyntec  
0.33 µH - 4.7 µH  
0.47 µH - 4.7 µH  
0.56 µH - 3.3 µH  
0.33 µH - 4.7 µH  
0.1 µH - 4.7 µH  
Cyntec  
Cyntec  
Cyntec  
Cyntec  
9.2.1.2.1.2 Selecting the Output Capacitors  
Ceramic capacitors with low ESR values provide the lowest output voltage ripple and are recommended. The  
output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their  
wide variation in capacitance over temperature, become resistive at high frequencies.  
At light load currents, the converter operates in Power Save Mode and the output voltage ripple is dependent on  
the output capacitor value and the PFM peak inductor current. Higher output capacitor values minimize the  
voltage ripple in PFM Mode. In order to achieve specified regulation performance and low output voltage ripple,  
the DC-bias characteristic of ceramic capacitors must be considered. The effective capacitance of ceramic  
capacitors drops with increasing DC bias voltage.  
For the output capacitors of the DCDC controller the use of a small ceramic capacitors placed as close as  
possible to the inductor and the respective PGND pins of the IC is recommended. This solution typically,  
provides the smallest and lowest cost solution available for DCAP2 controllers.  
When selecting different output capacitance for the DCAP2 controller, use the equation below to determine the  
minimum Cout required for stability of the controller.  
8176 × 9  
%
176  
>
× 10F6  
8 × B × .  
+0  
59  
(4)  
Following this criteria, it is recommended to use listed capacitors in or similar capacitors.  
9.2.1.2.1.3 Selecting the FETs  
This controller is designed to drive NMOS FETs. Typically, the lower RDSon for the high and low side FETs the  
better but, be sure to size the FETs, inductor and output capacitors appropriately as the RDSon for the low side  
FET decreases, the minimum current limit increases. The Texas Instruments CSD87381P is recommended for  
the controllers.  
9.2.1.2.1.4 Bootstrap Capacitor  
To make sure that the internal high side gate drivers are supplied with a stable low noise supply voltage, a  
capacitor must be connected between the VBSTVRx pins and the respective SWVRx pins. Using ceramic  
capacitors with the value of 0.1 µF are recommended for the converters and the controllers, respectfully. For  
testing, a 0.1 µF, size 0402, 10 V capacitor was used for the controllers.  
It is recommended to reserve a small resistor in series with the bootstrap capacitor in case the turn on / off of the  
FETs need to be slowed in order to reduce voltage ringing on the switch node. This is common practice for  
controller design.  
Copyright © 2014, Texas Instruments Incorporated  
93  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
9.2.1.2.1.5 Setting the Current Limits  
The controller has a Valley Current Limit topology, also known as a Low Side Current Limit. This type of current  
limit works by limiting the current only when the low side FET is on. If the current being sourced by the low side  
FET is greater than the set low side current limit, ILS, the controller will hold the low side FET on and the high  
side off until the current through the low side FET decreases below the set ILS. Only if the current through the low  
side FET is less than the ILS will the low side FET be allowed to turn off and the high side FET to turn on.  
A fast current increase is limited by the maximum on time for the high side FET. This forces the low side FET to  
turn on every period. Once the low side FET turns on, the Low Side Current Limit can control the FETs until the  
current decreases below the ILS. The maximum on time for the high side FET limits the current increase to  
maximum on time multiplied by the di/dt of the inductor until the low side FET is switched on.  
IOCL is the average current when the valley current is consistently the ILS.  
I
OCL  
ILS  
Figure 92. IOCL Depiction  
The low side current limit for the controllers is set by a resistor, RCS, at the ILIMx pin. A current, ITRIP, is sourced  
across the RCS to set the voltage for the current limit comparator. Use the equation below to determine the RCS  
resistor. It is recommended to set IOCL to 130% of IOUTmax and use a resistor with ±1% or less tolerance for best  
results. Since the current limit is when the inductor current is near its maximum it is recommended to use the  
saturation derating of the inductor when calculating the RCS  
.
:
;
× 8  
OS  
8 F 8  
KQP  
KQP  
2EJ× . × B × 8  
8 × 4&5 × (+1%.  
F
)
KJ  
EJ  
4%5 =  
+
64+2  
(5)  
There is a minimum and a maximum IOCL that can be achieved for the given parameters used in the equation  
above. To ensure that the RCS has been sized correctly, the following equation must be true across the  
application temperature range.  
8
%5IEJ  
< +
64+2
× 4
%5
< 8  
%5I=T  
(6)  
If the controller has high side current limit then, use Equation 7 to calculate the high side RCS resistor. The high  
side current limit must be set higher than the low side current limit. Again, since the current limit is when the  
inductor current is near its maximum it is recommended to use the saturation derating of the inductor when  
calculating the RCS  
.
:
;
8 F 8176 × 8  
+0  
l4&5KJ × l+1%.  
+
176 p p  
2 × . × B × 8  
59  
+0  
n
F #r × 20GÀ  
3200À  
4%5 (*5)  
=
+
64+2  
(7)  
94  
版权 © 2014, Texas Instruments Incorporated  
 
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
9.2.1.2.1.6 Selecting the Input Capacitors  
Because of the nature of the switching converter and controller with a pulsating input current, a low ESR input  
capacitor is required for best input voltage filtering and minimizing the interference with other circuits caused by  
high input voltage spikes. For the controller, 12µF of input capacitance is recommended for most applications. To  
achieve the low ESR requirement, a ceramic capacitor is recommended. However, the voltage rating and DC  
bias characteristic of ceramic capacitors need to be considered. The input capacitor can be increased without  
any limit for better input voltage filtering. Be sure to size the ceramic capacitor to achieve the recommended input  
capacitance. A ceramic capacitor placed as close as possible to the respective VINx and PGNDx pins of the  
FETs is recommended.  
The preferred capacitors for the controllers are two muRata GRM21BR61E106MA73: 10 μF, 0805, 25 V, +/-20%  
or similar.  
9.2.1.2.2 Converter Design Procedure  
Designing the converter has only 2 steps: designing the output filter and selecting the input capacitors. The  
converter must be supplied by a 3.3V source which can be provided by one of the TPS65083x controllers.  
The converter requires VREG supply and capacitors. VREG should be connected to the 5V LDO and a 1uF,  
X5R, 20%, 10V or similar capacitor should be used for decoupling.  
Lout  
VINVR2  
SWVR2  
Vout  
3.3V  
LDO5V  
VREGVRx  
Cin  
Cout  
FBVR2P  
FBVR2N  
Converter  
1 PF  
100  
PGVRx  
ENVRx  
93. Converter Diagram  
9.2.1.2.2.1 Selecting the Inductor  
An inductor is required to be placed between the SWVRx and the output capacitors. The inductor and output  
capacitors together make the double-pole which contributes towards stability. In addition, the inductor is directly  
responsible for the output ripple, efficiency, and transient performance. With an increase in inductance used the  
ripple current decreases which, typically increases efficiency. However, with an increase in inductance used, the  
transient performance decreases. Finally, the inductor selected has to be rated for appropriate saturation current,  
core losses and DC resistance (DCR).  
Use the equation below to calculate the recommended inductance for the controller. Let K  
Lripple to the Iout MAX . It is recommended that K IND is set to a value between 0.2 and 0.4.  
be the ratio of I  
IND  
:
;
8176 × 8 F 8176  
+0  
. =  
8 × B × +KQP/#: × -+0&  
+0  
59  
(8)  
With the chosen inductance value, the peak current for the inductor in steady state operation, I -  
, can be  
Lmax  
calculated using the equation below. The rated saturation current of the inductor must be higher than the I  
current.  
Lmax  
Copyright © 2014, Texas Instruments Incorporated  
95  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
:
;
8 F 8176 × 8176  
+0  
+
= +KQPI=T + J  
K
.I=T  
2 × 8 × B × .  
+0  
59  
(9)  
Following these equations the preferred inductors selected for the converter are listed below in the Table 66.  
Table 66. Recommended Inductors  
MANUFACTURER  
Cyntec  
PART NUMBER  
PIFE32251B-R68MS  
744383230068  
VALUE  
0.68 µH  
0.68 µH  
SIZE  
HEIGHT  
1.2 mm  
1.0 mm  
3.2 mm x 2.5 mm  
2.5 mm x 2 mm  
Würth  
9.2.1.2.2.2 Selecting the Output Capacitors  
Ceramic capacitors with low ESR values provide the lowest output voltage ripple and are recommended. The  
output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their  
wide variation in capacitance over temperature, become resistive at high frequencies.  
At light load currents, the converter operates in Power Save Mode and the output voltage ripple is dependent on  
the output capacitor value and the PFM peak inductor current. Higher output capacitor values minimize the  
voltage ripple in PFM Mode. In order to achieve specified regulation performance and low output voltage ripple,  
the DC-bias characteristic of ceramic capacitors must be considered. The effective capacitance of ceramic  
capacitors drops with increasing DC bias voltage.  
For the output capacitors of the DCDC converters the use of a small ceramic capacitors placed as close as  
possible to the inductor and the respective PGND pins of the IC is recommended. If, for any reason, the  
application requires the use of large capacitors which can not be placed close to the IC, use a smaller ceramic  
capacitor in parallel to the large capacitor. The small capacitor should be placed as close as possible to the  
inductor and the respective PGND pins of the IC.  
At the DCDC converters the recommended capacitor for use is the muRata GRM188R60J226MEAO: 22 µF,  
0603, 6.3 V, ±20% or similar. This capacitor was selected to achieve the highest derated capacitance in a small  
0603 package. If the selected output voltage is greater than 3.3V then the muRata GRM21BR61A226ME44:  
22µF, 0805, 10V, ± 20%, or similar is recommended for use. This capacitor is recommended to maintain the  
actual capacitance as DC bias increases.  
9.2.1.2.2.3 Selecting the Input Capacitors  
Because of the nature of the switching converter and controller with a pulsating input current, a low ESR input  
capacitor is required for best input voltage filtering and minimizing the interference with other circuits caused by  
high input voltage spikes. For the controller, 12µF of input capacitance is recommended for most applications. To  
achieve the low ESR requirement, a ceramic capacitor is recommended. However, the voltage rating and DC  
bias characteristic of ceramic capacitors need to be considered. The input capacitor can be increased without  
any limit for better input voltage filtering. Be sure to size the ceramic capacitor to achieve the recommended input  
capacitance. A ceramic capacitor placed as close as possible to the respective VINx and PGNDx pins of the IC is  
recommended.  
The preferred capacitors for the controllers are two muRata GRM21BR61E106MA73: 10 μF, 0805, 25 V, +/-20%  
or similar.  
9.2.1.2.3 LDO Design Procedure  
The LDO must handle the fast load transients from the DDR memory for termination. Therefore, it is important to  
maintain a high amount of capacitance with low ESR on the LDO outputs and inputs. Ceramic capacitors are  
ideal for this. Below is the recommended capacitors.  
The preferred output capacitor for the LDO is muRata GRM188R60J476M: 47 μF, 0603, 6.3 V, +/-20% or similar.  
The preferred input capacitor for the LDO is muRata GRM155R60J106ME44: 10 μF, 0402, 6.3 V, +/-20% or  
similar.  
96  
版权 © 2014, Texas Instruments Incorporated  
 
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
9.2.1.2.4 Board Temperature Monitoring Design Procedure  
Board temperature monitoring requires only 1 thermistor if only 1 sense point is desired. It can be scaled by  
adding as many thermistors as sense points desired. Simply connect a PTC thermistor that has an exponential  
coefficient curve from the VCOMP pin to GND and a pull up to desired voltage source on the TRIPZ pin. Place  
thermistor where desired. If multiple sense points are desired string the thermistors together in a series  
connection while placing the thermistors where desired.  
10µA  
100k  
VCOMP Pin  
TRIPZ Pin  
RT1  
+
VREF = 1.25V  
±
RT2  
RT3  
RT4  
94. Board Temperature Monitoring Circuit Example  
The thermistors should have low room and mid temperature resistances in the range of 1kΩ to 10kΩ. The hot  
point resistance should be roughly 10x mid temperature resistance in the range of 100kΩ to 200kΩ. There is an  
internal 10µA current source that provides a voltage across the thermistors. Once this voltage exceeds the  
comparator thershold of 1.25V the TRIPZ pin switches to LOW indicating a HOT board temperature. Therefore,  
the resistance required for HOT board temperature is 125kΩ. Select thermistors that align this resistance with the  
desired HOT temperature setpoint.  
The recommended thermistors for this feature is the muRata PRF15BG102RB6RC.  
9.2.1.2.5 Sequencing the Voltage Rails  
To sequence the voltage rails of the PMIC, the power goods of the VRs and PG comparators can be feed back  
into the enables for the VRs and comparators. RC delays can be added externally the PMIC can be programmed  
to have delays set internally.  
版权 © 2014, Texas Instruments Incorporated  
97  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
9.2.1.2.6 Power Path Design Procedure  
The TPS65083x has power path comparators and outputs to control the power path switches. Simiply connect a  
voltage divider to the adaptor and batteries to set the threshold to the desired value. The outputs of the  
comparators require a pull up since they are open-drain outputs. In-order for the power path comparators to work  
without VIN supplied connect the VINPP to the power rails that are being monitored by using a diode to select  
the highest voltage among the sources.  
Adaptor  
Battery 1  
Battery 2  
VINPP  
Pull Up  
Pull Up  
Pull Up  
R1a  
R1b  
R1c  
TPS65083x  
ACIN  
ACOUT  
BAT1OUT  
BAT2OUT  
BAT1IN  
BAT2IN  
R2a  
R2b  
R2c  
95. Power Path Comparators and VINPP Supply  
Example:  
Desired is to measure a battery and an adaptor to decide when to switch over from battery to adaptor. The  
votlages desired for thresholds are 9V and 6V respectively. Using 公式 10 the resistors required to set the 9V  
threshold are R1a = and R2a = . The resistors required to set the 6V threshold are R1b = and R2b = .  
8
+0  
41 = 42 × l  
F 1p  
86DNAODKH@  
(10)  
9.2.1.3 Application Performance Curves  
67. Application Curves Overview  
TYPE  
DESCRIPTION AND ASSUMPTIONS  
FIGURE NUMBER  
Using CSD87381P FET Block, PIME051H-1R0MS,  
3 x GRM31CR60G227ME11 + 1 x GRM21BR60J107M, NDVCZ = HIGH, Vout = 1V  
Efficiency VR1  
96  
Using PIFE32251B-R68MS,  
4 x ZRB18AR60G476ME01, NDVCZ = HIGH, Vout = 1.8V  
Efficiency VR2  
Efficiency VR3  
Efficiency VR4  
Efficiency VR5  
97  
98  
99  
100  
Using CSD87381P FET Block, PIMB061H-1R5MS,  
3 x GRM21BR60J107M , NDVCZ = HIGH, Vout = 3.3V  
Using CSD87381P FET Block, PIME051H-1R0MS,  
2 x GRM31CR60G227ME11 + 1 x GRM21BR60J107M, NDVCZ = HIGH, Vout = 1.2V  
Using CSD87381P FET Block, PIMB051H-3R3MS,  
11 x GRM21BR61A476ME15, NDVCZ = HIGH, Vout = 5V  
98  
版权 © 2014, Texas Instruments Incorporated  
 
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin=5.40V  
Vin=8.70V  
Vin=15.00V  
Vin=24.00V  
Vin=2.97V  
Vin=3.30V  
Vin=3.63V  
0
0
1
2
3
4
5
6
7
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Iout (A)  
Iout (A)  
D001  
D001  
96. Typical Efficiency for VR1  
97. Typical Efficiency for VR2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin=5.40V  
Vin=5.40V  
Vin=8.70V  
Vin=13.50V  
Vin=24.00V  
Vin=8.70V  
Vin=15.00V  
Vin=24.00V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Iout (A)  
0
1
2
3
4
5
6
7
Iout (A)  
D001  
D001  
98. Typical Efficiency for VR3  
99. Typical Efficiency for VR4  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin=5.40V  
Vin=8.70V  
Vin=13.50V  
Vin=24.00V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Iout (A)  
D001  
100. Typical Efficiency for VR5  
9.2.2 Specific Application - TPS650830 Powering the Intel SkyLake Platform Volume Configuration  
Volume configuration is the lowest cost and smallest solution for SkyLake power. It combines multiple same  
voltage rails into one rail reducing cost and size. Load switches are utilized to separate the rails and power the  
system with correct sequencing. The PMIC controls these load switches with the power good comparators. The  
TPS65083x also supports Premium configurations, see TPS650831 and TPS650832 or literature numbers:  
SLVSCS5 and SLVSCS6.  
版权 © 2014, Texas Instruments Incorporated  
99  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
All Pullup Resistors 100kohm, unless noted  
V33A_DSW  
V33A_DSW  
V3.3S  
TPS650830  
V33A_DSW  
(EC_VCC)  
V100S  
VOLUME #1 Application  
Block Diagram:  
V12(V085A) = No Load Sw,  
V11 (V1.00A) = No Load Sw  
SHUTDOWNZ  
STANDBYZ  
LDO3  
SLP_S0Z  
POWER MONITOR  
Rpull-up Shared with  
V100S_PG  
VDDIO  
OD/PP  
PGVR4  
V12U_PG  
V33A_DSW  
VREGVR4  
VLDO5  
ILIMVR4  
FBVR4N  
VDDIO  
VR4  
Controller  
PP  
AGND  
FBVR4P  
VBSTVR4  
DRVHVR4  
Volume #1  
PPATH  
LOGIC  
V12U  
VDC  
Comp_PG_mod  
e
COMP  
Comp_Mode  
Enable Logic  
Pgood_logic  
Vout Range  
1.056V-  
VDDIO  
RESETZ  
A
1
1
-
ENA & V33APCHCNT  
ENB & V18U25UCNT  
PGOOD A  
SWVR4  
DRVLVR4  
PGNDVR4  
1.391V  
PP  
B
0
-
ENB & V18U25UCNT  
PGOOD C  
PG  
EN  
VSET  
VSA  
VSB  
VSC  
VSD  
VSE  
Vout 1.2V/  
1.35V/1.1V  
C  
-
ENC  
V33APCH  
REF  
DCH  
V18U25U  
VCCIO(V0975)  
V18S  
EN/  
PGOOD  
LOGIC  
D
1
1
1
1
0
0
0
-
END & VCCIOCNT  
END & VCCIOCNT  
ENA & V33APCHCNT  
PGOOD F  
COMPIN_C  
V33S  
PGNDVR4  
VDDIO  
E
ENE  
ENF  
ENG  
VDDIO  
VSF  
VSG  
F
DDRID  
ENVR4  
TTL  
DDRID  
3 L  
V100S  
G
PGOOD G  
VSH  
VDDIO  
LS_INC  
SLP_S4Z  
TTL  
ENA  
ENB  
ENC  
END  
ENE  
ENF  
ENG  
ENH  
V5ADS3_PG  
DDR_VTT_CTRL  
SEQ  
+
INTEL  
AND  
OEM  
VDDIO  
DDR_VTT_CTRL  
SLP_S4Z  
TTL  
COMPEN_C  
& V100S_PG  
VINDLO1S  
V12U_PG  
V12U_PG  
VINLDO1[2X]  
V100S_PG  
SLP_SUSZ  
SLP_S3Z  
LDO1  
SINK/SRC LDO  
V0.6DX/0.675DX  
/0.55DX  
Vout= (VR4)/2  
1A max  
VOUTLDO1[2X]  
EN  
EN  
LOGIC  
LOGIC  
LS_INB  
FBLDO1  
PGA  
PGB  
V33APCH_PG  
V18U25ULSW  
COMPOUT_C  
VCCIOLSW  
PGC  
PGD  
VDDPG  
PGNDLDO1[2X]  
VINVR2 [2X]  
SWVR2 [2X]  
OD/PP  
PGE  
PGF  
PGG  
PGH  
PGNDLDO1  
V33A_DSW  
V33APCHLSW  
Rpull-up Shared  
with V12U_PG  
V33A_DSW  
V1.8S_PG  
V100S_PG  
LS_OUTC  
VR2  
Converter  
V33A_DSW  
VDDPG  
PG  
EN  
V33A_DSW  
VDDIO  
FBVR2P  
Vout range  
VSET 1.76v-1.85v  
ENLVA  
TTL  
V18A  
VREGVR2  
VLDO5  
V33A_DSW  
(EC_VCC)  
LVA  
LVB  
BCACOK  
LS_OUTB  
VDDLVS  
FBVR2N  
Vout 1.8V  
2A max  
OD/PP  
c
PGNDVR2 [2X]  
EN/  
PGOOD  
LOGIC  
VDDLV  
PGNDVR2  
V33A_DSW  
VLDO5  
VDDIO  
OD/PP  
VREGVR1  
PGVR2  
ENVR2  
DIGCORE  
V9,V4,V33S PGOOD  
DO NOT HAVE PINS!  
V18A_PG  
ILIMVR1  
FBVR1N  
V18U25ULSW  
SLP_S3Z  
VDDIO  
V18A_EN/  
DPWROK  
FBVR1P  
VR1  
Controller  
V18S  
V18U25U  
TTL  
VDC  
VBSTVR1  
VBATTBKUP  
Vout range  
0.95v-1.05v  
BACKUP  
BATTERY  
SELECTOR  
V33ARTC  
DRVHVR1  
SWVR1  
V100A  
RTC  
DIG  
EN/  
PGOOD  
LOGIC  
PG  
V3P3A_RTC  
TRIPZ  
Vout 1.00V  
EN  
VSET  
DRVLVR1  
TH_HOTZ  
THERMs  
OD/PP  
OEM  
VCOMP  
VCOMP  
PGVR3  
PGNDVR1  
PGVR1  
VDDIO  
PGNDVR1  
V33ADSW_PG  
OD/PP  
VDDIO  
VDDIO  
VR1_PG  
NVDCZ  
OD/PP  
TTL  
SLP_S3Z  
V100S  
VDDIO  
VREGVR4  
V33APCHLSW  
V33APCH  
SLP_S3Z  
ENVR1  
PGVR5  
TTL  
VINVR3  
ILIMVR3HS  
ILIMVR3LS  
FBVR3N  
V33APCH_PG  
V5ADS3_PG  
VDC  
EN/  
PGOOD  
LOGIC  
V33S  
VDDIO  
VCCIOLSW  
VCCIO(V0975)  
EN/  
PGOOD  
LOGIC  
OD/PP  
VR3  
Controller  
PG  
V085A  
VINVR5  
FBVR3P  
EN  
VSET  
EN  
VSET  
Vout range  
3.23v-3.34v  
VBSTVR3  
ILIMVR5HS  
FBVR5N  
VDC  
AGND  
I2C AND  
REGFILE  
VR5  
Controller  
FBVR5P  
DRVHVR3  
SWVR3  
V33A_DSW  
Vout 3.3V  
VDC  
VBSTVR5  
Vout range  
4.9v-5.1v  
DRVLVR3  
DRVHVR5  
SWVR5  
V5ADS3  
VDDIO  
TTL  
PGNDVR3  
ENVR3  
Vout 5V  
DRVLVR5  
VLDO3  
PGNDVR3  
OTP  
VREGVR1  
PGNDVR5  
VIN  
VDC  
VLDO5  
VLDO3  
UVLO  
VINLDO3  
VDDIO  
ILIMVR5LS  
DFT AND  
AMUX  
TTL  
LDO5V  
REFSYS  
PGNDVR5  
ENVR5  
SLP_SUSZ  
VREF1V25  
LDO3V  
VIN5VSW  
EN5VSW  
50ohm  
V100S  
TEMP_ALERTZ  
VDDIO [2X]  
DIETEMP  
OD  
PGA  
PGB  
PGC  
PGD  
SW  
TTL  
VLDO3  
SW  
EN3V3SW  
AGND [4]  
TTL  
EC  
V5ADS3_PG  
AGND  
FROM EC  
V5A_DS3  
VLDO5  
LEGEND  
TTL = TTL LEVEL INPUT BUFFER  
3L = 3 LEVEL (HI/LO/HI-Z) INPUT BUFFER  
PP = PUSH-PULL OUTPUT BUFFER  
PPB = PUSH PULL OUTPUT BUFFER WITH  
HI-Z MODE (TEST ONLY)  
OD = OPEN DRAIN OUTPUT BUFFER  
TR = PUSH-PULL WITH CONTROLLED Tr  
OD/PP = OPEN-DRAIN OR PUSH PULL  
AGND  
AGND  
GROUND PLANE  
AGND  
PGNDVR2  
PGNDVR1  
PGNDVR4  
PGNDLDO1  
PGNDVR5  
PGNDVR3  
101. TPS650830 Volume Application Diagram  
9.2.2.1 Design Requirements  
The deisgn requirements are set by the Intel SkyLake Platform. Below are the requirements of the power supply  
system. This procedure assumes the system is a 2S NVDC system but, the TPS65083x supports 3S NVDC, as  
well as non-NVDC systems. 2S NVDC system has an input voltage range of 5.4V to 8.7V.  
There must be 9 separate voltage rails:  
V5A_DS3 - 5V, IMAX = 3.5A  
V3.3A_DSW - 3.3V, IMAX = 3.5A  
V3.3A_PCH - 3.3V, IMAX = 3A  
100  
版权 © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
V1.00A - 1.0V, IMAX = 4.9A  
VCCIO - 1.0V, IMAX = 2.9A  
V1.8A - 1.8V, IMAX = 1A  
V1.8U - 1.8V, IMAX = 1A  
VDDQ - 1.2V, IMAX = 7.5A  
VTT - 0.6V, IMAX = ±1A  
All rails must have maximum tolerance of ±5% of the nominal voltage at all times with load transients.  
Load Transients are defined as 0% to 70%, 70% to 0%, 30% to 100% and 100% to 30% load current  
steps relative of the IMAX current defined for each rail.  
Maximum height of components = 1.8 mm.  
Sequence in the order below:  
V3.3A_DSW with VIN supplied  
V1.8A with VIN supplied  
V5A_DS3 with SLP_SUS# transition to HIGH  
V3.3A_PCH with SLP_SUS# transition to HIGH  
V1.00A with SLP_SUS# transition to HIGH  
VDDQ with SLP_S4# transition to HIGH  
V1.8U with SLP_S4# transition to HIGH  
VCCIO with SLP_S3# transition to HIGH  
VTT with DDR_VTT_CTRL / SLP_S0# transition to HIGH  
9.2.2.2 Detailed Design Procedure  
The TPS650830 supplies 6 voltage rails and controls 3 load switches to meet the sequence order for the  
V3.3A_PCH, V1.8U, and VCCIO rails.  
VR1 supplies the V1.00A rail and the VCCIO rail with a load switch.  
VR2 supplies the V1.8A rail and the V1.8U rail with a load switch.  
VR3 supplies the V3.3A_DSW rail and the V3.3A_PCH rail with a load switch.  
VR4 supplies the VDDQ rail and the VINLDO1 for termination.  
VR5 supplies the V5A_DS3 rail.  
VLDO1 supplies the VTT rail.  
To meet the sequencing requirement the power goods of the VRs and PG comparators are feed back into the  
enables for the VRs and comparators. The 5 external control signals SLP_SUS#, _S4#, _S3#, _S0#, and  
DDR_VTT_CTRL are responsible for transitioning the system from sleep state to sleep state and the reverse  
sequencing.  
Since, the requirements are for a 2S NVDC system the NVDCZ pin should be tied LOW.  
9.2.2.2.1 Output Inductance and Capacitance  
Following the recommend design procedure in Detailed Design Procedure will yield output inductance and  
capacitance similar to 68.  
68. SkyLake Volume Configuration Output L and C  
OUTPUT  
INDUCTANCE  
MINIMUM OUTPUT  
CAPACITANCE  
CAPACITOR  
MANUFACTURER  
VRx  
RECOMMENDED OUTPUT CAPACITORS  
1 x GRM31CR60G227ME11 and  
1 x ZRB18AR60G476ME01  
VR1  
0.56 µH  
160 µF  
muRata  
VR2  
VR3  
VR4  
VR5  
0.68 µH  
1 µH  
47 µF  
87 µF  
117 µF  
76 µF  
4 x ZRB18AR60G476ME01  
2 x GRM31CR60G227ME11  
1 x GRM31CR60G227ME11  
8 x GRM21BR61A476ME15  
muRata  
muRata  
muRata  
muRata  
0.56 µH  
2.2 µH  
版权 © 2014, Texas Instruments Incorporated  
101  
 
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
9.2.2.3 Application Performance Curves  
69. Application Curves Overview  
TYPE  
DESCRIPTION AND ASSUMPTIONS  
FIGURE NUMBER  
Using CSD87381P FET Block, PIMB051H-0R56M,  
1 x GRM31CR60G227ME11 + 1 x ZRB18AR60G476ME01, NDVCZ = LOW, Vout = 1V  
Efficiency VR1  
102  
Using PIFE32251B-R68MS,  
4 x ZRB18AR60G476ME01, NDVCZ = LOW, Vout = 1.8V  
Efficiency VR2  
Efficiency VR3  
Efficiency VR4  
Efficiency VR5  
103  
104  
105  
106  
Using CSD87381P FET Block, PIME051H-1R0MS,  
2 x GRM31CR60G227ME11, NDVCZ = LOW, Vout = 3.3V  
Using CSD87381P FET Block, PIMB051H-0R56M,  
1 x GRM31CR60G227ME11, NDVCZ = LOW, Vout = 1.2V  
Using CSD87381P FET Block, PIME051B-2R2MS,  
8 x GRM21BR61A476ME15, NDVCZ = LOW, Vout = 5V  
space  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
30  
Vin=2.97V  
Vin=3.30V  
Vin=3.63V  
20  
10  
0
1
2
3
4
5
6
7
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Iout (A)  
Iout (A)  
D001  
D001  
102. Typical Efficiency for VR1  
103. Typical Efficiency for VR2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Iout (A)  
0
1
2
3
4
5
6
7
Iout (A)  
D001  
D001  
104. Typical Efficiency for VR3  
105. Typical Efficiency for VR4  
102  
版权 © 2014, Texas Instruments Incorporated  
 
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin=5.40V  
Vin=8.10V  
Vin=8.70V  
Vin=13.50V  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
Iout (A)  
D001  
106. Typical Efficiency for VR5  
9.3 System Examples  
Below is a diagram of the SkyLake Platform System Power Delivery. The PMIC is flexible and adjusts well  
across SkyLake platforms.  
TPS650830  
VOLUME  
6V t 8.4V  
VCORE  
VCCGT  
FET  
FET  
2S Battery Pack  
FET FET  
FET FET  
Driver  
Driver  
SKYLAKE  
PLATFORM  
AC/DC  
Adaptor  
NVDC  
Charger  
FET  
FET  
Vcore  
VCCSA  
SVID  
FET  
ALERT#  
TPS650830 ± PMIC  
FET  
FET  
V5ADS3  
FET FET  
5V, 3.55A  
SMBus  
V3.3A_PCH  
LOAD  
SWITCH  
V3.3A_DSW  
FET FET  
3.3V, 6.6A  
V3.3S  
LOAD  
SWITCH  
Protection  
LOAD V1.8U_V2.5U  
SWITCH  
V1.8A  
1.00V  
1.8V, 1.8A  
SMBus  
EC  
Embedded  
Controller  
LOAD  
SWITCH  
Gas  
Gauge  
V1.8S  
FET FET  
FET FET  
1.00V, 6.81A  
V0.85A  
V1.00A  
Legend:  
V1.2U  
1.2V, 7.47A  
Power bus  
Signal Wire  
LOAD  
SWITCH  
VCCIO  
V0.6DX  
0.6V, 1.2A  
I2C  
LOAD  
SWITCH  
V1.0S  
Integrated FET  
regulator  
External FET  
regulator  
107. TPS650830 Volume Simplified System Power Configuration Diagram  
9.4 Do's and Don'ts  
Always either float or connect the VINPP to the same voltage as VIN. Never ground VINPP.  
If not using a voltage regulator connect the enable to ground and float the output.  
版权 © 2014, Texas Instruments Incorporated  
103  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
10 Power Supply Recommendations  
Any power supply capable of delivering the required input power is acceptable provided that there is a source  
within the recommended operating conditions for VIN and VINLDO3. The input voltage for the VR2 converter  
must be 3.3V always. The input voltage of the controllers may vary from the VIN and VINLDO3 voltage. Ensure  
that VINPP is connected to the VIN or floated but not grounded.  
104  
版权 © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
11 Layout  
11.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC.  
There are 2 packages availible for the TPS65083x, the ZAJ and ZCG. The ZAJ is a 7 mm x 7 mm BGA with 0.5  
mm ball pitch. The ZCG is a 9 mm x 9 mm BGA with 0.5 mm ball pitch but, some of the inner balls have been  
removed for easier routing. Both packages preform relatively the same and the decision between which package  
is best for the application depends on the space constraints and routing technology used.  
11.1.1 Fanout for ZAJ using Type 4 Routing  
This small 7 mm x 7 mm package utilizes the Type 4 routing technique to decrease system board area as much  
as possible. This Type 4 rounting has vias in pad, blind and buried vias, and minimum trace width / spacing of 4  
mils.  
= Ball Pad  
4 mil  
= Via, with 10 mil pad  
and 6 mil drill  
= Top Layer Trace  
10 mil  
6 mil  
= Inner 1 / Bottom  
Layer Trace  
= Inner 2 / Bottom  
Layer Trace  
10 mil  
Inner Balls  
108. Fanout for ZAJ Package Using Type 4 Routing  
版权 © 2014, Texas Instruments Incorporated  
105  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
Layout Guidelines (接下页)  
11.1.2 Fanout for ZCG using Type 3 Routing  
The ZCG has some of the inner balls removed to essentially create a 0.1 mm ball pitch for the inner balls of the  
package. This feature allows for Type 3 routing of the board. This Type 3 routing has no vias in pad, no blind and  
buried vias, and minimum trace width / spacing of 4 mils.  
= Ball Pad  
= Via, with 20 mil pad  
and 10 mil drill  
= Top Layer Trace  
10 mil  
4 mil  
= Inner 1 / Bottom  
Layer Trace  
= Inner 2 / Bottom  
Layer Trace  
20 mil  
Inner Balls  
109. Fanout for ZCG Package using Type 3 Routing  
11.1.3 Layout Checklist  
All inductors, input/output caps and FETs for the converters and controller should be on the same board layer  
as the IC.  
Place feedback connection points near the output capacitors and minimize the control feedback loop as much  
as possible to achieve the best regulation performance.  
Bootstrap capacitors must be place close to the IC from the SWVRx to VBSTVRx pins.  
DRVLVRx signals must be routed on the same layer as the IC and the FETs and minimize the length and  
parasitic inductance of the trace as much as possible.  
Each converter and controller should have their own separate ground and each ground should connect to the  
common ground separately. The input capacitors, output capacitors, and FET grounds for each VRx  
converter and controller must be connected to the ground plane for the respective VRx rail. Since, the PGNDs  
for each rail are not connect to each other or AGND, it is required to use the PGNDVRx pins for the input and  
ouput capacitors for each VRx rail. This ground plane should connect in one place to the common ground  
close to the input and output capacitor ground pads. See the figure below for a visual representation of the  
converter layout scheme.  
The internal reference regulators must have their input and output caps close to the IC pins.  
106  
版权 © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
Layout Guidelines (接下页)  
Route the FBVRxP and FBVRxN signals as a differential pair.  
11.2 Layout Example  
11.2.1 ZAJ Package  
110. Top Layer ZAJ Layout  
111. Bottom Layer ZAJ Layout  
11.2.2 ZCG Package  
112. Top Layer ZCG Layout  
113. Bottom Layer ZCG Layout  
版权 © 2014, Texas Instruments Incorporated  
107  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
11.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below.  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB by soldering the PowerPAD™  
Introducing airflow in the system  
For more details on how to use the thermal parameters in the dissipation ratings table please check the Thermal  
Characteristics Application Note (SZZA017) and the IC Package Thermal Metrics Application Note (SPRA953).  
108  
版权 © 2014, Texas Instruments Incorporated  
TPS650830  
www.ti.com.cn  
ZHCSDM1 DECEMBER 2014  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
如需获得器件支持,请在此将问题提交至 E2E 论坛:e2e.ti.com  
12.1.2 开发支持  
关于  
TPS65083x  
的常见问题解答  
(FAQ),请参见此处的  
FAQhttp://e2e.ti.com/support/power_management/pmu/w/design_notes/2898.tps65083x-faqs  
12.2 文档支持  
12.2.1 相关文档  
应用报告《采用 JEDEC PCB 设计的线性和逻辑封装散热特性》(文件编号:SZZA017)  
应用报告《半导体和 IC 封装热指标》(文件编号:SPRA953)  
12.3 商标  
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
版权 © 2014, Texas Instruments Incorporated  
109  
TPS650830  
ZHCSDM1 DECEMBER 2014  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
110  
版权 © 2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS650830ZAJR  
TPS650830ZAJT  
TPS650830ZCGR  
TPS650830ZCGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
ZAJ  
ZAJ  
168  
168  
159  
159  
2000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TPS650830  
SNAGCU  
SNAGCU  
SNAGCU  
TPS650830  
TPS650830  
TPS650830  
ZCG  
ZCG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS650830ZCGT

用于 Skylake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | ZCG | 159 | -40 to 85
TI

TPS65084

用于 Braswell 处理器的可编程中等输入电压范围电源管理 IC (PMIC)
TI

TPS650842A0RSKT

用于 Braswell 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS65086

适用于 2 节和 3 节锂离子电池供电器件或非电池供电器件的可配置多电轨 PMIC
TI

TPS650860A0RSKR

适用于 2 节和 3 节锂离子电池供电器件或非电池供电器件的可配置多电轨 PMIC | RSK | 64 | -40 to 85
TI

TPS650860A0RSKT

适用于 2 节和 3 节锂离子电池供电器件或非电池供电器件的可配置多电轨 PMIC | RSK | 64 | -40 to 85
TI

TPS650861

具有 3 个转换器、3 个控制器、4 个 LDO 和 3 个负载开关的用户可编程电源管理 IC (PMIC)
TI

TPS65086100RSKR

具有 3 个转换器、3 个控制器、4 个 LDO 和 3 个负载开关的用户可编程电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS65086100RSKT

具有 3 个转换器、3 个控制器、4 个 LDO 和 3 个负载开关的用户可编程电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650864

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC
TI

TPS65086401RSKR

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI

TPS65086401RSKT

用于 Xilinx MPSoC 和 FPGA 的可配置多轨 PMIC | RSK | 64 | -40 to 85
TI