TPS65632RTET [TI]

三路输出 AMOLED 显示电源 | RTE | 16 | -40 to 85;
TPS65632RTET
型号: TPS65632RTET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

三路输出 AMOLED 显示电源 | RTE | 16 | -40 to 85

驱动 接口集成电路
文件: 总27页 (文件大小:1671K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS65632  
ZHCSDG2 MARCH 2015  
TPS65632 三路输出 AMOLED 显示屏电源  
1 特性  
(WQFN) 封装  
1
2.9V 4.5V 输入电压范围  
升压转换器 1 (VPOS  
2 应用范围  
)
AMOLED 显示屏  
4.6V 输出电压  
0.5% 精度(25°C 85°C)  
专用输出感测引脚  
3 说明  
TPS65632 设计用于驱动需要 3 个电源  
300mA 输出电流  
轨(VPOSVNEG AVDD)的有源矩阵有机发光二极  
(AMOLED) 显示屏。 该器件分别为 VPOSVNEG 和  
AVDD 集成了升压转换器、反向降压-升压转换器以及升  
压转换器,这些转换器均适用于电池供电产品。 数字  
控制引脚 (CTRL) 允许用数字步长设定负输出电压。  
TPS65632 采用全新技术,可提供出色的线路与负载  
调节性能。  
反向降压-升压转换器 (VNEG)  
–1.5V 5.4V 可编程输出电压  
–4V 默认输出电压  
300mA 输出电流  
升压转换器 2 (AVDD  
)
5.8V 7.7V 输出电压  
30mA 输出电流  
器件信息(1)  
出色的线路瞬态稳压  
器件型号  
封装  
封装尺寸(标称值)  
短路保护功能  
TPS65632  
WQFN (16)  
3.00mm x 3.00mm  
热关断  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
3mm × 3mm 16 引脚超薄型四方扁平无引线  
4 简化电路原理图  
L1  
4.7 µH  
效率与输出电流间的关系  
VI  
100  
PVIN  
AVIN  
SWP1  
2.9 V to 4.5 V  
AVDD  
VPOS & VNEG  
VPOS  
4.6 V / 300 mA  
C1  
90  
OUTP1  
FBS  
3×10 µF  
C5  
100 nF  
C2  
80  
70  
60  
50  
40  
30  
20  
10 µF  
TPS65632  
L2  
10 µH  
VNEG  
±4.0 V / 300 mA  
SWP2  
OUTN  
C3  
2×10 µF  
Enable AVDD  
Enable / Program VNEG  
EN  
CTRL  
AVDD  
7.7 V / 30 mA  
OUTP2  
L3  
C6  
10 µF  
SELP2  
AGND  
PGND1  
PGND2  
4.7 µH  
SWN  
CT  
10  
VPOS = 4.6 V,VNEG = –4.0 V,AVDD = 7.7 V  
C4  
100 nF  
0
1m  
10m  
100m  
300m  
Output Current (A)  
G000  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCY2  
 
 
 
 
 
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ......................................... 8  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9.1 Application Information............................................ 13  
9.2 Typical Application ................................................. 13  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 器件支持................................................................ 20  
12.2 ....................................................................... 20  
12.3 静电放电警告......................................................... 20  
12.4 术语表 ................................................................... 20  
13 机械、封装和可订购信息....................................... 20  
8
5 修订历史记录  
日期  
修订版本  
注释  
2015 3 月  
*
最初发布版本  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
6 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN with Thermal Pad  
Top View  
SWP1  
PGND1  
OUTP1  
FBS  
1
2
3
4
12 PVIN  
11 SWN  
Exposed  
Thermal  
Pad  
10 OUTN  
9
CTRL  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
AGND  
AVIN  
NO.  
7
GND  
PWR  
Analog ground.  
16  
Supply voltage for the device.  
A capacitor connected between this pin and ground sets the transition time for VNEG  
when programmed to a new value.  
CT  
6
I/O  
CTRL  
EN  
9
8
I
I
Boost converter 1 (VPOS) inverting buck-boost converter (VNEG) enable/program.  
Boost converter 2 (AVDD) enable.  
FBS  
4
I
Boost converter 1 (VPOS) sense input.  
OUTN  
OUTP  
OUTP2  
PGND1  
PGND2  
PVIN  
10  
3
O
Inverting buck-boost converter output (VNEG).  
Boost converter 1 output (VPOS).  
O
13  
2
O
Boost converter 2 output (AVDD).  
GND  
GND  
PWR  
Boost converter 1 power ground.  
14  
12  
Boost converter 2 power ground.  
Inverting buck-boost converter power stage supply voltage.  
Boost converter 2 output voltage selection pin. AVDD = 7.7 V when SELP2 = low and  
5.8 V when SELP2 = high.  
SELP2  
5
I
SWN  
11  
1
I/O  
I
Inverting buck-boost converter switch pin.  
Boost converter 1 switch pin.  
SWP1  
SWP2  
15  
I
Boost converter 2 switch pin.  
Exposed thermal pad  
Connect this pad to AGND, PGND1 and PGND2.  
(1) GND = Ground, PWR = Power, I = Input, O = Output, I/O = Input/Output  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–6.0  
–6.5  
–0.3  
–0.3  
–40  
MAX  
UNIT  
V
SWP1, OUTP1, FBS, PVIN, AVIN  
5
12  
SWP2  
V
OUTP2  
8.5  
0.3  
4.8  
5.5  
3.6  
150  
150  
V
Input supply voltage(2)  
OUTN  
V
SWN  
V
CTRL, EN, SELP2  
CT  
V
V
Operating virtual junction, TJ  
Storage temperature, Tstg  
°C  
°C  
–65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) With respect to GND pin.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
INPUT  
VI  
Input supply voltage range  
2.9  
3.7  
85  
4.5  
V
TJ  
Operating junction temperature  
–40  
125  
°C  
7.4 Thermal Information  
RTE [WQFN]  
16 PINS  
42.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44  
14.2  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
14.1  
RθJC(bot)  
3.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
7.5 Electrical Characteristics  
VI = 3.7 V, CTRL = 3.7 V, EN = 3.7 V, VPOS = 4.6 V, VNEG = –4.0 V, AVDD = 7.7 V, TJ = –40°C to 85°C, typical values are at TJ  
= 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT AND THERMAL PROTECTION  
VI  
Input voltage range  
Shutdown current  
2.9  
3.7  
4.5  
5
V
CTRL = GND, EN = GND, sum of current flowing into  
AVIN and PVIN  
ISD  
0.25  
µA  
VI falling  
VI rising  
1.8  
2.1  
2.1  
2.5  
V
V
VUVLO  
Under-voltage lockout threshold  
BOOST CONVERTER 1 (VPOS  
)
Positive output 1 voltage  
4.6  
V
VPOS  
25°C TA 85°C, No load  
–30°C TA 85°C, No load  
–0.5%  
–0.8%  
0.5%  
0.8%  
Positive output 1 voltage  
variation  
rDS(on)1A Switch on-resistance  
rDS(on)1B Rectifier on-resistance  
200  
350  
1.7  
1
mΩ  
mΩ  
MHz  
A
I(SWP1) = 200 mA  
fSW1  
Switching frequency  
Switch current limit  
IPOS = 200mA  
ISW1  
Inductor valley current  
VPOS falling  
0.8  
1.4  
VSCP1  
Short-circuit threshold in  
operation  
3.95  
4.10  
3
4.28  
V
tSCP1  
Short-circuit detection time in  
operation  
ms  
V(OUTP1) – V(FBS) increasing  
V(OUTP1) – V(FBS) decreasing  
200  
100  
2
300  
200  
4
550  
450  
6
mV  
mV  
MΩ  
Ω
VT  
Output voltage sense threshold  
FBS pin pull-down resistance  
R(FBS)  
RDCHG1 Discharge resistance  
Line regulation  
CTRL = GND, I(SWP1) = 1mA  
IPOS = 200mA  
10  
30  
70  
0.01  
0.007  
%/V  
%/A  
Load regulation  
1 mA IPOS 300 mA  
INVERTING BUCK-BOOST CONVERTER (VNEG  
)
Output voltage default  
–4.0  
V
Output voltage range  
VNEG  
–1.4  
–50  
–60  
–5.4  
50  
25°C TA 85°C, no load  
–30°C TA 85°C, no load  
Output voltage accuracy  
mV  
60  
rDS(on)2A SWN MOSFET on-resistance  
200  
300  
mΩ  
mΩ  
I(SWN) = 200 mA  
SWN MOSFET rectifier on-  
rDS(on)2B  
resistance  
fSW2  
ISW2  
SWN Switching frequency  
SWN switch current limit  
INEG = 10 mA  
1.7  
2.2  
MHz  
A
VI = 2.9 V  
1.5  
300  
180  
3
700  
230  
Short circuit threshold in  
operation  
Voltage increase from nominal VNEG  
500  
200  
10  
mV  
mV  
ms  
VSCP2  
Short circuit threshold in start up  
Short circuit detection time in  
start up  
tSCP2  
Short circuit detection time in  
operation  
3
ms  
RDCHG2 Discharge resistance  
Line regulation  
CTRL = GND, I(SWN) = 1 mA  
INEG = 200 mA  
130  
150  
0.004  
0.1  
170  
Ω
%/V  
%/A  
Load regulation  
BOOST CONVERTER 2 (AVDD  
)
Copyright © 2015, Texas Instruments Incorporated  
5
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
VI = 3.7 V, CTRL = 3.7 V, EN = 3.7 V, VPOS = 4.6 V, VNEG = –4.0 V, AVDD = 7.7 V, TJ = –40°C to 85°C, typical values are at TJ  
= 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
7.7  
MAX UNIT  
SELP2 = Low  
SELP2 = High  
Output voltage  
V
5.8  
AVDD  
25°C TA 85°C, no load  
–30°C TA 85°C, no load  
–1%  
1%  
Output voltage accuracy  
–1.3%  
1.3%  
rDS(on)3A SWP2 switch on-resistance  
rDS(on)3B SWP2 rectifier on-resistance  
400  
650  
1.7  
I(SWP2) = 200 mA  
mΩ  
fSW3  
ILIM3  
Switching frequency  
Switch current limit  
IAVDD = 0 mA  
MHz  
Inductor valley current  
EN = GND, I(SWP2) = 1 mA  
IAVDD = 30 mA  
0.25  
10  
0.35  
30  
0.45  
70  
A
Ω
RDCHG3 Discharge resistance  
Line regulation  
0.02  
0.18  
%/V  
%/mA  
Load regulation  
CTRL INTERFACE (CTRL, EN, SELP2)  
VIH  
Logic input high level voltage  
Logic input low level voltage  
Pull-down resistance  
1.2  
150  
150  
V
V
VIL  
0.4  
R
400  
860  
kΩ  
OTHER  
RCT  
tINIT  
tSTORE  
tSDN  
TSD  
CT pin resistance  
300  
300  
500  
400  
80  
kΩ  
µs  
µs  
µs  
°C  
Initialization time  
Data storage/accept time period  
Shutdown time period  
30  
30  
80  
Thermal shutdown temperature Temperature rising  
145  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
CTRL INTERFACE  
tLOW  
tHIGH  
tOFF  
Low-level pulse duration  
2
2
10  
10  
25  
25  
µs  
µs  
µs  
High-level pulse duration  
Shutdown pulse duration (CTRL = low)  
200  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
7.7 Typical Characteristics  
TJ = 25°C, VI = 3.7 V, unless otherwise stated.  
10  
1
600  
500  
400  
300  
200  
100  
0
0.1  
0.01  
0.001  
Low−Side  
High−Side  
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Junction Temperature (°C)  
G000  
G000  
Figure 1. Shutdown Current into AVIN and PVIN Pins  
Figure 2. Boost Converter 1 (VPOS) rDS(ON)  
600  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
Low−Side  
High−Side  
Low−Side  
High−Side  
0
−50  
−25  
0
25  
50  
75  
100 125  
−50  
−25  
0
25  
50  
75  
100 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
G000  
G000  
Figure 3. Inverting Buck-Boost Converter (VNEG) rDS(ON)  
Figure 4. Boost Converter 2 (AVDD) rDS(ON)  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS65632 consists of two boost converters and an inverting buck-boost converter. The VPOS output is fixed  
at 4.6 V and VNEG is programmable via a digital interface in the range of –1.4 V to –5.4 V; the default is –4 V.  
AVDD can be selected between 7.7 V and 5.8 V, using the SELP2 pin. The transition time of VNEG output is  
adjustable by the CT pin capacitor.  
8.2 Functional Block Diagram  
VI  
SWP2  
15  
AVIN  
16  
SWP1  
1
OUTP2  
13  
OUTP1  
AVDD  
3
4
VPOS  
Short-Circuit  
Protection  
Gate Driver  
Gate Driver  
PGND2  
PGND1  
Output Sense  
Control  
FBS  
SELP2  
EN  
±
±
AVIN  
SWP2  
AVIN  
SWP1  
PWM  
Control  
PWM  
Control  
5
8
VREF  
+
+
VREF  
Oscillator  
CTRL  
CTRL  
CT  
Digital  
Interface  
6
+
DAC  
9
6
±
CT  
Control  
±
Short-Circuit  
Protection  
Constant  
Off-Time  
Controller  
+
50 mV  
Gate Driver  
PVIN  
OUTN  
VI  
12  
10  
VNEG  
7
11  
2
14  
AGND  
SWN  
PGND1  
PGND2  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
8.3 Feature Description  
8.3.1 Boost Converter 1 (VPOS  
)
Boost converter 1 uses a fixed-frequency current-mode topology. Its output voltage (VPOS) is programmed at the  
factory to 4.6 V and cannot be changed by the user.  
For highest output voltage accuracy, connect the output sense pin (FBS) directly to the positive terminal of the  
main output capacitor. If not used, the FBS pin can be left floating or connected to ground, in which case the  
boost converter senses the output voltage via the OUTP1 pin.  
8.3.1.1 V(POS) Boost Output Sense (FBS Pin)  
V(POS) boost has a dedicated output sense pin (FBS). If FBS is floating or connected to ground, V(POS) boost  
senses the output through OUTP1 pin.  
8.3.2 Inverting Buck-Boost Converter (VNEG  
)
The inverting buck-boost converter uses a constant-off-time current-mode topology. The converter's default  
output voltage (VNEG) is –4.0 V, but it can be programmed from –1.4 V to –5.4 V (see Programming VNEG ).  
8.3.2.1 Programming VNEG  
The digital interface allows programming of VNEG in discrete steps. If the output voltage setting function is not  
required then the CTRL pin can also be used as a standard enable pin. The digital output voltage programming  
of VNEG is implemented using a simple digital interface with the timing shown in Figure 5.  
ttINIT  
tLOW  
t
ttHIGH  
ttSTORE  
ttSDN  
ttOFF  
CTRL  
VPOS  
VNEG  
t
4.6 V  
ttSCP2  
t
ttSET  
±5.2 V  
±4.0 V  
Figure 5. Digital Interface Using CTRL  
When CTRL is pulled high the device starts up with its default voltage of –4 V. The device includes a 6-bit DAC  
that generates the output voltages shown in Table 1. The interface counts the rising edges applied to the CTRL  
pin once the device is enabled. According toTable 1, VNEG is programmed to –5.2 V since 3 rising edges are  
detected.  
Copyright © 2015, Texas Instruments Incorporated  
9
 
 
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
Feature Description (continued)  
Table 1.  
Bit / Rising Edges  
VNEG  
DAC Value  
Bit / Rising Edges  
VNEG  
DAC Value  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
0 / no pulse  
–4.0 V  
–5.4 V  
–5.3 V  
–5.2 V  
–5.1 V  
–5.0 V  
–4.9 V  
–4.8 V  
–4.7 V  
–4.6 V  
–4.5 V  
–4.4 V  
–4.3 V  
–4.2 V  
–4.1 V  
–4.0 V  
–3.9 V  
–3.8 V  
–3.7 V  
–3.6 V  
–3.5 V  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
–3.4 V  
–3.3 V  
–3.2 V  
–3.1 V  
–3.0 V  
–2.9 V  
–2.8 V  
–2.7 V  
–2.6 V  
–2.5 V  
–2.4 V  
–2.3 V  
–2.2 V  
–2.1 V  
–2.0 V  
–1.9 V  
–1.8 V  
–1.7 V  
–1.6 V  
–1.5 V  
–1.4 V  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8.3.2.2 Controlling VNEG Transition Time  
The transition time (tSET) is the time required to move VNEG from one voltage level to the next. Users can control  
the transition time with a capacitor connected between the CT pin and ground. When the CT pin is left open or  
connected to ground the transition time is as short as possible. When a capacitor is connected to the CT pin the  
transition time is determined by the time constant (τ) of the external capacitor (C(CT)) and the internal resistance  
of the CT pin (RCT). The output voltage reaches 70% of its programmed value after 1τ.  
An example is given when using 100 nF for C(CT)  
.
τ = 300 kΩ × 100 nF = 30 ms  
(1)  
The output voltage is at 70% of its final value after 1τ (i.e. 30 ms in this case) and at its final value after  
approximately 3τ (90 ms in this case).  
8.3.3 Boost Converter 2 (AVDD  
)
Boost converter 2 uses a fixed-frequency current-mode topology. The TPS65632 device supports fixed output  
voltages of 5.8 V and 7.7 V, selected by the SELP2 pin. AVDD = 7.7 V when SELP2 is low or left floating, and  
AVDD = 5.8 V when SELP2 is high.  
8.3.4 Soft Start and Start-Up Sequence  
The devices feature a soft-start function to limit inrush current. Boost converter 2 (AVDD) is enabled when EN  
goes high. When CTRL goes high, boost converter 1 starts with a reduced switch current limit and 10 ms later  
the inverting buck-boost converter (VNEG) starts with its default value of –4 V. The typical start-up sequence is  
shown in Figure 6. The two boost converters operate independently and boost converter 1 (VPOS) does not  
require boost converter 2 (AVDD) to be in regulation in order for it to start..  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
EN  
CTRL  
AVDD  
VPOS  
10 ms (typ.)  
VNEG  
Figure 6. Start-Up Sequence  
8.3.5 Enable (CTRL)  
The CTRL pin serves two functions: one is to enable and disable the device, and the other is to program the  
output voltage (VNEG) of the inverting buck-boost converter (see Programming VNEG). If the VNEG programming  
function is not required the CTRL pin can be used as a standard enable pin for the device, which will start up  
with its default value of –4.0 V on VNEG. The device is enabled when CTRL is pulled high and disabled when  
CTRL is pulled low.  
Note that to ensure proper start up CTRL must be pulled low for a minimum of 200 µs before being pulled high  
again.  
8.3.6 Undervoltage Lockout  
The device features an undervoltage lockout function that disables it when the input supply voltage is too low for  
proper operation.  
8.3.7 Short-Circuit Protection  
8.3.7.1 Short Circuits During Operation  
The device is protected against short circuits of VPOS and VNEG to ground and short circuit of these two outputs to  
each other. During normal operation an error condition is detected if VPOS falls below 4.1 V for longer than 3 ms  
or VNEG is pulled above the programmed nominal output by 500 mV for longer than 3 ms. In either case the  
device goes into shutdown and the outputs are disconnected from the input. This state is latched, and to resume  
normal operation, VI has to cycle below the undervoltage lockout threshold, or CTRL has to toggle LOW and then  
HIGH.  
8.3.7.2 Short Circuits During Start Up  
During start up an error condition is detected in the following cases:  
VPOS is not in regulation 10 ms after CTRL goes HIGH  
VNEG is higher than threshold level 10 ms after CTRL goes HIGH  
VNEG is not in regulation 20 ms after CTRL goes HIGH  
whitespace  
If any of the above conditions is met the device goes into shutdown and the outputs are disconnected from the  
input. This state is latched, and to resume normal operation VI has to cycle below the undervoltage threshold, or  
CTRL has to toggle LOW and HIGH.  
8.3.8 Output Discharge During Shut Down  
The device discharges outputs during shutdown. Figure 7 shows the discharge control.  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
VIN  
EN  
tVUVLO  
tVUVLO  
CTRL  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
AVDD  
VPOS  
Discharge  
Discharge  
VNEG  
t10 ms (typ.)  
t10 ms (typ.)  
Figure 7. Outputs Discharge During Shut Down  
8.3.9 Thermal Shutdown  
The TPS65632 device enters thermal shutdown if its junction temperature exceeds 145°C (typical). During  
thermal shutdown none of the device's functions are available. To resume normal operation VI has to cycle below  
the undervoltage threshold, or CTRL has to toggle LOW and then HIGH.  
8.4 Device Functional Modes  
8.4.1 Operation with VI < 2.9 V  
The recommended minimum input supply voltage for full-performance is 2.9 V. The device continues to operate  
with input supply voltages below 2.9 V, however, full performance is not guaranteed. The TPS65632 device does  
not operate with input supply voltages below the UVLO threshold.  
8.4.2 Operation with VI VPOS (Diode Mode)  
The TPS65632 device features a "diode" mode that enables it to regulate its VPOS output even when the input  
supply voltage is close to VPOS (that is, too high for normal boost operation). When operating in diode mode the  
VPOS boost converter's high-side switch is disabled and its body diode used as the rectifier. Note that a minimum  
load of 2 mA is required to proper output regulation in diode mode.  
8.4.3 Operation with CTRL  
When a low-level signal is applied to the CTRL pin the device is disabled and switching is inhibited. When the  
input supply voltage is above the UVLO threshold and a high-level signal is applied to the CTRL pin the device is  
enabled and its start-up sequence begins.  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS65632 device is intended to supply the main analog supplies required by AMOLED displays. VPOS is  
fixed at 4.6 V, but VNEG can be programmed using the CTRL pin to voltages in the range –1.4 V to –5.4 V. The  
SELP2 pin can be used to set AVDD to either 5.8 V or 7.7 V. The device is highly integrated and requires few  
external components.  
9.2 Typical Application  
Figure 8 shows a typical application circuit suitable for supplying AMOLED displays in smartphone applications.  
The circuit is designed to operate from a single-cell Li-Ion battery and generates a positive output voltage VPOS of  
4.6 V, a negative output voltage VNEG of –4.0 V, and a positive output voltage AVDD of 5.8 V or 7.7 V. The VPOS  
and VNEG outputs are each capable of supplying up to 300 mA of current, and the AVDD output of up to 30 mA.  
L1  
4.7 µF  
VI  
PVIN  
AVIN  
SWP1  
2.9 V to 4.5 V  
VPOS  
4.6 V / 300 mA  
C1  
3 × 10 µF  
OUTP1  
FBS  
C5  
100 nF  
C2  
10 µF  
TPS65632  
L2  
10 µH  
VNEG  
±4.0 V / 300 mA  
SWP2  
OUTN  
C3  
2×10 µF  
Enable AVDD  
Enable / Program VNEG  
AVDD Select  
EN  
CTRL  
SELP2  
AVDD  
5.8 V, 7.7 V / 30 mA  
OUTP2  
L3  
4.7 µH  
C6  
10 µF  
AGND  
PGND1  
PGND2  
SWN  
CT  
C4  
100 nF  
Figure 8. Typical Application Circuit  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in Table 2  
Table 2. Design Parameters  
PARAMETER  
VALUE  
Input voltage range  
2.9 V to 4.5 V  
VPOS = 4.6 V  
VNEG = –4.0 V  
AVDD = 7.7 V  
Output voltage  
Current  
I(VPOS) = 300 mA  
I(VNEG) = 300 mA  
I(AVDD) = 30 mA  
f(SWP1) = 1.7 MHz  
f(SWN) = 1.7 MHz  
f(SWP2) = 1.7 MHz  
Switching Frequency  
9.2.2 Detailed Design Procedure  
In order to maximize performance, the TPS65632 device has been optimized for use with a relatively narrow  
range of component values, and customers are strongly recommended to use the application circuits shown in  
Figure 8 with the components listed in Table 3 and Table 4.  
9.2.2.1 Inductor Selection  
The VPOS and VNEG converters have been optimized for use with 4.7-µH inductors and the AVDD boost converter  
has been optimized for use with 10-µH inductors. For optimum performance it is recommended that these values  
be used in all applications. Customers using different inductors than the ones in Table 3 are strongly  
recommended to characterize circuit performance fully before finalizing their design. Customers should pay  
particular attention to the inductors' saturation current and ensure it is adequate for their application's worst-case  
conditions (which may also be during start-up).  
Table 3. Inductor Selection  
REFERENCE  
DESIGNATOR  
VALUE  
MANUFACTURER  
PART NUMBER  
L1, L3  
L2  
4.7 µH  
10 µH  
Coilcraft  
XFL4020-4R7ML  
Coilmaster  
MMPP252012-100N  
9.2.2.2 Capacitor Selection  
The recommended capacitor values are shown in Table 4. Applications using less than the recommended  
capacitance (e.g. to save PCB area) may exhibit increased voltage ripple. In general, the lower the output  
current, the lower the necessary capacitance. Customers should be aware that ceramic capacitors of the kind  
typically used with the TPS65632 device exhibit dc bias effects, which means their effective capacitance under  
normal operating conditions may be significantly lower than their nominal capacitance value. Customers must  
ensure that the effective capacitance is sufficient for their application's performance requirements.  
Table 4. Capacitor Selection  
REFERENCE  
DESIGNATOR  
VALUE  
MANUFACTURER  
PART NUMBER  
C1  
3 × 10 µF  
10 µF  
Murata  
Murata  
Murata  
Murata  
GRM21BR71A106KE51  
GRM21BR71A106KE51  
GRM21BR71A106KE51  
GRM155B11A104KA01  
C2, C6  
C3  
2 × 10 µF  
100 nF  
C4, C5  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
9.2.3 Application Curves  
Unless otherwise stated: TA = 25°C, VI = 3.7 V, VPOS = 4.6 V, VNEG = –4.0 V, AVDD = 7.7 V; L1 = L3 = XFL4020-  
4R7ML, and L2 = MMPP252012-100N.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VI = 2.9 V  
VI = 3.7 V  
VI = 4.3 V  
VI = 2.9 V  
VI = 3.7 V  
VI = 4.3 V  
0
50m  
100m  
150m  
200m  
250m  
300m  
0
5m  
10m  
15m  
20m  
25m  
30m  
Output Current (A)  
Output Current (A)  
G000  
G000  
Figure 9. VPOS and VNEG Combined Efficiency  
Figure 10. AVDD Efficiency  
4.62  
4.61  
4.60  
4.59  
4.58  
4.57  
4.56  
4.55  
−3.98  
−3.99  
−4.00  
−4.01  
−4.02  
−4.03  
−4.04  
−4.05  
−4.06  
IO = 10 mA  
IO = 100 mA  
IO = 300 mA  
INEG = 10 mA  
INEG = 100 mA  
INEG = 300 mA  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
Input Voltage (V)  
Input Voltage (V)  
G000  
G000  
Figure 11. VPOS Line Regulation  
Figure 12. VNEG Line Regulation  
7.76  
7.75  
7.74  
7.73  
7.72  
7.71  
7.70  
4.62  
4.61  
4.60  
4.59  
4.58  
4.57  
4.56  
4.55  
IO = 10 mA  
IO = 40 mA  
IO = 80 mA  
VI = 2.9 V  
VI = 3.7 V  
VI = 4.3 V  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
0
50m  
100m  
150m  
200m  
250m  
300m  
Input Voltage (V)  
Output Current (A)  
G000  
G000  
Figure 13. AVDD Line Regulation  
Figure 14. VPOS Load Regulation  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
−3.98  
−3.99  
−4.00  
−4.01  
−4.02  
−4.03  
−4.04  
−4.05  
−4.06  
7.76  
7.75  
7.74  
7.73  
7.72  
7.71  
7.70  
VI = 2.9 V  
VI = 3.7 V  
VI = 4.3 V  
VI = 2.9 V  
VI = 3.7 V  
VI = 4.3 V  
0
50m  
100m  
150m  
200m  
250m  
300m  
0
5m  
10m  
15m  
20m  
25m  
30m  
Output Current (A)  
Output Current (A)  
G000  
G000  
Figure 15. VNEG Load Regulation  
Figure 16. AVDD Load Regulation  
5 V/div  
5 V/div  
5 V/div  
2 V/div  
2 V/div  
5 V/div  
200 mA /div  
200 mA /div  
2 ms/div  
2 ms/div  
Figure 18. Start-Up: AVDD  
Figure 17. Start-Up: VPOS and VNEG  
10 mV/div  
10 mV/div  
5 V/div  
5 V/div  
200 mA /div  
200 mA /div  
500 ns/div  
500 ns/div  
IPOS = 100 mA  
IPOS = 300 mA  
Figure 19. Switch Pin, Inductor Current and Output  
Voltage Waveforms: VPOS  
Figure 20. Switch Pin, Inductor Current and Output  
Voltage Waveforms: VPOS  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
10 mV/div  
10 mV/div  
5 V/div  
5 V/div  
500 mA /div  
500 mA /div  
500 ns/div  
500 ns/div  
INEG = 100 mA  
INEG = 300 mA  
Figure 21. Switch Pin, Inductor Current and Output  
Voltage Waveforms: VNEG  
Figure 22. Switch Pin, Inductor Current and Output  
Voltage Waveforms: VNEG  
10 mV/div  
10 mV/div  
5 V/div  
5 V/div  
200 mA /div  
200 mA /div  
500 ns/div  
500 ns/div  
IAVDD = 10 mA  
IAVDD = 30 mA  
Figure 23. Switch Pin, Inductor Current and Output  
Voltage Waveforms: AVDD  
Figure 24. Switch Pin, Inductor Current and Output  
Voltage Waveforms: AVDD  
VI = 3.0 V to 4.2 V in 50 µs  
IPOS = 100 mA  
VI = 3.0 V to 4.2 V in 50 µs  
INEG = 100 mA  
Figure 25. VPOS Line Transient Response  
Figure 26. VNEG Line Transient Response  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
VI = 3.0 V to 4.2 V in 50 µs  
IAVDD = 30 mA  
IPOS = 10 mA to 100 mA in 100 ns  
Figure 27. AVDD Line Transient Response  
Figure 28. VPOS Load Transient Response  
INEG = 10 mA to 100 mA in 100 ns  
IAVDD = 10 mA to 30 mA in 100 ns  
Figure 29. VNEG Load Transient Response  
Figure 30. AVDD Load Transient Response  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
f
f
f
(SWP1)  
(SWN)  
(SWP2)  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
Input Voltage (V)  
G000  
IPOS = 100 mA  
INEG = 100 mA  
IAVDD = 30 mA  
Figure 31. Switching Frequency  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS65632  
www.ti.com.cn  
ZHCSDG2 MARCH 2015  
10 Power Supply Recommendations  
The TPS65632 device is designed to operate with input supply voltages in the range 2.9 V to 4.5 V. If the input  
supply voltage is located more than a few centimeters away from the device, additional bulk capacitance may be  
required. The three 10-µF capacitors shown in Figure 8 are suitable for typical applications.  
11 Layout  
11.1 Layout Guidelines  
Place the input capacitor on PVIN and the output capacitor on OUTN as close as possible to device. Use  
short and wide traces to connect the input capacitor on PVIN and the output capacitor on OUTN.  
Place the output capacitor on OUTP1 and OUTP2 as close as possible to device. Use short and wide traces  
to connect the output capacitor on OUTP1 and OUTP2.  
Connect the ground of CT capacitor with AGND, pin 7, directly.  
Connect input ground and output ground on the same board layer, not through via hole.  
Connect AGND, PGND1 and PGND2 with exposed thermal pad.  
11.2 Layout Example  
VIN  
GND  
C1c  
C6  
L2  
C5  
AVDD  
C1b  
C1a  
L1  
SWP1  
1
2
3
4
12 PVIN  
GND  
VPOS  
PGND1  
OUTP1  
FBS  
11 SWN  
L3  
C2  
10 OUTN  
C3a  
C3b  
9
CTRL  
Via to GND plane on layer 2  
Via to other layer  
C4  
Figure 32. Recommended PCB Layout  
版权 © 2015, Texas Instruments Incorporated  
19  
TPS65632  
ZHCSDG2 MARCH 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 商标  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65632RTER  
TPS65632RTET  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
PC6I  
PC6I  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65640

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置
TI

TPS65640RHRR

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置 | RHR | 28 | -40 to 85
TI

TPS65642

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65642A

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置
TI

TPS65642AYFFR

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置 | YFF | 56 | -40 to 85
TI

TPS65642YFF

IC LIQUID CRYSTAL DISPLAY DRIVER, Display Driver
TI

TPS65642YFFR

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65642YFFT

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65651-1/2/3

TPS65400-Q1 4.5- to 18-V Input Flexible Power Management Unit With PMBus/I2C Interface
TI

TPS65653-Q1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器
TI

TPS6565342RHDRQ1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器 | RHD | 28 | -40 to 125
TI

TPS6565342RHDTQ1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器 | RHD | 28 | -40 to 125
TI