TPS65263QRHBRQ1 [TI]

支持 I2C 控制的动态电压调节的 4.0V-18V 输入电压、3A/2A/2A 三路同步降压转换器 | RHB | 32 | -40 to 125;
TPS65263QRHBRQ1
型号: TPS65263QRHBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 I2C 控制的动态电压调节的 4.0V-18V 输入电压、3A/2A/2A 三路同步降压转换器 | RHB | 32 | -40 to 125

开关 输出元件 转换器
文件: 总48页 (文件大小:2680K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
TPS65263-Q1 I2C 控制型动态电压调节功能的汽车4.0V 18V 输入电  
压、3A/2A/2A 输出电流三路同步降压转换器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 通AEC-Q100 资质认证结果如下所示:  
TPS65263-Q1 包含三个同步降压转换器并且具有  
4.0V 18V 的宽输入电压范围。这款转换器具有恒定  
频率峰值电流模式专用于简化应用同时方便设计人  
员根据目标应用来优化系统。可通过外部电阻在  
200kHz 2.3MHz 范围内调节转换器的开关频率。  
buck1 buck 2buck3 间的 180° 相运行  
buck2 buck3 同相运行可最大限度降低对输入  
滤波器的要求。  
– 器件温度等140°C 125°C 的工作结温  
范围  
– 器HBM ESD 分类等H2  
– 器CDM ESD 分类等C4B  
• 工作输入电压范4V 18V最大连续输出电流  
3A/2A/2A  
Buck2 I2C 控制7 VID 可编程输出电压范围  
0.68V 1.95V阶跃10mV  
Buck2 I2C 控制VID 电压转换压摆率  
I2C 回读电源正常状态、过流警告和裸片温度警告  
• 具有支持标准模(100kHz) 和快速模(400kHz)  
I2C 兼容接口  
• 反馈基准电压0.6V ±1%  
• 可调节时钟频率范围为  
200kHz 2.3MHz  
• 外部时钟同步  
每个降压转换器的初始启动电压都可通过外部反馈电阻  
设定。可使用 I2C 控制 7 VID buck2 的输出电压  
进行动态调整围为 0.68V 1.95V长为  
10mV。可通I2C 线3 位控制VID 电压转换率进  
行编程以优VID 电压转换期间的过冲/下冲。  
TPS65263-Q1 中的每个降压转换器都可通过 I2C 加以  
控制从而执行以下操作启用/禁用输出电压、设置  
脉冲跳跃模式 (PSM) 或轻负载条件下的强制持续电流  
模式 (FCC) 以及读取电源正常状态、过流警告和温度  
警告。  
• 针对每次降压的专用使能引脚和软启动引脚  
• 输出电压电源正常状态指示器  
• 热过载保护  
TPS65263-Q1 具有过压保护、过流保护、短路保护和  
过热保护功能。  
2 应用  
封装信息(1)  
• 汽车  
封装尺寸标称值)  
器件型号  
封装  
• 汽车音频和视频  
• 家庭网关和接入点网络  
• 监控  
TPS65263-Q1  
RHBVQFN325.00mm × 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
Vout1  
Vin  
PVINx  
VIN  
LX1  
TPS65263Q1  
FB1  
LX2  
PGOOD  
ENx  
SSx  
Vout2  
Vout3  
Vout2  
VOUT2  
ROSC  
FB2  
LX3  
DVCC  
SDA  
SCL  
SDA  
SCL  
VIN 12 V VOUT 3.3 V  
10%  
VIN 5 V VOUT 3.3 V  
AGND  
FB3  
PGND  
0
0.01 0.02  
0.05  
0.1 0.2 0.3 0.5 0.7  
Output Load (A)  
1
2
3
D002  
应用原理图  
效率与输出负载之间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCS9  
 
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................23  
7.5 Register Maps...........................................................25  
8 Application and Implementation..................................28  
8.1 Application Information............................................. 28  
8.2 Typical Application.................................................... 28  
8.3 Power Supply Recommendations.............................36  
8.4 Layout....................................................................... 36  
9 Device and Documentation Support............................39  
9.1 接收文档更新通知..................................................... 39  
9.2 支持资源....................................................................39  
9.3 Trademarks...............................................................39  
9.4 静电放电警告............................................................ 39  
9.5 术语表....................................................................... 39  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................8  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................13  
Information.................................................................... 39  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (November 2015) to Revision D (May 2023)  
Page  
• 在数据表标题中添加了“汽车”一词..................................................................................................................1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 通篇去除了图像的颜色........................................................................................................................................1  
Change description of V7V pin in 5-1 ............................................................................................................3  
Update the ESD table to be in accordance with automotive specification..........................................................5  
Changed the recommended value of capacitor from V7V pin to power ground in V7V Low-Dropout Regulator  
and Bootstrap................................................................................................................................................... 19  
Changed all instances of legacy terminology to controller and target where I2C is mentioned........................ 23  
Changed recommended value of C9 in 8-1................................................................................................. 28  
Changes from Revision B (January 2015) to Revision C (November 2015)  
Page  
Added more pin information for SDA and SCL ..................................................................................................3  
Added more information about SDA and SCL pins ......................................................................................... 12  
Added Community Resources .........................................................................................................................39  
Changes from Revision A (January 2015) to Revision B (January 2015)  
Page  
• 已将器件状态更新为量产数据.............................................................................................................................1  
Changes from Revision * (December 2014) to Revision A (January 2015)  
Page  
• 将中的反馈基准电压从 0.6V ±2% 更改0.6V ±1%.................................................................................. 1  
Updated values for feedback voltage, PGOOD pin leakage, V7V LDO output voltage, buck1 low-side sink  
current limit, and buck2/buck3 low-side sink current limit in Electrical Characteristics ......................................6  
Updated current value in 7.3.8, 方程6, and 7-10 ............................................................................... 20  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
2
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
24  
23 22  
21 20 19  
18 17  
16  
15  
BST3  
25  
26  
BST1  
LX1  
LX3  
14  
13  
12  
11  
PGND3  
PVIN3  
PVIN2  
PGND2  
PGND1 27  
28  
29  
PVIN1  
VIN  
Thermal Pad  
V7V 30  
EN1 31  
10 LX2  
BST2  
9
32  
EN2  
2
3
1
4
5
6
7
8
There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for optimal thermal  
performance.  
5-1. RHB Package 32-Pin VQFN Top View  
5-1. Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
1
EN3  
SDA  
SCL  
Enable for buck3. Float to enable. Can use this pin to adjust the input UVLO of buck3 with a resistor divider.  
I2C interface data pin; float or connect to GND to disable I2C communication  
2
3
I2C interface clock pin; float or connect to GND to disable I2C communication  
Analog ground common to buck controllers and other analog circuits. It must be routed separately from high-current  
power grounds to the () terminal of bypass capacitor of input voltage VIN.  
AGND  
4
VOUT2  
FB2  
5
6
Buck2 output voltage sense pin  
Feedback Kelvin sensing pin for buck2 output voltage. Connect this pin to buck2 resistor divider.  
Error amplifier output and loop compensation pin for buck2. Connect a series resistor and capacitor to compensate the  
control loop of buck2 with peak current PWM mode.  
COMP2  
SS2  
7
Soft-start and tracking input for buck2. An internal 5.2-µA pullup current source is connected to this pin. The soft-start  
time can be programmed by connecting a capacitor between this pin and ground.  
8
Boot-strapped supply to the high-side floating gate driver in buck2. Connect a capacitor (recommend 47 nF) from BST2  
pin to LX2 pin.  
BST2  
LX2  
9
Switching node connection to the inductor and bootstrap capacitor for buck2. The voltage swing at this pin is from a  
diode voltage below the ground up to PVIN2 voltage.  
10  
11  
12  
13  
14  
15  
16  
17  
Power ground connection of buck2. Connect PGND2 pin as close as practical to the () terminal of VIN2 input ceramic  
capacitor.  
PGND2  
PVIN2  
PVIN3  
PGND3  
LX3  
Input power supply for buck2. Connect PVIN2 pin as close as practical to the (+) terminal of an input ceramic capacitor  
(suggest 10 µF).  
Input power supply for buck3. Connect PVIN3 pin as close as practical to the (+) terminal of an input ceramic capacitor  
(suggest 10 µF).  
Power ground connection of buck3. Connect PGND3 pin as close as practical to the () terminal of VIN3 input ceramic  
capacitor.  
Switching node connection to the inductor and bootstrap capacitor for buck3. The voltage swing at this pin is from a  
diode voltage below the ground up to PVIN3 voltage.  
Boot-strapped supply to the high-side floating gate driver in buck3. Connect a capacitor (recommend 47 nF) from BST3  
pin to LX3 pin.  
BST3  
SS3  
Soft-start and tracking input for buck3. An internal 5.2-µA pullup current source is connected to this pin. The soft-start  
time can be programmed by connecting a capacitor between this pin and ground.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
NAME  
DESCRIPTION  
NO.  
Error amplifier output and loop compensation pin for buck3. Connect a series resistor and capacitor to compensate the  
control loop of buck3 with peak current PWM mode.  
COMP3  
18  
FB3  
19  
20  
Feedback Kelvin sensing pin for buck3 output voltage. Connect this pin to buck3 resistor divider.  
PGOOD  
Output voltage supervision pin. When all bucks are in PGOOD monitors regulation range, PGOOD is asserted high.  
Clock frequency adjustment pin. Connect a resistor from this pin to ground to adjust the clock frequency. When  
connected to an external clock, the internal oscillator synchronizes to the external clock.  
ROSC  
FB1  
21  
22  
23  
Feedback Kelvin sensing pin for buck1 output voltage. Connect this pin to buck1 resistor divider.  
Error amplifier output and loop compensation pin for buck1. Connect a series resistor and capacitor to compensate the  
control loop of buck1 with peak current PWM mode.  
COMP1  
Soft-start and tracking input for buck1. An internal 5.2-µA pullup current source is connected to this pin. The soft-start  
time can be programmed by connecting a capacitor between this pin and ground.  
SS1  
24  
25  
26  
27  
28  
Boot-strapped supply to the high-side floating gate driver in buck1. Connect a capacitor (recommend 47 nF) from BST1  
pin to LX1 pin.  
BST1  
LX1  
Switching node connection to the inductor and bootstrap capacitor for buck1. The voltage swing at this pin is from a  
diode voltage below the ground up to PVIN1 voltage.  
Power ground connection of buck1. Connect PGND1 pin as close as practical to the () terminal of VIN1 input ceramic  
capacitor.  
PGND1  
PVIN1  
Input power supply for buck1. Connect PVIN1 pin as close as practical to the (+) terminal of an input ceramic capacitor  
(suggest 10 µF).  
VIN  
29  
30  
31  
32  
Buck controller power supply  
V7V  
EN1  
EN2  
Internal LDO for gate driver and internal controller. Connect a 10-µF ceremic capacitor from the pin to power ground.  
Enable for buck1. Float to enable. Can use this pin to adjust the input UVLO of buck1 with a resistor divider.  
Enable for buck2. Float to enable. Can use this pin to adjust the input UVLO of buck2 with a resistor divider.  
There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for  
optimal thermal performance.  
PAD  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
4
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted) (1)  
MIN  
0.3  
1.0  
0.3  
0.3  
0.3  
0.3  
40  
55  
MAX  
20  
UNIT  
V
PVIN1, PVIN2, PVIN3,VIN  
LX1, LX2, LX3 (Maximum withstand voltage transient < 20 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
EN1, EN2, EN3, V7V, VOUT2, SCL, SDA, PGOOD  
FB1, FB2, FB3, COMP1 , COMP2, COMP3, ROSC, SS1, SS2, SS3  
AGND, PGND1, PGND2, PGND3  
20  
V
7
V
7
V
3.6  
0.3  
150  
150  
V
V
TJ  
Operating junction temperature  
Storage temperature  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2, all pins (1)  
Charged device model (CDM), per AEC Q100-011 CDM ESD classification level C4B  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
18  
UNIT  
V
PVIN1, PVIN2, PVIN3,VIN  
4
0.8  
0.1  
0.1  
0.1  
40  
LX1, LX2, LX3 (Maximum withstand voltage transient <20 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
EN1, EN2, EN3, V7V, VOUT1, VOUT2, VOUT3, SCL, SDA  
FB1, FB2, FB3, COMP1 , COMP2, COMP3, SS1, SS2, SS3  
Operating junction temperature  
18  
V
6.8  
6.3  
3
V
V
V
TJ  
125  
°C  
6.4 Thermal Information  
TPS65263-Q1  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
33.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
25.7  
Junction-to-board thermal resistance  
7.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
7.3  
ψJB  
RθJC(bot)  
2.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
 
