TPS65640 [TI]

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置;
TPS65640
型号: TPS65640
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置

PC CD
文件: 总62页 (文件大小:3586K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
LCD Bias With Digital VCOM Buffer for Notebook PCs and Tablet PCs  
Check for Samples: TPS65640  
1
FEATURES  
DESCRIPTION  
The TPS65640 is a compact LCD bias solution  
primarily intended for use in notebook and tablet PCs.  
The device comprises two boost converters to supply  
the LCD panel’s source driver and gate driver or level  
shifter; one buck converters or a LDO regulator  
alternatively to supply the time controller logic  
voltages; a linear negative voltage regulator to supply  
gate off voltage or provide negative voltage for  
source driver; a programmable VCOM generator with  
one high-speed amplifier; a gate voltage shaping  
function and two high speed operational amplifiers.  
2.5-V to 5.5-V Input Voltage Range  
3.6 to 12.7 V Boost Converter (AVDD  
)
15 to 37 V Boost Converter with Temperature  
Compensation (VGH  
–8 V to –3.8 V Linear Negative Voltage  
Regulator (VGL or NAVDD  
)
)
1.5-V to 3-V Alternative Buck Converter or Low  
Dropout Regulator (V25)  
7 bits Programmable VCOM Calibrator With One  
Integrated Buffer Amplifiers  
All the regulators and VCOM voltage outputs are  
programmed through I2C interface and stored in the  
TPS65640 integrated E2PROM. The TPS65640 is  
available in 5.5-mm × 3.5-mm, 28-lead QFN package.  
0.8 V to 5.1 V Programmable VCOM Voltage  
Output for Full AVDD Application  
–4.1 V to 0.2 V Programmable VCOM Voltage  
Output for Positive and Negative AVDD  
Application  
VIN  
Boost Converter1  
AVDD  
Two Operational Amplifiers  
Gate Voltage Shaping  
Negative Charge  
Pump Regulator  
VGL  
Buck Converter  
LDO Regulator  
Programmable VGH and VCOM Temperature  
Compensation  
V25  
TCON Reset Signal Generator With  
Programmable Delay  
V25  
Reset Generator  
RST  
VGH  
I2C Interface for E2PROM Programming  
AVDD  
Boost Converter2  
Operational Amplifier1  
Operational Amplifier2  
Thermal Shutdown  
VOUTA  
VOUTB  
VCOM  
VGHM  
Supports GIP and Non-GIP Displays  
28 Pins, 5.5-mm × 3.5-mm 0.5-mm Pitch QFN  
7
Programmable  
VCOM + Buffers  
APPLICATIONS  
Notebook PCs  
Tablet PCs  
VGH  
Gate Voltage Shaping  
I2C Interface  
2
I C  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION(1)  
TA  
ORDERING  
PACKAGE  
PACKAGE MARKING  
–40°C to 85°C  
TPS65640  
5.5-mm x 3.5-mm 28-pin QFN  
PZXI  
(1) The device is supplied taped and reeled, with 3000 devices per reel.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
MAX  
7
VIN, V25, V25_LX, RESET, COMP, SCL, SDA, VFLK, VT  
VIN (100ms) Pulse  
–0.3  
–0.3  
–0.3  
–5  
V
V
12  
AVDD, LX  
Pin Voltage(2)  
20  
V
VCOM_OUT, INA+, INA–, OUTA, INB+, INB–, OUTB  
5
V
VGH_LX, VGH, VGHM, RE  
DRVN, VGL, NAVDD  
Human Body Model  
–0.3  
–12  
40  
V
0.3  
2000  
200  
700  
85  
V
V
ESD Rating(3)  
Machine Model  
V
Charged Device Model  
Ambient temperature  
Junction temperature  
Storage temperature  
V
TA  
–40  
–40  
–65  
°C  
°C  
°C  
TJ  
150  
150  
TSTG  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) ESD testing is performed according to the respective JESD22 JEDEC standard.  
THERMAL INFORMATION  
TPS65640  
THERMAL METRIC(1)  
RHR  
28 PINS  
37.4  
26.3  
8.3  
UNITS  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
θJCtop  
θJB  
°C/W  
ψJT  
0.2  
ψJB  
8.1  
θJCbot  
1.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
2
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
2.5  
5.5  
V
BOOST CONVERTER 1  
AVDD  
IAVDD  
L1  
Boost converter 1 output voltage range  
3.6  
11  
400  
10  
V
Boost converter 1 output current when 5.5 V VIN 2.5 V  
Boost converter #1 inductor range  
mA  
µH  
µF  
4.7  
10  
COUT1  
Boost converter #1 output capacitance  
BOOST CONVERTER 2  
AVDD  
VGH  
IGH  
Input voltage range  
3.6  
15  
11(1)  
37  
V
V
Output voltage range  
Output current  
15  
10  
2.2  
10  
40  
mA  
µH  
µF  
kΩ  
L4  
Inductor  
4.7  
1
10  
COUT4  
RNTC  
Output capacitance  
Thermistor resistance at 25 °C  
BUCK CONVERTER (V25  
)
V25  
I25  
Output voltage  
1.5  
3
V
Output current  
Inductor  
600  
10  
mA  
µH  
µF  
L2  
2.2  
4.7  
4.7  
10  
COUT2  
Output capacitance  
22  
LDO Regulator (V25  
)
V25  
Output voltage  
1.5  
1
3
V
I25  
Output current  
350  
mA  
µF  
COUT2  
Output capacitance  
4.7  
(1) VGH – AVDD must be greater than 6 volts.  
ELECTRICAL CHARACTERISTICS  
VIN = 3.3 V; V25 = 2.5 V, AVDD = 8.5 V, VGH = 23 V, VGL = –6 V, RCAMP=200kΩ, CCAMP=1 nF, NAVDD = AGND = PGND = 0V,  
TA = –40 °C to 85 °C. Typical values are at 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
IIN  
Supply current into VIN  
Supply current into AVDD  
Supply current into VGH  
Converters not switching  
2
5
3
8.5  
1
mA  
mA  
mA  
No load on op-amp outputs  
No load on VGHM  
0.1  
UNDER VOLTAGE LOCKOUT  
VIN rising  
2.3  
2.35  
2.2  
2.4  
Undervoltage lockout threshold  
VUVLO  
VIN falling TA = 25°C  
VIN rising – VIN falling  
2.05  
2.25  
V
V
Hysteresis  
BOOST CONVERTER 1 (AVDD  
0.15  
)
Output voltage range  
Tolerance  
3.6  
11  
AVDD  
VUVP1  
–2%  
2%  
% of  
AVDD  
Undervoltage threshold  
AVDD falling  
75  
80  
85  
TDLY_UVP1  
VSCP1  
160  
30  
15  
10  
0.2  
1
ms  
%
V
Short circuit threshold  
Over Voltage threshold  
Switch leakage current  
Switch ON resistance  
AVDD falling  
25  
35  
16  
VOVP1  
AVDD rising  
14.5  
ILK1  
AVDD = 13.5 V  
20  
µA  
Ω
rDS(ON)1  
ILX = 1 A  
0.3  
1.2  
2.4  
AVDD ILIM = 0, TA = 25 °C  
AVDD ILIM = 1, TA = 25 °C  
0.8  
1.6  
ILIM1  
AVDD switch current limit  
A
2
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
VIN = 3.3 V; V25 = 2.5 V, AVDD = 8.5 V, VGH = 23 V, VGL = –6 V, RCAMP=200kΩ, CCAMP=1 nF, NAVDD = AGND = PGND = 0V,  
TA = –40 °C to 85 °C. Typical values are at 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
80%  
480  
600  
720  
800  
TYP  
MAX  
UNIT  
DMAX1  
Maximum Duty Cycle  
FREQ1 = 01  
FREQ1 = 00, TA = 25°C  
FREQ1 = 01, TA = 25°C  
FREQ1 = 10, TA = 25°C  
FREQ1 = 11, TA = 25°C  
600  
750  
720  
900  
fSW1  
Oscillator frequency  
kHz  
900  
1080  
1200  
1000  
Line regulation,  
VLIR=ΔAVDD/(AVDD×ΔVIN  
VLIR1  
VIN = 2.5 V to 5.5 V, AVDD = 8.5 V, TA = 25 °C  
±0.1  
±0.15  
%/V  
%/A  
)
Load regulation,  
VLOR=(AVDD_20mA–AVDD_200mA)/AVDD_  
VLOR1  
VIN = 3.3 V, AVDD = 8.5 V, IAVDD = 20 mA to 200 mA  
1
20mA  
SS1 = 00  
20  
40  
SS1 = 01  
VSS1  
AVDD soft stat duration  
ms  
SS1 = 10  
60  
SS1 = 11  
80  
LX1TS = 00  
LX1TS = 01  
LX1TS = 10  
LX1TS = 11  
0.5  
0.7  
0.9  
1.1  
Tf1  
AVDD switch ON voltage slew rate  
V/ns  
BUCK CONVERTER (V25Buck  
)
Output voltage  
V25Buck  
1.5  
–2%  
0.8  
3
V
V
Tolerance  
(V25-V25_setting)/V25_seeting  
V25 falling  
2%  
1.2  
Undervoltage threshold  
Hysteresis  
1
0.1  
160  
1.2  
4
VUVP2  
V25 rising  
TDLY_UVP2  
ILIM2  
ms  
A
Switch current limit  
Soft start duration  
ISW2A ramps from 0 A to 2 A  
1
1.4  
TSS2  
ms  
rDS(ON)2A  
rDS(ON)2B  
fSW2  
High-side, ISW2A = ILIM2  
250  
100  
1250  
450  
200  
Switch ON resistance  
mΩ  
Low-side, ISW2B = 1 A  
Switching frequency  
VIN = 3.3 V; V25 = 2.5 V, I25 = 200 mA  
1000  
1500  
kHz  
%/V  
Line regulation, VLIR = ΔV25  
/
VLIR2  
VIN = 2.5 V to 5.5 V  
±0.1  
1%  
±0.15  
(AV25×ΔVIN  
)
VLOR2  
Load regulation  
VIN = 3.3 V, I25 = 1 mA to 400 mA  
LINEAR REGULATOR (V25LDO  
)
Output voltage  
1.5  
–2.5%  
0.8  
3.0  
2.5%  
1.2  
V25LDO  
V
V
Tolerance  
Undervoltage threshold  
Hysteresis  
V25 falling  
V25 rising  
1
VUVP3  
0.1  
160  
300  
TDLY_UVP3  
VDO3  
ms  
Dropout voltage  
I25 = 350 mA, V25 = –3%  
500  
mV  
Line regulation, VLIR = ΔV25  
/
VLIR3  
VIN = 2.8 V to 5.5 V, I25 = 100 mA  
VIN = 3.3 V, I25 = 1 mA to 300 mA  
0.1  
1
±0.15  
%/V  
%/A  
(V25×ΔVIN  
)
VLOR3  
Load regulation  
BOOST CONVERTER 2 (VGH  
)
Output voltage range  
Tolerance  
15  
–3%  
38  
37  
3%  
40  
VGH  
V
VOVP4  
VUVP4  
Overvoltage threshold  
Undervoltage threshold  
TA = 25 °C  
VGH falling  
39  
80  
V
75  
85  
% of VGH  
Undervoltage protection shutdown  
delay  
TDLY_UVP4  
ILK4  
160  
10  
ms  
µA  
Switch leakage current  
Switching off VVGH_LX = 38 V  
20  
4
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
ELECTRICAL CHARACTERISTICS (continued)  
VIN = 3.3 V; V25 = 2.5 V, AVDD = 8.5 V, VGH = 23 V, VGL = –6 V, RCAMP=200kΩ, CCAMP=1 nF, NAVDD = AGND = PGND = 0V,  
TA = –40 °C to 85 °C. Typical values are at 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
300  
600  
TYP  
400  
800  
0.5  
1.2  
4
MAX  
500  
1000  
1
UNIT  
FREQ4 = 0  
FREQ4 = 1  
IVGH_LX = 1 A  
fSW4  
VGH swithching frequency  
kHz  
rDS(ON)4  
ILIM4  
VGH switch ON resistance  
VGH switch current limit  
Ω
0.9  
1.5  
A
SS4 = 00  
SS4 = 01  
SS4 = 10  
SS4 = 11  
8
TSS4  
VGH soft start duration  
ms  
12  
16  
DMAX4  
IVT  
88%  
90%  
40  
Thermistor reference current  
Line regulation  
VVT = 1 V  
µA  
VLIR4  
VLOR4  
AVDD = 3.6 V to 11 V  
IGH = 5 mA to 40 mA  
±0.1  
1
±0.15  
%/V  
%/A  
Load regulation  
PROGRAMMABLE VCOM CALIBRATOR  
VS+ – VS–  
VCOM  
VCOM buffer supply voltage  
15  
6
V
VCOM voltage accuracy,  
VCOM–VCOM_setting  
IOUT = 0 mA  
–6  
LSB  
AVDD = 8.5 V, NAVDD = 0 V, VCOM_OUT = AVDD / 2,  
ISOURCE = 1mA to 20mA  
1
1
2
2
2
2
AVDD = 5 V, NAVDD = –5 V, VCOM_OUT = 0 V,  
ISOURCE = 1 mA to 20 mA  
Load regulation  
V/A  
mA  
AVDD = 8.5 V, NAVDD = 0 V, VCOM_OUT = AVDD / 2,  
ISINK = –1 mA to –20 mA  
1
AVDD = 5 V, NAVDD = –5 V, VCOM_OUT = 0 V,  
ISINK = –1 mA to –20 mA  
1
AVDD = 5 V, VCOM_OUT = AVDD,  
NAVDD = –5 V  
–200  
200  
ISC2  
Short circuit current  
AVDD = 5 V,  
VCOM_OUT = NAVDD = –5 V  
SR2  
Slew rate  
VCOM_OUT = AVDD / 2 + 1 V  
12  
12  
V/µs  
MHz  
BW2  
Small signal 3dB bandwidth  
VCOM_OUT = AVDD / 2, VSIGNAL = 60 mVPP, no load  
OPERATIONAL AMPLIFIER 1 and 2 (AVDD = 5 V, NAVDD = –5 V, RL = 10 kΩ, CL = 10 pF, TA = 25°C)  
VIO1  
Input offset voltage  
VCM = (AVDD + NAVDD) / 2  
TA = –40°C to 85°C  
–15  
15  
3
mV  
μV/°C  
GΩ  
pF  
ΔVIO/ΔT  
RIN1  
Average offset voltage drift  
Input impedance  
5
1
CIN1  
Input capacitance  
1.35  
VCM1  
AVOL1  
PSRR1  
CMRR1  
VOL1  
Input common mode voltage range  
Open loop gain  
AVDD = 5 V, NAVDD = –5 V  
VCM = (AVDD + NAVDD) / 2  
VCM = (AVDD + NAVDD) / 2  
VCM = (AVDD + NAVDD) / 2  
IL = 5 mA  
–4  
75  
60  
50  
V
95  
70  
dB  
dB  
dB  
V
Power supply rejection ratio  
Common mode rejection ration  
Output swing low  
80  
4.85  
–485  
±35  
4.92  
VOH1  
Output swing High  
IL = –5 mA  
–4.92  
±120  
V
IOC1  
Continuous output current  
mA  
VIN+ = (AVDD + NAVDD) / 2, VIN– = (AVDD + NAVDD) / 2 ±1 V,  
open-loop  
IPK1  
Peak output current  
mA  
tS  
Setting to ±0.1%  
Slew rate  
AV = –1, VIN– = (AVDD + NAVDD) / 2 ±1 V  
500  
12  
5
ns  
V/µs  
SR1  
BW1  
PM  
AV = –1, VIN– = (AVDD + NAVDD) / 2 ±1 V  
Small signal 3 dB bandwidth  
Phase margin  
AV = –1, VCM = (AVDD + NAVDD) / 2, VSIGNAL = 60 mVPP  
MHz  
50  
Degree  
AV = –1, VCM = (AVDD + NAVDD) / 2, VSIGNAL = 60 mVPP, f =  
5 MHz  
CS  
Channel Separation  
75  
dB  
GATE OFF REGULATION CONTROLLER (VGL  
)
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
VIN = 3.3 V; V25 = 2.5 V, AVDD = 8.5 V, VGH = 23 V, VGL = –6 V, RCAMP=200kΩ, CCAMP=1 nF, NAVDD = AGND = PGND = 0V,  
TA = –40 °C to 85 °C. Typical values are at 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
–3.8  
–3%  
1
TYP  
MAX  
-8  
UNIT  
Output voltage  
Tolerance  
VGL  
VGL voltage regulate accuracy  
V
3%  
6
IDRVN  
VLIR5  
DRVN source current  
Line regulation  
4
1
mA  
mV  
IDRVN = 1 mA, VIN = 2.5 V to 5.5 V  
6
GATE VOLTAGE SHAPING  
rDS(ON)H  
rDS(ON)L  
VIH  
VGH to VGHM ON resistance  
VGH = 24 V, IGHM = 10 mA, VFLK = 2.5 V  
VGHM = 24 V, IGHM = 10 mA, VFLK = 0 V  
VFLK rising  
13  
13  
25  
25  
Ω
Ω
V
V
VGHM to RE ON resistance  
High-level input voltage  
Low-level input voltage  
1.5  
VIL  
VFLK falling  
0.6  
VGHM rising, 2.5 V, 50% thresholds, COUT = 150 pF, RE = 0  
mΩ  
tPLH  
tPHL  
100  
100  
200  
Propagation delay  
ns  
VGHM falling, 2.5 V, 50% thresholds, COUT = 150 pF, RE = 0  
mΩ  
200  
DLY = 00  
DLY = 01  
DLY = 10  
DLY = 11  
0
20  
40  
60  
Gate voltage shaping / LCD bias  
ready delay range  
tDLY  
ms  
TCON RESET GENERATOR  
VDIV = 000  
VDIV = 001  
VDIV = 010  
VDIV = 011  
VDIV = 100  
VDIV = 101  
VDIV = 110  
VDIV = 111  
1.08  
1.26  
1.44  
1.62  
1.8  
1.2  
1.4  
1.6  
1.8  
2
1.32  
1.54  
1.76  
1.98  
2.2  
VDIV  
Detecting voltage falling threshold  
V
1.98  
2.16  
2.34  
2.2  
2.4  
2.6  
150  
2.42  
2.64  
2.86  
Hysteresis  
mV  
V
VOL(RST)  
ILK(RST)  
Output voltage  
Leakage current  
IRST = 1 mA (sinking)  
VRST = 2.5 V  
RESET = 0000  
0.5  
1
µA  
0
(1)  
tRESET  
Reset delay time  
30  
ms  
°C  
RESET = 1111  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown temperature  
TJ rising  
150  
I2C INTERFACE  
Configuration parameters slave  
address  
E8  
9E  
ADDR  
Programmable VCOM slave address  
Low level input voltage  
High level input voltage  
Hysteresis  
VIL  
Supply = 2.5 V, VIN falling, standard and fast modes  
Supply = 2.5 V, VIN rising, standard and fast4 modes  
Supply = 2.5 V, applicable to fast mode only  
Sinking 3 mA  
0.3 × V25  
V
V
VIH  
VHYS  
VOL  
CI  
0.7 × V25  
125  
mV  
mV  
pF  
Low level output voltage  
Input capacitance  
500  
10  
Standard mode  
Fast mode  
100  
400  
fSCL  
Clock frequency  
Clock low period  
Clock high period  
kHz  
µs  
Standard mode  
Fast mode  
4.7  
1.3  
4
tLOW  
Standard mode  
Fast mode  
tHIGH  
µs  
0.6  
(1) Refer to Table 12 for RESET time delay break down.  
Submit Documentation Feedback  
6
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
ELECTRICAL CHARACTERISTICS (continued)  
VIN = 3.3 V; V25 = 2.5 V, AVDD = 8.5 V, VGH = 23 V, VGL = –6 V, RCAMP=200kΩ, CCAMP=1 nF, NAVDD = AGND = PGND = 0V,  
TA = –40 °C to 85 °C. Typical values are at 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
4.7  
1.3  
4
TYP  
MAX  
UNIT  
Standard mode  
Fast mode  
Bus free time between a STOP and a  
START condition  
tBUF  
µs  
Standard mode  
Fast mode  
Hold time for a repeated START  
condition  
thd:STA  
µs  
0.6  
4
Standard mode  
Fast mode  
Set-up time for a repeated START  
condition  
tsu:STA  
tsu:DAT  
µs  
ns  
0.6  
250  
100  
0.05  
0.05  
Data set-up time  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
3.45  
0.9  
thd:DAT  
Data hold time  
µs  
ns  
20 +  
0.1CB  
Standard mode  
Fast mode  
1000  
1000  
1000  
300  
Rise time of SCL after a repeated  
START condition and after an ACK  
bit  
tRCL1  
20 +  
0.1CB  
20 +  
0.1CB  
Standard mode  
Fast mode  
tRCL  
tFCL  
tRDA  
tFDA  
Rise time of SCL  
Fall time of SCL  
Rise time of SDA  
Fall time of SDA  
ns  
ns  
ns  
20 +  
0.1CB  
20 +  
0.1CB  
Standard mode  
Fast mode  
300  
20 +  
0.1CB  
300  
20 +  
0.1CB  
Standard mode  
Fast mode  
1000  
300  
20 +  
0.1CB  
20 +  
0.1CB  
Standard mode  
Fast mode  
300  
ns  
µs  
20 +  
0.1CB  
300  
Standard mode  
Fast mode  
4
tsu:STO  
Set-up time for STOP condition  
Capacitive load on SDA and SCL  
0.6  
Standard mode  
Fast mode  
400  
400  
CB  
pF  
E2PROM  
NWRITE  
tWRITE  
Number of write cycles  
Write time  
1000  
100  
ms  
hrs  
Data retention  
Storage temperature = 150°C  
100000  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
DEVICE INFORMATION  
PIN ASSIGNMENT  
28 PIN 5.5mm × 3.5mm RHR PACKAGE  
TOP VIEW  
PGND1  
VGH_LX  
VGH  
VINA–  
OUTA  
OUTB  
VINB–  
PGND3  
VGHM  
PIN FUNCTIONS  
PIN  
TYPE  
DESCRIPTION  
NAME  
AGND  
AVDD  
COMP  
NO.  
22  
P
I
Ground  
AVDD sense pin  
23  
21  
O
Boost converter 1 compensation. Connect a suitable compensation network (typically a series R-C  
combination) between this pin and ground  
DRVN  
FLK  
6
2
O
I
Drive output for negative linear regulator  
Gate voltage shaping flicker clock input  
Boost convert 1 switch node  
LX  
24  
8
P
I
NAVDD  
OUTA  
OUTB  
PGND1  
PGND2  
PGND3  
RE  
Negative AVDD voltage input  
13  
12  
25  
16  
29  
1
O
O
P
P
P
O
O
I
Operational amplifier A output  
Operational amplifier B output  
Power Ground 1 for boost converter 2  
Power Ground 2 for buck converter  
Power Ground 3 for boost converter 1  
Gate voltage shaping discharge resistor connection  
T-CON reset output  
RESET  
SCL  
5
4
I2C Interface serial clock  
SDA  
3
I/O  
O
P
P
O
I
I2C Interface serial data  
VCOM_OUT  
VGH  
9
VCOM amplifier output  
27  
26  
28  
7
Gate voltage shaping input and boost converter 2 output sense  
Boost converter 2 switch node  
Gate voltage shaping output  
VGH_LX  
VGHM  
VGL  
Negative linear regulator sense pin  
Supply voltage  
VIN  
18  
P
8
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
PIN FUNCTIONS (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
VINA+  
VINA–  
VINB+  
VINB–  
VT  
NO.  
15  
14  
10  
11  
20  
19  
17  
I
I
Operational amplifier B non-inverting input  
Operational amplifier A inverting input  
I
Operational amplifier B non-inverting input  
I
Operational amplifier B inverting input  
I
Boost converter 2 and VCOM reference external thermistor network connection  
Buck converter or LDO regulator output sense  
Buck converter switch node or LDO regulator output  
V25  
O
P
V25_LX  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
TYPICAL CHARACTERISTICS  
TABLE OF GRAPHS  
PARAMETER  
BOOSTER CONVERTER 1  
Efficiency vs. Load Current  
Output Voltage Ripple  
Load Transient Response  
Startup  
CONDITIONS  
FIGURE  
VIN = 3.3 V, AVDD = 5.5 V and 8.5V, L = 10 µH, fSW = 1 MHz  
VIN = 3.3 V, AVDD = 5.5 V, IAVDD = 200 mA, fSW = 1 MHz  
VIN = 3.3 V, AVDD = 5.5 V, IAVDD = 20 mA to 200 mA  
VIN = 3.3 V, AVDD = 5.5 V, fSW = 1 MHz, ILOAD = 55 Ω  
VIN = 3.3 V, AVDD = 5.5 V, fSW = 1 MHz  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Over Voltage Protection  
Under Voltage Protection  
BUCK CONVERTER  
Efficiency vs. Load Current  
Output Voltage Ripple  
Load Transient Response  
Startup  
VIN = 3.3 V, AVDD = 5.5 V, fSW = 1 MHz  
VIN = 3.3 V, V25 = 1.8 V and 2.5 V  
VIN = 3.3 V, V25 = 2.5 V, IV25 = 600 mA  
VIN = 3.3 V, V25 = 2.5 V, IV25 = 20 to 200 mA  
VIN = 3.3 V, V25 = 2.5 V, ILOAD = 12.5 Ω  
VIN = 3.3 V, V25 = 2.5 V  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Undervoltage Protection  
LDO VOLTAGE REGULATOR  
Load Transient Response  
Startup  
VIN = 3.3 V, V25 = 2.5 V, IV25 = 20 to 200 mA  
VIN = 3.3 V, V25 = 2.5 V, ILOAD = 12.5 Ω  
VIN = 3.3 V, V25 = 2.5 V  
Figure 12  
Figure 13  
Figure 14  
Undervoltage Protection  
BOOST CONVERTER 2  
Efficiency vs. Load Current  
Efficiency vs. Load Current  
Output Voltage Ripple  
Load Transient Response  
Startup  
VIN = 3.3 V, AVDD = 5.5 V, VGH = 16 V, L = 10 µH, fSW = 800 kHz  
VIN = 3.3 V, AVDD = 8.5 V, VGH = 25 V, L = 10 µH, fSW = 800 kHz  
VIN = 3.3 V, AVDD = 5.5 V, VGH = 16 V, L = 10 µH, IVGH = 50 mA, fSW = 800 kHz  
VIN = 3.3 V, AVDD = 5.5 V, VGH = 16 V, L = 10 µH, IVGH = 10 to 50 mA  
VIN = 3.3 V, AVDD = 5.5 V, VGH = 16 V, L = 10 µH, fSW = 800 kHz  
VIN = 3.3 V, AVDD = 5.5 V, VGH = 16 V, L = 10 µH, fSW = 800 kHz  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Under Voltage Protection  
NEGATIVE CHARGE PUMP REGULATOR CONTROL  
Output Voltage Ripple  
VIN = 3.3 V, AVDD = 5.5 V, VGL = –4.5 V, IGL = 50 mA  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Load Transient Response  
GATE VOLTAGE SHAPING  
VIN = 3.3 V, AVDD = 5.5 V, VGL = –4.5 V, IGL = 10 to 50 mA  
VIN = 3.3 V, AVDD = 5 V, AVDD = 5 V,  
OPERATIONAL AMPLIFIER  
SLEW RATE  
VIN = 3.3 V, VGH = 16 V, NAVDD = –5 V, INA+ = –1 V to 1 V  
POWER ON SEQUENCY  
POWER OFF SEQUENCY  
VIN = 3.3 V, AVDD = 5.5 V, VGH = 16 V, VGL = –4.5 V  
VIN = 3.3 V, AVDD = 5.5 V, VGH = 16 V, VGL = –4.5 V  
Figure 25  
Figure 26  
10  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
EFFICIENCY  
vs  
LOAD CURRENT  
OUTPUT VOLTAGE RIPPLE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AVDD Voltage 20mV/div  
LX Voltage 2V/div  
Inductor Current 300mA/div  
AVDD = 5.5 V  
AV = 8.5 V  
DD  
1
10  
100  
1k  
C001  
Load Current (mA)  
Time (1 µs/div)  
Figure 1. Boost Converter 1 Efficiency  
LOAD TRANSIENT RESPONSE  
AVDD Voltage 200mV/div  
Figure 2. Boost Converter 1 Output Ripple  
STARTUP  
VIN Voltage 2V/div  
AVDD Voltage 2V/div  
LX Voltage 2V/div  
Inductor Current 200mA/div  
Load Current 50mA/div  
Time (2 ms/div)  
Time (10 ms/div)  
Figure 3. Boost Converter 1 Load Transient Response  
Figure 4. Boost Converter 1 Startup  
OVERVOLTAGE PROTECTION  
UNDERVOLTAGE PROTECTION  
AVDD Voltage 5V/div  
AVDD Voltage 2V/div  
LX Voltage 5V/div  
LX Voltage 2V/div  
V25 Voltage 1V/div  
V25 Voltage 2V/div  
Time (5 ms/div)  
Time (50 ms/div)  
Figure 5. Boost Converter 1 Overvoltage Protection  
Figure 6. Boost Converter 1 Undervoltage Protection  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
EFFICIENCY  
vs  
LOAD CURRENT  
OUTPUT VOLTAGE RIPPLE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V25 Voltage 10mV/div  
V25_LX Voltage 2V/div  
Inductor Current 300mA/div  
V25 = 1.8 V  
V25=2.5V
0
1
10  
100  
1k  
C002  
Load Current (mA)  
Time (2 µs/div)  
Figure 7. Buck Converter Efficiency  
LOAD TRANSIENT RESPONSE  
V25 Voltage 100mV/div  
Figure 8. Buck Converter Output Ripple  
STARTUP  
VIN Voltage 2V/div  
V25 Voltage 1V/div  
V25_LX Voltage 2V/div  
Inductor Current 200mA/div  
Load Current 50mA/div  
Time (2 ms/div)  
Time (10 ms/div)  
Figure 9. Buck Converter Load Transient Response  
Figure 10. Buck Converter Startup  
UNDERVOLTAGE PROTECTION  
LOAD TRANSIENT RESPONSE  
V25 Voltage 200mV/div  
V25 Voltage 1V/div  
V25_LX Voltage 2V/div  
AVDD Voltage 5V/div  
VGH Voltage 10V/div  
Load Current 50mA/div  
Time (2 ms/div)  
Time (50 ms/div)  
Figure 11. Buck Converter Undervoltage Protection  
Figure 12. LDO Load Transient Response  
12  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
STARTUP  
UNDERVOLTAGE PROTECTION  
VIN Voltage 2V/div  
V25 Voltage 1V/div  
V25 Voltage 1V/div  
AVDD Voltage 3V/div  
VGH Voltage 10V/div  
AVDD Voltage 2V/div  
IIN Current 100mA/div  
VGL Voltage 4V/div  
Time (10 ms/div)  
Time (50 ms/div)  
Figure 13. LDO Startup  
Figure 14. LDO Undervoltage Protection  
EFFICIENCY  
vs  
LOAD CURRENT  
EFFICIENCY  
vs  
LOAD CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
AV = 5.5 V  
DD
GH
AV = 8.5 V  
DD
GH
V
= 16 V  
V
= 25 V  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
C003  
C004  
Load Current (mA)  
Load Current (mA)  
Figure 15. Boost Converter 2 Efficiency  
Figure 16. Boost Converter 2 Efficiency  
LOAD TRANSIENT RESPONSE  
VGH Voltage 200mV/div  
OUTPUT VOLTAGE RIPPLE  
VGH Voltage 10mV/div  
VGH_LX Voltage 6V/div  
Load Current 20mA/div  
Time (2 ms/div)  
Inductor Current 300mA/div  
Time (1 µs/div)  
Figure 17. Boost Converter 2 Output Ripple  
Figure 18. Boost Converter 2 Load Transient Response  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
STARTUP  
UNDERVOLTAGE PROTECTION  
AVDD Voltage 3V/div  
VGH Voltage 2V/div  
VGH Voltage 8V/div  
VGH_LX Voltage 3V/div  
VGH_LX Voltage 8V/div  
AVDD Voltage 3V/div  
Inductor Current 300mA/div  
Time (10 ms/div)  
Time (50 ms/div)  
Figure 19. Boost Converter 2 Startup  
OUTPUT VOTLAGE RIPPLE  
VGL Voltage 20mV/div  
Figure 20. Boost Converter 2 Undervoltage Protection  
LOAD TRANSIENT RESPONSE  
VGL Voltage 50mV/div  
Load Current 20mA/div  
LX Voltage 2V/div  
Inductor Current 100mA/div  
Time (1 µs/div)  
Time (2 ms/div)  
Figure 21. Negative Charge Pump Output Ripple  
Figure 22. Negative Charge Pump Load Transient Response  
GATE VOLTAGE SHAPING  
SLEW RATE  
INA+ Voltage 500mV/div  
VGH Voltage 8V/div  
VOUTA Voltage 500mV/div  
VGHM Voltage 8V/div  
FLK Voltage 2V/div  
Time (10 µs/div)  
Time (20 ns/div)  
Figure 23. Gate Voltage Shaping  
Figure 24. Operational Amplifier Slew Rate  
14  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
POWER ON SEQUENCY  
POWER OFF SEQUENCY  
VIN  
V25  
VIN  
V25  
RESET  
AVDD  
RESET  
AVDD  
VGH  
VGH  
VGL  
VGL  
VGPM  
VGPM  
VCOM  
VCOM  
Time (10 ms/div)  
Time (10 ms/div)  
Figure 25. Power Off Sequency  
Figure 26. Power Off Sequency  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
DETAILED DESCRIPTION  
An internal block diagram of the TPS65640 is shown in Figure 27.  
COMP  
AVDD  
LX  
Current  
Limit  
DAC  
Gm  
VREF  
Gate  
Driver  
VIN  
PGND3  
V25_LX  
VREF  
LDO Mode  
V25  
R
S
DAC  
VREF  
Gate  
Driver  
Latch  
Off-Time  
Control  
RESET  
PGND2  
DAC  
DAC  
AGND  
VT  
VCOM_OUT  
VGH_LX  
1.25 V  
40 µA  
6
ADC  
0.5 V  
R
DAC  
Gate  
Driver  
Latch  
PGND1  
VGHM  
VGH  
Off-Time  
Control  
S
Logic  
Control  
FLK  
AVDD  
RE  
VINA+  
VINA-  
DRVN  
VIN  
OUTA  
VCC  
VREF  
VINB+  
VINB-  
OUTB  
VGL  
DAC  
SDA  
SCL  
DAC  
Register  
EEprom  
NAVDD  
Figure 27. Internal Block Diagram  
16  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
BOOST CONVERTER 1 (AVDD)  
VIN  
L1  
D1  
AVDD  
COUT1  
AVDD  
VIN  
LX  
R1  
Current  
Limit  
DAC  
Gm  
VREF  
Gate  
Q1  
Driver  
R2  
COMP  
PGND3  
200 kΩ  
1 nF  
Figure 28. Boost Converter 1 Internal Block Diagram  
Switching Frequency (Boost Converter 1)  
Boost Converter 1 can be configured to operate at 600 kHz, 800 kHz, 1000 kHz, or 1200 kHz. In general, the  
higher switching frequency offers better transient performance at the expense of slightly reduced efficiency. In  
some applications, it may be necessary to select a particular switching frequency to minimize EMI problems. The  
switching frequency is determined by the state of the FREQ1 configuration bit in the AVDDCONFIG register.  
Compensation (Boost Converter 1)  
Boost Converter 1 uses an external compensation network connected to its COMP pin to stabilize its feedback  
loop. A simple series R-C network connected between this pin and ground is sufficient to achieve good  
performance (that is, stable and with good transient response) in most applications. Good starting values, which  
will work for many applications, are 200 kΩ and 1 nF.  
In some applications (for example, those using electrolytic output capacitors), it may be necessary to include a  
second compensation capacitor between the COMP pin and ground. This has the effect of adding an additional  
pole in the feedback loop's frequency response, which can be used to cancel the zero introduced by the  
electrolytic output capacitor's ESR.  
Output Voltage (Boost Converter 1)  
Boost converter 1's output voltage can be programmed from 3.6 V to 11 V with 100-mV increment using the  
AVDD register. Because changing the output voltage in big steps can temporarily demand switch currents  
greater than the switch's current limit, it is recommended that AVDD be changed in 100-mV steps, for example,  
first change AVDD from 7 V to 7.1 V, then to 7.2 V, then to 7.3 V, and so on until the desired output voltage has  
been achieved.  
Start-Up (Boost Converter 1)  
Boost converter 1 starts immediately after the V25 voltage raming to its programmed voltage.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
To minimize inrush current during start-up, boost converter 1 ramps its output voltage in tSS1 milliseconds. The  
value of tSS1 can be programmed from 20ms to 80ms using the SS1 bits in AVDDCONFIG register.  
Boost converter 1's internal power good signal is asserted when two conditions are met:  
the converter's soft-start ramp has reached its final value  
the converter's output voltage is greater than its UVP threshold.  
The power good signal is latched and will only be reset when the supply voltage is cycled.  
Current limit (Boost Converter 1)  
The boost converter 1 has built-in cycle-by-cycle current limit for the power MOSFET. When the inducotr current  
or the power MOSFET current reaches ILIM, the power MOSFET will be tuned off immediately until the next  
switching cycle. The ILIM can be programmed from 1 A to 2 A using the AVDD ILIM bit in AVDDCONFIG register.  
Design Procedure (Boost Converter 1)  
The first step in the design procedure is to verify whether the maximum possible output current of the boost  
converter 1 supports the specific application requirements.  
1. Converter Duty Cycle:  
V ´ h  
D = 1-  
IN  
VAVDD  
(1)  
2. Inductor Ripple Current:  
V ´D  
DIL =  
IN  
fs ´L  
(2)  
3. Maximum Output Current:  
DIL  
æ
ö
÷
ø
IOUT _max = I  
-
´ 1- D  
( )  
ç LIM_min  
2
è
(3)  
(4)  
4. Peak Switching Current:  
IOUT DIL  
ISWPEAK  
=
+
1- D  
2
η = Estimated boost converter efficiency (use the number from the efficiency plots or 0.9 as an estimation)  
fS = Switching frequency  
L = Selected inductor value (typ. 10 µH)  
ILIM_min: Minimum current limit  
ISWPEAK = Peak switch current for the used output current  
ΔIL = Inductor peak-to-peak ripple current  
The peak switch current ISWPEAK is the current that the integrated switch, the inductor and the external Schottky  
diode have to be able to handle. The calculation must be done for the minimum input voltage where the peak  
switch current is the highest.  
Inducotr Selection (Boost Converter 1)  
Higher the inductor value the lower the inductor current ripple and the output  
voltage ripple but the slower the transient response.  
Inductor Value:  
4.7 µH L 10 µH  
The inductor saturation current must be higher than the switch peak current for  
Saturation Current:  
DC Resistance:  
I
SAT ISWPEAK or ISAT ILIM_max the max. peak output current or as a more conservative approach higher than  
the max. switch current limit.  
The lower the inductors resistance the lower the losses and the higher the efficiency.  
18  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
Rectifier Diode Selection (Boost Converter 1)  
Diode type: Schottky or super barrier rectifier (SBR) for better efficiency.  
Forward voltage: The lower the forward voltage VF the higher the efficiency and the lower the diode temperature.  
Reverse voltage: VR must be higher than the output voltage and should be higher than the OVP voltage typically  
15 V.  
Thermal characteristics: The diode must be able to handle the dissipated power of PD = VF x IOUT  
.
Output Capacitor Selection (Boost Converter 1)  
For best output voltage filtering, TI recommends low-ESR ceramic capacitors. Two 4.7 µF (or four 2.2-µF)  
ceramic capacitors work for most applications. To improve the load transient response more capacitance can be  
added between the rectifier diode.  
To calculate the output voltage ripple the following equations can be used:  
VAVDD - V  
IOUT  
x
AVDD ´ fs COUT  
IN  
DVC _RIPPLE  
=
+ DVC _ESR  
V
(5)  
(6)  
DVC _ESR = ISWPEAK ´RC _ESR  
BUCK CONVERTER (V25)  
The buck converter uses a current mode, quasi-constant off-time topology that offers high efficiency, fast  
transient response, and constant ripple current amplitude under all operating conditions (see Figure 29). The  
converter's off time is inversely proportional V25 and therefore constant when the converter is in regulation. Thus  
for a given VIN the converter operates at a constant frequency that changes temporarily when the converter  
reacts to load changes.  
When the latch is set, transistor Q1 is turned on and transistor Q2 is turned off. As inductor L2 charges, the  
current flowing through Q1 ramps up at a rate determined by the difference between VIN and VCORE and the value  
of L2. The ramping current is sensed across Q1, and when it reaches the level demanded by error amplifier A1  
the output of comparator A2 goes high, resetting the latch. The reset latch turns off Q1 and turns on Q2. Inductor  
L2 now discharges through Q2 for a fixed off time. At the end of the off time, the latch is set, turning on Q1 and  
turning off Q2, and the cycle repeats.  
The sensed output voltage is divided down by a multiplying DAC and used as negative feedback to amplifier A1.  
The output of A1 is the error signal required to regulate V25 at the desired voltage.  
VIN  
Q1  
VREF  
DAC  
R
S
A2  
A1  
L2  
Gate  
Driver  
V25  
Latch  
V25_LX  
COUT2  
Off-Time  
Control  
Q2  
V25  
PGND2  
Figure 29. Buck Converter 1 Block Diagram  
Output Voltage (Buck Converter)  
Buck converter's output voltage can be programmed from 1.5 V to 3.0 V using the V25 register.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS65640  
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Start-Up (Buck Converter)  
Buck converter starts as soon as the supply voltage exceeds the under-voltage lockout threshold (the same time  
as the linear regulator starts).  
To minimize inrush current during start-up, buck converter ramps V25 from 0 V to programmed voltage in tSS2  
milliseconds. The value of tSS2 is around 0.5 ms to 4.0 ms.  
The same ramp rate is used for both buck converter and the linear regulator (LDO).  
Current limit (Buck Converter)  
The buck converter has built-in cycle-by-cycle current limit for the high side power MOSFET, Q1 in Figure 29.  
When the inductor current or the MOSFET Q1 current reaches ILIM, the Q1 is tuned off immediately until the next  
switching cycle. The ILIM is typically 1.2 A.  
Design Procedure (Buck Converter)  
The first step in the design procedure is to verify whether the maximum possible output current of the buck  
converter supports the specific application requirements.  
1. Switching Frequency:  
V ´ h - V25  
fs =  
IN  
V ´ h´ Toff  
IN  
(7)  
(8)  
2. Converter Duty Cycle  
V25  
D =  
V ´ h  
IN  
3. Inductor Ripple Current:  
V
IN - V25 ´D  
)
(
DIL =  
fs ´L  
(9)  
(10)  
(11)  
4. Maximum Output Current:  
DIL  
-
IOUT _max = ILIM_min  
2
5. Peak Switching Current:  
DIL  
ISWPEAK = IOUT  
+
2
Toff = Buck boost switch duty off time (typ. 200 ns)  
η = Estimated boost converter efficiency (use the number from the efficiency plots or 0.8 as an estimation)  
fS = Switching frequency  
L = Selected inductor value (typ. 10 µH)  
ILIM_min: Minimum current limit  
ISWPEAK = Peak switch current for the used output current  
ΔIL = Inductor peak-to-peak ripple current  
The peak switch current ISWPEAK is the current that the integrated switch, the inductor and the external Schottky  
diode have to be able to handle. The calculation must be done for the minimum input voltage where the peak  
switch current is the highest.  
Inducotr Selection (Buck Converter)  
Higher the inductor value the lower the inductor current ripple and the output  
voltage ripple but the slower the transient response.  
Inductor Value:  
4.7 µH L 10 µH  
20  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
The inductor saturation current must be higher than the switch peak current for  
SAT ISWPEAK or ISAT ILIM_max the max. peak output current or as a more conservative approach higher than  
the max. switch current limit.  
Saturation Current:  
DC Resistance:  
I
The lower the inductors resistance the lower the losses and the higher the efficiency.  
Output Capacitor Selection (Buck Converter)  
For best output voltage filtering, TI recommends low-ESR ceramic capacitors. Two 4.7-µF (or four 2.2-µF)  
ceramic capacitors work for most applications. To improve the load transient response more capacitance can be  
added between the rectifier diode.  
To calculate the output voltage ripple the following equations can be used:  
V25  
IOUT  
DVC _RIPPLE  
=
´
V ´ fs COUT  
+ DVC _ESR  
IN  
(12)  
(13)  
DVC _ESR = ISWPEAK ´RC _ESR  
LDO REGULATOR (V25)  
A low-dropout (LDO) linear regulator generates V25 (see Figure 30). The linear regulator is supplied from VIN and  
it’s an alternative option to buck converter. The V25 voltage could be supplied either by Buck converter or LDO  
determined by the state of the BUCK/LDO configuration bit in the CONFIG register.  
VIN  
Body  
diode  
Q1  
Q2  
V25  
V25_LX  
COUT3  
VREF  
Q3  
A1  
DAC  
V25  
R1  
AGND  
AGND  
Figure 30. Linear Regulator Block Diagram  
Amplifier A1 regulates the current through Q3 by comparing a reduced version of the output voltage with a  
bandgap voltage reference VREF. The output of Q3 is mirrored by Q1 and Q2 to generate the desired output  
voltage. In practice, Q2 is made much bigger than Q1. This means that the current flowing through Q1 and Q3 is  
smaller than the output current by the same ratio as the transistor areas.  
The maximum output current is inherently limited by the maximum output voltage of A1, the value of resistor R1,  
and the characteristics of transistor Q3.  
Output Voltage (LDO Regulator)  
LDO's output voltage can be programmed from 1.5 V to 3.0 V using the V25 register. Because the V25_LX pin  
alternates for LDO regulator's output voltage and buck converter's switch node, select buck converter with LDO  
circuit configuration can make the permanent damage. The LDO regulator mode is factory default setup.  
Start-Up (Low Dropout Regulator)  
LDO starts as soon as the supply voltage exceeds the under-voltage lockout threshold (the same time as the  
buck converter starts).  
To minimize inrush current during start-up, LDO regulator ramps V25 from 0V to programmed voltage in tSS2  
milliseconds. The value of tSS2 is around 0.5 ms to 4.0 ms.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS65640  
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
The same ramp rate is used for both buck converter and the linear regulator.  
BOOST CONVERTER 2 (VGH)  
Boost converter 2 is a low-power boost converter that can be used to generate the LCD panel's gate ON voltage  
VGH. Operating the converter in DCM removes the right-half-plane zero from its transfer function, simplifying its  
stabilization and allowing the use of small chip inductors. To simplify its application and to minimize the external  
parts required, boost converter 2 features internal compensation and soft-start circuitry.  
A simplified block diagram of boost converter 2 is shown in Figure 31.  
D4  
L4  
AVDD  
VGH  
COUT4  
VGH_LX  
R
DAC  
A2  
A1  
Q1  
Gate  
Driver  
Latch  
Off-Time  
Control  
S
VGH  
PGND1  
Figure 31. Boost Converter 2 Block Diagram  
Switching Frequency (Boost Converter 2)  
Boost Converter 2 can be configured to operate at 400 kHz or 800 kHz. The switching frequency is determined  
by the state of the FREQ4 configuration bit in the VGHCONFIG register.  
Output Voltage Temperature Compensation (Boost Converter 2)  
Boost converter 2 can be temperature compensated, allowing its output voltage to transition from a higher  
voltage at low temperatures VGH(COLD) to a lower voltage at high temperatures VGH(HOT) (see Figure 32 and  
Figure 33).  
VGH  
VGHCOLD  
VGHHOT  
Temperature  
TCOLD  
THOT  
Figure 32. Boost Converter 2 Temperature Compensation Characteristic  
22  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
 
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
1.25 V  
40 µA  
6
VT  
ADC  
PWM  
Controller  
A1  
R1  
0.5 V  
DAC  
VGHHOT  
5 Bits  
VGH  
R2  
RT  
VGHCOLD  
5 Bits  
Figure 33. Boost Converter 2 Temperature Compensation Block Diagram  
(1)  
Referring to Figure 33, The thermistor network formed by R1, R2, and RT  
generates a voltage at the VT pin  
(2)  
whose value decreases with increasing temperature. With proper selection of the external components RT, R1  
and R2, temperatures THOT and TCOLD can be configured to suit each display's characteristics. A spreadsheet  
allowing easy calculation of component values is available from Texas Instruments free of charge.  
Output Voltage (Boost Converter 2)  
The output voltage of boost converter 2 at cold temperatures can be programmed from 15 V to 37 V using the  
VGHCOLD register.  
The output voltage of boost converter 2 at hot temperatures can be programmed from 15 V to 37 V using the  
VGHHOT register.  
In applications that do not require temperature compensation, the VGHT bit in CONFIG register should be set to  
1 and the VGHHOT register used to set the voltage of VGH  
.
Because changing the output voltage in big steps can temporarily demand switch currents greater than the  
switch's current limit, it is recommended that VGH be changed in 1 V steps, i.e. first change VGH from 15 V to 16  
V, then to 16 V, then to 17 V, and so on until the desired output voltage has been achieved.  
Start-Up (Boost Converter 2)  
Boost converter 2 is enabled when AVDD has finished ramping to its programmed voltage.  
To minimize inrush current during start-up, boost converter 2 ramps VGH to its programmed value in tSS4  
seconds. The value of tSS4 can be programmed from 4 ms to 16 ms using the SS4 bits in VGHCONFIG register.  
The same ramp rate is used for both boost converter 2 and the negative charge pump regulator.  
Boost converter 2's internal power good signal is asserted when two conditions are met:  
the converter's soft-start ramp has reached its final value  
the converter's output voltage is greater than its UVP threshold.  
The power good signal is latched and will only be reset when the supply voltage is cycled.  
Current limit (Boost Converter 2)  
The boost converter 2 has built-in cycle-by-cycle current limit for the power MOSFET. When the inducotr current  
or the power MOSFET current reaches ILIM, the power MOSFET will be tuned off immediately until the next  
switching cycle. The ILIM is typically 1.2 A for boost converter 2.  
Design Procedure (Boost Converter 2)  
The first step in the design procedure is to verify whether the maximum possible output current of the boost  
converter supports the specific application requirements.  
1. Converter Duty Cycle:  
(1) RT should be a negative temperature coefficient (NTC) type whose resistance at 25°C is 10kΩ.  
(2) Texas Instruments can provide a spreadsheet that calculates suitable component values automatically.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPS65640  
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
V
AVDD  
´ h  
D = 1-  
V
GH  
(14)  
2. Inductor Ripple Current:  
AVDD ´D  
fs ´L  
3. Maximum Output Current:  
DIL  
V
DIL =  
(15)  
æ
ö
IOUT _max = I  
-
´ 1- D  
( )  
÷
ç LIM_min  
2
è
ø
(16)  
(17)  
4. Peak Switching Current:  
IOUT DIL  
ISWPEAK  
=
+
1
-
D  
2
η = Estimated boost converter efficiency (use the number from the efficiency plots or 0.9 as an estimation)  
fS = Switching frequency  
L = Selected inductor value (typ. 10 µH)  
ILIM_min: Minimum current limit  
ISWPEAK = Peak switch current for the used output current  
ΔIL = Inductor peak-to-peak ripple current  
The peak switch current ISWPEAK is the current that the integrated switch, the inductor and the external Schottky  
diode have to be able to handle. The calculation must be done for the minimum input voltage where the peak  
switch current is the highest.  
Inducotr Selection (Boost Converter 2)  
Higher the inductor value the lower the inductor current ripple and the output  
voltage ripple but the slower the transient response.  
Inductor Value:  
4.7 µH L 10 µH  
The inductor saturation current must be higher than the switch peak current for  
Saturation Current:  
DC Resistance:  
I
SAT ISWPEAK or ISAT ILIM_max the max. peak output current or as a more conservative approach higher than  
the max. switch current limit.  
The lower the inductors resistance the lower the losses and the higher the efficiency.  
Rectifier Diode Selection (Boost Converter 2)  
Diode type: Schottky or super barrier rectifier (SBR) for better efficiency.  
Forward voltage: The lower the forward voltage VF the higher the efficiency and the lower the diode temperature.  
Reverse voltage: VR must be higher than the output voltage and should be higher than the OVP voltage 39 V.  
Thermal characteristics: The diode must be able to handle the dissipated power of PD = VF x IOUT  
.
Output Capacitor Selection  
For best output voltage filtering, TI recommends low-ESR ceramic capacitors. Two 4.7-µF (or four 2.2-µF)  
ceramic capacitors work for most applications. To improve the load transient response more capacitance can be  
added between the rectifier diode.  
To calculate the output voltage ripple the following equations can be used:  
V
GH - VAVDD IOUT  
´
DVC _RIPPLE  
=
+ DVC _ESR  
VGH ´ fs  
COUT  
(18)  
(19)  
DVC _ESR = ISWPEAK ´RC _ESR  
24  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
NEGATIVE CHARGE PUMP VOLTAGE REGULATOR CONTROL (VGL)  
The negative charge pump voltage regulator control an external NPN transistor to regulate the VGL output. As  
typical application circuit Figure 34 illustrated, a one time negative voltage charge pump based on the AVDD  
boost switching provides the source voltage to the emitter of NPN transistor. Depending on the feedback voltage  
applied on the VGL pin, A1 error amplifier regulates the current through Q3. The proportional current mirrored by  
Q1 to Q2 sends to the base of NPN transistor from DRVN pin. Therefore, the regulation is achieved by controlled  
voltage drop between collector and emitter of NPN transition.  
Normally the negative charge pump regulator is to provide gate OFF voltage to the gate driver or level shift. In  
additional, for positive and negative AVDD application, it can also be used for negative AVDD regulating. Because  
of charge bump voltage loss, it is recommended to leave enough voltage guard band (for example, 1 V for 50-  
mA load) between positive AVDD to negative AVDD  
.
R1  
LX  
VGL  
COUT5  
VIN  
Q1  
Q2  
DRVN  
VCC  
VREF  
Q3  
A1  
DAC  
VGL  
AGND  
Figure 34. Negative Charge Pump Block Diagram  
Output Voltage (Negative Charge Pump)  
Negative charge pump's output voltage can be programmed from –8 V to –3.8 V using the VGL register.  
Start-Up (Negative Charge Pump)  
Negative charge pump is enabled together with booster converter 2 when AVDD has finished ramping to its  
programmed voltage.  
The same ramp rate is shared for both boost converter 2 and negative charge pump regulator. The negative  
charge pump regulator ramps VGL to its programmed value from 0V in tSS4 seconds. The value of tSS4 can be  
programmed from 4 ms to 16 ms using the SS4 bits in VGHCONFIG register.  
NPN Transistor Selection (Negative Charge Pump)  
The NPN transistor used to regulator VGL or Negtive AVDD should have a DC gain (hFE) of at least 100 when its  
collector current is equal to the charge pump's output current. The transistor should also be able withstand  
voltages up to VIN across its collector-emitter (VCE).  
The power dissipated in the transistor is given by Equation 20. The transistor must be able to dissipate this  
power without its junction becoming too hot. Note that the ability to dissipate power depends on adequate PCB  
thermal design.  
PQ = [V -(2´ VF )- | VGL |]´IGL  
IN  
(20)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TPS65640  
 
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Where IGL is the mean (not RMS) output current drawn from the charge pump.  
Diode Selection (Negative Charge Pump)  
Small-signal diodes can be used for most low current applications (<50 mA) and higher rated diodes for higher  
power applications. The average current through the diode is equal to the output current, so that the power  
dissipated in the diode is given by Equation 21  
PD = IGL ´ VF  
(21)  
The peak current through the diode occurs during start-up and for a few cycles may be as high as a few amps.  
However, this condition typically lasts for <1 ms and can be tolerated by many diodes whose repetitive current  
rating is much lower. The diodes’ reverse voltage rating should be equal to at least 2 × VIN.  
Capacitor Selecion (Negative Charge Pump)  
For the lowest output voltage ripple, low-ESR ceramic capacitors are recommended. The actual value is not  
critical and 1 µF to 10 µF is suitable for most applications. Large capacitors provide better performance in  
applications where large load transient currents are present.  
A flying capacitor in the range of 100 nF to 1 µF is suitable for most applications. Larger values experience a  
smaller voltage drop by the end of each switching cycle, and allow higher output voltages or currents, or both, to  
be achieved. Smaller values tend to be physically smaller and cheaper.  
OVER-VOLTAGE AND UNDER-VOLTAGE PROTECTION (AVDD, V25, VGH)  
Each voltage regulator output is protected against under-voltages and over-voltages.  
Over-voltage conditions are detected if AVDD output rises over typical 15 V or VGH output rises over typical 39 V,  
in which cases the AVDD boost switch or VGH boost switch will be turned off until the overvoltage conditions is  
removed.  
Undervoltage conditions are detected if a regulator output falls below certain level of its programmed voltage for  
longer than a time period, in which case the relevant voltage regulator is disabled. To recover normal operation  
following an under-voltage condition, the cause of the error condition must be removed and the supply voltage  
VIN cycled.  
Table 1. Under Voltage Protection  
ERROR  
TIME  
UVP  
PROTECT BEHAVIOR  
RECOVERY CONDITION  
CONDITI  
ON  
PERIOD  
V25 buck converter or LDO, AVDD boost converter, VGH  
> 160 ms boost converter and VGL regulator are disabled. RESET  
pin is pulled low.  
Error condition is removed and VIN is  
cycled (POR).  
V25  
< 1 V  
AVDD boost converter, VGH boost convert and VGL  
> 160 ms  
Error condition is removed and VIN is  
cycled (POR).  
AVDD  
VGH  
< 80%  
< 80%  
voltage regulator are disabled.  
Error condition is removed and VIN is  
cycled (POR).  
> 160 ms VGH boost converter is disabled.  
RESET GENERATOR  
The RESET pin generates an active-low reset signal for the T-CON (see Figure 35). During power-up the reset  
timer (tRESET) starts when V25 has finished ramping. The reset pulse duration can be programmed from 0 ms to  
30 ms using the RESET register.  
The RESET output is an open-drain type that requires an external pull-up resistor. Pull-up resistor values in the  
range 10 kΩ to 100 kΩ are recommended for most applications.  
26  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
RESET  
V25  
OSC  
CLK  
H
D
VREF  
DAC  
Reset  
Q
EN  
RST  
Timer  
RST  
Figure 35. Reset Internal Block Diagram  
GATE VOLTAGE SHAPING  
The gate voltage shaping function can be used to reduce image sticking in LCD panels by modulating the LCD  
panel's gate ON voltage (VGH). Figure 36 shows a block diagram of the gate voltage shaping function and  
Figure 37 shows the typical waveforms during operation.  
VGH  
VGH  
Q1  
VGHM  
VGHM  
Control  
Logic  
FLK  
CVGHM  
4.7 nF  
Q2  
RE  
RE  
Figure 36. Gate Voltage Shaping Block Diagram  
VGHPG  
FLK  
Don’t Care  
tDLY  
VGHM  
Figure 37. Gate Voltage Shaping Waveforms  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TPS65640  
 
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Gate voltage shaping is controlled by the FLK input. When FLK is high, Q1 is on, Q2 is off, and VGHM is equal to  
VGH. On the falling edge of FLK, Q1 is turned off, Q2 is turned on, and the LCD panel load connected to the  
VGHM pin discharges through the external resistor connected to the RE pin.  
During power-up Q2 is held permanently on and Q1 permanently off, regardless of the state of the FLK signal,  
until tDLY milliseconds after boost converter 2 (VGH) has finished ramping. The value of tDLY can be programmed  
from 0ms to 60ms using the DLY register.  
During power-down Q2 is held permanently on and Q1 permanently off, regardless of the state of the FLK signal.  
PROGRAMMABLE VCOM CALIBRATOR (VCOM  
)
The programmable VCOM calibrator uses a DAC to generate an offset Voltage for LCD panel common voltage  
reference.  
AVDD  
1.25 V  
6
ADC  
VT  
VCOM  
Temp  
R1  
40 µA  
0.5 V  
VCOM_OUT  
R2  
RT  
VCOMHOT  
10-Bits RAM  
VCOMHOT  
10-Bits  
DAC  
VCOMCOLD  
10-Bits  
VCOMCOLD  
10-Bits RAM  
VCOM  
7-Bits RAM  
NAVDD  
Figure 38. Programmable VCOM Calibrator Block Diagram  
The VCOM voltage calibration needs two steps for adjustment.  
First step is to set the central value of VCOM voltage according to the AVDD, VGH and LCD panel characteristic.  
The VCOM voltage is programmable from 1.5 V to 5.0 V or –4 V to 0.8 V by VCOMHOT register. The first step is  
normally done by PCB assembly manufacturer.  
Second step is to calibrate the VCOM voltage on the LCD panel assembly line by VCOM RAM register through I2C  
digital interface. The VCOM register value indicates the voltage increment or decrement of VCOM_OUT which is  
preset by VCOMHOT. Once the proper value is identified, the VCOM_OUT voltage value can be renewed with  
VCOM register value added. The default value for VCOM register is 1000000. If 1000001 is written into VCOM  
register, the VCOM_OUT voltage will increase with one DAC step, 10mV. In the other hand if 0111111 is written  
to VCOM register, the VCOM_OUT voltage will decrease with one DAC step, 10 mV.  
The VCOM voltage also supports temperature compensation and allows its output voltage to transition from a  
lower voltage at low temperatures VCOMCOLD to a higher voltage at high temperatures VCOMHOT (see Figure 39).  
The temperature compensation for VCOM could be turn on/off by bit VCOMT in register CONFIG. If temperature  
compensation for VCOM is ON state, both VCOMHOT and VCOMCOLD need to be input. Otherwise only  
VCOMHOT is active for VCOM voltage setting without temperature compensation.  
28  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
VCOM  
VCOMHOT  
VCOMCOLD  
Temperature  
TCOLD  
THOT  
Figure 39. VCOM Temperature Compensation Characteristic  
OPERATIONAL AMPLIFIERS  
Like most operational amplifiers, the VCOM amplifiers are not designed to drive purely capacitive loads, so it is not  
recommended to connect a capacitor directly to their outputs in an attempt to increase performance; however,  
the amplifiers are capable of delivering high peak currents that make such capacitors unnecessary.  
To optimize performance, the VCOM amplifiers' positive supplies are connected internally to the AVDD pin and  
negative supplies are connected internally to NAVDD pin (See Figure 40 for operational amplifier internal block  
diagram).  
AVDD  
VINA+  
OUTA  
VINA-  
VINB+  
OUTB  
VINB-  
NAVDD  
Figure 40. Operational Amplifier Block Diagram  
The two integrated operational amplifiers are able to be disabled for non-used application to minimize the power  
consumption. Setting the OPA_A bit or OPA_B bit in CONFIG register can turn on/off operational amplifier A or  
B individually.  
To minimize the addtional power dissipated when operational amplifier is turned off, it is recommanded to short  
the both inverter input and non-inverter input to same voltage bias or leave them floating.  
CONFIGURATION PARAMETERS  
The TPS65640 divides the configuration parameters into two categories:  
VCOM calibration  
All other configuration parameters  
In typical applications, all configuration parameters except VCOM are programmed by the subcontractor during  
PCB assembly, and VCOM is programmed by the display manufacturer during display calibration.  
RAM and E2PROM  
Configuration parameters can be changed by writing the desired values to the appropriate RAM register or  
registers. The RAM registers are volatile and their contents are lost when power is removed from the device. By  
writing to the Control Register, it is possible to store the active configuration in non-volatile E2PROM so that it will  
subsequently be used as the default setting upon when the device is powered up.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TPS65640  
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Configuration Parameters (Excluding VCOM Calibration)  
Table 2 shows the memory map of the configuration parameters.  
Table 2. Configuration Memory Map  
Register  
Address  
Register  
Name  
Factory  
Default  
Description  
00h  
01h  
02h  
03h  
CONFIG  
AVDD  
FAh  
3Ah  
0Ah  
09h  
Sets function control bits  
Sets the output voltage of AVDD boost converter  
Sets miscellaneous configuration bits for AVDD boost converter  
AVDDCONFIG  
VGHHOT  
Sets the output voltage of VGH boost converter at high temperatures (VGHT = 0) or  
VGH boost converter (VGHT=1)  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
VGHCOLD  
VGHCONFIG  
VGL  
09h  
02h  
1Fh  
0Ah  
01h  
06h  
01h  
5Fh  
Sets the output voltage of VGH boost converter at low temperatures (VGHT=0)  
Sets miscellaneous configuration bits for VGH boost converter  
Sets the output voltage of VGL linear regulator  
Sets the output voltage of buck converter.  
V25  
VDIV  
Sets the threshold of the /RST signals  
RESET  
DLY  
Sets the reset pulse duration  
Sets the gate voltage shaping delay  
VCOMHOT  
Presets the output voltage of VCOM reference at high temperatures (VCOMT = 0) or  
VCOM reference (VCOMT=1)  
0Ch  
FFh  
VCOMCOLD  
Control  
5Fh  
00h  
Presets the output voltage of VCOM reference at low temperatures (VCOMT=0)  
Controls whether read and write operations access RAM or E2PROM registers  
30  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
CONFIG (00h)  
The CONFIG register can be written to and read from.  
Table 3. CONFIG Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
VGHT  
Bit 0  
VCOMR  
VCOMT  
OPA_B  
OPA_A  
BUCK/LDO  
VGL  
VGH  
VGH  
Bit  
0
This bit enables/disables the boost converter for VGH voltage regulator.  
0
1
Enables the VGH boot converter  
Disables the VGH boost converter  
VGHT  
Bit  
1
This bit enables/disables the temperature compensation for VGH regulator.  
0
1
Enables the temperature compensation for VGH voltage regulator  
Disables the temperature compensation for VGH voltage regulator  
VGL  
Bit  
2
This bit enables/disables the VGL linear voltage regulator.  
0
1
Enables the VGL linear voltage regulator  
Disables the VGL linear voltage regulator  
BUCK/LDO  
OPA_A  
OPA_B  
VCOMT  
VCOMR  
Bit  
3
This bit selects the operation mode for V25 voltage regulator.  
0
1
Selects the Buck converter for V25 voltage regulator  
Selects the LDO for V25 voltage regulator  
Bit  
4
This bit enables/disables the OPA_A operational amplifier.  
0
1
Enables the OPA_A operational amplifier  
Disables the OPA_A operational amplifier  
Bit  
5
This bit enables/disables the OPA_B operational amplifier.  
0
1
Enables the OPA_B operational amplifier  
Disables the OPA_B operational amplifier  
Bit  
6
This bit enables/disables the temperature compensation for VCOM voltage  
0
1
Enables the temperature compensation for VCOM voltage  
Disables the temperature compensation for VCOM voltage  
Bit  
7
This bit sets the VCOM voltage output range  
0
1
VCOM = 0.8 V ~ 5 V for full AVDD Application  
VCOM = –4.1 V ~ 0.2 V for PN AVDD Application  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
AVDD (01h)  
The AVDD register can be written to and read from.  
Table 4. AVDD Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
AVDD  
AVDD  
Bits  
6-0  
These bits select boost converter 1's output voltage (AVDD)  
0000000  
……  
N.A.  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
AVDD = 6.6 V  
1100010  
AVDD = 9.8 V  
N.A.  
AVDD = 6.7 V  
AVDD = 6.8 V  
AVDD = 6.9 V  
AVDD = 7.0 V  
AVDD = 7.1 V  
AVDD = 7.2 V  
AVDD = 7.3 V  
AVDD = 7.4 V  
AVDD = 7.5 V  
AVDD = 7.6 V  
AVDD = 7.7 V  
AVDD = 7.8 V  
AVDD = 7.9 V  
AVDD = 8.0 V  
AVDD = 8.1 V  
AVDD = 8.2 V  
AVDD = 8.3 V  
AVDD = 8.4 V  
AVDD = 8.5 V  
AVDD = 8.6 V  
AVDD = 8.7 V  
AVDD = 8.8 V  
AVDD = 8.9 V  
AVDD = 9.0 V  
AVDD = 9.1 V  
AVDD = 9.2 V  
AVDD = 9.3 V  
AVDD = 9.4 V  
AVDD = 9.5 V  
AVDD = 9.6 V  
AVDD = 9.7 V  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
AVDD = 9.9 V  
AVDD = 10.0 V  
AVDD = 10.1 V  
AVDD = 10.2 V  
AVDD = 10.3 V  
AVDD = 10.4 V  
AVDD = 10.5 V  
AVDD = 10.6 V  
AVDD = 10.7 V  
AVDD = 10.8 V  
AVDD = 10.9 V  
AVDD = 11.0 V  
AVDD = 11.1 V  
AVDD = 11.2 V  
AVDD = 11.3 V  
AVDD = 11.4 V  
AVDD = 11.5 V  
AVDD = 11.6 V  
AVDD = 11.7 V  
AVDD = 11.8 V  
AVDD = 11.9 V  
AVDD = 12.0 V  
AVDD = 12.1 V  
AVDD = 12.2 V  
AVDD = 12.3 V  
AVDD = 12.4 V  
AVDD = 12.5 V  
AVDD = 12.6 V  
AVDD = 12.7 V  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
AVDD = 3.6 V  
AVDD = 3.7 V  
AVDD = 3.8 V  
AVDD = 3.9 V  
AVDD = 4.0 V  
AVDD = 4.1 V  
AVDD = 4.2 V  
AVDD = 4.3 V  
AVDD = 4.4 V  
AVDD = 4.5 V  
AVDD = 4.6 V  
AVDD = 4.7 V  
AVDD = 4.8 V  
AVDD = 4.9 V  
AVDD = 5.0 V  
AVDD = 5.1 V  
AVDD = 5.2 V  
AVDD = 5.3 V  
AVDD = 5.4 V  
AVDD = 5.5 V  
AVDD = 5.6 V  
AVDD = 5.7 V  
AVDD = 5.8 V  
AVDD = 5.9 V  
AVDD = 6.0 V  
AVDD = 6.1 V  
AVDD = 6.2 V  
AVDD = 6.3 V  
AVDD = 6.4 V  
AVDD = 6.5 V  
32  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
AVDDCONFIG (02h)  
The AVDDCONFIG register can be written to and read from.  
Table 5. AVDDCONFIG Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
AVDD ILIM  
SSI  
FREQ1  
LX1TS  
LX1TS  
Bit  
These bits configure the falling speed of AVDD boost switch.  
1-0  
00  
01  
10  
11  
Tf = 0.5 V/ns  
Tf = 0.7 V/ns  
Tf = 0.9 V/ns  
Tf = 1.1 V/ns  
FREQ1  
Bit  
These bits configure the switching frequency of AVDD boost.  
3-2  
00  
01  
10  
11  
fLX = 600 kHz  
fLX = 800 kHz  
fLX = 1000 kHz  
fLX = 1200 kHz  
SSI  
Bit  
These bits configure the soft start duration for AVDD boost regulator  
5-4  
00  
01  
10  
11  
tSS1 = 20 ms  
tSS1 = 40 ms  
tSS1 = 60 ms  
tSS1 = 80 ms  
AVDD ILIM  
Reserved  
Bit  
6
This bit select the AVDD boost current limite value  
0
1
ILIM = 1 A  
ILIM = 2 A  
Bits  
7
This bit is reserved for future use. During write operations data intended for these bits is ignored, and during  
read operations 0 is returned.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
VGHHOT (03h)  
The VGHHOT register can be written to and read from.  
Table 6. VGHHOT Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
VGHHOT  
VGHHOT  
Bits  
4-0  
These bits select VGH output voltage at hot temperatures (VGHT=0) or all temperature range (VGHT=1).  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
N.A.  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
VGHHOT = 22 V  
VGHHOT = 23 V  
VGHHOT = 24 V  
VGHHOT = 25 V  
VGHHOT = 26 V  
VGHHOT = 27 V  
VGHHOT = 28 V  
VGHHOT = 29 V  
VGHHOT = 30 V  
VGHHOT = 31 V  
VGHHOT = 32 V  
VGHHOT = 33 V  
VGHHOT = 34 V  
VGHHOT = 35 V  
VGHHOT = 36 V  
VGHHOT = 37 V  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
VGHHOT = 15 V  
VGHHOT = 16 V  
VGHHOT = 17 V  
VGHHOT = 18 V  
VGHHOT = 19 V  
VGHHOT = 20 V  
VGHHOT = 21 V  
Reserved  
Bits  
7-5  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
VGHCOLD (04h)  
The VGHCOLD register can be written to and read from.  
Table 7. VGHCOLD Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
VGHCOLD  
VGHCOLD  
Bits  
4-0  
These bits select VGH output voltage at cold temperatures (VGHT=0)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
N.A.  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
VGHCOLD = 22 V  
VGHCOLD = 23 V  
VGHCOLD = 24 V  
VGHCOLD = 25 V  
VGHCOLD = 26 V  
VGHCOLD = 27 V  
VGHCOLD = 28 V  
VGHCOLD = 29 V  
VGHCOLD = 30 V  
VGHCOLD = 31 V  
VGHCOLD= 32 V  
VGHCOLD = 33 V  
VGHCOLD = 34 V  
VGHCOLD = 35 V  
VGHCOLD= 36 V  
VGHCOLD = 37 V  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
VGHCOLD = 15 V  
VGHCOLD = 16 V  
VGHCOLD = 17 V  
VGHCOLD = 18 V  
VGHCOLD = 19 V  
VGHCOLD = 20 V  
VGHCOLD = 21 V  
Reserved  
Bits  
7-5  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
34  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
VGHCONFIG (05h)  
The VGHMISC register can be written to and read from.  
Table 8. VGHCONFIG Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
FREQ4  
SS4  
LX4TS  
LX4TS  
Bit  
These bits configure the falling speed of VGH boost switch.  
1-0  
00  
01  
10  
11  
Tf = 2.2 V/ns  
Tf = 3.5 V/ns  
Tf = 4.8 V/ns  
Tf = 6 V/ns  
SS4  
Bit  
These bits configure the soft start duration for VGH boost regulator  
3-2  
00  
01  
10  
11  
tSS4 = 4 ms  
tSS4 = 8 ms  
tSS4 = 12 ms  
tSS4 = 16 ms  
FREQ4  
Bit  
4
This bit configures the switching frequency of VGH boost regulator  
0
1
FVGH_LX = 400 kHz  
FVGH_LX = 800 kHz  
Reserved  
Bits  
7-5  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
VGL (06h)  
The VGL register can be written to and read from.  
Table 9. VGL Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
VGL  
VGL  
Bits  
5-0  
These bits select VGL output voltage  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
N.A.  
VGL = –3.8 V  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
VGL = –3.9 V  
VGL = –4.0 V  
VGL = –4.1 V  
VGL = –4.2 V  
VGL = –4.3 V  
VGL = –4.4 V  
VGL = –4.5 V  
VGL = –4.6 V  
VGL = –4.7 V  
VGL = –4.8 V  
VGL = –4.9 V  
VGL = –5.0 V  
VGL = –5.1 V  
VGL = –5.2 V  
VGL = –5.3 V  
VGL = –5.4 V  
VGL = –5.5 V  
VGL = –5.6 V  
VGL = –5.7 V  
VGL = –5.8 V  
VGL = –5.9 V  
VGL = –6.0 V  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
VGL = –6.1 V  
VGL = –6.2 V  
VGL = –6.3 V  
VGL = –6.4 V  
VGL = –6.5 V  
VGL = –6.6 V  
VGL = –6.7 V  
VGL = –6.8 V  
VGL = –6.9 V  
VGL = –7.0 V  
VGL = –7.1 V  
VGL = –7.2 V  
VGL = –7.3 V  
VGL = –7.4 V  
VGL = –7.5 V  
VGL = –7.6 V  
VGL = –7.7 V  
VGL = –7.8 V  
VGL = –7.9 V  
VGL = –8.0 V  
Reserved  
Bits  
7-6  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
36  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
V25 (07h)  
The V25 register can be written to and read from.  
Table 10. V25 Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
V25  
V25  
Bits  
3-0  
These bits select V25 buck converter’s output voltage  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
V25 = 1.5 V  
V25 = 1.6 V  
V25 = 1.7 V  
V25 = 1.8 V  
V25 = 1.9 V  
V25 = 2.0 V  
V25 = 2.1 V  
V25 = 2.2 V  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
V25 = 2.3 V  
V25 = 2.4 V  
V25 = 2.5 V  
V25 = 2.6 V  
V25 = 2.7 V  
V25 = 2.8 V  
V25 = 2.9 V  
V25 = 3.0 V  
Reserved  
Bits  
7-4  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
VDIV (08h)  
The VDIV register can be written to and read from.  
Table 11. VDIV Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
VDIV  
VDIV  
Bits  
3-0  
These bits select the threshold voltage of the RESET signal  
000  
001  
010  
011  
100  
101  
110  
111  
VDIV = 1.2 V  
VDIV = 1.4 V  
VDIV = 1.6 V  
VDIV = 1.8 V  
VDIV = 2.0 V  
VDIV = 2.2 V  
VDIV = 2.4 V  
VDIV = 2.6 V  
Reserved  
Bits  
7-4  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
RESET (09h)  
The RESET register can be written to and read from.  
Table 12. RESET Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
RESET  
RESET  
Bits  
3-0  
These bits select the RESET generate delay time period  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
TRESET = 0 ms  
TRESET = 2 ms  
TRESET = 4 ms  
TRESET = 6 ms  
TRESET = 8 ms  
TRESET = 10 ms  
TRESET = 12 ms  
TRESET = 14 ms  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
TRESET = 16 ms  
TRESET = 18 ms  
TRESET = 20 ms  
TRESET = 22 ms  
TRESET = 24 ms  
TRESET = 26 ms  
TRESET = 28 ms  
TRESET = 30 ms  
Reserved  
Bits  
7-4  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
DLY (0Ah)  
The DLY register can be written to and read from.  
Table 13. DLY Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
DLY  
DLY  
Bits  
1-0  
These bits configure the gate voltage shaping delay time period  
00  
01  
10  
11  
VDLY = 0 ms  
VDLY = 20 ms  
VDLY = 40 ms  
VDLY = 60 ms  
Reserved  
Bits  
7-2  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
38  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
VCOMHOT (0Bh)  
The VCOMHOT1 register can be written to and read from.  
Table 14. VCOMHOT Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VCOMHOT  
VCOMHOT  
Bits  
These bits select VCOM output voltage at hot temperatures (VCOMT = 0) or all temperature range (VCOMT =  
1).  
VCOMR = 0  
VCOMR = 1  
00000000  
00000001  
00000010  
…..  
VCOMHOT = N.A  
VCOMHOT = N.A  
VCOMHOT = N.A  
VCOMHOT = N.A  
VCOMHOT = N.A  
VCOMHOT = N.A  
VCOMHOT = N.A  
VCOMHOT = N.A  
VCOMHOT = N.A  
VCOMHOT = N.A  
00100111  
00101000  
00101001  
00101010  
00101011  
10111100  
…..  
VCOMHOT = 0.80 V VCOMHOT = 0.20 V  
VCOMHOT = 0.82 V VCOMHOT = 0.18 V  
VCOMHOT = 0.84 V VCOMHOT = 0.16 V  
VCOMHOT = 0.86 V VCOMHOT = 0.14 V  
VCOMHOT = 0.86 V VCOMHOT = 0.12 V  
…..  
…..  
11111101  
11111110  
11111111  
VCOMHOT = 5.06 V VCOMHOT = –4.06 V  
VCOMHOT = 5.08 V VCOMHOT = –4.08 V  
VCOMHOT = 5.10 V VCOMHOT = –4.10 V  
VCOMCOLD (0Ch)  
The VCOMCOLD register can be written to and read from.  
Table 15. VCOMCOLD Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VCOMCOLD  
VCOMCOLD  
Bits  
These bits select VCOM output voltage at cold temperatures (VCOMT=0)  
VCOMR = 0  
VCOMR = 1  
00000000  
00000001  
00000010  
…..  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
VCOMCOLD = N.A  
00100111  
00101000  
00101001  
00101010  
00101011  
10111100  
…..  
VCOMCOLD = 0.80 V VCOMCOLD = 0.20 V  
VCOMCOLD = 0.82 V VCOMCOLD = 0.18 V  
VCOMCOLD = 0.84 V VCOMCOLD = 0.16 V  
VCOMCOLD = 0.86 V VCOMCOLD = 0.14 V  
VCOMCOLD = 0.86 V VCOMCOLD = 0.12 V  
…..  
…..  
11111101  
11111110  
11111111  
VCOMCOLD = 5.06 V VCOMCOLD = –4.06 V  
VCOMCOLD = 5.08 V VCOMCOLD = –4.08 V  
VCOMCOLD = 5.10 V VCOMCOLD = –4.10 V  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Control (FFh)  
Table 16. Control Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WED  
Reserved  
RED  
RED  
Bit  
0
The state of this bit determines whether read operations return the contents of the DAC registers or the  
contents of the E2PROM  
0
1
Read operations return the contents of the DAC registers  
Read operations return the contents of the E2PROM  
Reserved  
WED  
Bits  
6-1  
These bits are reserved for future use. During write operations data intended for these bits is ignored, and  
during read operations 0 is returned.  
Bit  
7
Setting this bit forces the contents of all DAC registers to be copied into E2PROM, thereby making them the  
default values during power-up.  
When the contents of all the DAC registers have been written to the E2PROM, the TPS65640 automatically  
resets this bit.  
40  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
Example – Writing to a Single RAM Register  
1. Bus master sends START condition.  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65640 acknowledges.  
4. Bus master sends address of RAM register (00h).  
5. TPS65640 acknowledges.  
6. Bus master sends data to be written.  
7. TPS65640 acknowledges.  
8. Bus master sends STOP condition.  
E8h  
00h  
DATA  
7-Bit Slave Address  
RAM Register Address  
RAM Register Data  
S
0
A
A
A P  
Figure 41. Writing to a Single RAM Register  
Example – Writing to Multiple RAM Registers  
1. Bus master sends START condition.  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65640 acknowledges.  
4. Bus master sends address of first RAM register to be written to (00h).  
5. TPS65640 acknowledges.  
6. Bus master sends data to be written to first RAM register.  
7. TPS65640 acknowledges.  
8. Bus master sends data to be written to RAM register at next higher address (auto-increment).  
9. TPS65640 acknowledges.  
10. Steps (8) and (9) repeated until data for final RAM register has been sent.  
11. TPS65640 acknowledges.  
12. Bus master sends STOP condition.  
E8h  
00h  
DATA  
DATA  
RAM Register Data (n+1)  
7-Bit Slave Address  
RAM Register Address (n)  
RAM Register Data (n)  
S
0
A
A
A
A
DATA  
RAM Register Data (Last)  
A
P
Figure 42. Writing to Multiple RAM Registers  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Example – Saving Contents of all RAM Registers to E2PROM  
1. Bus master sends START condition.  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65640 acknowledges.  
4. Bus master sends address of Control Register (FFh).  
5. TPS65640 acknowledges.  
6. Bus master sends data to be written to the Control Register (80h).  
7. TPS65640 acknowledges.  
8. Bus master sends STOP condition.  
E8h  
FFh  
80h  
7-Bit Slave Address  
Control Register Address  
Control Register Data  
S
0
A
A
A P  
Figure 43. Saving Contents of all RAM Registers to E2PROM  
The TPS65640 needs 50ms time period after TPS65640 receiving STOP condition for saving all RAM registers  
data to E2PROM. If bus master send 7-bit slave address to call TPS65640 again within 50ms period, the  
TPS65640 will pull down the SCL line to LOW until the all RAM registers data saving to E2PROM is completed.  
42  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
Example – Reading from a Single RAM Register  
1. Bus master sends START condition.  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65640 acknowledges.  
4. Bus master sends address of Control Register (FFh).  
5. TPS65640 acknowledges.  
6. Bus master sends data for Control Register (00h).  
7. TPS65640 acknowledges.  
8. Bus master sends STOP condition.  
9. Bus master sends START condition.  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
11. TPS65640 acknowledges.  
12. Bus master sends address of RAM register (00h).  
13. TPS65640 acknowledges.  
14. Bus master sends REPEATED START condition.  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h).  
16. TPS65640 acknowledges.  
17. TPS65640 sends RAM register data.  
18. Bus master does not acknowledge.  
19. Bus master sends STOP condition.  
E8h  
FFh  
00h  
7-Bit Slave Address  
Control Register Address  
Control Register Data  
S
S
0
0
A
A
A
A
1
P
A
E8h  
00h  
E9h  
DATA  
7-Bit Slave Address  
RAM Register Address  
7-Bit Slave Address  
RAM Register Data  
A
Sr  
A P  
Figure 44. Reading from a Single RAM Register  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Example – Reading from a Single E2PROM Register  
1. Bus master sends START condition.  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65640 acknowledges.  
4. Bus master sends address of Control Register (FFh).  
5. TPS65640 acknowledges.  
6. Bus master sends data for Control Register (01h).  
7. TPS65640 acknowledges.  
8. Bus master sends STOP condition.  
9. Bus master sends START condition.  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
11. TPS65640 acknowledges.  
12. Bus master sends address of E2PROM register (00h).  
13. TPS65640 acknowledges.  
14. Bus master sends REPEATED START condition.  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h).  
16. TPS65640 acknowledges.  
17. TPS65640 sends E2PROM register data.  
18. Bus master does not acknowledge.  
19. Bus master sends STOP condition.  
E8h  
FFh  
01h  
7-Bit Slave Address  
Control Register Address  
Control Register Data  
S
0
A
A
A
A
1
P
A
E8h  
00h  
E2PROM Register Address  
E9h  
DATA  
E2PROM Register Data  
7-Bit Slave Address  
7-Bit Slave Address  
S
0
A
Sr  
A P  
Figure 45. Reading from a Single E2PROM Register  
44  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
Example – Reading from Multiple RAM Registers  
1. Bus master sends START condition.  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65640 acknowledges.  
4. Bus master sends address of Control Register (FFh).  
5. TPS65640 acknowledges.  
6. Bus master sends data for Control Register (00h).  
7. TPS65640 acknowledges.  
8. Bus master sends STOP condition.  
9. Bus master sends START condition.  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
11. TPS65640 acknowledges.  
12. Bus master sends address of first register to be read (00h).  
13. TPS65640 acknowledges.  
14. Bus master sends REPEATED START condition.  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h).  
16. TPS65640 acknowledges.  
17. TPS65640 sends contents of first RAM register to be read.  
18. Bus master acknowledges.  
19. Bus master sends contents of second RAM register to be read.  
20. Bus master acknowledges.  
21. TPS65640 sends contents of third (last) RAM register to be read.  
22. Bus master does not acknowledge.  
23. Bus master sends STOP condition.  
E8h  
FFh  
00h  
7-Bit Slave Address  
Control Register Address  
Control Register Data  
S
0
A
A
A
A
1
P
A
E8h  
00h  
E9h  
DATA  
7-Bit Slave Address  
RAM Register Address (n)  
7-Bit Slave Address  
RAM Register Data (n)  
S
0
A
Sr  
A
P
DATA  
DATA  
RAM Register Data (Last)  
RAM Register Data (n+1)  
A
A
Figure 46. Reading from Multiple RAM Registers  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Example – Reading from Multiple E2PROM Registers  
1. Bus master sends START condition.  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65640 acknowledges.  
4. Bus master sends address of Control Register (FFh).  
5. TPS65640 acknowledges.  
6. Bus master sends data for Control Register (01h).  
7. TPS65640 acknowledges.  
8. Bus master sends STOP condition.  
9. Bus master sends START condition.  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
11. TPS65640 acknowledges.  
12. Bus master sends address of first E2PROM register to be read (00h).  
13. TPS65640 acknowledges.  
14. Bus master sends REPEATED START condition.  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h).  
16. TPS65640 acknowledges.  
17. TPS65640 sends contents of first E2PROM register to be read.  
18. Bus master acknowledges.  
19. Bus master sends contents of second E2PROM register to be read.  
20. Bus master acknowledges.  
21. TPS65640 sends contents of third (last) E2PROM register to be read.  
22. Bus master does not acknowledge.  
23. Bus master sends STOP condition.  
E8h  
FFh  
01h  
7-Bit Slave Address  
Control Register Address  
Control Register Data  
S
0
A
A
A
A
1
P
A
E8h  
00h  
E2PROM Register Address (n)  
E9h  
DATA  
E2PROM Register Data (n)  
7-Bit Slave Address  
7-Bit Slave Address  
S
0
A
Sr  
A
P
DATA  
E2PROM Register Data (n+1)  
DATA  
E2PROM Register Data (Last)  
A
A
Figure 47. Reading from Multiple E2PROM Registers  
46  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
Configuration Parameter VCOM  
The VCOM register can be written to and read from.  
Table 17. VCOM Register Bit Allocation  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VCOM  
P
P
Bit  
0
During write operations, this bit determines the target for the data:  
0 = Data written to E2PROM and RAM register  
1 = Data written to RAM register only  
During read operations this bit indicates whether the contents of the E2PROM and RAM register are the same  
0 = E2PROM and RAM register contents are the same  
1 = E2PROM and RAM register contents are different  
VCOM  
Bits  
7-1  
During write operations, these bits contain the data to be written.  
During read operations, these bits return the contents of the RAM.  
The factory default setting is 1000000.  
Where VCOM is a 7-bit integer between 0 and 127 decimal.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
Example – Writing a VCOM Value of 77h to VCOM Register Only  
1. The bus master sends a START condition.  
2. The bus Master sends (9E hexadecimal (7-bit slave address plus low R/W bit).  
3. TPS65640 slave acknowledges.  
4. The bus master sends EF hexadecimal (data to be written plus LSB = '1').  
5. The TPS65640 slave acknowledges.  
6. The bus master sends a STOP condition.  
9Eh  
EFh  
7-Bit Slave Address  
Data to be Written  
S
0
A
1
A
P
Figure 48. Writing a VCOM Value of 77h to RAM Only  
Example – Writing a VCOM Value of 77h to E2PROM and RAM  
1. The bus master sends a START condition.  
2. The bus Master sends 9E hexadecimal (7-bit slave address plus low R/W bit).  
3. TPS65640 slave acknowledges.  
4. The bus master sends EE hexadecimal (data to be written plus LSB = '0').  
5. The TPS65640 slave acknowledges.  
6. The bus master sends a STOP condition.  
9Eh  
EEh  
7-Bit Slave Address  
Data to be Written  
S
0
A
0
A
P
Figure 49. Writing a VCOM Value of 77h to E2PROM and RAM  
48  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
Example – Reading a VCOM Value of 77h from RAM when E2PROM Contents are Identical  
1. The bus master sends a START condition.  
2. The bus Master sends 9F hexadecimal (7-bit slave address plus low R/W bit).  
3. TPS65640 slave acknowledges.  
4. The bus master sends EE hexadecimal from E2PROM (data to be read plus LSB = '0').  
5. The bus master does not acknowledge.  
6. The bus master sends a STOP condition.  
9Fh  
EEh  
7-Bit Slave Address  
Data to be Read  
S
1
A
0 A P  
Figure 50. Reading 77h from RAM when E2PROM Contents are Identical  
Example – Reading a VCOM Value of 77h from RAM when E2PROM Contents are Different  
1. The bus master sends a START condition.  
2. The bus Master sends 9F hexadecimal (7-bit slave address plus low R/W bit).  
3. TPS65640 slave acknowledges.  
4. The bus master sends EF hexadecimal from RAM (data to be read plus LSB = '1').  
5. The bus master does not acknowledge.  
6. The bus master sends a STOP condition.  
9Fh  
EFh  
7-Bit Slave Address  
Data to be Read  
S
1
A
1 A P  
Figure 51. Reading 77h from E2PROM when RAM Contents are Different  
I2C INTERFACE  
Configuration parameters and the VCOM voltage setting are programmed via an industry standard I2C serial  
interface. The TPS65640 always works as a slave device and supports standard (100kbps) and fast (400kbps)  
modes of operation.  
During write operations, all further attempts to access its slave addresses are ignored until the current write  
operation has completed.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
POWER SEQUENCY  
Buck converter (V25Buck) or the linear regulator (V25LDO) start as soon as VIN > VUVLO  
.
The reset generator holds RST low until tRESET seconds after V25 has reached power good status.  
Boost converter 1 starts after V25 reached power good status.  
Boost converter 2 starts as soon as AVDD has reached power good status.  
Figure 52 show the typical power-up/down characteristic of the TPS65640.  
VIN > VUVLO  
V25 < VUVLO  
VIN  
tSS2  
V25 > VDIV  
V25 < VDIV  
V25  
tRESET  
RST  
AVDD  
VGH  
tSS1  
tSS4  
VGL  
tDLY  
VGHM  
Figure 52. Power-Up and Power-Down Sequencing  
50  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
 
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
UNDERVOLTAGE LOCKOUT  
An undervoltage lockout function disables the IC when the supply voltage is too low for proper operation. A low-  
pass filter at the input of the UVLO comparator ensures that short transients on VIN do not cause premature  
shutdown of the IC.  
Low Pass  
VIN  
Filter  
UVLO  
VUVLO  
Figure 53. Undervoltage Lockout Comparator with Low-Pass Filter  
THERMAL SHUTDOWN  
A thermal shutdown function automatically disables all functions if the device’s junction temperature exceeds the  
safe maximum. The device automatically starts operating again once it has cooled down and operation may  
safely continue. A restart after a thermal shutdown event follows the same sequence as following a normal  
power-up condition (see Figure 52).  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
SLVSCE2 NOVEMBER 2013  
www.ti.com  
APPLICATION INFORMATION  
10 µH  
2.5 V~5.5 V  
AVDD  
VIN  
10 µF  
10 µF  
LX  
BOOST  
AVDD  
COMP  
VIN  
200 kΩ  
1 nF  
10 µF  
CONVERTER 1  
AVDD  
10 µH  
BOOST  
10 kΩ @ 25°C  
R1  
VGH  
CONVERTER 2  
VT  
VGH_LX  
4.7 µF  
R2  
VGH  
FLK  
RE  
GATE  
VOLTAGE SHAPING  
VGHM  
VGHM  
RE  
µH  
4.7  
V25  
V25_LX  
V25  
LX  
BUCK/LDO  
10µF  
CONVERTER  
V25  
10 kΩ  
220 nF  
RESET  
To TCON  
RESET  
GENERATOR  
100 kΩ  
1µF  
DRVN  
VGL  
NEGATIVE  
LINEAR REGULATOR  
VGL  
1µF  
SDA  
SCL  
I2C INTERFACE  
PROGRAMMABLE  
VCOM  
VCOM_OUT  
BUFFER  
VINA+  
VINA-  
VINB+  
VINB-  
OPERATIONAL  
AMPLIFIER  
VOUTA  
VOUTB  
PGND  
AGND  
Figure 54. Typical Application Circuit  
52  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: TPS65640  
TI INFORMATION – SELECTIVE DISCLOSURE  
TPS65640  
www.ti.com  
SLVSCE2 NOVEMBER 2013  
LAYOUT RECOMMENDATION  
As for all switching power supplies, especially those providing high current and using high switching frequencies,  
layout is an important design step. If layout is not carefully done, the regulator could show instability as well as  
EMI problems. Therefore, use wide and short traces for high current paths. The input capacitor in the typical  
application circuit, should also be placed close to the VIN pin, but also to the GND in order to reduce the input  
ripple seen by the IC. The LX pin carries high current with fast rising and falling edges. Therefore, the connection  
between the pin to the inductor and schottky diode should be kept as short and wide as possible. It is also  
beneficial to have the ground of the output capacitor for both Boost converter 1, Boost converter 2 and Buck  
converter close to the PGND pin since there is a large ground return current flowing between them. When laying  
out signal grounds, it is recommended to use short traces separated from power ground traces, and connect  
them together at a single point, for example on the thermal pad. The thermal pad needs to be soldered on to the  
PCB and connected to the GND pin of the IC. An additional thermal via can significantly improve power  
dissipation of the IC.  
VIN  
V25  
PGND  
VIN  
PGND  
PGND  
AVDD  
24 23 22 21 20 19 18 17 16 15  
25  
14  
13  
12  
11  
PGND  
26  
27  
28  
PGND  
1
2
3
4
5
6  
7
8
9 10  
VGH  
PGND  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: TPS65640  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-May-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TPS65640RHRR  
PREVIEW  
WQFN  
RHR  
28  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
PZXI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65640RHRR  
ACTIVE  
WQFN  
RHR  
28  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
PZXI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RHR 28  
3.5 x 5.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4210249/B  
www.ti.com  
PACKAGE OUTLINE  
RHR0028A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.6  
5.4  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2±0.1  
2X 1.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
11  
14  
24X 0.5  
10  
15  
2X  
4.5  
4±0.1  
SEE TERMINAL  
DETAIL  
1
24  
0.3  
28X  
28  
25  
0.5  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
B
28X  
0.3  
0.05  
4219075/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2)  
SYMM  
28X (0.6)  
28X (0.25)  
25  
28  
1
24  
24X (0.5)  
(0.66)  
(5.3)  
TYP  
SYMM  
(4)  
(
0.2) TYP  
VIA  
15  
10  
11  
14  
(0.75) TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219075/A 11/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.55) TYP  
28  
25  
28X (0.6)  
28X (0.25)  
1
24  
24X (0.5)  
SYMM  
(1.32)  
TYP  
(5.3)  
METAL  
TYP  
6X (1.12)  
15  
10  
14  
11  
6X (0.89)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4219075/A 11/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TPS65640RHRR

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置 | RHR | 28 | -40 to 85
TI

TPS65642

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65642A

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置
TI

TPS65642AYFFR

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置 | YFF | 56 | -40 to 85
TI

TPS65642YFF

IC LIQUID CRYSTAL DISPLAY DRIVER, Display Driver
TI

TPS65642YFFR

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65642YFFT

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65651-1/2/3

TPS65400-Q1 4.5- to 18-V Input Flexible Power Management Unit With PMBus/I2C Interface
TI

TPS65653-Q1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器
TI

TPS6565342RHDRQ1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器 | RHD | 28 | -40 to 125
TI

TPS6565342RHDTQ1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器 | RHD | 28 | -40 to 125
TI

TPS65680

用于 GOA/GIP 显示并具有 OCP 的 2 路输入、18 通道可配置电平转换器
TI