TPS65233-1 [TI]

具有 1MHz、I2C 接口电源管理 IC (PMIC) 的 LNB 稳压器;
TPS65233-1
型号: TPS65233-1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1MHz、I2C 接口电源管理 IC (PMIC) 的 LNB 稳压器

集成电源管理电路 稳压器
文件: 总30页 (文件大小:2841K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
TPS65233-1 具有 I2C 接口的 LNB 稳压器  
1 特性  
3 说明  
针对 LNB I2C 的完整集成解决方案  
TPS65233-1 针对模拟和数字卫星接收器而设计,是一  
款具有 I2C 接口的单片稳压器,专门为碟形天线内的  
LNB 下变频器或卫星多路切换开关盒提供 13V/18V 电  
源和 22kHz 音调信号。该器件将极少的组件数量,低  
功率耗散以及简单设计和 I2C 标准接口等特性完美结  
合,提供了一套完整的解决方案。  
1
与数字卫星设备控制 (DiSEqC) 1.x 兼容  
支持 9V 12V 电源总线  
高达 1000mA 的精确输出电流限值,可通过外部电  
阻和 I2C 进行调节  
具有低 Rdson 内部电源开关的升压转换器  
针对非 I2C 应用的专用使能引脚  
具有推挽输出级的低噪声、低压降输出  
内置精确 22kHz 音调发生器或外部引脚  
可调软启动和 13V/18V 电压转换时间  
符合主要卫星接收器系统规范  
TPS65233-1 具备 高功率效率。此升压转换器集成了  
一个以 1MHz 开关频率运行的 120mΩ 功率金属氧化  
物半导体场效应晶体管 (MOSFET)。线性稳压器中的  
压降电压为 0.8V,能够最大限度地降低功率损耗。  
TPS65233-1 提供了多种方法来生成 22kHz 信号。具  
有推挽输出级的集成线性稳压器在输出上生成洁净的  
22kHz 音调信号,即使在零负载时也是如此。可由外  
部电阻器以 ±10% 的精度来设定线性稳压器的电流限  
值。 由 I2C 读取的全范围诊断可用于系统监视。  
LNB 短路动态保护  
针对输出电压电平、输入电源欠压闭锁 (UVLO) 和  
DiSEqC 音调输出的诊断  
电缆断开诊断  
采用 16 引脚 WQFN 3.00mm × 3.00mm (RTE) 封  
该器件采用 16 引脚 WQFN 3.00mm × 3.00mm (RTE)  
封装。  
2 应用  
器件信息(1)  
机顶盒卫星接收器  
器件型号  
TPS65233-1  
封装  
WQFN (16)  
封装尺寸(标称值)  
电视卫星接收器  
3.00mm x 3.00mm  
PC 卡卫星接收器  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
12  
11  
10  
9
100 k  
VOUT  
VLNB  
FAULT  
13  
8
7
100 nF  
EN/ADDR  
ISEL  
14 VCP  
1 µF  
TPS65233-1  
130 kꢀ  
6
15  
16  
BOOST  
PGND  
2 × 22 µF  
(35 V)  
TCAP  
5
22 nF  
1
2
3
4
4.7 µH  
VIN  
1 µF  
22 µF  
(25 V)  
1 µF  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD66  
 
 
 
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 11  
7.5 Programming........................................................... 14  
7.6 Register Map........................................................... 15  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application .................................................. 18  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 I2C Interface Timing Requirements........................... 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 8  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 社区资源................................................................ 23  
11.2 ....................................................................... 23  
11.3 静电放电警告......................................................... 23  
11.4 术语表 ................................................................... 23  
12 机械、封装和可订购信息....................................... 23  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2015 9 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
5 Pin Configuration and Functions  
RTE Package  
12-Pin WQFN  
Top View  
12  
11  
10  
9
VLNB  
13  
8
FAULT  
EN/  
ADDR  
VCP 14  
7
6
TPS65233-1  
ISEL  
15  
16  
BOOST  
PGND  
TCAP  
5
1
2
3
4
Exposed pad must be soldered to PCB for optimal thermal performance.  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
AGND  
NUMBER  
4
Analog ground. Connect all ground pins and power pad together.  
BOOST  
15  
Output of the boost regulator and input voltage of the internal linear regulator  
Enable pin to enable the whole chip; pull to ground to disable output, output will be pulled to ground. For I2C  
EN/ADDR  
7
interface, pulling this pin high or low gives different I2C addresses.  
External modulation logic input pin which activates the 22-kHz tone output, feeding signal can be 22-kHz tone  
or logic high or low.  
EXTM  
12  
FAULT  
ISEL  
LX  
8
6
This pin is an open drain output pin, it goes low if any fault flag is set.  
Connect a resistor to this pin to set the LNB output current limit.  
Switching node of the boost converter  
1
PGND  
16  
Power ground for boost converter  
I2C compatible clock input; if I2C function is not used, connect this pin to low set output voltage 13 V/18 V,  
connect to high set output voltage 13.4 V/18.6 V  
SCL/VADJ  
9
SDA  
10  
5
I2C compatible bi-directional data  
TCAP  
Connect a capacitor to this pin to set the rise time and fall time of the LNB output between 13 V and 18 V.  
Internal 6.5-V power supply bias. Connect a 1-µF ceramic capacitor from this pin to ground. When VIN is 5 V,  
VCC  
3
connect VCC to VIN  
.
VCP  
14  
11  
2
Gate drive supply voltage, output of charge pump, connect a capacitor between this pin to pin BOOST.  
Logic control pin for 13-V or 18-V voltage selection at LNB output  
Input of internal linear regulator  
VCTRL  
VIN  
VLNB  
13  
Output of the LNB power supply connected to satellite receiver or switch  
Must be soldered to PCB for optimal thermal performance. Have thermal vias on the PCB to enhance power  
dissipation.  
Thermal pad  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range, all voltages are with respect to GND (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VIN, LX, BOOST, VLNB  
–1  
30  
VCP  
BOOST + 7  
LX  
–1  
30  
7
Voltage  
V
VCC, EN, FAULT, SCL, SDA, VCTRL, ISEL, EXTM  
–0.3  
–0.3  
–0.3  
–40  
–55  
TCAP  
3.6  
0.3  
125  
150  
PGND, AGND  
Operating junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
2000  
6000  
500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, other pins(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, pin 13 (VLNB)(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
20  
UNIT  
V
VIN  
TA  
Input operating voltage  
Junction temperature  
–40  
85  
°C  
6.4 Thermal Information  
TPS65233-1  
THERMAL METRIC(1)  
RTE (WQFN)  
UNIT  
16 PINS  
43.4  
45.6  
15  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
15  
RθJC(bot)  
3.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
6.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 12 V, fSW = 1 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY  
VIN  
Input voltage range  
VIN  
4.5  
12  
20  
V
IDDSDN  
Shutdown supply current  
EN = 0  
160  
µA  
EN = 1, IOUT = 0 A, VBOOST = 14  
V, ILNB = 0 mA  
IDDQ  
LDO input quiescent current  
VIN under voltage lockout  
10.5  
mA  
Rising VIN  
Falling VIN  
Hysteresis  
4.05  
3.6  
4.25  
3.8  
4.45  
4.1  
V
UVLO  
450  
mV  
OUTPUT VOLTAGE  
VCTRL = 1, SCL = 0,  
IOUT = 500 mA  
18  
18.6  
13  
VCTRL = 1, SCL = 1,  
IOUT = 500 mA  
18.2  
13.1  
19  
VOUT  
Regulated output voltage (non-I2C mode)  
V
VCTRL = 0, SCL = 0,  
IOUT = 500 mA  
VCTRL = 0, SCL = 1,  
IOUT = 500 mA  
13.4  
0.2  
13.7  
VIN = 7.5 V to 16 V,  
IOUT = 500 mA  
VLINEREG  
Line regulation-DC  
%/V  
VLOADREG  
IOCP  
Tr, Tf  
Load regulation-DC  
IOUT = (10-90%) × IOUTMAX  
RSEL = 200 kΩ, TJ = 25°C  
CTCAP = 5.6 nF  
0.7  
650  
0.33  
1040  
3.2  
%/A  
mA  
ms  
kHz  
A
Output short circuit current limit  
13-V/18-V transition rising/falling time  
Boost switching frequency  
Switching current limit  
580  
720  
fSW  
Ilimitsw  
Rdson_LS  
Vdrop  
VIN = 12 V, VOUT = 18.6 V  
VIN = 12 V  
On resistance of low side FET on CH  
Linear regulator voltage drop-out  
Reverse bias current  
120  
0.8  
m  
V
IOUT = 500 mA  
Irev  
EN = 1, VLNB = 21 V  
EN = 0, VLNB = 21 V  
50  
mA  
mA  
Irev_dis  
Disabled reverse bias current  
3
LOGIC SIGNALS  
VEN  
Enable threshold level  
1.15  
80  
V
VENH  
Enable threshold level hysteresis  
mV  
High level input voltage  
Low level input voltage  
2
VLOGICh  
VLOGICl  
,
VCTRL, EXTM Logic threshold level  
V
0.8  
0.4  
VOL FAULT  
fI2C  
FAULT output low voltage  
Maximum I2C clock frequency  
FAULT open drain, IOL= 1 mA  
V
400  
kHz  
TONE  
ftone  
Tone frequency  
Tone amplitude  
Tone duty cycle  
20  
550  
22  
680  
24  
750  
kHz  
mV  
IOUT = 0 mA to 500 mA,  
COUT = 100 nF  
Atone  
Dtone  
45%  
50%  
55%  
PROTECTION  
TON  
Over current protection on time  
Over current protection off time  
4
ms  
ms  
TOFF  
128  
THERMAL SHUTDOWN  
TTRIP  
Thermal shut down trip point  
Thermal shut down hysteresis  
Rising temperature  
160  
20  
°C  
°C  
THYST  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ = –40°C to 125°C, VIN = 12 V, fSW = 1 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C READ BACK FAULT STATUS  
Feedback voltage low side rising  
Feedback voltage low side falling  
Feedback voltage high side rising  
95.3%  
94.7%  
VPGOOD  
PGOOD trip levels  
105.3%  
Feedback voltage high side  
falling  
104.7%  
125  
Twarn  
Temperature warning threshold  
°C  
I2C INTERFACE  
VIH  
VIL  
II  
SDA,SCL input high voltage  
2
–10  
400  
V
V
SDA,SCL input low voltage  
Input current  
0.8  
10  
SDA, SCL, VI = 0.4 V to 4.5 V  
SDA open drain, IOL = 2 mA  
µA  
V
VOL  
f(SCL)  
SDA output low voltage  
Maximum SCL clock frequency  
0.4  
kHz  
Capacitance of one bus line (SCL and  
SDA)  
CB  
400  
pF  
6.6 I2C Interface Timing Requirements  
MIN  
MAX  
UNIT  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
1.3  
0.6  
tHD, STA  
tSU, STO  
tLOW  
Hold time (Repeated) START condition  
Setup time for STOP condition  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data setup time  
0.6  
1.3  
tHIGH  
tSU, STA  
tSU, DAT  
tHD, DAT  
tRCL  
0.6  
0.6  
0.1  
Data hold time  
0
0.9  
300  
300  
300  
300  
300  
Rise time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
tRCL1  
tf  
Rise time of SCL signal after a repeated START condition and after an acknowledge BIT  
Fall time of SCL signal  
tr  
Rise time of SDA signal  
tFDA  
Fall time of SDA signal  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OUTPUT VOLTAGE  
Tr, Tf  
TONE  
Trtone  
Tftone  
13-V/18-V Transition rising falling time  
Ccap = 5.6 nF  
0.33  
ms  
Tone rise time  
Tone fall time  
IOUT = 0 to 500 mA, COUT = 100 nF  
IOUT = 0 to 500 mA, COUT = 100 nF  
10  
10  
µs  
µs  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
SDA  
tSU, STA  
tHD, STA  
tBUF  
tSU, STO  
tSU, DAT  
tHD, DAT  
tLOW  
SCL  
tHD, STA  
tHIGH  
tSP  
Start  
Condition  
Repeated Start  
Condition  
Stop Start  
Condition Condition  
tr  
tf  
Figure 1. I2C Interface Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
6.8 Typical Characteristics  
TA = 25°C, VIN = 12 V, fSW = 1 MHz, L = 4.7 µH, CBoost = 2 × 22 µF/35 V (unless otherwise noted)  
0.95  
0.9  
18.68  
18.66  
18.64  
18.62  
18.6  
VLNB = 13.4 V  
VLNB = 18.6 V  
0.85  
0.8  
0.75  
0.7  
0.01  
0.02 0.03 0.050.07 0.1  
IOUT (A)  
0.2 0.3  
0.5 0.7  
1
0.005 0.01  
0.020.03 0.05  
0.1  
0.2 0.3 0.5 0.70.95  
IOUT (A)  
D001  
D002  
Figure 2. Power Efficiency  
Figure 3. Load Regulation, VLNB = 18.6 V  
13.5  
13.48  
13.46  
13.44  
13.42  
13.4  
11  
10.5  
10  
9.5  
9
0.005 0.01  
0.020.03 0.05  
0.1  
0.2 0.3 0.5 0.70.95  
-55  
-25  
5
35  
65  
95  
125 140  
IOUT (A)  
Junction Temperature (°C)  
D003  
D004  
Figure 4. Load Regulation, VLNB = 13.4 V  
Figure 5. LDO Input Quiescent Current and Junction  
Temperature, VBOOST = 14 V, ILNB = 0 mA  
250  
200  
150  
100  
50  
700  
680  
660  
640  
620  
600  
580  
0
-55  
-25  
5
35  
65  
95  
125 140  
-55  
-25  
5
35  
65  
95  
125 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
D005  
D006  
Figure 6. Shutdown Current and Junction Temperature  
Figure 7. LNB Current Limit and Junction Temperature  
(ILIM = 650 mA)  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
7 Detailed Description  
7.1 Overview  
The TPS65233-1 is a power management IC that integrates a boost converter, a LDO, and a 22-kHz tone  
generator that serves as a LNB power supply. This solution compiles the DiSEqC 1.x standard with or without  
I2C interface. Output current can be precisely programmed by an external resistor. There are five ways to  
generate the 22-kHz tone signal with or without I2C. Integrated boost features low Rdson MOSFET and internal  
compensation. A fixed 1-MHz switching frequency is designed to reduce components size.  
7.2 Functional Block Diagram  
VIN  
VIN  
LX  
VCC  
EN  
REF_Boost  
Internal  
PWM Controller  
Regulator  
PGND  
REF_Boost  
REF_LDO  
TCAP  
BOOST  
REF  
VCTRL  
Charge  
Pump  
VCP  
REF_LDO  
I2C EN  
TGATE  
SDA  
SCL  
I2C Interface  
EN/ADDR  
TGATE  
22-kHz  
Tone  
Generator  
VLNB  
ISEL  
OCP  
OTP  
UVL  
Fault Diagnose  
FAULT  
EXTM  
AGND  
7.3 Feature Description  
7.3.1 Boost Converter  
The TPS65233-1 consists of an internal compensated boost converter and linear regulator. The boost converter  
tracks the output LNB voltage to within 800 mV even at loading 950 mA, to minimize power dissipation. Under  
conditions where the input voltage, VBOOST, is greater than the output voltage, VLNB, the linear regulator must  
drop the differential voltage. When operating in these conditions, taken care to ensure that the safe operating  
temperature range of the TPS65233-1 is not exceeded. The boost converter operates at 1 MHz typical. The  
TPS65233-1 has internal pulse-by-pulse current limiting on the boost converter and DC current limiting on the  
LNB output to protect the IC against short circuits. When the LNB output is shorted, the LNB output current is  
limited. The current limit is set by the external resistor. And the IC will be shut down if the overcurrent condition  
lasts for more than 4 ms, the converter enters hiccup mode and will retry startup in 128 ms. At extremely light  
loads, the boost converter operates in a pulse-skipping mode.  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
If two or more set top box LNB outputs are connected together, one output voltage could be set higher than  
others. The output with lower set voltage would be effectively turned off. Once the voltage drops to the set level,  
the LNB output with lower set output voltage will return to normal conditions.  
7.3.2 Linear Regulator and Current Limit  
The linear regulator is used to generate the 22-kHz tone signal by changing the reference voltage. The linear  
regulator features low drop out voltage to minimize power loss while keeping enough head room for the 0.68-V,  
22-kHz tone. It also implements a tight current limit for over current protection. The current limit is set by an  
external resistor connected to the ISEL pin. The curve below shows the relationship between the current limit  
threshold and the resistor value.  
500  
450  
400  
350  
300  
250  
y = 124.11x-1.178  
200  
150  
100  
0.30  
0.40  
0.50  
0.60  
0.70  
0.80  
0.90  
1.00  
ISEL (A)  
Figure 8. Linear Regulator Current Limit vs Resistor  
RSEL(kW) = 124.11´ISEL-1.178(A)  
(1)  
A 280-kΩ resistor sets the current to 0.5 A. The current limit can also be set by I2C through a register.  
7.3.3 Charge Pump  
The charge pump circuitry generates a voltage to drive the NMOS of the linear regulator. One end the charge  
pump capacitor is connected to the output of the boost converter. The voltage on the charge pump capacitor is  
about 6.25 V.  
7.3.4 Slew Rate Control  
When LNB output voltage transits from 13 V to 18 V or vice versa, the capacitor at pin TCAP controls the  
transition time. This transition is to make sure the boost converter can follow the voltage change. Usually boost  
converter has low bandwidth and can’t response fast. The voltage at TCAP acts as the reference voltage of the  
linear regulator. The boost converter’s reference is also based on TCAP with additional fixed voltage to generate  
0.8 V above the output.  
The charging and discharging current is 10 µA, thus the transition time can be calculated as:  
Css(nF)  
Tcad(ms) = 0.5´  
Iss(mA)  
(2)  
A 22-nF capacitor generates a 1.1-ms transition time.  
In light load conditions, when LNB output voltage is set from 18 to 13 V, the voltage might drops very slow, which  
might cause wrong logic detection at LNB side. The TPS65233-1 has an integrated pull down circuit to pull down  
the output during the transition. This ensures the voltage change can follow the voltage at TCAP. Meanwhile,  
when the 22-kHz tone signal is superimposing on the LNB output voltage, the pull down current can also provide  
a square wave instead of distorted waveforms, which could cause another detection problem.  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
Feature Description (continued)  
7.3.5 Short Circuit Protection, Hiccup, and Overtemperature Protection  
The LNB output limit can be set by an external resistor. When short circuit conditions occur, the output current is  
clamped at the current limit for 4 ms. If the condition remains, the converter will shut down for 128 ms and then  
try restart. This hiccup behavior prevents the IC from overheating.  
The low side MOSFET of the boost converter has a current limit threshold at 3.2 A, which serves as secondary  
protection. If the boost converter’s peak current limit is triggered, the peak current will clamp at 3.2 A. If loading  
current continues to increase, output voltage starts to drop and output power drops.  
Thermal shutdown prevents the chip from operating at exceedingly high temperatures. When the silicon die  
temperature exceeds 160°C, the output shuts down. When the temperature drops below its lower threshold,  
typically 140°C, the output is enabled.  
When the chip is in over current protection or thermal shutdown, the I2C interface and some logic are still active.  
The Fault pin is pulled down to signal the processor. The Fault pin signal will remain low unless the following  
actions are taken:  
1. If I2C interface is not used to control, Enable pin must be recycled in order to pull Fault pin back to high.  
2. If I2C interface is used, the I2C master needs to read the OCP or OTP bit in the register, then the Fault pin  
returns to high.  
7.4 Device Functional Modes  
7.4.1 Tone Generation  
A 22-kHz tone signal is superimposed at the LNB output voltage as a carrier for DiSEqC command. This tone  
signal can be generated by feeding an external 22-kHz clock at the EXTM pin. It can also be generated with its  
internal tone generator gated by control logic. The output stage of the regulator facilitates a push-pull circuit, so  
even at zero loading the 22-kHz tone at the output is still clear of distortion.  
There are five ways to generate the 22-kHz tone signal at the output.  
In non-I2C mode, only option 1 and option 2 are supported in TPS65233-1. EXTM can be tone envelope or 22  
kHz burst pulse as shown in Figure 9. Option 3 and option 4 are designed for I2C interface communication mode.  
In I2C communication mode, TGATE bit must be written through I2C bus. If there is no bandwidth of I2C bus to  
write TGATE bit, there is a supplemental option 5 to generate 22-kHz tone, as shown in Figure 10. In option 5,  
bit TMODE and TGATE must be set as 1.  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
EXTM  
VLNB  
TONE  
Option 1, Non-I2C Mode, bit I2C_CON = 0  
EXTM  
VLNB  
TONE  
Option 2, Non-I2C Mode, bit I2C_CON = 0  
EXTM  
TMODE  
TGATE  
VLNB  
TONE  
Option 3, I2C Mode, bit I2C_CON = 1 and TMODE = 0  
EXTM  
TMODE  
TGATE  
VLNB  
TONE  
Option 4, I2C Mode, EXTM = 0, bit I2C_CON = 1, and TMODE = 1  
Figure 9. Four Ways to Generate 22-kHz Tone  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
Device Functional Modes (continued)  
Stop at high  
EXTM  
TONE  
VLNB  
Option 5: I2C Mode, gated by EXTM, TMODE, and TGATE = 1  
Figure 10. Supplemental Option for 22-kHz Tone in I2C Mode  
7.4.2 Serial Interface  
I2C is a 2-wire serial interface developed by Philips Semiconductor (see I2C-Bus Specification, Version 2.1,  
January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the  
bus is idle, both SDA and SCL lines are pulled high. All the I2C compatible devices connect to the I2C bus  
through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or a digital signal  
processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The  
master also generates specific conditions that indicate the START and STOP of data transfer. A slave device  
receives and transmits data on the bus under control of the master device.  
The TPS65233-1 device works as a slave and supports the following data transfer modes, as defined in the I2C-  
Bus Specification: standard mode (100 kbps), and fast mode (400 kbps). The interface adds flexibility to the  
power supply solution, enabling most functions to be programmed to new values depending on the instantaneous  
application requirements. Register contents remain intact as long as supply voltage remains above 4.5 V  
(typical).  
The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as  
F/S-mode in this document. The TPS65233-1 device supports 7-bit addressing; 10-bit addressing and general  
call address are not supported.  
The TPS65233-1 device has a 7-bit address with the 2 LSB bits set by EN pin. Connecting EN to ground set the  
address 0x60H, connecting to high set the address 0x61H.  
Table 1. I2C Address Selection  
ADDRESS FORMAT  
EN/ADDR PIN  
I2C ADDRESS  
(A6...A0)  
110 0000  
110 0001  
Connect to ground  
Connect to high  
0x60H  
0x61H  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
7.5 Programming  
7.5.1 I2C Update Sequence  
The TPS65233-1 requires a start condition, a valid I2C address, a register address byte, and a data byte for a  
single update. After the receipt of each byte, the TPS65233-1 device acknowledges by pulling the SDA line low  
during the high period of a single clock pulse. The TPS65233-1 performs an update on the falling edge of the  
LSB byte.  
When the TPS65233-1 is disabled (EN pin tied to ground) the device can still be updated via the I2C interface.  
7-Bit Slave Address  
S
0
A
A
A
P
Register Address  
Data Byte  
A6.A0  
Figure 11. I2C Write Data Format  
7-Bit Slave Address  
Sr  
S
0
A
A
1
A
Register1 Address  
7-Bit Slave Address  
A6.A0  
N
P
Data Byte  
Figure 12. I2C Read Data Format  
A: Acknowledge  
N: Not Acknowledge  
S: Start  
System Host  
P: Stop  
Chip  
Sr:Repeated Start  
Figure 13. Legend  
14  
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
7.6 Register Map  
The registers are listed in Table 2 and described in the following sections.  
Table 2. Register Map  
REGISTER / ADDRESS  
7
6
5
4
3
2
1
0
Control Register 1  
Address: 0x00H  
I2C_CON  
Reserved  
TGATE  
TMODE  
EN  
VSEL2  
VSEL1  
VSEL0  
Control Register 2  
Address: 0x01H  
TONE_  
POS1  
TONE_  
POS0  
CL1  
CL0  
CL_EXT  
Status Register 1  
Address: 0x02H  
CABLE_  
GOOD  
VOUT_  
GOOD  
T125  
LDO_ON  
Reserved  
TSD  
OCP  
7.6.1 Control Register 1 - Address: 0x00H  
Table 3. Control Register 1 - Address: 0x00H  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
1: I2C control enabled;  
7
I2C_CON  
Reserved  
R/W  
0
0
0: I2C control disabled  
6
R/W  
Reserved  
Tone Gate. Allows either the internal or external 22-kHz  
tone signals to be gated.  
1: Tone Gate on use;  
5
TGATE  
R/W  
0
0: Tone gate off  
Tone mode. Select between the use of an external 22-kHz  
or internal 22-kHz signal.  
1: internal;  
0: external  
4
3
TMODE  
EN  
R/W  
R/W  
0
1
LNB output voltage Enable  
1: output enabled;  
0: output disabled  
2
1
0
VSEL2  
VSEL1  
VSEL0  
R/W  
R/W  
R/W  
0
0
0
See Table 4 for output voltage selection  
Table 4. Voltage Selection Bits  
VSEL2  
VSEL1  
VSEL0  
LNB(V)  
13  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
13.4  
13.8  
14.2  
18  
18.6  
19.2  
19.8  
7.6.2 Control Register 2 - Address: 0x01H  
Table 5. Control Register 2 - Address: 0x01H  
BIT  
7
FIELD  
TYPE  
R/W  
R/W  
R/W  
RESET  
DESCRIPTION  
6
5
Copyright © 2015, Texas Instruments Incorporated  
15  
 
 
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
Table 5. Control Register 2 - Address: 0x01H (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
4
TONE_POS1  
R/W  
0
00: tone above Vout;  
01: tone in the middle of Vout;  
10: tone below Vout  
3
TONE_POS0  
R/W  
1
2
1
CL1  
CL0  
R/W  
R/W  
0
0
Current limit set bits  
1: current limit set by external resistor;  
0: current limit set by register  
0
CL_EXT  
R/W  
1
Some tone detection circuits in LNB are sensitive to the position of the tone on the output voltage. The  
TPS65233-1 provides options to select the position by setting the TONE_POS1 and TONE_POS0 bits, as  
illustrated below.  
Option 1, TONE_POS1=0, TONE_POS0=0, Tone above VLNB  
Option 2, TONE_POS1=0, TONE_POS0=1, Tone in the middle of VLNB  
Option 2, TONE_POS1=1, TONE_POS0=0, Tone below VLNB  
Figure 14. Tone Position Programmed by TONE_POS1, TONE_POS0 Bits  
In addition to programming the LDO’s current continuously via an external resistor, internal registers also provide  
options to program the current limit. There are four options that can be selected.  
Table 6. Current Limit Selection Bits  
CL1  
0
CL0  
0
CURRENT LIMIT (mA)  
400  
600  
0
1
1
0
750  
1
1
1000  
7.6.3 Status Register 1 - Address: 0x02H  
The TPS65233-1 has a full range of diagnostic flags for operation and debug. If any of the flags are triggered,  
the FAULT pin is pulled low sending an interrupt signal to processor. The processor then can read the status  
register to check the error conditions. The status bits are described in the following table. Among these bits, TSD  
and OCP are different from the others. Once TSD and OCP are set to 1, the FAULT pin logic is latched low and  
the processor must reset the bits in order to release the fault conditions. Other bits change as conditions change  
without latch.  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
Table 7. Status Register 1 - Address: 0x02H  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
1: if die temperature T > 125°C;  
0: if die temperature T < 125°C  
6
T125  
R
0
1: internal LDO is turned on and boost converter is on;  
0: Internal LDO is turned off but boost converter is on  
5
4
LDO_ON  
Reserved  
R
R
0
0
Reserved  
1: thermal shutdown occurs;  
3
TSD  
R
0
0: thermal shutdown does not occur. FAULT pin pull low and  
latch, I2C master need to read and release  
Overcurrent protection. If over current conditions last for  
more than 48 ms.  
2
OCP  
R
0
1: Overcurrent protection triggered.  
0: Overcurrent protection conditions released. FAULT pin  
pull low and latch, I2C master need to read and release  
Cable connection good.  
1
0
CABLE_GOOD  
VOUT_GOOD  
R
R
0
0
1: Output current above 50 mA;  
0: Output current less than 50 mA  
LNB output voltage in range.  
1: In range;  
0: Out of range  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
TPS65233-1 is a monolithic voltage regulator, specifically to provide the 13-V/18-V power supply and the 22-kHz  
tone signaling to the LNB down-converter, with I2C interface. I2C GUI software is shared with TPS65233 which is  
available on ti.com.  
8.2 Typical Application  
12  
11  
10  
9
100 k  
VOUT  
VLNB  
FAULT  
13  
8
7
100 nF  
EN/ADDR  
ISEL  
14 VCP  
1 µF  
TPS65233-1  
130 kꢀ  
6
15  
16  
BOOST  
PGND  
2 × 22 µF  
(35 V)  
TCAP  
5
22 nF  
1
2
3
4
4.7 µH  
VIN  
1 µF  
22 µF  
(25 V)  
1 µF  
Figure 15. Application Schematic  
8.2.1 Detailed Design Procedure  
8.2.1.1 Capacitor Selection  
In TPS65233-1, a 1-MHz non-synchronous boost converter is integrated and the boost converter features the  
internal compensation network. 4.7 µH and 10 µH boost inductor are recommended. TPS65233-1 works fine with  
both ceramic capacitor and electrolytic capacitor. The ceramic capacitors rated at least X7R, 1206 size are  
preferred for the lower LNB output ripple. Table 8 shows the recommended ceramic capacitors list for both 4.7  
µH and 10 µH boost inductors. Minimum output capacitor at the output of the boost converter is 2 × 10-µF/25-V  
ceramic capacitor when 4.7-µH inductor is selected.  
Boost converter is stable with both ceramic capacitor and electrolytic capacitor. If lower cost is demanded, a 100-  
µF electrolytic and a 1-µF/35-V ceramic capacitor work well, this solution provides lower system cost.  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
Table 8. Boost Inductor and Capacitor Selections  
BOOST INDUCTOR  
BOOST OUTPUT CAPACITOR (CERAMIC)  
2 × 22 µF, 25 V, 1206  
10 µH  
2 × 10 µF, 35 V, 1206  
1 × 22 µF, 35 V, 1206  
2 × 22 µF, 35 V, 1206  
4.7 µH  
2 × 10 µF, 25 V, 1206  
2 × 22 µF, 25 V, 1206  
1 × 22 µF, 35 V, 1206  
2 × 10 µF, 35 V, 1206  
2 × 22 µF, 35 V, 1206  
8.2.2 Application Curves  
Figure 16. Soft Start, VLNB = 13.4 V, Delay from EN High  
to LNB Output High  
Figure 17. Power Off, VLNB = 13.4 V, Delay from EN Low  
to LNB Output Low  
Figure 18. Soft Start, VLNB = 18.6 V, Delay from EN High  
to LNB Output High  
Figure 19. Power Off, VLNB = 18.6 V, Delay from EN Low  
to LNB Output Low  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
Figure 20. VLNB = 13.4 V, No Load, 22-kHz Tone  
Figure 21. VLNB = 13.4 V, 950 mA, 22-kHz Tone  
Figure 22. VLNB = 18.6 V, No Load, 22-kHz Tone  
Figure 23. VLNB = 18.6 V, 950 mA, 22-kHz Tone  
Figure 24. No Load, 22-kHz Tone Delay from EXTM Turns  
High to Output Tone, On  
Figure 25. No Load, 22-kHz Tone Delay from EXTM Turns  
Low to Output Tone, Off  
20  
Copyright © 2015, Texas Instruments Incorporated  
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
Figure 26. No Load, 22-kHz Tone Delay from EXTM Turns  
Figure 27. No Load, 22-kHz Tone Delay from EXTM Turns  
Low to Output Tone, Off  
High to Output Tone, On  
Figure 28. No Load, 22-kHz Tone Delay from I2C SDA to  
Output Tone, On  
Figure 29. No Load, 22-kHz Tone Delay from I2C Gated,  
EXTM Provides 22 kHz to Output Tone, On  
Figure 30. No Load, 22-kHz Tone Delay from I2C SDA to  
Output Tone, Off  
Figure 31. No Load, 22-kHz Tone Delay from I2C Gated,  
EXTM Provides 22 kHz to Output Tone, Off  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPS65233-1  
ZHCSFC6 SEPTEMBER 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
The devices are designed to operate from an input supply ranging from 4.5 V to 20 V. The input supply should  
be well regulated. If the input supply is located more than a few inches from the converter an additional bulk  
capacitance typically 100 μF may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
The TPS65233-1 is designed to layout in a 2-layer PCB. Figure 32 shows the recommended layout practice. It is  
critical to make sure the GND of the input capacitor, output capacitor, and boost converter are connected at one  
point on the same layer as shown below. PGND and AGND are in different regions and are connected to the  
thermal pad. Other components are connected to AGND.  
10.2 Layout Example  
12  
9
11  
10  
VOUT  
VLNB  
VCP  
13  
14  
15  
16  
FAULT  
8
EN/  
ADDR  
7
6
130 k  
ISEL  
BOOST  
PGND  
22 nF  
TCAP  
5
2x22 µF  
22 µF  
1
2
3
4
VIN  
1 µF  
1 µF  
4.7 µH  
Figure 32. 2-Layer PCB Layout  
22  
版权 © 2015, Texas Instruments Incorporated  
 
TPS65233-1  
www.ti.com.cn  
ZHCSFC6 SEPTEMBER 2015  
11 器件和文档支持  
11.1 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范和  
标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ 在线社区 TI 工程师对工程师 (E2E) 社区。此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com  
中,您可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
版权 © 2015, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65233-1RTER  
TPS65233-1RTET  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
652331  
652331  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65233-1RTER

具有 1MHz、I2C 接口电源管理 IC (PMIC) 的 LNB 稳压器 | RTE | 16 | -40 to 85
TI

TPS65233-1RTET

具有 1MHz、I2C 接口电源管理 IC (PMIC) 的 LNB 稳压器 | RTE | 16 | -40 to 85
TI

TPS65233RTER

具有 I2C 接口电源管理 IC (PMIC) 的 LNB 稳压器 | RTE | 16 | -40 to 85
TI

TPS65233RTET

具有 I2C 接口电源管理 IC (PMIC) 的 LNB 稳压器 | RTE | 16 | -40 to 85
TI

TPS65235

具有 I2C 接口的 LNB 稳压器
TI

TPS65235-1

采用 FCCM 模式且具有 I2C 接口的 LNB 稳压器
TI

TPS65235-1RUKR

采用 FCCM 模式且具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85
TI

TPS65235-1RUKT

采用 FCCM 模式且具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85
TI

TPS65235-3RUKR

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 125
TI

TPS652353

具有 I2C 接口的 LNB 稳压器
TI

TPS65235RUKR

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85
TI

TPS65235RUKT

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85
TI