 
 
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
VIN = 12 V, FSW = 500 kHz, TJ = 40°C to 125°C, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY VOLTAGE  
VIN  
Input voltage range  
4
3.5  
3.1  
18  
4
V
V
VIN rising  
3.8  
3.3  
500  
9.5  
UVLO  
VIN UVLO  
VIN falling  
3.5  
V
Hysteresis  
mV  
µA  
IDDSDN  
Shutdown supply current  
EN1 = EN2 = EN3 = 0 V  
4
18  
EN1 = EN2 = EN3 = 5 V, FB1 = FB2  
= FB3 = 0.8 V  
IDDQ_NSW  
550  
780  
370  
370  
370  
1150  
µA  
µA  
µA  
µA  
EN1 = 5 V, EN2 = EN3 = 0 V, FB1 =  
0.8 V  
IDDQ_NSW1  
IDDQ_NSW2  
IDDQ_NSW3  
180  
180  
180  
590  
590  
590  
Input quiescent current without buck1/2/3 switching  
EN2 = 5 V, EN1 = EN3 = 0 V, FB2 =  
0.8V  
EN3 = 5 V, EN1 = EN2 = 0 V, FB3 =  
0.8 V  
V7V  
V7V LDO output voltage  
V7V LDO current limit  
V7V load current = 0 A  
6.3  
V
IOCP_V7V  
78  
185  
260  
mA  
FEEDBACK VOLTAGE REFERENCE  
VFB Feedback voltage  
BUCK1, BUCK2, BUCK3  
VCOMP = 1.2 V  
0.594  
0.6 0.606  
V
VENXH  
EN1/2/3 high-level input voltage  
1.12  
1.05  
2.5  
5.1  
2.6  
3.9  
50  
1.2  
1.15  
3.9  
6.9  
3
1.26  
1.21  
5.9  
V
V
VENXL  
EN1/2/3 low-level input voltage  
EN1/2/3 pullup current  
IENX1  
ENx = 1 V  
µA  
µA  
µA  
µA  
ns  
IENX2  
EN1/2/3 pullup current  
ENx = 1.5 V  
9.2  
IENhys  
Hysteresis current  
3.3  
ISSX  
Soft-start charging current  
5.2  
75  
6.5  
tON_MIN  
Minimum on-time  
110  
450  
Gm_EA  
Error amplifier transconductance  
COMP1/2/3 voltage to inductor current Gm  
Buck1 peak inductor current limit  
Buck1 low-side sink current limit  
Buck2/buck3 peak inductor current limit  
Buck2/buck3 low-side sink current limit  
Buck1 high-side switch resistance  
Buck1 low-side switch resistance  
Buck2 high-side switch resistance  
Buck2 low-side switch resistance  
Buck3 high-side switch resistance  
Buck3 low-side switch resistance  
140  
300  
7.4  
5.4  
1.3  
3.3  
1
µs  
2 µA < ICOMPX < 2 µA  
(1)  
Gm_PS1/2/3  
ILIMIT1  
ILIMITSINK1  
ILIMIT2/3  
ILX = 0.5 A  
A/V  
A
4.3  
0.7  
6.5  
1.8  
3.9  
1.4  
A
2.55  
0.5  
A
ILIMITSINK2/3  
Rdson_HS1  
Rdson_LS1  
Rdson_HS2  
Rdson_LS2  
Rdson_HS3  
Rdson_LS3  
HICCUP TIMING  
tHiccup_wait  
tHiccup_re  
A
VIN = 12 V  
VIN = 12 V  
VIN = 12 V  
VIN = 12 V  
VIN = 12 V  
VIN = 12 V  
105  
65  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
140  
90  
140  
90  
Overcurrent wait time(1)  
256  
cycles  
cycles  
Hiccup time before restart(1)  
8192  
POWER GOOD  
FBx undervoltage falling  
FBx undervoltage rising  
FBx overvoltage rising  
FBx overvoltage falling  
92.5  
95  
Vth_PG  
Feedback voltage threshold  
%VREF  
107.5  
105  
tDEGLITCH(PG)_F  
tRDEGLITCH(PG)_R  
PGOOD falling edge deglitch time  
PGOOD rising edge deglitch time  
112  
cycles  
cycles  
616  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
6
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VIN = 12 V, FSW = 500 kHz, TJ = 40°C to 125°C, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.1  
UNIT  
µA  
IPG  
PGOOD pin leakage  
VLOW_PG  
OSCILLATOR  
FSW  
PGOOD pin low voltage  
ISINK = 1 mA  
0.4  
V
Switching frequency  
430  
200  
80  
500  
560  
kHz  
kHz  
ns  
ROSC = 88.7 kΩ  
FSW_range  
TSYNC_w  
FSYNC_HI  
VSYNC_LO  
FSYNC  
Switching frequency  
2300  
Clock sync minimum pulse width  
Clock sync high threshold  
Clock sync low threshold  
Clock sync frequency range  
2
V
0.4  
V
200  
2300  
kHz  
THERMAL PROTECTION  
TTRIP_OTP  
Temperature rising  
Hysteresis  
160  
20  
°C  
°C  
Thermal protection trip point(1)  
THYST_OTP  
I2C INTERFACE  
Addr  
Address(2)  
0x60H  
VIH SDA,SCL  
VIL SDA,SCL  
II  
Input high voltage  
Input low voltage  
2
V
V
0.4  
Input current  
SDA, SCL, VI = 0.4 to 4.5 V  
SDA open drain, IOL = 4 mA  
10  
µA  
V
10  
VOL SDA  
ƒ(SCL)  
SDA output low voltage  
Maximum SCL clock frequency(2)  
0.4  
400  
1.3  
kHz  
Bus free time between a STOP and START  
condition(2)  
tBUF  
µs  
tHD_STA  
tSU_STO  
tLOW  
Hold time (repeated) START condition(2)  
Setup time for STOP condition(2)  
Low period of the SCL clock(2)  
High period of the SCL clock(2)  
Setup time for a repeated START condition(2)  
Data setup time(2)  
0.6  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
0.6  
1.3  
tHIGH  
0.6  
tSU_STA  
tSU_DAT  
tHD_DAT  
tRCL  
0.6  
0.1  
0
Data hold time(2)  
0.9  
Rise time of SCL signal(2)  
Capacitance of one bus line (pF)  
Capacitance of one bus line (pF)  
20 + 0.1CB  
300  
Rise time of SCL signal after a repeated START  
condition and after an acknowledge bit(2)  
tRCL1  
20 + 0.1CB  
300  
ns  
tFCL  
tRDA  
tFDA  
CB  
Fall time of SCL signal(2)  
Capacitance of one bus line (pF)  
Capacitance of one bus line (pF)  
Capacitance of one bus line (pF)  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
300  
300  
300  
400  
ns  
ns  
ns  
pF  
Rise time of SDA signal(2)  
Fall time of SDA signal(2)  
Capacitance of bus line(SCL and SDA)(2)  
(1) Lab validation result  
(2) Not production tested  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
TA = 25°C,VIN = 12 V, VOUT1 = 1.5 V, VOUT2 = 1.2 V, VOUT3 = 2.5 V, FSW = 500 kHz (unless otherwise noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VOUT 1.8 V  
VOUT 2.5 V  
VOUT 5.0 V  
VOUT 1.2 V  
VOUT 1.5 V  
VOUT 3.3 V  
0.01  
0.02  
0.05  
0.1 0.2 0.3 0.5 0.7  
Output Load (A)  
1
2
0.01 0.02  
0.05  
0.1 0.2 0.3 0.5 0.7  
Output Load (A)  
1
2
3
D003  
D001  
6-1. BUCK1 Efficiency  
6-2. BUCK2 Efficiency  
1.52  
1.515  
1.51  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN 5 V  
VIN 12 V  
1.505  
1.5  
1.495  
1.49  
VOUT 1.8 V  
VOUT 2.5 V  
VOUT 5.0 V  
1.485  
1.48  
0
0.5  
1
1.5  
Output Load (A)  
2
2.5  
3
0.01  
0.02  
0.05  
0.1 0.2 0.3 0.5 0.7  
Output Load (A)  
1
2
D005  
D004  
6-4. BUCK1, Load Regulation  
6-3. BUCK3 Efficiency  
1.22  
1.215  
1.21  
2.52  
2.515  
2.51  
VIN 5 V  
VIN 12 V  
VIN 5 V  
VIN 12 V  
1.205  
1.2  
2.505  
2.5  
1.195  
1.19  
2.495  
2.49  
1.185  
1.18  
2.485  
2.48  
0
0.5  
1
Output Load (A)  
1.5  
2
0
0.5  
1
Output Load (A)  
1.5  
2
D006  
D007  
6-5. BUCK2, Load Regulation  
6-6. BUCK3, Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
8
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = 25°C,VIN = 12 V, VOUT1 = 1.5 V, VOUT2 = 1.2 V, VOUT3 = 2.5 V, FSW = 500 kHz (unless otherwise noted)  
1.51  
1.505  
1.5  
1.21  
1.205  
1.2  
1.495  
1.49  
1.195  
1.19  
IOUT 0.1 A  
IOUT 1.5 A  
IOUT 3 A  
IOUT 0.1 A  
IOUT 1 A  
IOUT 2 A  
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
D008  
D009  
6-7. BUCK1, Line Regulation  
6-8. BUCK2, Line Regulation  
2.51  
2.505  
2.5  
0.606  
0.604  
0.602  
0.6  
IOUT 0.1 A  
IOUT 1A  
IOUT 2A  
0.598  
0.596  
0.594  
2.495  
2.49  
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
-50  
-30  
-10  
10  
30  
TJ (èC)  
50  
70  
90  
110 130  
D010  
D011  
6-9. BUCK3, Line Regulation  
6-10. Voltage Reference vs Temperature  
540  
520  
500  
480  
460  
15  
13  
11  
9
7
5
-50  
-30  
-10  
10  
30  
TJ (èC)  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
TJ (  
50  
C)  
70  
90  
110 130  
è
D012  
D013  
VIN = 12 V  
ROSC = 88.7 kΩ  
6-11. Oscillator Frequency vs Temperature  
6-12. Shutdown Quiescent Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = 25°C,VIN = 12 V, VOUT1 = 1.5 V, VOUT2 = 1.2 V, VOUT3 = 2.5 V, FSW = 500 kHz (unless otherwise noted)  
5
4.8  
4.6  
4.4  
4.2  
4
8
7.8  
7.6  
7.4  
7.2  
7
3.8  
3.6  
3.4  
3.2  
3
6.8  
6.6  
6.4  
6.2  
6
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
TJ (èC)  
TJ (èC)  
D014  
D015  
EN = 1 V  
VIN = 12 V  
EN = 1.5 V  
VIN = 12 V  
6-13. EN Pin Pullup Current vs Temperature, EN = 1.0 V  
6-14. EN Pin Pullup Current vs Temperature, EN = 1.5 V  
1.28  
1.23  
1.19  
1.15  
1.11  
1.07  
1.24  
1.2  
1.16  
1.12  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
TJ (èC)  
TJ (èC)  
D017  
D016  
VIN = 12 V  
6-16. EN Pin Threshold Falling vs Temperature  
VIN = 12 V  
6-15. EN Pin Threshold Rising vs Temperature  
5.6  
5.8  
5.4  
5.2  
5
5.6  
5.4  
5.2  
5
4.8  
4.6  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
TJ (èC)  
TJ (èC)  
D018  
D019  
VIN = 12 V  
6-17. SS Pin Charge Current vs Temperature  
VIN = 12 V  
6-18. Buck1 High-Side Current Limit vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = 25°C,VIN = 12 V, VOUT1 = 1.5 V, VOUT2 = 1.2 V, VOUT3 = 2.5 V, FSW = 500 kHz (unless otherwise noted)  
3.8  
3.6  
3.4  
3.2  
3
3.8  
3.6  
3.4  
3.2  
3
2.8  
2.8  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
TJ (èC)  
TJ (èC)  
D020  
D021  
VIN = 12 V  
VIN = 12 V  
6-19. Buck2 High-Side Current Limit vs Temperature  
6-20. Buck3 High-Side Current Limit vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS65263-Q1 is a monolithic, triple-synchronous step-down (buck) converter with 3-A/2-A/2-A output  
currents. A wide 4- to 18-V input supply voltage range encompasses most intermediate bus voltages operating  
off 5-, 9-, 12-, or 15-V power bus. The feedback voltage reference for each buck is 0.6 V. Each buck is  
independent with dedicated enable, soft-start, and loop compensation pins.  
The TPS65263-Q1 is equipped with an I2C compatible bus for communication with SoC to control buck  
converters. Through the I2C interface, SoC can enable or disable the buck converters, set output voltage  
(BUCK2 only), and read status registers. External feedback divider resistors can set the initial start-up voltage of  
the buck2. After the voltage identification VID DAC is updated via the I2C, output voltage of the buck2 can be  
independently programmed with 7 bits VID from 0.68 to 1.95 V in 10-mV voltage step resolution. Output voltage  
of the buck2 transition begins after the I2C interface receives the command for the GO bit in the command  
register.  
If SDA and SCL pins are floated or are connected to GND, the I2C communication is rejected and the  
TPS65263-Q1 operates as a traditional triple buck. Each buck on or off is separately controlled by the relevant  
enable pin. Buck2s output voltage is set with the external feedback divider resistors.  
In the light load condition, the converter automatically operates in pulse skipping mode (PSM) to save power.  
PSM can be disabled through I2C so that the converter operates at continuous current mode (CCM) at light load  
with a fixed frequency for optimized output ripple.  
The TPS65263-Q1 implements a constant frequency, peak current mode control that simplifies external loop  
compensation. The wide switching frequency of 200 kHz to 2.3 MHz allows for optimizing system efficiency,  
filtering size, and bandwidth. The switching frequency can be adjusted with an external resistor connecting  
between the ROSC pin and ground. The TPS65263-Q1 also has an internal phase locked loop (PLL) controlled  
by the ROSC pin that can be used to synchronize the switching cycle to the falling edge of an external system  
clock. The switching clock of buck1 is 180° out-of-phase operation from the clocks of buck2 and buck3 channels  
to reduce input current ripple, input capacitor size, and power-supply-induced noise.  
The TPS65263-Q1 is designed for safe monotonic start-up into prebiased loads. The default start-up is when  
VIN is typically 3.8 V. The ENx pin can also be used to adjust the input voltage undervoltage lockout (UVLO) with  
an external resistor divider. In addition, the ENx pin has an internal 3.9-µA current source, so the EN pin can be  
floating for automatically powering up the converters.  
The TPS65263-Q1 reduces the external component count by integrating the bootstrap circuit. The bias voltage  
for the integrated high-side MOSFET is supplied by a capacitor between the BST and LX pins. A UVLO circuit  
monitors the bootstrap capacitor voltage VBST-VLX in each buck. When VBST-VLX voltage drops to the threshold,  
LX pin is pulled low to recharge the bootstrap capacitor. The TPS65263-Q1 can operate at 100% duty cycle as  
long as the bootstrap capacitor voltage is higher than the BOOT-LX UVLO threshold, which is typically 2.1 V.  
The TPS65263-Q1 has power-good comparators with hysteresis, which monitor the output voltages through  
internal feedback voltages. I2C can read the power-good status with the command register. The device also  
features the PGOOD pin to supervise output voltages of the buck converter. When all bucks are in regulation  
range and power sequence is done, PGOOD is asserted high.  
The SS (soft-start/tracking) pin is used to minimize inrush currents or provide power-supply sequencing during  
power up. A small value capacitor or resistor divider is connected to the pin for soft start or voltage tracking.  
The TPS65263-Q1 is protected from overload and overtemperature fault conditions. The converter minimizes  
excessive output overvoltage transients by taking advantage of the power-good comparator. When the output is  
over, the high-side MOSFET is turned off until the internal feedback voltage is lower than 105% of the 0.6-V  
reference voltage. The TPS65263-Q1 implements both high-side MOSFET overload protection and bidirectional  
low-side MOSFET overload protections to avoid inductor current runaway. If the overcurrent condition has lasted  
for more than the OC wait time (256 clock cycle), the converter shuts down and restarts after the hiccup time  
(8192 clock cycles). The TPS65263-Q1 shuts down if the junction temperature is higher than thermal shutdown  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
12  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
trip point. When the junction temperature drops 20°C typically below the thermal shutdown trip point, the  
TPS65263-Q1 is restarted under control of the soft-start circuit automatically.  
7.2 Functional Block Diagram  
21  
ROSC  
VIN 29  
V7V 30  
VIN  
CLK/SYNC/  
Phase Shift  
EN1  
EN2  
EN3  
V7V LDO  
Bias  
DVCC  
V7V  
clk  
V7V  
VIN  
28  
25  
26  
27  
PVIN1  
BST1  
LX1  
en_buck1  
enable  
VIN  
ien_buck1  
ien_buck2  
ien_buck3  
ien_buck1  
BST  
LX  
SDA  
SCL  
2
3
BUCK1  
I2C  
I2C  
Bus  
7
PGND1  
COMP  
vfb  
PGND  
SS  
24 SS1  
22  
23  
FB1  
Over  
Temp  
COMP1  
clk  
V7V  
VIN  
12  
9
PVIN2  
BST2  
LX2  
en_buck2  
ien_buck2  
enable  
VIN  
vfb1  
vfb2  
Power  
Good  
BST  
LX  
20  
PGOOD  
vfb3  
BUCK2  
10  
11  
8
PGND2  
SS2  
COMP  
vfb  
PGND  
SS  
3.9 uA  
3 uA  
3 uA  
3 uA  
6
5
FB2  
MUX  
31  
EN1  
EN2  
EN3  
VOUT2  
en_buck1  
2 K  
2 K  
2 K  
6.3 V  
1.2 V  
1.2 V  
1.2 V  
I2C Reg.  
7-BIT  
I2C Reg.  
3.9 uA  
32  
en_buck2  
en_buck3  
7
COMP2  
6.3 V  
3.9 uA  
V7V  
1
clk  
V7V  
VIN  
6.3 V  
13  
16  
15  
14  
PVIN3  
BST3  
LX3  
en_buck3  
ien_buck3  
enable  
VIN  
BST  
LX  
BUCK3  
PGND3  
COMP  
vfb  
PGND  
SS  
17 SS3  
19  
FB3  
AGND  
4
18 COMP3  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
The output voltage of each buck is set with a resistor divider from the output of buck to the FB pin. TI  
recommends to use 1% tolerance or better resistors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
Vout  
R1  
R2  
FB  
COMP  
0.6 V  
7-1. Voltage Divider Circuit  
0.6  
R2 = R1 ´  
Vout - 0.6  
(1)  
To improve efficiency at light loads consider using larger value resistors. If the values are too high, the regulator  
is more sensitive to noise. 7-1 shows the recommended resistor values.  
7-1. Output Resistor Divider Selection  
OUTPUT VOLTAGE  
(V)  
R1  
(kΩ)  
R2  
(kΩ)  
1
10  
10  
15  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
5
15  
10  
20  
10  
31.6  
45.3  
22.6  
73.2  
36.5  
10  
10  
4.99  
10  
5
4.99  
The output voltage of the buck converter can be dynamically scaled by I2C-controlled 7-bit register,  
VOUTx_SEL. Before I2C communication, the output voltage is set with the resistor divider from the output of  
buck to the FB pin. When the GO bit is set to 1 through the I2C interface, the buck converter switches the  
external resistor divider to the internal resistor divider as shown in 7-2. The output voltage can be selected  
among 128 voltages with voltage identifications (VID) shown in 7-2. The output voltage range of dynamic  
voltage scaling is 0.68 to 1.95 V with 10-mV resolution of each voltage step.  
Vout2  
VOUT2  
VOUT_SEL<0:6>  
R1  
R1  
7.5 K - 207 K  
FB2  
0
COMP2  
1
0.6 V  
R2  
150 K  
R2  
AGND  
VOUT_SEL<7>  
GOBit  
7-2. Voltage Divider Circuit  
7-2. VOUT Output Voltage Setting  
OUT_SEL  
<7:0>  
VOUT  
(V)  
VOUT_SEL  
<7:0>  
VOUT  
(V)  
VOUT_SEL  
<7:0>  
VOUT  
(V)  
VOUT_SEL  
<7:0>  
VOUT  
(V)  
0
0.68  
20  
1
40  
1.32  
60  
1.64  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
14  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
7-2. VOUT Output Voltage Setting (continued)  
OUT_SEL  
<7:0>  
VOUT  
(V)  
VOUT_SEL  
<7:0>  
VOUT  
(V)  
VOUT_SEL  
<7:0>  
VOUT  
(V)  
VOUT_SEL  
<7:0>  
VOUT  
(V)  
1
2
0.69  
0.7  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.1  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.4  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
1.65  
1.66  
1.67  
1.68  
1.69  
1.7  
3
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.8  
4
5
6
7
1.71  
1.72  
1.73  
1.74  
1.75  
1.76  
1.77  
1.78  
1.79  
1.8  
8
9
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.5  
A
B
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.2  
C
D
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.9  
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
1.81  
1.82  
1.83  
1.84  
1.85  
1.86  
1.87  
1.88  
1.89  
1.9  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.6  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.3  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.91  
1.92  
1.93  
1.94  
1.95  
1.61  
1.62  
1.63  
1.31  
7.3.2 Enable and Adjusting UVLO  
The ENx pin provides electrical on and off control of the device. After the ENx pin voltage exceeds the threshold  
voltage, the device starts operation. If each ENx pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters a low Iq state.  
The EN pin has an internal pullup current source, allowing the user to float the EN pin for enabling the device. If  
an application requires controlling the EN pin, use open-drain or open-collector output logic to interface with the  
pin.  
The device implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage  
falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 500 mV. If an  
application requires either a higher UVLO threshold on the VIN pin or a secondary UVLO on the PVINx in split  
rail applications, then the user can configure the ENx pin as shown in 7-3, 7-4, and 7-5. When using the  
external UVLO function, TI recommends to set the hysteresis >500 mV.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
The EN pin has a small pullup current, Ip, which sets the default state of the pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih after the EN pin crosses the enable threshold. The UVLO thresholds can be  
calculated using 方程2 and 方程3.  
æ
ö
÷
ø
VENFALLING  
V
- V  
STOP  
START ç  
VENRISING  
è
R1  
=
æ
ö
VENFALLING  
I
1-  
+ I  
÷
h
P ç  
VENRISING  
è
ø
(2)  
(3)  
R1 ´ VENFALLING  
VSTOP - VENFALLING + R I + I  
R2  
=
1 (h )  
p
where  
Ih = 3 µA  
Ip = 3.9 µA  
VENRISING = 1.2 V  
VENFALLING = 1.15 V  
VIN  
PVIN  
ih  
ih  
R1  
R1  
R2  
ip  
ip  
EN  
EN  
R2  
7-3. Adjustable VIN UVLO  
7-4. Adjustable PVIN UVLO, VIN > 4 V  
PVIN  
VIN  
ih  
R1  
R2  
ip  
EN  
7-5. Adjustable VIN and PVIN UVLO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
16  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
7.3.3 Soft-Start Time  
The voltage on the respective SS pin controls the start-up of buck output. When the voltage on the SS pin is less  
than the internal 0.6-V reference, The TPS65263-Q1 regulates the internal feedback voltage to the voltage on  
the SS pin instead of 0.6 V. The SS pin can be used to program an external soft-start function or to allow output  
of buck to track another supply during start-up. The device has an internal pullup current source of 5.2 µA  
(typical) that charges an external soft-start capacitor to provide a linear ramping voltage at the SS pin. The  
TPS65263-Q1 regulates the internal feedback voltage to the voltage on the SS pin, allowing VOUT to rise  
smoothly from 0 V to its regulated voltage without inrush current. The soft-start time can be calculated  
approximately by 方程4.  
Css(nF)´ Vref(V)  
Tss(ms) =  
Iss(mA)  
(4)  
Many of the common power-supply sequencing methods can be implemented using the SSx and ENx pins. 图  
7-6 shows the method implementing ratiometric sequencing by connecting the SSx pins of three buck channels  
together. The regulator outputs ramp up and reach regulation at the same time. When calculating the soft-start  
time, the pullup current source must be tripled in 方程4.  
EN  
31  
EN threshold = 1.2 V  
EN1  
32  
EN2  
1
EN3  
Vout3 = 2.5 V  
24  
SS1  
Vout1 1.5 V  
8
SS2  
Vout2 1.2 V  
17  
SS3  
Css  
CSS × 0.6 V  
tSS  
=
15.6 µA  
7-6. Ratiometric Power-Up Using SSx Pins  
The user can implement simultaneous power-supply sequencing by connecting the capacitor to the SSx pin,  
shown in 7-7. Using 方程4 and 方程5, the capacitors can be calculated.  
Css1  
Css2  
Css3  
=
=
Vout1 Vout2 Vout3  
(5)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
EN  
31  
EN threshold = 1.2 V  
EN1  
32  
EN2  
1
EN3  
Vout3 = 2.5 V  
24  
SS1  
Css1  
Vout1 1.5 V  
Vout2 1.2 V  
8
SS2  
Css2  
17  
SS3  
Css3  
CSS3 × 0.6 V  
5.2 µA  
tSS  
=
7-7. Simultaneous Start-up Sequence Using SSx Pins  
7.3.4 Power-Up Sequencing  
The TPS65263-Q1 has a dedicated enable pin and soft-start pin for each converter. The converter enable pins  
are biased by a current source that allows for easy sequencing by the addition of an external capacitor. Disabling  
the converter with an active pulldown transistor on the ENx pin allows for predictable power-down timing  
operation. 7-8 shows the timing diagram of a typical buck power-up sequence with connecting a capacitor at  
the ENx pin.  
A typical 1.4-µA current is charging the ENx pin from input supply. When the ENx pin voltage rises to typical 0.4  
V, the internal V7V LDO turns on. A 3.9-µA pullup current is sourcing ENx. After the ENx pin voltage reaches the  
ENx enabling threshold, a 3.0-µA hysteresis current sources to the pin to improve noise sensitivity. The internal  
soft-start comparator compares the SS pin voltage to 1.2 V. When the SS pin voltage ramps up to 1.2 V, PGOOD  
monitor is enabled. After PGOOD deglitch time, PGOOD is deasserted. The SS pin voltage is eventually  
clamped around 2.1 V.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
18  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
VIN  
V7V  
EN Threshold  
ENx Rise Time  
Dictated by CEN  
EN  
Threshold  
Charge CEN  
with 6.9 µA  
1.2 V  
t = CSS × 0.6 V / 5.2 µA  
Soft Start Rise Time  
Dictated by CSS  
ENx  
SSx  
About 2.1 V  
0.4 V  
1.2 V  
0.6 V  
Pre-Bias Startup  
PGOOD Deglitch Time  
VOUTx  
t = CSS × 1.2 V / 5.2 µA  
t = CENx × (1.2 - 0.4) V / 3.9 µA  
t = CENx × 0.4 V / 1.4 µA  
PGOOD  
7-8. Start-up Power Sequence  
7.3.5 V7V Low-Dropout Regulator and Bootstrap  
Power for the high-side and low-side MOSFET drivers and most other internal circuitry is derived from the V7V  
pin. The internal built-in low-dropout linear regulator (LDO) supplies 6.3 V (typical) from VIN to V7V. The user  
must connect a 10-µF ceramic capacitor from V7V pin to power ground.  
If the input voltage, VIN, decreases to the UVLO threshold voltage, the UVLO comparator detects the V7V pin  
voltage and forces the converter off.  
Each high-side MOSFET driver is biased from the floating bootstrap capacitor, CB, shown in 7-9, which is  
normally recharged during each cycle through an internal low-side MOSFET or the body diode of a low-side  
MOSFET when the high-side MOSFET turns off. The boot capacitor is charged when the BST pin voltage is less  
than VIN and BST-LX voltage is below regulation. TI recommends a 47-nF ceramic capacitor. TI recommends a  
ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or higher because of the  
stable characteristics over temperature and voltage. Each low-side MOSFET driver is powered from the V7V pin  
directly.  
To improve dropout, the device is designed to operate at 100% duty cycle as long as the BST to LX pin voltage  
is greater than the BST-LX UVLO threshold, which is typically 2.1 V. When the voltage between BST and LX  
drops below the BST-LX UVLO threshold, the high-side MOSFET is turned off and the low-side MOSFET is  
turned on allowing the boot capacitor to be recharged.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
VIN  
LDO  
(VBSTx VLXx)  
+
nBootUV  
2.1 V  
PVINx  
V7V  
BSTx  
CBIAS  
10 µF  
High-side  
MOSFET  
nBootUV  
PWM  
UVLO Bias Buck  
Controller  
Gate  
Driver  
CB  
LXx  
Low-side  
MOSFET  
nBootUV  
PWM  
Gate  
Driver  
BootUV  
Protection  
CLK  
7-9. V7V Linear Dropout Regulator and Bootstrap Voltage Diagram  
7.3.6 Out-of-Phase Operation  
To reduce input ripple current, the switch clock of buck1 is 180° out-of-phase from the clock of buck2 and buck3.  
This enables the system having less input current ripple to reduce input capacitorssize, cost, and EMI.  
7.3.7 Output Overvoltage Protection (OVP)  
The device incorporates an OVP circuit to minimize output voltage overshoot. When the output is overloaded,  
the error amplifier compares the actual output voltage to the internal reference voltage. If the FB pin voltage is  
lower than the internal reference voltage for a considerable time, the output of the error amplifier demands  
maximum output current. After the condition is removed, the regulator output rises and the error amplifier output  
transitions to the steady-state voltage. In some applications with small output capacitance, the load can respond  
faster than the error amplifier. This leads to the possibility of an output overshoot. Each buck compares the FB  
pin voltage to the OVP threshold. If the FB pin voltage is greater than the OVP threshold, the high-side MOSFET  
is turned off preventing current from flowing to the output and minimizing output overshoot. When the FB voltage  
drops lower than the OVP threshold, the high-side MOSFET turns on at the next clock cycle.  
7.3.8 PSM  
The TPS65263-Q1 can enter high-efficiency PSM operation at light load current. To disable PSM operation, set  
the VOUTx_COM registersbit 1 to '1' through I2C interface.  
When a controller is enabled for PSM operation, the peak inductor current is sensed and compared with 310-mA  
current typically. Because the integrated current comparator catches the peak inductor current only, the average  
load current entering PSM varies with the applications and external output filters. In PSM, the sensed peak  
inductor current is clamped at 310 mA, shown in 7-10.  
When a controller operates in PSM, the inductor current is not allowed to reverse. The reverse current  
comparator turns off the low-side MOSFET when the inductor current reaches 0, preventing it from reversing and  
going negative.  
Due to the delay in the circuit and current comparator, tdly (typical 50 nS at Vin = 12 V), the real peak inductor  
current threshold to turn off high-side power MOSFET can shift higher depending on inductor inductance and  
input/output voltages. Calculate the threshold of peak inductor current to turn off high-side power MOSFET with  
方程6.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
20  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
Vin - Vout  
ILPEAK =310 mA +  
´ tdly  
L
(6)  
After the charge accumulated on the Vout capacitor is more than loading need, the COMP pin voltage drops to a  
low voltage driven by the error amplifier. There is an internal comparator at COMP pin. If the comp voltage is  
<0.35 V, the power stage stops switching to save power.  
310 mA  
Turn off  
high-side power MOSFET  
+
Inductor  
Current Peak  
œ
Current  
Sensing  
x1  
Current Comparator  
Delay: tdly  
ILPEAK  
Inductor Peak Current  
7-10. PSM Current Comparator  
7.3.9 Slope Compensation  
To prevent the subharmonic oscillations when the device operates at duty cycles greater than 50%, the  
TPS65263-Q1 adds built-in slope compensation, which is a compensating ramp to the switch current signal.  
7.3.10 Overcurrent Protection  
The device is protected from overcurrent conditions by cycle-by-cycle current limiting on both the high-side  
MOSFET and low-side MOSFET.  
7.3.10.1 High-Side MOSFET Overcurrent Protection  
The device implements current mode control that uses the COMP pin voltage to control the turn off of the high-  
side MOSFET and the turn on of the low-side MOSFET on a cycle-by-cycle basis. Each cycle the switch current  
and the current reference generated by the COMP pin voltage are compared, when the peak switch current  
intersects the current reference, the high-side switch is turned off.  
7.3.10.2 Low-Side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on, its conduction current is monitored by the internal circuitry. During  
normal operation, the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-  
side MOSFET sourcing current is compared to the internally set low-side sourcing current limit. If the low-side  
sourcing current is exceeded, the high-side MOSFET is not turned on and the low-side MOSFET stays on for the  
next cycle. The high-side MOSFET is turned on again when the low-side current is below the low-side sourcing  
current limit at the start of a cycle.  
The low-side MOSFET can also sink current from the load. If the low-side sinking current limit is exceeded, the  
low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario both MOSFETs are  
off until the start of the next cycle.  
Furthermore, if an output overload condition (as measured by the COMP pin voltage) has lasted for more than  
the hiccup wait time which is programmed for 256 switching cycles shown in 7-11, the device shuts down and  
restarts after the hiccup time of 8192 cycles. The hiccup mode helps to reduce the device power dissipation  
under severe overcurrent condition.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
OCP peak inductor current threshold  
OC limiting (waiting) time  
hiccup time  
8192 cycles  
soft start time  
t = Css × 0.6 V/5.2 µA  
256 cycles  
Output over loading  
iL  
Inductor Current  
Soft-start is reset after OC waiting time  
About 2.1 V  
0.6 V  
OC fault removed, soft-start, and output recovery  
SS  
SS Pin Voltage  
Output hard short circuit  
Vout  
Output Voltage  
7-11. Overcurrent Protection  
7.3.11 Power Good  
The PGOOD pin is an open-drain output. When feedback voltage of each buck is between 95% (rising) and  
105% (falling) of the internal voltage reference, the PGOOD pin pulldown is deasserted and the pin floats. TI  
recommends to use a pullup resistor between the values of 10 and 100 kto a voltage source that is 5.5 V or  
less. The PGOOD is in a defined state when the VIN input voltage is greater than 1 V, but with reduced current  
sinking capability. The PGOOD achieves full current sinking capability after the VIN input voltage is above UVLO  
threshold, which is 3.8 V.  
The PGOOD pin is pulled low when any feedback voltage of buck is lower than 92.5% (falling) or greater than  
107.5% (rising) of the nominal internal reference voltage. Also, when the PGOOD is pulled low, if the input  
voltage is undervoltage locked up, thermal shutdown is asserted, the EN pin is pulled low or the converter is in  
soft-start period.  
The power-good indicator for each buck channel can be read back through I2C. The bits in SYS_STATUS[2:0]  
(address 0x06H) present the feedback voltage in regulation (logic 1) or not (logic 0) for buck1, buck2, and buck3  
respectively  
7.3.11.1 Adjustable Switching Frequency  
The ROSC pin can be used to set the switching frequency by connecting a resistor to GND. The switching  
frequency of the device is adjustable from 200 kHz to 2.3 MHz.  
To determine the ROSC resistance for a given switching frequency, use 方程式 7 or the curve in 7-12. To  
reduce the solution size, the user must set the switching frequency as high as possible, but consider tradeoffs of  
the supply efficiency and minimum controllable on-time.  
ƒosc kHz = 37254´R(KW)-0.966  
(
)
(7)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
22  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
2300  
2000  
1700  
1400  
1100  
800  
500  
200  
10 30 50 70 90 110 130 150 170 190 210 230  
ROSC (kW)  
D022  
7-12. ROSC vs Switching Frequency  
When an external clock applies to ROSC pin, the internal PLL has been implemented to allow internal clock  
synchronizing to an external clock between 200 and 2300 kHz. To implement the clock synchronization feature,  
connect a square wave clock signal to the ROSC pin with a duty cycle between 20% to 80%. The clock signal  
amplitude must transition lower than 0.4 V and higher than 2.0 V. The start of the switching cycle is synchronized  
to the falling edge of ROSC pin.  
In applications where both resistor mode and synchronization mode are needed, the user can configure the  
device as shown in 7-13. Before an external clock is present, the device works in resistor mode and ROSC  
resistor sets the switching frequency. When an external clock is present, the synchronization mode overrides the  
resistor mode. The first time the ROSC pin is pulled above the ROSC high threshold (2.0 V), the device switches  
from the resistor mode to the synchronization mode and the ROSC pin becomes high impedance as the PLL  
starts to lock onto the frequency of the external clock. TI does not recommend to switch from the synchronization  
mode back to the resistor mode because the internal switching frequency drops to 100 kHz first before returning  
to the switching frequency set by ROSC resistor.  
Mode  
Selection  
IC  
ROSC  
ROSC  
7-13. Works With Resistor Mode and Synchronization Mode  
7.3.12 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
160°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 140°C  
typically.  
7.4 Device Functional Modes  
7.4.1 Serial Interface Description  
I2C is a 2-wire serial interface developed by NXP Semiconductor (see I2C-Bus Specification, Version 2.1,  
January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the  
bus is idle, both SDA and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C bus  
through open-drain I/O pins, SDA and SCL. A controller device, usually a microcontroller or a digital signal  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
processor, controls the bus. The controller is responsible for generating the SCL signal and device addresses.  
The controller also generates specific conditions that indicate the START and STOP of data transfer. A target  
device receives and/or transmits data on the bus under control of the controller device.  
The TPS65263-Q1 device works as a target and supports the following data transfer modes, as defined in the  
I2C-Bus Specification: standard mode (100 kbps) and fast mode (400 kbps). The interface adds flexibility to the  
power-supply solution, enabling most functions to be programmed to new values depending on the  
instantaneous application requirements. Register contents remain intact as long as supply voltage remains  
above 3.8 V (typical).  
The data transfer protocol for standard and fast modes is exactly the same. Therefore, they are referred to as  
F/S-mode in this document. The TPS65263-Q1 device supports 7-bit addressing. 10-bit addressing and general  
call address are not supported.  
SDA  
tSU,DAT  
tBUF  
tSU,STA  
tHD,STA  
tLOW  
tHD,DAT  
tSU,STO  
SCL  
tHD,STA  
tHIGH  
tSP  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
tr  
tf  
CONDITION  
7-14. I2C Interface Timing Diagram  
7.4.2 I2C Update Sequence  
The TPS65263-Q1 requires a start condition, a valid I2C address, a register address byte, and a data byte for a  
single update. After the receipt of each byte, TPS65263-Q1 device acknowledges by pulling the SDA line low  
during the high period of a single clock pulse. A valid I2C address selects the TPS65263-Q1. TPS65263-Q1  
performs an update on the falling edge of the LSB byte.  
When the TPS65263-Q1 is in hardware shutdown (EN1, EN2, and EN3 pin tied to ground) the device cannot be  
updated through the I2C interface. Conversely, the I2C interface is fully functional during software shutdown  
(EN1, EN2, and EN3 bit = 0).  
S
0
A
A
A P  
7-Bit Target Address  
Register Address  
Data Byte  
7-15. I2C Write Data Format  
S
0
A
A
Sr  
1
A
7-Bit Target Address  
Data Byte  
Register1 Address  
P
7-Bit Target Address  
N
A: Acknowledge  
N: Not Acknowledge  
S: Start  
System Host  
Chip  
P: Stop  
Sr: Repeated Start  
7-16. I2C Read Data Format  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
24  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
7.5 Register Maps  
7-3. Register Addresses  
NAME  
BITS  
ADDRESS  
0x01H  
VOUT2_SEL  
VOUT1_COM  
VOUT2_COM  
VOUT3_COM  
SYS_STATUS  
8
8
8
8
8
0X03H  
0x04H  
0X05H  
0x06H  
7.5.1 VOUT2_SEL: Vout2 Voltage Selection Register (Address = 0x01H)  
7-17. VOUT2_SEL: Vout2 Voltage Selection Register  
7
6
5
4
3
2
1
0
Vout2_Bit7  
Vout2_Bit6  
Vout2_Bit5  
Vout2_Bit4  
Vout2_Bit3  
Vout2_Bit2  
Vout2_Bit1  
Vout2_Bit0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-4. VOUT2_SEL: Vout2 Voltage Selection Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
Gobit, must set 1 to enable I2C controlled VID voltages  
Vout2_Bit7  
Vout2_Bit6  
Vout2_Bit5  
Vout2_Bit4  
Vout2_Bit3  
Vout2_Bit2  
Vout2_Bit1  
Vout2_Bit0  
0
0
0
0
0
0
0
0
6
128 voltage selections with 7-bits control  
Voltage range: 0.68 to 1.95 V  
Voltage step resolution: 10 mV  
5
4
0x00H: Vout2 = 0.68 V;  
0x7FH: Vout2 = 1.95 V  
3
2
1
0
7.5.2 VOUT1_COM: Buck1 Command Register (offset = 0x03H)  
7-18. VOUT1_COM: Buck1 Command Register  
7
6
5
4
3
2
1
0
N/A  
Mode1  
nEN1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-5. VOUT1_COM: Buck1 Command Register Field Descriptions  
Bit  
7:2  
1
Field  
N/A  
Type  
R/W  
R/W  
Reset  
000000  
0
Description  
Not used  
Mode1  
0: Enable buck 1 PSM operation at light load;  
1: Forced buck 1 PWM mode operation  
0
nEN1  
R/W  
0
0: Enable buck1;  
1: Disable buck1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
7.5.3 VOUT2_COM: Buck2 Command Register (offset = 0x04H)  
7-19. VOUT2_COM: Buck2 Command Register  
7
6
5
4
3
2
1
0
N/A  
SR3  
SR2  
SR1  
N/A  
N/A  
Mode2  
nEN2  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-6. VOUT2_COM: Buck2 Command Register Field Descriptions  
Bit  
7
Field  
N/A  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
0
0
Not used  
6
SR3  
SR2  
SR1  
Vout2 VID voltage transition Slew Rate control.  
000: 10 mV/cycle;  
001: 10 mV/2 cycles;  
5
010: 10 mV/4 cycles;  
100: 10 mV/16 cycles;  
110: 10 mV/64 cycles;  
011: 10 mV/8 cycles;  
101: 10 mV/32 cycles;  
111: 10 mV/128 cycles  
4
3
2
1
N/A  
R/W  
R/W  
R/W  
0
0
0
Not used  
Not used  
N/A  
Mode2  
0: Enable buck 2 PSM operation at light load;  
1: Forced buck 2 PWM mode operation  
0
nEN2  
R/W  
0
0: Enable buck2;  
1: Disable buck2  
7.5.4 VOUT3_COM: Buck3 Command Register (offset = 0x05H)  
7-20. VOUT3_COM: Buck3 Command Register  
7
6
5
4
3
2
1
0
N/A  
Mode3  
nEN3  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-7. VOUT3_COM: Buck3 Command Register Field Descriptions  
Bit  
7:2  
1
Field  
N/A  
Type  
R/W  
R/W  
Reset  
000000  
0
Description  
Not used  
Mode3  
0: Enable buck 3 PSM operation at light load;  
1: Forced buck 3 PWM mode operation  
0
nEN3  
R/W  
0
0: Enable buck3;  
1: Disable buck3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
26  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
7.5.5 SYS_STATUS: System Status Register (offset = 0x06H)  
7-21. SYS_STATUS: System Status Register  
7
6
5
4
3
2
1
0
OTP  
OC3  
OC2  
OC1  
OTW  
PGOOD3  
PGOOD2  
PGOOD1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-8. SYS_STATUS: System Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OTP  
R
0
1: Die temperature over 160°C, which triggers over temperature protection;  
0: Die overtemperature protection is not triggered.  
1: Buck3 over current limiting and hiccup protection is triggered;  
0: Buck3 current not beyond the current limit.  
6
5
4
3
2
OC3  
R
R
R
R
R
0
0
0
0
0
OC2  
1: Buck2 overcurrent limiting and hiccup protection is triggered;  
0: Buck2 current not beyond the current limit.  
OC1  
1: Buck1 overcurrent limiting and hiccup protection is triggered;  
0: Buck1 current not beyond the current limit.  
OTW  
PGOOD3  
1: Die temperature over 125°C;  
0: Die temperature below 125°C.  
1:  
0:  
1:  
0:  
1:  
0:  
Vout3 in power good monitors range;  
Vout3 not in power good monitors range.  
Vout2 in power good monitors range;  
Vout2 not in power good monitors range.  
Vout1 in power good monitors range ;  
Vout1 not in power good monitors range.  
1
0
PGOOD2  
PGOOD1  
R
R
0
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The device is triple-synchronous step-down dc/dc converter with I2C interface. It is typically used to convert a  
higher dc voltage to lower dc voltages with continuous available output current of 3 A/2 A/2 A.  
8.2 Typical Application  
The following design procedure can be used to select component values for the TPS65263-Q1. This section  
presents a simplified discussion of the design process.  
8-1. Typical Application Schematic  
8.2.1 Design Requirements  
This example details the design of triple-synchronous step-down converter. A few parameters must be known to  
start the design process. These parameters are typically determined at the system level. For this example, we  
start with the following known parameters:  
8-1. Design Parameters  
PARAMETER  
VALUE  
Vout1  
1.5 V  
Iout1  
3 A  
Vout2  
Iout2  
1.2 V  
2 A  
Vout3  
2.5 V  
Iout3  
2 A  
±5%  
Transient response 1-A load step  
Input voltage  
12 V normal, 4 to 18 V  
±1%  
Output voltage ripple  
Switching frequency  
500 kHz  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Inductor Selection  
To calculate the value of the output inductor, use 方程式 8. LIR is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor because  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In  
general, the inductor ripple value is at the discretion of the designer; however, LIR is normally from 0.1 to 0.3 for  
the majority of applications.  
V
- Vout  
Vout  
Vinmax ´ ƒsw  
inmax  
L =  
´
Io ´LIR  
(8)  
For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded.  
Calculate the RMS and peak inductor current from 方程10 and 方程11.  
V
- Vout  
´
Vout  
Vinmax ´ ƒsw  
inmax  
Iripple  
=
L
(9)  
æ
ö2  
Vout ´ V  
- Vout  
(
)
inmax  
ç
ç
÷
÷
Vinmax ´L ´ ƒsw  
è
ø
ILrms  
=
IO2 +  
12  
(10)  
(11)  
Iripple  
ILpeak =Iout  
+
2
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of  
the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the peak inductor current.  
8.2.2.2 Output Capacitor Selection  
The three primary considerations for selecting the value of the output capacitor are:  
Output capacitor determines the modulator pole  
Output voltage ripple  
How the regulator responds to a large change in load current  
The output capacitance must be selected based on the most stringent of these three criteria.  
The desired response to a large change in the load current is the first criterion. The output capacitor needs to  
supply the load with current when the regulator cannot. This situation can occur if there are desired hold-up  
times for the regulator where the output capacitor must hold the output voltage above a certain level for a  
specified amount of time after the input power is removed. The regulator is also temporarily not able to supply  
sufficient output current if there is a large, fast increase in the current needs of the load such as a transition from  
no load to full load. The regulator usually needs two or more clock cycles for the control loop to see the change  
in load current and output voltage and adjust the duty cycle to react to the change. The output capacitor must be  
sized to supply the extra current to the load until the control loop responds to the load change. The output  
capacitance must be large enough to supply the difference in current for 2 clock cycles while only allowing a  
tolerable amount of droop in the output voltage. 方程式 12 shows the minimum output capacitance necessary to  
accomplish this.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
2´ DIout  
Co =  
ƒsw ´ DVout  
(12)  
where  
• ΔIout is the change in output current  
• ƒsw is the regulators switching frequency  
• ΔVout is the allowable change in the output voltage  
方程13 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
1
1
Co >  
´
Voripple  
8´ ƒsw  
Ioripple  
(13)  
where  
• ƒsw is the switching frequency  
Voripple is the maximum allowable output voltage ripple  
Ioripple is the inductor ripple current  
方程式 14 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple  
specification.  
Voripple  
Resr  
<
Ioripple  
(14)  
Additional capacitance deratings for aging, temperature, and DC bias must be factored in, which increases this  
minimum value. Capacitors generally have limits to the amount of ripple current they can handle without failing or  
producing excess heat. The user must specify an output capacitor that can support the inductor ripple current.  
Some capacitor data sheets specify the root mean square (RMS) value of the maximum ripple current. Use 方程  
15 to calculate the RMS ripple current the output capacitor needs to support.  
Vout ´ V  
- Vout  
(
)
12 ´ Vinmax ´L ´ ƒsw  
inmax  
Icorms  
=
(15)  
8.2.2.3 Input Capacitor Selection  
The TPS65263-Q1 requires a high-quality ceramic, type X5R or X7R, input decoupling capacitor of at least 10  
µF of effective capacitance on the PVIN input voltage pins. In some applications, additional bulk capacitance can  
also be required for the PVIN input. The effective capacitance includes any DC bias effects. The voltage rating of  
the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple  
current rating greater than the maximum input current ripple of the TPS65263-Q1. The input ripple current can  
be calculated using 方程16.  
V
(
- Vout  
)
Vout  
inmin  
I
=Iout  
´
´
inrms  
V
V
inmin  
inmin  
(16)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance-to-volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
30  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
 
 
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
decreases as the DC bias across a capacitor increases. The input capacitance value determines the input ripple  
voltage of the regulator. Use 方程17 to calculate the input voltage ripple.  
I
outmax ´ 0.25  
DV  
=
in  
Cin ´ ƒsw  
(17)  
8.2.2.4 Loop Compensation  
The TPS65263-Q1 incorporates a peak current mode control scheme. The error amplifier is a transconductance  
amplifier with a gain of 300 µS. A typical type II compensation circuit adequately delivers a phase margin  
between 40° and 90°. Cb adds a high-frequency pole to attenuate high-frequency noise when needed. To  
calculate the external compensation components, follow these steps.  
1. Select switching frequency, ƒsw, that is appropriate for application depending on L and C sizes, output ripple,  
EMI, and so forth. Switching frequency between 500 kHz to 1 MHz gives best trade-off between  
performance and cost. To optimize efficiency, lower switching frequency is desired.  
2. Set up crossover frequency, ƒc, which is typically between 1/5 and 1/20 of ƒsw.  
3. RC can be determined by:  
2p´ ƒc ´ Vo´ Co  
RC  
=
Gm-EA ´ Vref ´ Gm-PS  
(18)  
where  
Gm_EA is the error amplifier gain (300 µS).  
Gm_PS is the power stage voltage to current conversion gain (7.4 A/V).  
1
æ
ö
=
çƒp  
è
÷
Co ´ RL ´ 2p  
ø
4. Calculate CC by placing a compensation zero at or before the dominant pole  
.
RL ´ Co  
CC  
=
RC  
(19)  
(20)  
5. Optional Cb can be used to cancel the zero from the ESR associated with CO.  
R
ESR ´ Co  
Cb =  
RC  
6. Type III compensation can be implemented with the addition of one capacitor, C1. This allows for slightly  
higher loop bandwidths and higher phase margins. If used, calculate C1 from 方程21.  
1
C1 =  
2p þ R1 ì ƒC  
(21)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
LX  
VOUT  
iL  
RESR  
RL  
Current Sense  
I/V Converter  
Gm_PS = 7.4 A / V  
Co  
C1  
R1  
Vfb  
EA  
+
FB  
COMP  
Vref = 0.6 V  
R2  
Gm_EA = 300 uS  
Rc  
Cb  
Cc  
8-2. DC/DC Loop Compensation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
32  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
8.2.3 Application Curves  
Iout = 3 A  
Iout = 2 A  
8-3. BUCK1, Soft Start  
8-4. BUCK2, Soft Start  
Iout = 2 A  
A.  
Iout = 3 A  
8-5. BUCK3, Soft Start  
8-6. BUCK1, Output Voltage Ripple  
Iout = 2 A  
Iout = 2 A  
8-7. BUCK2, Output Voltage Ripple  
8-8. BUCK3, Output Voltage Ripple  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
0.75 to 1.5 A  
SR = 0.25 A/µs  
1.5 to 2.25 A  
SR = 0.25 A/µs  
8-9. BUCK1, Load Transient  
8-10. BUCK1, Load Transient  
0.5 to 1.0 A  
SR = 0.25 A/µs  
1.0 to 1.5 A  
SR = 0.25 A/µs  
8-11. BUCK2, Load Transient  
8-12. BUCK2, Load Transient  
0.5 to 1.0 A  
SR = 0.25 A/µs  
1.0 to 1.5 A  
SR = 0.25 A/µs  
8-13. BUCK3, Load Transient  
8-14. BUCK3, Load Transient  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
8-15. BUCK1, Hiccup and Recovery  
8-16. BUCK2, Hiccup and Recovery  
8-17. BUCK3, Hiccup and Recovery  
8-18. PGOOD  
8-19. VID2 from 00 to 7F, SR = 10 mV/Cycle  
8-20. VID2 from 7F to 00, SR = 10 mV/Cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
8-21. 180° Out-of-Phase  
8-22. Synchronization with External Clock  
VIN = 12 V, VOUT1 = 1.5 V/3 A, VOUT2 = 1.2 V/2 A,  
VOUT3 = 2.5 V/2 A,  
8-23. Operation at VIN Drop to 2.5 V  
TA = 26.8°C EVM condition 4 layers, 75 mm × 75 mm  
8-24. Thermal Signature of TPS65263-Q1EVM  
Operating  
8.3 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 4 and 18 V. This input power  
supply must be well regulated. If the input supply is located more than a few inches from the TPS65263-Q1  
converter, additional bulk capacitance can be required in addition to the ceramic bypass capacitors. An  
electrolytic capacitor with a value of 47 µF is a typical choice.  
8.4 Layout  
8.4.1 Layout Guidelines  
8-25 shows the TPS65263-Q1 on a 2-layer PCB.  
Layout is a critical portion of good power-supply design. See 8-25 for a PCB layout example. The top contains  
the main power traces for PVIN, VOUT, and LX. The top layer also has connections for the remaining pins of the  
TPS65263-Q1 and a large top-side area filled with ground. The top-layer ground area must be connected to the  
bottom layer ground using vias at the input bypass capacitor, the output filter capacitor, and directly under the  
TPS65263-Q1 device to provide a thermal path from the exposed thermal pad land to ground. The bottom layer  
acts as ground plane connecting analog ground and power ground.  
For operation at full rated load, the top-side ground area together with the bottom-side ground plane must  
provide adequate heat dissipating area. Several signals paths conduct fast changing currents or voltages that  
can interact with stray inductance or parasitic capacitance to generate noise or degrade the power supplies'  
performance. To help eliminate these problems, bypass the PVIN pin to ground with a low-ESR ceramic bypass  
capacitor with X5R or X7R dielectric. Take care to minimize the loop area formed by the bypass capacitor  
connections, the PVIN pins, and the ground connections. The VIN pin must also be bypassed to ground using a  
low-ESR ceramic capacitor with X5R or X7R dielectric.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
36  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
Because the LX connection is the switching node, the output inductor must be located close to the LX pins, and  
the area of the PCB conductor minimized to prevent excessive capacitive coupling. The output filter capacitor  
ground must use the same power ground trace as the PVIN input bypass capacitor. Try to minimize this  
conductor length while maintaining adequate width. The small signal components must be grounded to the  
analog ground path.  
The FB and COMP pins are sensitive to noise so the resistors and capacitors must be located as close as  
possible to the IC and routed with minimal lengths of trace. The additional external components can be placed  
approximately as shown.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
8.4.2 Layout Example  
VOUT1  
VOUT3  
BST1  
LX1  
BST3  
LX3  
PGND1  
PVIN1  
VIN  
PGND3  
PVIN3  
PVIN2  
PGND2  
LX2  
PVIN  
PVIN  
VIN  
V7V  
EN1  
EN2  
BST2  
VOUT2  
TOPSIDE  
GROUND  
AREA  
0.010-inch Diameter  
Thermal VIA to Ground Plane  
VIA to Ground Plane  
8-25. PCB Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCS9  
38  
Submit Document Feedback  
Product Folder Links: TPS65263-Q1  
 
TPS65263-Q1  
ZHCSDM4D DECEMBER 2014 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS65263-Q1  
English Data Sheet: SLVSCS9  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65263QRHBRQ1  
TPS65263QRHBTQ1  
ACTIVE  
VQFN  
VQFN  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS  
65263Q  
Samples  
Samples  
ACTIVE  
RHB  
NIPDAU  
TPS  
65263Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2023  
OTHER QUALIFIED VERSIONS OF TPS65263-Q1 :  
Catalog : TPS65263  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65263QRHBRQ1  
TPS65263QRHBTQ1  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65263QRHBRQ1  
TPS65263QRHBTQ1  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65263QRHBTQ1

支持 I2C 控制的动态电压调节的 4.0V-18V 输入电压、3A/2A/2A 三路同步降压转换器 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65263RHBR

4.5V 至 18V 输入电压、3A/2A/2A 输出电流降压转换器,具有通过 I2C 控制的 DVS | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65263RHBT

4.5V 至 18V 输入电压、3A/2A/2A 输出电流降压转换器,具有通过 I2C 控制的 DVS | RHB | 32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65265

4.5V 至 17V 输入电压、5A/3A/2A 输出电流、三路降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65265RHBR

4.5V 至 17V 输入电压、5A/3A/2A 输出电流、三路降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65265RHBT

4.5V 至 17V 输入电压、5A/3A/2A 输出电流、三路降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65266

2.7V 至 6.5V 输入电压、3A/2A/2A 输出电流同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65266-1

2.7V 至 6.5V 输入、3A/2A/2A 三路降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65266-1RHBR

2.7V 至 6.5V 输入、3A/2A/2A 三路降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65266-1RHBT

2.7V 至 6.5V 输入、3A/2A/2A 三路降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65266RHBR

2.7V 至 6.5V 输入电压、3A/2A/2A 输出电流同步降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65266RHBT

2.7V 至 6.5V 输入电压、3A/2A/2A 输出电流同步降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI