TPS65631WDSKR [TI]

+4.6V/-1.4V 至 -4.4V 双输出 200mA AMOLED 显示屏电源 | DSK | 10 | -40 to 85;
TPS65631WDSKR
型号: TPS65631WDSKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

+4.6V/-1.4V 至 -4.4V 双输出 200mA AMOLED 显示屏电源 | DSK | 10 | -40 to 85

驱动 光电二极管 接口集成电路
文件: 总27页 (文件大小:2173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
TPS65631W 双输出有源矩阵有机发光二极管 (AMOLED) 显示屏电源  
1 特性  
3 说明  
1
2.9V 4.5V 输入电压范围  
4.6V 固定正输出电压  
TPS65631W 被设计用于驱动需要正负电源轨的  
AMOLED 显示屏。 此器件集成了一个针对 VPOS 的升  
压转换器和一个针对 VNEG 的反相降压升压转换器,非  
常适合于电池供电类产品。 数字控制引脚 (CTRL) 允  
许用数字步长设定负输出电压。 TPS65631W 采用创  
新技术,能够实现出色线路瞬态性能。  
25ºC 85ºC 温度范围内,VPOS 精度 0.5%  
单独的 VPOS 输出感测引脚  
-1.4V -4.4V 的数字可编程负输出电压(缺省值 -  
4V)  
支持高达 200mA 的输出电流  
出色的线路瞬态稳压  
短路保护功能  
器件信息(1)  
部件号  
封装  
封装尺寸(标称值)  
TPS65631W  
QFN (10)  
2.50mm x 2.50mm  
热关断  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
采用 2.5mm x 2.5mm 10 引脚四方扁平无引线  
(QFN) 封装  
空白  
空白  
空白  
空白  
空白  
2 应用范围  
AMOLED 显示屏  
4 简化电路原理图  
L1  
4.7 µH  
效率与输出电流间的关系  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VI  
PVIN  
AVIN  
SWP  
OUTP  
FBS  
2.9 V to 4.5 V  
VPOS  
4.6 V, 300 mA  
C1  
2×10 µF  
C2  
10 µF  
TPS65631  
EN / Program VNEG  
CTRL  
VNEG  
±4.0 V, 300 mA  
OUTN  
SWN  
C3  
2×10 µF  
PGND  
AGND  
L2  
4.7 µH  
VPOS = 4.6 V  
VNEG = –4.0 V  
10  
VI = 3.7 V  
175 200  
0
0
25  
50  
75  
100  
125  
150  
Output Current (mA)  
G001  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSC27  
 
 
 
 
 
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
目录  
8.3 Feature Description................................................... 8  
8.4 Device Functional Modes........................................ 10  
8.5 Programming........................................................... 11  
Applications and Implementation ...................... 12  
9.1 Application Information............................................ 12  
9.2 Typical Application .................................................. 12  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 8  
9
10 Power Supply Recommendations ..................... 16  
11 Layout................................................................... 17  
11.1 Layout Guidelines ................................................. 17  
11.2 Layout Example .................................................... 17  
12 器件和文档支持 ..................................................... 18  
12.1 第三方产品免责声明.............................................. 18  
12.2 相关链接................................................................ 18  
12.3 ....................................................................... 18  
12.4 静电放电警告......................................................... 18  
12.5 术语表 ................................................................... 18  
13 机械封装和可订购信息 .......................................... 18  
8
5 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (July 2013) to Revision A  
Page  
添加了器件信息表和处理额定值表,特性描述部分,器件功能模式,编程部分,应用和实施部分,电源相关建议部  
分,布局部分,器件和文档支持部分以及机械、封装和可订购信息部分 ................................................................................ 1  
2
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TPS65631W  
www.ti.com.cn  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
6 Pin Configuration and Functions  
SON (DSK) PACKAGE  
10-PINS  
(TOP VIEW)  
(BOTTOM VIEW)  
SWP  
PGND  
OUTP  
FBS  
1
2
3
4
5
10 PVIN  
PVIN 10  
1
2
3
4
5
SWP  
9
8
7
6
AVIN  
SWN  
OUTN  
CTRL  
AVIN  
SWN  
9
8
7
6
PGND  
OUTP  
FBS  
Exposed  
Thermal  
Pad  
Exposed  
Thermal  
Pad  
OUTN  
CTRL  
AGND  
AGND  
Pin Functions  
NAME  
AGND  
AVIN  
NO.  
I/O  
I
DESCRIPTION  
5
9
6
Analog ground.  
Input supply voltage for internal analog circuits (both converters).  
CTRL  
Control pin. Combined device enable and inverting buck-boost converter output  
voltage programming pin.  
FBS  
PGND  
PVIN  
SWN  
SWP  
4
2
I
Feedback sense pin of the boost converter output voltage.  
Power ground of the boost converter.  
O
O
O
O
12  
8
Input supply voltage pin for the inverting buck-boost converter.  
Switch pin of the inverting buck-boost converter.  
Switch pin of the boost converter.  
1
OUTN  
OUTP  
7
Rectifier pin of the inverting buck-boost converter.  
Rectifier pin of the boost converter.  
3
Exposed Thermal  
Pad  
13  
Connect this pad to AGND and PGND.  
Copyright © 2013–2014, Texas Instruments Incorporated  
3
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7 Specifications  
(1)  
7.1 Absolute Maximum Ratings  
(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–6  
MAX  
6
UNIT  
V
SWP, OUTP, FBS, PVIN, AVIN  
OUTN  
–6  
V
(2)  
Input voltage  
SWN  
CTRL  
6
V
–0.3  
–40  
5.5  
150  
V
Operating junction temperature range, TJ  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) With respect to AGND pin.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
TSTG  
Storage temperature range  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
–65  
150  
°C  
–2  
2
kV  
(1)  
all pins  
VESD  
Electrostatic discharge Charged device model (CDM), per JEDEC specification  
–500  
–200  
500  
200  
V
V
(2)  
JESD22-C101, all pins  
Machine model (MM) ESD stress voltage  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process..  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
NOM  
3.7  
MAX UNIT  
VI  
Input supply voltage range  
Output voltage range  
2.9  
4.5  
V
VPOS  
VNEG  
IPOS  
4.6  
VO  
V
–4.4  
0
–4  
–1.4  
200  
200  
85  
IO  
Output current range  
mA  
°C  
INEG  
0
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
–40  
–40  
25  
85  
125  
7.4 Thermal Information  
DSK  
THERMAL METRIC(1)  
UNIT  
10 PINS  
47.1  
57.8  
21.1  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
21.4  
4.3  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS65631W  
www.ti.com.cn  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
7.5 Electrical Characteristics  
VI = 3.7 V, V(CTRL) = 3.7 V, VPOS = 4.6 V, VNEG = –4.0 V, TJ = –40°C to 125°C, typical values are at TJ = 25°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
II  
Shutdown current into AVIN and  
PVIN  
CTRL pin connected to ground.  
0.1  
µA  
VI rising.  
VI falling.  
2.4  
2.1  
VUVLO  
Undervoltage lockout threshold  
V
V
BOOST CONVERTER  
Output voltage  
4.6  
VO  
25°C TJ 85°C, no load  
–40°C TJ < 85°C, no load  
I(SWP) = 200 mA  
–0.5%  
–0.8%  
0.5%  
0.8%  
Output voltage tolerance  
Switch (low-side) on-resistance  
Rectifier (high-side) on-resistance  
Switching frequency  
200  
350  
1.7  
1
rDS(ON)  
mΩ  
I(SWP) = 200 mA  
IO = 200 mA  
MHz  
A
Switch current limit  
Inductor valley current  
0.8  
Short-circuit threshold voltage in  
operation  
VO falling  
4.1  
3
V
Short-circuit detection time during  
operation  
ms  
mV  
Output sense threshold voltage  
using OUTP  
V(OUTP) - V(FBS) increasing  
300  
Output sense threshold voltage  
using FBS  
V(OUTP) - V(FBS) decreasing  
Between FBS pin and ground  
200  
4
mV  
MΩ  
Ω
Input resistance of FBS  
CTRL pin connected to ground,  
IO = 1 mA  
Discharge resistance  
30  
Line regulation  
Load regulation  
IO = 200 mA  
0.002  
0.01  
%/V  
%/A  
INVERTING BUCK-BOOST CONVERTER  
Output voltage default  
–4.0  
VO  
Output voltage range  
–4.4  
–1.4  
0.05  
V
Output voltage tolerance  
Switch (high-side) on-resistance  
Rectifier (low-side) on-resistance  
Switching frequency  
–0.05  
I(SWN) = 200 mA  
I(SWN) = 200 mA  
IO = 10 mA  
200  
300  
1.7  
rDS(ON)  
mΩ  
MHz  
A
Switch current limit  
VI = 2.9 V  
1.5  
2.2  
Short-circuit threshold voltage during  
operation  
Voltage drop from nominal VO  
500  
200  
10  
mV  
Short-circuit threshold voltage during  
start-up  
180  
230  
Short-circuit detection time during  
start-up  
tSCP  
ms  
ms  
Ω
Short-circuit detection time during  
operation  
3
CTRL pin connected to ground,  
IO = 1 mA  
Discharge resistance  
150  
Line regulation  
Load regulation  
IO = 200 mA  
0.006  
0.31  
%/V  
%/A  
Copyright © 2013–2014, Texas Instruments Incorporated  
5
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
VI = 3.7 V, V(CTRL) = 3.7 V, VPOS = 4.6 V, VNEG = –4.0 V, TJ = –40°C to 125°C, typical values are at TJ = 25°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CTRL  
High-level threshold voltage  
Low-level threshold voltage  
Pull-down resistance  
1.2  
V
V
0.4  
150  
400  
300  
860  
kΩ  
OTHER  
tINIT  
Initialization time  
400  
80  
µs  
µs  
µs  
°C  
tOFF  
Shut-down time  
30  
30  
tSTORE  
TSD  
Data storage time  
80  
Thermal shutdown temperature  
145  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
CTRL Interface  
tHIGH  
tLOW  
High-level pulse duration  
Low-level pulse duration  
2
2
10  
10  
25  
25  
µs  
µs  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS65631W  
www.ti.com.cn  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
7.7 Typical Characteristics  
At TA = 25°C, unless otherwise noted.  
4.0  
3.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.0  
1.0  
0.0  
−1.0  
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
G001  
G002  
Figure 1. Shutdown Current into AVIN and PVIN  
Figure 2. Boost Converter Switch rDS(ON)  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
G003  
G004  
Figure 3. Boost Converter Rectifier rDS(ON)  
Figure 4. Inverting Buck-Boost Converter Switch rDS(ON)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−50  
−25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
G005  
Figure 5. Inverting Buck-Boost Converter Rectifier rDS(ON)  
Copyright © 2013–2014, Texas Instruments Incorporated  
7
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS65631W consists of a boost converter and an inverting buck boost converter. The VPOS output is fixed at  
4.6 V and VNEG output is programmable via a digital interface in the range of -1.4 V ~ -4.4 V, the default is -4 V.  
The transition time of VNEG output is adjustable by the CT pin capacitor.  
8.2 Functional Block Diagram  
SWP  
OUTP  
1
3
Short-Circuit  
Protection  
DCHG  
Gate  
Driver  
FBS  
Output Sense  
Control  
PGND  
4
±
PWM  
Control  
AVIN  
+
9
VREF  
Oscillator  
CTRL  
Digital  
Interface  
6
+
DAC  
6
±
Constant  
Off-Time  
Controller  
Short-Circuit  
Protection  
Gate Driver  
PVIN  
OUTN  
VI  
10  
7
8
2
5
SWN  
PGND  
AGND  
8.3 Feature Description  
8.3.1 Boost Converter  
The boost converter uses a fixed-frequency current-mode topology, and its output voltage (VPOS) is fixed at 4.6 V  
For the highest output voltage accuracy, connect the output sense pin (FBS) directly to the positive pin of the  
output capacitor. If not used, the FBS pin can be left floating or connected to ground. If the FBS pin is not used,  
the boost converter senses its output voltage using the OUTP pin.  
8.3.2 Inverting Buck-Boost Converter  
The inverting buck-boost converter uses a constant-off-time peak-current mode topology. The converter's default  
output voltage (VNEG) is –4 V, but it can be programmed to any voltage in the range –1.4 V to –4.4 V (see  
Programming VNEG).  
8
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS65631W  
www.ti.com.cn  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
Feature Description (continued)  
8.3.3 Soft-Start and Start-Up Sequence  
The TPS65631W features a soft-start function to limit inrush current. When the device is enabled by a high-level  
signal applied to the CTRL pin, the boost converter starts switching with a reduced switch current limit. Ten  
milliseconds after the CTRL pin goes high, the inverting buck-boost converter starts with a default value of –4 V.  
A typical start-up sequence is shown in Figure 6.  
CTRL  
VPOS  
10 ms (typ.)  
VNEG  
Figure 6. Typical Start-Up Sequence  
8.3.4 Enable (CTRL)  
The CTRL pin serves two functions. One is to enable and disable the device, and the other is to program the  
output voltage (VNEG) of the inverting buck-boost converter (see Programming VNEG). If the digital interface is not  
required, the CTRL pin can be used as a standard enable pin for the device, which will come up with its default  
value on VNEG of –4 V. When CTRL is pulled high, the device is enabled. The device is shut down with CTRL  
low.  
8.3.5 Undervoltage Lockout  
The TPS65631W features an undervoltage lockout function that disables the device when the input supply  
voltage is too low for normal operation.  
8.3.6 Short Circuit Protection  
The TPS65631W is protected against short-circuits of VPOS and VNEG to ground and to each other.  
8.3.6.1 Short-Circuits During Normal Operation  
During normal operation an error condition is detected if VPOS falls below 4.1 V for more than 3 ms or VNEG is  
pulled above the programmed nominal output by 500 mV for longer than 3 ms. In either case the device enters  
shutdown mode: the converters are disabled and their outputs are disconnected from the input. To resume  
normal operation either cycle the input supply voltage or toggle the CTRL pin low and then high again.  
8.3.6.2 Short-Circuits During Start-Up  
During start up an error condition is detected if:  
VPOS is not in regulation 10 ms after a high-level is applied to the CTRL pin.  
VNEG is higher than threshold level 10 ms after a high-level is applied to the CTRL pin.  
VNEG is not in regulation 20 ms after a high-level is applied to the CTRL pin.  
To resume normal operation either cycle the input supply voltage or toggle the CTRL pin low and then high  
again.  
8.3.7 Output Discharge During Shutdown  
The TPS65631W actively discharges its outputs during shutdown. Figure 7 shows the output discharge control.  
Copyright © 2013–2014, Texas Instruments Incorporated  
9
 
 
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
Feature Description (continued)  
VI  
CTRL  
VPOS  
tVUVLO  
tVUVLO  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
VNEG  
t10 ms (typ.)  
t10 ms (typ.)  
Figure 7. Active Discharge of VPOS and VNEG During Shutdown  
8.3.8 Thermal Shutdown  
The TPS65631W enters thermal shutdown mode if its junction temperature exceeds 145°C (typical). During  
thermal shutdown mode none of the device functions are available. To resume normal operation, either cycle the  
input supply voltage or toggle the CTRL pin low and then high again.  
8.4 Device Functional Modes  
8.4.1 Operation with VI < 2.9 V  
The recommended minimum input supply voltage for full performance is 2.9 V. The device continues to operate  
with input supply voltages below 2.9 V; however, full performance is not guaranteed. The device does not  
operate with input supply voltages below the UVLO threshold.  
8.4.2 Operation with VI VPOS (Diode Mode)  
The TPS65631W features a "diode" mode that enables it to regulate its output voltage even when the input  
supply voltage is close to VPOS (that is, too high for normal boost operation). When operating in diode mode the  
converter's high-side switch stops switching and its body diode is used as the rectifier. Boost converter efficiency  
is reduced when operating in diode mode. At low output currents (2 mA and below), the boost converter  
automatically transitions from pulse-width modulation to pulse-skip mode. This ensures that VPOS stays in  
regulation but increases the output voltage ripple on VPOS  
.
8.4.3 Operation with CTRL  
When a low-level signal is applied to the CTRL pin the device is disabled and switching is inhibited. When the  
input supply voltage is above the UVLO threshold and a high-level signal is applied to the CTRL pin the device is  
enabled and its start-up sequence begins.  
10  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS65631W  
www.ti.com.cn  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
8.5 Programming  
8.5.1 Programming VNEG  
The output voltage of the inverting buck-boost converter (VNEG) can be programmed using the CTRL pin. If  
output voltage programming is not required, the CTRL pin can be used as a standard enable pin (see Enable  
(CTRL)).  
ttINIT  
tLOW  
t
ttHIGH  
ttSTORE  
ttOFF  
CTRL  
VPOS  
VNEG  
4.6 V  
ttSCP  
t
ttSET  
±4.0 V  
±4.2 V  
Figure 8. Programming VNEG Using the CTRL Pin  
When the CTRL pin is pulled high, the inverting buck-boost converter starts up with its default voltage of –4V.  
The device now counts the rising edges applied to the CTRL pin and sets the output voltage (VNEG) according to  
Table 1. For the timing diagram shown in Figure 8, VNEG is programmed to –4.2 V, since three rising edges are  
detected.  
The CTRL interface is designed to work with pulses whose duration is between 2 µs and 25 µs. Pulses shorter  
than 2 µs or longer than 25 µs are not ensured to be recognized.  
Table 1. Programming Table for VNEG  
Number of Rising Edges  
VNEG  
Number of Rising Edges  
VNEG  
0 / no pulses  
–4 V  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
–2.9 V  
–2.8 V  
–2.7 V  
–2.6 V  
–2.5 V  
–2.4 V  
–2.3 V  
–2.2 V  
–2.1 V  
–2.0 V  
–1.9 V  
–1.8 V  
–1.7 V  
–1.6 V  
–1.5 V  
–1.4 V  
1
2
–4.4 V  
–4.3 V  
–4.2 V  
–4.1 V  
–4.0 V  
–3.9 V  
–3.8 V  
–3.7 V  
–3.6 V  
–3.5 V  
–3.4 V  
–3.3 V  
–3.2 V  
–3.1 V  
–3.0 V  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Copyright © 2013–2014, Texas Instruments Incorporated  
11  
 
 
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
Figure 9 shows a typical application circuit suitable for supplying AMOLED displays in smartphone applications.  
The circuit is designed to operate from a single-cell Li-Ion battery and generates a positive output voltage VPOS of  
4.6 V and a negative output voltage of –4 V. Both outputs are capable of supplying up to 300 mA of output  
current.  
9.2 Typical Application  
L1  
4.7 µH  
VI  
PVIN  
AVIN  
SWP  
OUTP  
FBS  
2.9 V to 4.5 V  
VPOS  
4.6 V, 300 mA  
C1  
2×10 µF  
C2  
10 µF  
TPS65631  
EN / Program VNEG  
CTRL  
VNEG  
±4.0 V, 300 mA  
OUTN  
SWN  
C3  
2×10 µF  
PGND  
AGND  
L2  
4.7 µH  
Figure 9. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the following input parameters.  
Table 2. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE  
2.9 V to 4.5 V  
VPOS = 4.6V, VNEG = –4 V  
9.2.2 Detailed Design Procedure  
In order to maximize performance, the TPS65631W has been optimized for use with a relatively narrow range of  
component values, and customers are strongly recommended to use the application circuit shown in Figure 9  
with the components listed in Table 3 and Table 4.  
12  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
TPS65631W  
www.ti.com.cn  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
9.2.2.1 Inductor Selection  
The boost converter and inverting buck-boost converter have been optimized for use with 10 µH inductors, and it  
is recommended that this value be used in all applications. Customers using other values of inductor are strongly  
recommended to characterize circuit performance on a case-by-case basis.  
Table 3. Inductor Selection(1)  
PARAMETER  
VALUE  
MANUFACTURER  
Toko  
PART NUMBER  
DFE252012C-100M  
LPP252012-100M  
MDKK2020T-100M  
L1, L2  
10 µH  
ABCO  
Taiyo Yuden  
(1) See Third-Party Products Disclaimer  
9.2.2.2 Capacitor Selection  
The recommended capacitor values are shown in Table 4. Applications using less than the recommended  
capacitance (e.g. to save PCB area) may experience increased voltage ripple. In general, the lower the output  
power, the lower the necessary capacitance.  
Table 4. Capacitor Selection(1)  
PARAMETER  
VALUE  
2 × 10 µF  
10 µF  
MANUFACTURER  
Murata  
PART NUMBER  
C1  
C2  
C3  
C4  
GRM21BR71A106KE51  
GRM21BR71A106KE51  
GRM21BR71A106KE51  
GRM21BR71E104KA01  
Murata  
2 × 10 µF  
100 nF  
Murata  
Murata  
(1) See Third-Party Products Disclaimer  
9.2.2.3 Stability  
Applications using component values that differ significantly from those recommended in Table 3 and Table 4  
should be checked for stability over the full range of operating conditions.  
Copyright © 2013–2014, Texas Instruments Incorporated  
13  
 
 
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
9.2.3 Application Curves  
The performance shown in the following graphs was obtained using the circuit shown in Figure 9 and the  
external components shown in Table 3 and Table 4. The output voltage settings for these measurements were  
VPOS = 4.6 V and VNEG = –4 V.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VI = 2.9 V  
VI = 3.7 V  
VI = 4.3 V  
VI = 2.9 V  
VI = 3.7 V  
VI = 4.3 V  
VPOS = 4.6 V  
VNEG = –4.0 V  
VPOS = 4.6 V  
VNEG = –4.0 V  
0
25  
50  
75  
100  
125  
150  
175  
200  
1
10  
100  
200  
Output Current (mA)  
Output Current (mA)  
G001  
G002  
Figure 10. Efficiency vs. Output Current  
Figure 11. Efficiency vs. Output Current (Log Scale)  
VPOS  
10mV/div  
CTRL  
5V/div  
SWP  
5V/div  
VPOS  
2V/div  
VNEG  
2V/div  
IINDUCTOR  
100mA/div  
IIN  
200mA/div  
2 ms/div  
400 ns/div  
Figure 12. Start-Up Waveforms  
Figure 13. VPOS Switch Voltage, Inductor Current and  
Output Voltage Ripple (IO = 100 mA)  
VNEG  
20mV/div  
VPOS  
10mV/div  
SWP  
5V/div  
SWN  
5V/div  
IINDUCTOR  
100mA/div  
IINDUCTOR  
200mA/div  
400 ns/div  
400 ns/div  
Figure 15. VNEG Switch Voltage, Inductor Current and  
Output Voltage Ripple (IO = 100 mA)  
Figure 14. VPOS Switch Voltage, Inductor Current and  
Output Voltage Ripple (IO = 200 mA)  
14  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS65631W  
www.ti.com.cn  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
4.65  
4.64  
4.63  
4.62  
4.61  
4.60  
4.59  
4.58  
4.57  
4.56  
4.55  
VNEG  
20mV/div  
SWN  
5V/div  
IINDUCTOR  
200mA/div  
TJ = –40 °C  
TJ = 25 °C  
TJ = 85 °C  
IO = 100 mA  
3.1 3.3  
400 ns/div  
2.9  
3.5  
3.7  
3.9  
4.1  
4.3 4.5  
Input Voltage (V)  
G007  
Figure 16. VNEG Switch Voltage, Inductor Current and  
Output Voltage Ripple (IO = 200 mA)  
Figure 17. Boost Converter Line Regulation  
−3.95  
4.65  
−3.96  
−3.97  
−3.98  
−3.99  
−4.00  
−4.01  
−4.02  
−4.03  
−4.04  
−4.05  
4.64  
4.63  
4.62  
4.61  
4.60  
4.59  
4.58  
4.57  
4.56  
4.55  
TJ = –40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = –40 °C  
TJ = 25 °C  
TJ = 85 °C  
IO = 100 mA  
3.1 3.3  
VI = 3.7 V  
25  
2.9  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
0
50  
75  
100  
125  
150  
175  
200  
Input Voltage (V)  
Output Current (mA)  
G008  
G009  
Figure 18. Inverting Buck-Boost Converter Line Regulation  
Figure 19. Boost Converter Load Regulation  
−3.95  
−3.96  
−3.97  
−3.98  
−3.99  
−4.00  
−4.01  
−4.02  
TJ = –40 °C  
TJ = 25 °C  
TJ = 85 °C  
−4.03  
−4.04  
−4.05  
VI = 3.7 V  
25  
0
50  
75  
100  
125  
150  
175  
200  
Output Current (mA)  
G010  
Figure 21. Line Transient Response  
Figure 20. Inverting Buck-Boost Converter Load  
Regulation  
Copyright © 2013–2014, Texas Instruments Incorporated  
15  
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
Figure 22. Boost Converter Load Transient Response  
Figure 23. Inverting Buck-Boost Converter Load Transient  
Response  
10 Power Supply Recommendations  
The TPS65631W is designed to operate from an input voltage supply range between 2.9 V and 4.5 V. If the input  
supply is located more than a few centimeters from the TPS65631W additional bulk capacitance may be  
required. The 2×10 µF shown in the schematics in this data sheet are a typical choice for this function.  
16  
Copyright © 2013–2014, Texas Instruments Incorporated  
TPS65631W  
www.ti.com.cn  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
11 Layout  
11.1 Layout Guidelines  
No PCB layout is perfect and compromises are always necessary. However, following the basic principles listed  
below (in order of importance) should go a long way to achieving good performance:  
Route switching currents on the top layer using short, wide traces. Do not route these signals through vias,  
which have relatively high parasitic inductance and resistance.  
Use a copper pour on layer 2 as a ground plane and thermal spreader, and connect the thermal pad to it  
using a number of thermal vias.  
Place C1 as close as possible to pin 10.  
Place C2 as close as possible to pins 2 and 3.  
Place C3 as close as possible to pin 7.  
Place L1 as close as possible to pin 1.  
Place L2 as close as possible to pin 10.  
Use the thermal pad to join AGND and PGND.  
Connect the FBS pin directly to the positive pin of C2, that is, keep this connection separate from the  
connection between OUTP and C2.  
Figure 24 illustrates how a PCB layout following the above principles may be realized in practice.  
11.2 Layout Example  
Figure 24 shows the above principles implemented for the circuit of Figure 9.  
L1  
C1  
SWP  
PGND  
OUTP  
FBS  
1
2
3
4
5
10 PVIN  
C2  
9
8
7
6
AVIN  
SWN  
OUTN  
L2  
C3  
AGND  
CTRL  
Via to signal layer on internal or bottom layer.  
Thermal via to copper pour on internal or bottom layer.  
Figure 24. PCB Layout Example  
版权 © 2013–2014, Texas Instruments Incorporated  
17  
 
TPS65631W  
ZHCSCV3A JULY 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
5. 相关链接  
部件  
产品文件夹  
请单击此处  
样片与购买  
请单击此处  
技术文档  
工具与软件  
请单击此处  
支持与社区  
请单击此处  
TPS65631W  
请单击此处  
12.3 商标  
All trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2013–2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65631WDSKR  
ACTIVE  
SON  
DSK  
10  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
SJN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65631WDSKR  
SON  
DSK  
10  
3000  
180.0  
8.4  
2.8  
2.8  
1.0  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SON DSK 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
TPS65631WDSKR  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSK 10  
2.5 x 2.5 mm, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225304/A  
PACKAGE OUTLINE  
DSK0010A  
WSON - 0.8 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
2.6  
2.4  
A
B
PIN 1 INDEX AREA  
2.6  
2.4  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
1.2 0.1  
6
5
1
2X  
2
11  
2
0.1  
10  
8X 0.5  
0.3  
10X  
0.45  
0.35  
0.2  
0.1  
0.05  
10X  
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4218903/B 10/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSK0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
(1.2)  
10  
1
10X (0.25)  
SYMM  
(2)  
11  
8X (0.5)  
(0.75)  
(R0.05) TYP  
5
6
(0.35)  
(
0.2) VIA  
TYP  
SYMM  
(2.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218903/B 10/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSK0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
SYMM  
1
10  
METAL  
TYP  
10X (0.25)  
SYMM  
11  
8X (0.5)  
(0.89)  
6
(R0.05) TYP  
5
(1.13)  
(2.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4218903/B 10/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS65632

三路输出 AMOLED 显示电源
TI

TPS65632A

三输出 AMOLED 显示屏电源
TI

TPS65632ARTER

三输出 AMOLED 显示屏电源 | RTE | 16 | -40 to 85
TI

TPS65632RTER

三路输出 AMOLED 显示电源 | RTE | 16 | -40 to 85
TI

TPS65632RTET

三路输出 AMOLED 显示电源 | RTE | 16 | -40 to 85
TI

TPS65640

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置
TI

TPS65640RHRR

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置 | RHR | 28 | -40 to 85
TI

TPS65642

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65642A

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置
TI

TPS65642AYFFR

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置 | YFF | 56 | -40 to 85
TI

TPS65642YFF

IC LIQUID CRYSTAL DISPLAY DRIVER, Display Driver
TI

TPS65642YFFR

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI