TPS7A8701RTJT [TI]

500mA、低噪声、高 PSRR、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125;
TPS7A8701RTJT
型号: TPS7A8701RTJT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

500mA、低噪声、高 PSRR、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125

输出元件 稳压器 调节器
文件: 总48页 (文件大小:3609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
TPS7A87  
双路 500mA 低噪声 (3.8 µVRMS) LDO 稳压器  
1 特性  
3 说明  
1
两个独立的 LDO 通道  
TPS7A87 是一款双路低噪声 (3.8µVRMS) 低压降  
(LDO) 稳压器,每通道具有 500mA 的拉电流能力,其  
最高压降仅为 100mV。  
低输出噪声:3.8µVRMS (10Hz–100kHz)  
低压降:电流为 0.5A 最大 100mV  
宽输入电压范围:1.4V 6.5V  
宽输出电压范围:0.8V 5.2V  
高电源纹波抑制:  
TPS7A87 提供两个独立的 LDO,极具灵活性,解决方  
案尺寸要比两个单通道 LDO 30% 左右。每个输出  
可通过外部电阻在 0.8V 5.2 V 范围内进行调节。  
TPS7A87 的宽输入电压范围支持其在 1.4V 6.5V 范  
围内的电压下工作。  
直流时为 75dB  
100kHz 时为 40dB  
1MHz 时为 40dB  
TPS7A87 的输出电压精度(整个线路、负载和温度范  
围内)达 1%,并且可通过软启动功能减少浪涌电流,  
因此非常适合为敏感类模拟低压器件 [例如,压控振荡  
(VCO)、模数转换器 (ADC)、数模转换器 (DAC)、  
互补金属氧化物半导体 (CMOS) 传感器和视频特定用  
途集成电路 (ASIC)] 供电。  
整个线路、负载和温度范围内的精度达 1.0%  
出色的负载瞬态响应  
可调节的启动浪涌控制  
可选软启动充电电流  
独立开漏电源正常 (PGx) 输出  
10µF 或更大的陶瓷输出电容一起工作时保持稳  
TPS7A87 旨在为噪声敏感类组件供电,广泛适用于仪  
器仪表、医疗、视频、专业音频、测试和测量以及高速  
通信等 应用。此器件具有 3.8 µVRMS 的超低输出噪声  
和宽带电源抑制比 (PSRR)1MHz 时为 40dB),最  
大限度减少了相位噪声和时钟抖动。这些 功能 最大限  
度提升了计时器件、ADC DAC 的性能。  
4mm × 4mm 20 引脚超薄型四方扁平无引线  
(WQFN) 封装  
2 应用  
高速模拟电路:  
压控振荡器 (VCO)、模数转换器 (ADC)、数模  
转换器 (DAC) 以及低压差分信令 (LVDS)  
器件信息(1)  
成像:互补金属氧化物半导体 (CMOS) 传感器,视  
频专用集成电路 (ASIC)  
器件型号  
TPS7A87  
封装  
WQFN (20)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
测试和测量  
仪器仪表和医疗  
专业音频  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
为信号链供电  
ENABLE  
典型应用电路  
LMK03328  
LMX2581  
Clock  
PG1  
VIN1  
IN1  
TPS7A87  
VIN1  
IN1  
VOUT1  
COUT1  
OUT1  
FB1  
EN1  
EN1  
OUT1  
OUT2  
VDD_VCO  
R11  
CIN1  
EN1  
TPS7A87  
VIN2  
IN2  
SS_CTRL1  
EN2  
EN2  
R21  
PG2  
NR/SS1  
CNR/SS1  
VDD  
SCLK  
ADC  
PG1  
ADC3xxx  
ADC3xJxx  
ADC3xJBxx  
ADS4xxBxx  
ADS5xxx  
VIN2  
VOUT2  
COUT2  
OUT2  
IN2  
R12  
CIN2  
EN2  
FB2  
ADS52J90  
SS_CTRL2  
NR/SS2  
ENABLE  
R22  
Copyright © 2016, Texas Instruments Incorporated  
CNR/SS2  
PG2  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS281  
 
 
 
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 17  
8
9
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application .................................................. 32  
Power Supply Recommendations...................... 33  
10 Layout................................................................... 34  
10.1 Layout Guidelines ................................................. 34  
10.2 Layout Example .................................................... 35  
11 器件和文档支持 ..................................................... 36  
11.1 器件支持 ............................................................... 36  
11.2 文档支持 ............................................................... 36  
11.3 接收文档更新通知 ................................................. 36  
11.4 社区资源................................................................ 37  
11.5 ....................................................................... 37  
11.6 静电放电警告......................................................... 37  
11.7 Glossary................................................................ 37  
12 机械、封装和可订购信息....................................... 37  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (March 2016) to Revision A  
Page  
已发布为量产数据”................................................................................................................................................................. 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
5 Pin Configuration and Functions  
RTJ Package  
4-mm × 4-mm, 20-Pin WQFN  
Top View  
IN1  
IN1  
1
2
3
4
5
15  
14  
OUT1  
OUT1  
GND  
Thermal  
13  
GND  
IN2  
Pad  
12  
OUT2  
OUT2  
IN2  
11  
Not to scale  
Pin Functions  
PIN  
NAME  
NO.  
20  
6
I/O  
DESCRIPTION  
Enable pin for each channel. These pins turn the regulator on and off. If VENx(1) VIH(ENx), then the regulator is enabled.  
If VENx VIL(ENx), then the regulator is disabled. The ENx pin must be connected to INx if the enable function is not used.  
EN1  
EN2  
FB1  
I
16  
Feedback pin connected to the error amplifier. Although not required, a 10-nF feed-forward capacitor from FBx to OUTx  
(as close to the device as possible) is recommended to maximize ac performance. The use of a feed-forward capacitor  
can disrupt PGx (power good) functionality. See the Feed-Forward Capacitor (CFFx) and Setting the Output Voltage  
(Adjustable Operation) sections for more details.  
I
FB2  
10  
Ground pin.  
GND  
IN1  
3, 13  
1, 2  
These pins must be connected to ground, the thermal pad, and each other with a low-impedance connection.  
Input supply pin for LDO 1.  
A 10 µF or greater input capacitor is required. Place the input capacitor as close to the input as possible.  
I
I
Input supply pin for LDO 2.  
A 10 µF or greater input capacitor is required. Place the input capacitor as close to the input as possible.  
IN2  
4, 5  
19  
NR/SS1  
Noise-reduction and soft-start pin for each channel. Connecting an external capacitor between this pin and ground  
reduces reference voltage noise and also enables the soft-start function. Although not required, a 10 nF or larger  
capacitor is recommended to be connected from NR/SSx to GND (as close to the pin as possible) to maximize ac  
performance. See the Noise-Reduction and Soft-Start Capacitor (CNR/SSx) section for more details.  
NR/SS2  
OUT1  
7
Regulated output for LDO 1. A 10-μF or larger ceramic capacitor (5 μF or greater of effective capacitance) from OUTx to  
ground is required for stability and must be placed as close to the output as possible. Minimize the impedance from the  
OUT1 pin to the load. See the Input and Output Capacitor (CINx and COUTx) section for more details.  
14, 15  
O
O
O
Regulated output for LDO 2. A 10-μF or larger ceramic capacitor (5 μF or greater of effective capacitance) from OUTx to  
ground is required for stability and must be placed as close to the output as possible. Minimize the impedance from the  
OUT2 pin to the load. See the Input and Output Capacitor (CINx and COUTx) section for more details.  
OUT2  
11, 12  
PG1  
PG2  
17  
9
Open-drain power-good indicator pins for the LDO 1 and LDO 2 output voltages. A 10-kΩ to 100-kΩ external pullup  
resistor is required. These pins can be left floating or connected to GND if not used. The use of a feed-forward capacitor  
can disrupt power-good functionality. See the Feed-Forward Capacitor (CFFx) section for more details.  
SS_CTRL1  
SS_CTRL2  
Thermal pad  
18  
8
Soft-start control pin for each channel. Connect these pins either to GND or INx to allow normal or fast charging of the  
NR/SSx capacitor. If a CNR/SSx capacitor is not used, SS_CTRLx must be connected to GND to avoid output overshoot.  
I
Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.  
(1) Lowercase x indicates that the specification under consideration applies to both channel 1 and channel 2, one channel at a time.  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range and all voltages with respect to GND (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
INx, PGx, ENx(2)  
7.0  
7.5  
VINx + 0.3(3)  
VINx + 0.3(3)  
3.6  
INx, PGx, ENx (5% duty cycle, pulse duration = 200 µs)  
Voltage  
OUTx  
V
SS_CTRLx  
NR/SSx, FBx(2)  
OUTx(2)  
PGx (sink current into device)(2)  
Operating junction, TJ  
Storage, Tstg  
Internally limited  
A
Current  
5
mA  
–55  
–55  
150  
150  
Temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Lowercase x indicates that the specification under consideration applies to both channel 1 and channel 2, one channel at a time.  
(3) The absolute maximum rating is VINx + 0.3 V or 7.0 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
MAX  
6.5  
UNIT  
VINx  
Input supply voltage range  
Output voltage range  
1.4  
V
V
VOUTx  
IOUTx  
CINx  
0.8 – 1%  
5.2 + 1%  
500  
Output current  
0
10  
10  
mA  
µF  
µF  
µF  
k  
°C  
Input capacitor, each input  
Output capacitor  
COUTx  
CNR/SSx  
RPGx  
TJ  
Noise-reduction capacitor  
Power-good pullup resistance  
Junction temperature range  
1
100  
125  
10  
–40  
6.4 Thermal Information  
TPS7A87  
THERMAL METRIC(1)  
RTJ (WQFN)  
UNIT  
20 PINS  
33  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.8  
8.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.0  
RθJC(bot)  
2.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
6.5 Electrical Characteristics  
over operating temperature range (TJ = –40°C to +125°C), VINx = 1.4 V or VOUTx(TARGET) + 0.2 V (whichever is greater),  
VOUTx(TARGET) = 0.8 V, IOUTx = 50 mA, VENx = 1.4 V, COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, SS_CTRLx = GND, PGx pin  
pulled up to VINx with 100 kΩ, and for each channel (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1)  
VINx  
Input supply voltage range  
Reference voltage  
Input supply UVLOx  
VUVLOx hysteresis  
Output voltage range  
VOUTx accuracy(2)  
Line regulation  
1.4  
6.5  
V
VREF  
0.8  
1.31  
290  
V
VUVLOx  
VUVLOx(HYS)  
VOUTx  
VINx rising  
1.39  
V
VINx falling hysteresis  
mV  
V
0.8 – 1%  
–1.0%  
5.2 + 1%  
1.0%  
0.8 V VOUTx 5.2 V, 5 mA IOUTx 0.5 A  
IOUTx = 5 mA, 1.4 V VINx 6.5 V  
5 mA IOUTx 0.5 A  
ΔVOUTx(ΔVINx)  
ΔVOUTx(ΔIOUTx)  
0.003  
0.03  
%/V  
%/A  
Load regulation  
1.4 V VINx 5.3 V  
IOUTx = 0.5 A, VFBx = 0.8 V – 3%  
VDO  
ILIM  
Dropout voltage  
100  
1.5  
3.5  
mV  
A
Output current limit  
VOUTx forced at 0.9 × VOUTx(TARGET)  
,
0.8  
1.1  
2.1  
Both channels enabled, per channel,  
VINx = 6.5 V, IOUTx = 5 mA  
IGND  
GND pin current  
mA  
Both channels enabled, per channel,  
VINx = 1.4 V, IOUTx = 0.5 A  
4
Both channels shutdown, per channel, PGx = (open),  
VINx = 6.5 V, VENx = 0.4 V  
ISDN  
Shutdown GND pin current  
ENx pin current  
0.1  
15  
0.2  
0.4  
μA  
μA  
V
IENx  
VINx = 6.5 V, 0 V VENx 6.5 V  
–0.2  
0
ENx pin low-level input voltage  
(device disabled)  
VIL(ENx)  
ENx pin high-level input voltage  
(device enabled)  
VIH(ENx)  
ISS_CTRLx  
VIT(PGx)  
1.1  
–0.2  
82%  
6.5  
0.2  
V
SS_CTRLx pin current  
PGx pin threshold  
VINx = 6.5 V, 0 V VSS_CTRLx 6.5 V  
μA  
For PGx transitioning low with falling VOUTx  
expressed as a percentage of VOUTx(TARGET)  
,
88.9%  
1%  
93%  
For PGx transitioning high with rising VOUTx  
expressed as a percentage of VOUTx(TARGET)  
,
Vhys(PGx)  
PGx pin hysteresis  
VOL(PGx)  
Ilkg(PGx)  
PGx pin low-level output voltage VOUTx < VIT(PGx), IPGx = –1 mA (current into device)  
0.4  
1
V
PGx pin leakage current  
VOUTx > VIT(PGx), VPGx = 6.5 V  
µA  
VNR/SSx = GND, 1.4 V VINx 6.5 V,  
VSS_CTRLx = GND  
4.0  
6.2  
9.0  
INR/SSx  
NR/SSx pin charging current  
µA  
VNR/SSx = GND, 1.4 V VINx 6.5 V, VSS_CTRLx = VINx  
65  
100  
150  
100  
IFBx  
FBx pin leakage current  
VINx = 6.5 V, VFBx = 0.8 V  
–100  
nA  
dB  
f = 500 kHz, VINx = 3.8 V, VOUTx = 3.3 V,  
IOUTx = 250 mA, CNR/SSx = 10 nF, CFFx = 10 nF  
PSRR  
Power-supply rejection ratio  
40  
3.8  
11  
BW = 10 Hz to 100 kHz, VINx = 1.8 V, VOUTx = 0.8 V,  
IOUTx = 0.5 A, CNR/SSx = 1 µF, CFFx = 100 nF  
Vn  
Output noise voltage  
Noise spectral density  
μVRMS  
nV/Hz  
Ω
f = 10 kHz, VINx = 1.8 V, VOUTx = 0.8 V,  
IOUTx = 0.5 A, CNR/SSx = 10 nF, CFFx = 10 nF  
Output active discharge  
resistance  
Rdiss  
VENx = GND  
250  
Shutdown, temperature increasing  
Reset, temperature decreasing  
160  
140  
Tsdx  
Thermal shutdown temperature  
°C  
(1) Lowercase x indicates that the specification under consideration applies to both channel 1 and channel 2.  
(2) When the device is connected to external feedback resistors at the FBx pins, external resistor tolerances are not included.  
版权 © 2016, Texas Instruments Incorporated  
5
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
6.6 Typical Characteristics  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
CNR/SS = 10 nF, CFF = 10 nF, COUT = 10 mF  
CNR/SS = 0 nF, CFF = 0 nF, COUT = 10 mF  
CNR/SS = 1000 nF, CFF = 1000 nF, COUT = 10 mF  
CNR/SSx = 10 nF  
CNR/SSx = 0 nF  
CNR/SSx = 100 nF  
CNR/SSx = 1000 nF  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
IOUTx = 500 mA, VINx = 5.3 V  
VOUTx = 5 V, VINx = 5.3 V, VENx = 1.7 V, IOUTx = 500 mA,  
COUTx = 10 µF, CFFx = 10 nF  
2. Power-Supply Rejection Ratio vs  
1. Power-Supply Rejection Ratio at VOUTx = 5.0 V  
Frequency and CNR/SSx  
100  
100  
VINx = 1.4 V  
VINx = 1.45 V  
VINx = 1.5 V  
VINx = 1.55 V  
VINx = 1.6 V  
VINx = 1.65 V  
VINx = 1.7 V  
IOUTx = 10 mA  
IOUTx = 50 mA  
IOUTx = 100 mA  
IOUTx = 250 mA  
IOUTx = 500 mA  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTx = 1.2 V, IOUTx = 500 mA, COUTx = 10 µF,  
CNR/SSx = CFFx = 10 nF  
VOUTx = 1.2 V, VINx = 1.4 V, VENx = 3.8 V, IOUTx = 500 mA,  
COUTx = 10 µF, CNR/SSx = CFFx = 10 nF  
3. Power-Supply Rejection Ratio vs  
4. Power-Supply Rejection Ratio vs  
Frequency and Input Voltage  
Frequency and Output Current  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
COUTx = 10 mF  
COUTx = 100 mF  
COUTx = 200 mF  
COUTx = 500 mF  
COUTx = 500 mF || 1 mF OSCON  
80  
60  
40  
20  
0
VOUT1 to VOUT2  
VOUT2 to VOUT1  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VOUTx = 5.0 V, VINx = 5.3 V, VENx = 1.7 V, IOUTx = 500 mA,  
COUTx = ceramic, CFFx = 10 nF  
VOUTx = 1.8 V, IOUTx = 100 mA, COUTx = 10 µF,  
CNR/SSx = CFFx = 10 nF  
5. Power-Supply Rejection Ratio vs  
6. Channel-to-Channel Output Voltage Isolation vs  
Frequency  
Frequency and Output Capacitance  
6
版权 © 2016, Texas Instruments Incorporated  
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
14  
12  
10  
8
50  
Nominal Noise Figure  
CNR/SSx = 1 mF, CFFx = 100 nF  
CNR/SSx = 1 mF, CFFx = 100 nF, SS_CTRLx = GND  
CNR/SSx = 10 nF, CFFx = 10 nF, COUTx = 22 mF||1 mF  
CFFx = 10 nF, CNR/SSx = 10 nF  
CFFx = 100 nF, CNR/SSx = 1 mF  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
6
0.002  
0.001  
0.0005  
4
10  
100  
1k  
10k  
100k  
1M  
10M  
0.8  
1.6  
2.4  
3.2  
4
4.8  
5.6  
Frequency  
Output Voltage (V)  
IOUTx = 500 mA  
IOUTx = 500 mA  
7. Output Noise vs Output Voltage  
8. Output Noise at VOUTx = 5 V  
10  
1
10  
1
VOUTx = 0.8 V, 3.94 mVRMS  
VOUTx = 1.2 V, 4.31 mVRMS  
VOUTx = 1.8 V, 5.1 mVRMS  
VOUTx = 2.5 V, 6.03 mVRMS  
VOUTx = 3.3 V, 7.43 mVRMS  
VOUTx = 5.0 V, 10.3 mVRMS  
CNR/SSx = None, 11.43 mVRMS  
CNR/SSx = 0.01 mF, 4.94 mVRMS  
CNR/SSx = 0.1 mF, 4.24 mVRMS  
CNR/SSx = 1.0 mF, 4.22 mVRMS  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VINx = VOUTx + 1.0 V, IOUTx = 500 mA, VRMS BW = 10 Hz to 100  
kHz, COUTx = 10 µF, CNR/SSx = CFFx = 10 nF  
VINx = 1.7 V, VOUTx = 1.2 V, IOUTx = 500 mA, VRMS BW = 10 Hz to  
100 kHz, COUTx = 10 µF, CFFx = 10 nF  
9. Noise vs Frequency and Output Voltage  
10. Noise vs Frequency and CNR/SSx  
10  
10  
CFFx = 0 mF  
CFFx = 0.01 mF  
CFFx = 0.1 mF  
VINx = 1.5 V  
VINx = 1.8 V  
VINx = 2.5 V  
VINx = 3.3 V  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VINx = 3.8 V, VOUTx = 3.3 V, IOUTx = 500 mA, VRMS BW = 10 Hz to  
100 kHz, COUTx = 10 µF, CNR/SSx = 10 nF  
VOUTx = 1.2 V, IOUTx = 500 mA, COUTx = 10 µF, CNR/SSx = 10 nF  
11. Noise vs Frequency and CFFx  
12. Noise vs Frequency and VINx  
版权 © 2016, Texas Instruments Incorporated  
7
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
10  
1
12  
10  
8
COUTx = 10 mF, 4.94 mVRMS  
COUTx = 22 mF, 5.05 mVRMS  
COUTx = 100 mF, 5.66 mVRMS  
0.1  
6
4
0.01  
2
0.001  
0
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E-6  
1E-5 0.0001 0.001  
0.01  
0.1  
1
10  
Frequency (Hz)  
Noise Reduction Capacitor [CNR/SSx] (mF)  
VOUTx = 1.8 V, IOUTx = 500 mA, VRMS BW = 10 Hz to 100 kHz,  
CFFx = 0.01 µF  
VOUTx = 1.8 V, IOUTx = 500 mA, CFFx = 0.01 µF,  
BW = 10 Hz to 100 kHz  
13. Noise vs Frequency and COUTx  
14. RMS Output Noise vs CNR/SSx  
12  
50  
25  
0
2
VOUTx = 5.0 V  
VOUTx = 3.3 V  
VOUTx = 1.2 V  
VOUTx = 0.9 V  
IOUTx  
10  
8
1.5  
1
6
4
-25  
-50  
0.5  
2
0
0
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
0
200  
400  
600  
800  
1000  
Feed-Forward Capacitor [CFFx] (mF)  
Time (ms)  
VOUTx = 1.8 V, IOUTx = 500 mA, CNR/SSx = 1 µF,  
BW = 10 Hz to 100 kHz  
VINx = VOUTx + 0.3 V, IOUTx = 10 mA to 500 mA, COUTx = 10 µF,  
CFFx = CNR/SSx = 10 nF  
16. Load Transient Response vs VOUTx  
15. RMS Output Noise vs CFFx  
50  
IOUTx = 1 mA to 500 mA  
IOUTx = 10 mA to 500 mA  
IOUTx = 50 mA to 500 mA  
IOUTx = 100 mA to 500 mA  
VINx  
2 V/div  
25  
0
VOUTx  
20 mV/div  
-25  
-50  
VPGx  
1 V/div  
0
200  
400  
600  
800  
1000  
Time (ms)  
Time (200 ms/div)  
VINx = 1.4 V to 6.5 V to 1.4 V at 2 V/µs, VOUTx = 0.8 V,  
IOUTx = 500 mA, CNR/SSx = CFFx = 10 nF  
VINx = 5.3 V, COUTx = 10 µF, CFFx = CNR/SSx = 10 nF  
17. Load Transient Response vs DC Load  
18. Line Transient  
8
版权 © 2016, Texas Instruments Incorporated  
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
1.25  
1.2  
VENx  
VOUTx  
200 mV/div  
1 V/div  
1.15  
1.1  
VPGx  
200mV/div  
1.05  
1
0.95  
-40èC  
0èC  
25èC  
85èC  
125èC  
3 3.5  
0.9  
0
0.5  
1
1.5  
2
2.5  
Output Voltage (V)  
Time (50 ms/div)  
VINx = 3.4 V, VOUTx = 3.3 V, 125°C curve truncated because of  
device entering thermal shutdown  
VINx = 1.4 V  
20. Start-Up (SS_CTRLx = GND, CNR/SSx = 0 nF)  
19. Current Limit Foldback  
VEN1  
1 V/div  
VEN1  
1 V/div  
VOUT1  
200 mV/div  
VOUT1  
200 mV/div  
VPG1  
200 mV/div  
VPG1  
200 mV/div  
Time (50 ms/div)  
Time (500 ms/div)  
VINx = 1.4 V  
VINx = 1.4 V  
22. Start-Up (SS_CTRLx = VINx, CNR/SSx = 10 nF)  
21. Start-Up (SS_CTRLx = GND, CNR/SSx = 10 nF)  
80  
60  
40  
20  
0
VINx = 1.4 V  
VINx = 1.8 V  
VINx = 3.6 V  
VINx = 4.8 V  
VINx = 5.6 V  
VINx = 5.8 V  
VEN1  
1 V/div  
VOUT1  
200 mV/div  
VPG1  
200 mV/div  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Time (2 ms/div)  
VINx = 1.4 V  
Output Current (A)  
23. Start-Up (SS_CTRLx = VINx, CNR/SSx = 1 µF)  
24. Dropout Voltage vs Output Current  
版权 © 2016, Texas Instruments Incorporated  
9
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0.05  
0.025  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.025  
-0.05  
-0.075  
-40èC  
0èC  
25èC  
85èC  
125èC  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.5  
0.5  
Input Voltage (V)  
Output Current (A)  
IOUTx = 500 mA  
25. Dropout Voltage vs Input Voltage  
26. Load Regulation (VOUTx = 1.2 V)  
0.045  
0.03  
0.5  
0.25  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0.015  
0
-0.25  
-0.5  
-0.015  
-0.03  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
0.1  
0.2  
0.3  
0.4  
Input Voltage (V)  
Output Current (A)  
IOUTx = 50 mA  
VINx = 3.8 V  
27. Line Regulation (VOUTx = 0.8 V)  
28. Load Regulation (VOUTx = 3.3 V)  
0.5  
0.25  
0
0.06  
0.03  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.03  
-0.06  
-0.09  
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.25  
-0.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
0.1  
0.2  
0.3  
0.4  
Input Voltage (V)  
Output Current (A)  
IOUTx = 5 mA  
VINx = 5.5 V  
29. Line Regulation (VOUTx = 3.3 V)  
30. Load Regulation (VOUTx = 5.0 V)  
10  
版权 © 2016, Texas Instruments Incorporated  
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
5
4
3
2
1
0
2.2  
2.15  
2.1  
-40èC  
0èC  
25èC  
85èC  
125èC  
2.05  
2
1.95  
1.9  
1.85  
1.8  
1.75  
1.7  
1.65  
1.6  
1.55  
1.5  
-40èC  
0èC  
25èC  
85èC  
125èC  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Output Current (A)  
Input Voltage (V)  
D001  
VINx = 1.4 V, both channels enabled  
Both channels  
32. Ground Current vs Output Current  
31. Shutdown Current vs Input Voltage  
5
500  
400  
300  
200  
100  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
4.5  
4
3.5  
3
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage (V)  
PG Current (mA)  
D001  
Both channels enabled  
34. PGx Low Level vs PGx Current (VINx = 1.4 V)  
33. Ground Current vs Input Voltage  
90  
500  
-40èC  
0èC  
25èC  
85èC  
125èC  
400  
300  
200  
100  
0
89.7  
89.4  
89.1  
88.8  
88.5  
VINx = 1.4 V, Falling Threshold  
VINx = 1.4 V, Rising Threshold  
VINx = 6.5 V, Falling Threshold  
VINx = 6.5 V, Rising Threshold  
0
0.5  
1
1.5  
2
2.5  
3
-40  
0
40  
80  
120  
160  
PG Current (mA)  
Temperature (èC)  
35. PGx Low Level vs PGx Current (VINx = 6.5 V)  
36. PGx Threshold vs Temperature  
版权 © 2016, Texas Instruments Incorporated  
11  
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
200  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
100  
70  
50  
30  
20  
10  
7
5
VNx = 1.4 V, SS_CTRLx = GND  
VNx = 1.4 V, SS_CTRLx = VINx  
VNx = 6.5 V, SS_CTRLx = GND  
VNx = 6.5 V, SS_CTRLx = VINx  
3
2
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40  
0
40  
80  
120  
160  
Temperature (èC)  
Temperature (èC)  
VINx = VPGx = 6.5 V  
37. PGx Leakage Current vs Temperature  
38. Soft-Start Current vs Temperature  
(SS_CTRLx = GND)  
1.4  
1.35  
1.3  
1
0.9  
0.8  
0.7  
0.6  
0.5  
Rising Threshold  
Falling Threshold  
VINx = 1.4 V, Falling Threshold  
VINx = 1.4 V, Rising Threshold  
VINx = 6.5 V, Falling Threshold  
VINx = 6.5 V, Rising Threshold  
1.25  
1.2  
1.15  
1.1  
1.05  
1
0.95  
0.9  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40  
0
40  
80  
120  
160  
Temperature (èC)  
Temperature (èC)  
40. Input UVLOx Threshold vs Temperature  
39. Enable Threshold vs Temperature  
12  
版权 © 2016, Texas Instruments Incorporated  
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
7 Detailed Description  
7.1 Overview  
The TPS7A87 is a monolithic, dual-channel, low-dropout (LDO) regulator, and each channel is low-noise, high-  
PSRR, and capable of sourcing a 500-mA load with only 100 mV of maximum dropout. These features make the  
device a robust solution to solve many challenging problems in generating a clean, accurate power supply.  
The various features for each of the TPS7A87 fully independent LDOs simplify using the device in a variety of  
applications. As detailed in the Functional Block Diagram section, these features are organized into three  
categories, as shown in 1.  
1. Features  
VOLTAGE REGULATION  
High accuracy  
SYSTEM START-UP  
Programmable soft-start  
Sequencing controls  
Power-good output  
INTERNAL PROTECTION  
Foldback current limit  
Low-noise, high-PSRR output  
Fast transient response  
Thermal shutdown  
7.2 Functional Block Diagram  
Current  
Limit  
IN1  
OUT1  
Charge  
Pump  
Active  
Discharge  
0.8-V  
VREF  
+
Error  
Amp  
œ
Softstart  
Control  
INR/SSx  
SS_CTRL1  
NR/SS1  
FB1  
PG1  
œ
0.89 x VREF  
+
UVLO  
Internal  
Enable  
Control  
Thermal  
Shutdown  
EN1  
IN2  
Current  
Limit  
OUT2  
Charge  
Pump  
Active  
Discharge  
0.8-V  
VREF  
+
Error  
Amp  
œ
Softstart  
Control  
INR/SSx  
SS_CTRL2  
NR/SS2  
FB2  
PG2  
œ
0.89 x VREF  
+
UVLO  
Internal  
Enable  
Control  
Thermal  
Shutdown  
EN2  
GND  
版权 © 2016, Texas Instruments Incorporated  
13  
 
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Voltage Regulation Features  
7.3.1.1 DC Regulation  
An LDO functions as a class-B amplifier in which the input signal is the internal reference voltage (VREF), as  
shown in 41. VREF is designed to have a very low-bandwidth at the input to the error amplifier through the use  
of a low-pass filter (VNR/SSx).  
As such, the reference can be considered as a pure dc input signal. The low output impedance of an LDO comes  
from the combination of the output capacitor and pass element. The pass element also presents a high input  
impedance to the source voltage when operating as a current source. A positive LDO can only source current  
because of the class-B architecture.  
This device achieves a maximum of 1% output voltage accuracy primarily because of the high-precision band-  
gap voltage (VBG) that creates VREF. The low dropout voltage (VDO) reduces the thermal power dissipation  
required by the device to regulate the output voltage at a given current level, thereby improving system  
efficiency. Combined, these features help make this device a good approximation of an ideal voltage source.  
This device replaces two stand-alone power-supplies, and also provides load-to-load isolation. The LDOs can  
also be put in series (cascaded) to achieve even higher PSRR by connecting the output of one channel to the  
input of the other channel.  
VINx  
To Load  
R1  
VREF  
R2  
GND  
NOTE: VOUTx = VREF × (1 + R1x / R2x).  
41. Simplified Regulation Circuit  
7.3.1.2 AC and Transient Response  
Each LDO responds quickly to a transient (large-signal response) on the input supply (line transient) or the  
output current (load transient) resulting from the LDO high-input impedance and low output-impedance across  
frequency. This same capability also means that each LDO has a high power-supply rejection-ratio (PSRR) and,  
when coupled with a low internal noise-floor (Vn), the LDO approximates an ideal power supply in ac (small-  
signal) and large-signal conditions.  
The performance and internal layout of the device minimizes the coupling of noise from one channel to the other  
channel (crosstalk). Good printed circuit board (PCB) layout minimizes the crosstalk.  
The choice of external component values optimizes the small- and large-signal response. The NR/SSx capacitor  
(CNR/SSx) and feed-forward capacitor (CFFx) easily reduce the device noise floor and improve PSRR; see the  
Optimizing Noise and PSRR section for more information on optimizing the noise and PSRR performance.  
7.3.2 System Start-Up Features  
In many different applications, the power-supply output must turn-on within a specific window of time to either  
ensure proper operation of the load or to minimize the loading on the input supply or other sequencing  
requirements. Each LDO start-up is well-controlled and user-adjustable, solving the demanding requirements  
faced by many power-supply design engineers in a simple fashion.  
14  
版权 © 2016, Texas Instruments Incorporated  
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
Feature Description (接下页)  
7.3.2.1 Programmable Soft-Start (NR/SSx)  
Soft-start directly controls the output start-up time and indirectly controls the output current during start-up (in-  
rush current).  
The external capacitor at the NR/SSx pin (CNR/SSx) sets the output start-up time by setting the rise time of the  
internal reference (VNR/SSx), as shown in 42. SS_CTRLx provides additional control over the rise time of the  
internal reference by enabling control over the charging current (INR/SSx) for CNR/SSx. The voltage at the  
SS_CTRLx pin (VSS_CTRLx) must be connected to ground (GND) or VINx  
.
Note that if CNR/SSx = 0 nF and the SS_CTRLx pin is connected to VINx, then the output voltage overshoots during  
start-up.  
SW  
INR/SSx  
RNRx  
NR/SSx Control  
VREF  
+
CNR/SSx  
œ
VFBx  
GND  
42. Simplified Soft-Start Circuit  
7.3.2.2 Sequencing  
Controlling when a single power supply turns on can be difficult in a power distribution network (PDN) because of  
the high power levels inherent in a PDN, and the variations between all of the supplies. Control of each channel  
turn-on and turn-off time is set by the specific channel enable circuit (ENx) and undervoltage lockout circuit  
(UVLOx), as shown in 43 and 2.  
ENx  
Internal Enable  
Control  
UVLOx  
43. Simplified Turn-On Control  
2. Sequencing Functionality Table  
LDO  
STATUS  
ACTIVE  
DISCHARGE  
INPUT VOLTAGE  
ENABLE STATUS  
POWER-GOOD  
ENx = 1  
ENx = 0  
On  
Off  
Off  
Off  
PGx = 1 when VOUTx VIT(PGx)  
VINx VUVLOx  
On  
On(1)  
PGx = 0  
PGx = 0  
VINx < VUVLOx – VHYS  
ENx = don't care  
(1) The active discharge remains on as long as VINx provides enough headroom for the discharge circuit to function.  
7.3.2.2.1 Enable (ENx)  
The enable signal (VENx) is an active-high digital control that enables the LDO when the enable voltage is past  
the rising threshold (VENx VIH(ENx)) and disables the LDO when the enable voltage is below the falling threshold  
(VENx VIL(ENx)). The exact enable threshold is between VIH(ENx) and VIL(ENx) because ENx is a digital control. In  
applications that do not use the enable control, connect ENx to VINx  
.
版权 © 2016, Texas Instruments Incorporated  
15  
 
 
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
7.3.2.2.2 Undervoltage Lockout (UVLOx) Control  
The UVLOx circuit responds quickly to glitches on VINx and attempts to disable the output of the device if either  
of these rails collapse.  
As a result of the fast response time of the input supply UVLOx circuit, fast and short line transients well below  
the input supply UVLOx falling threshold (brownouts) can cause momentary glitches during the edges of the  
transient. These glitches are typical in most LDOs and, in most applications, the brownouts required for these  
glitches do not result from the local input capacitance; see the Undervoltage Lockout (UVLOx) Control section for  
more details.  
7.3.2.2.3 Active Discharge  
When either ENx or UVLOx is low, the device connects a resistor of several hundred ohms from VOUTx to GND,  
discharging the output capacitance.  
Do not rely on the active discharge circuit for discharging large output capacitors when the input voltage drops  
below the targeted output voltage. Current flows from the output to the input (reverse current) when VOUTx > VINx  
,
which can cause damage to the device (when VOUTx > VINx + 0.3 V); see the Reverse Current Protection section  
for more details.  
7.3.2.3 Power-Good Output (PGx)  
The PGx signal provides an easy solution to meet demanding sequencing requirements because PGx signals  
when the output nears its nominal value. PGx can be used to signal other devices in a system when the output  
voltage is near, at, or above the set output voltage (VOUTx(Target)). A simplified schematic is shown in 44.  
The PGx signal is an open-drain digital output that requires a pullup resistor to a voltage source and is active  
high. The power-good circuit sets the PGx pin into a high-impedance state to indicate that the power is good.  
Using a large feed-forward capacitor (CFFx) delays the output voltage and, because the power-good circuit  
monitors the FBx pin, the PGx signal can indicate a false positive. A simple solution to this scenario is to use an  
external voltage detector device, such as the TPS3780; see the Feed-Forward Capacitor (CFFx) section for more  
information.  
VPGx  
VBG  
VINx  
VFBx  
œ
+
GND  
ENx  
GND  
UVLOx  
GND  
44. Simplified PGx Circuit  
16  
版权 © 2016, Texas Instruments Incorporated  
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
7.3.3 Internal Protection Features  
In many applications, fault events can occur that damage devices in the system. Short-circuits and excessive  
heat are the most common fault events for power supplies. The TPS7A87 implements circuitry for each LDO to  
protect the device and its load during these events. Continuously operating in these fault conditions or above a  
junction temperature of 125°C is not recommended because the long-term reliability of the device is reduced.  
7.3.3.1 Foldback Current Limit (ICLx  
)
The internal current limit circuit protects the LDO against short-circuit and excessive load current conditions. The  
output current decreases (folds back) when the output voltage falls to better protect the device, as described in  
19. Each channel features its own independent current limit circuit.  
7.3.3.2 Thermal Protection (Tsdx  
)
The thermal shutdown circuit protects the LDO against excessive heat in the system, either resulting from current  
limit or high ambient temperature. Each channel features its own independent thermal shutdown circuit.  
The output of the LDO turns off when the LDO temperature (junction temperature, TJ) exceeds the rising thermal  
shutdown temperature (Tsdx). The output turns on again after TJ decreases below the falling thermal shutdown  
temperature (Tsdx).  
A high power dissipation across the device, combined with a high ambient temperature (TA), can cause TJ to be  
greater than or equal to Tsdx, triggering the thermal shutdown and causing the output to fall to 0 V. The LDO can  
cycle on and off when thermal shutdown is reached under these conditions.  
7.4 Device Functional Modes  
3 provides a quick comparison between the regulation and disabled operation.  
3. Device Functional Modes Comparison  
PARAMETER  
OPERATING MODE  
VINx  
ENx  
IOUTx  
IOUTx < ICLx  
TJ  
Regulation(1)  
Disabled(2)  
VINx > VOUTx(nom) + VDO  
VINx < VUVLOx  
VENx > VIH(ENx)  
VENx < VIL(ENx)  
TJ < Tsd  
TJ > Tsd  
(1) All table conditions must be met.  
(2) The device is disabled when any condition is met.  
7.4.1 Regulation  
The device regulates the output to the targeted output voltage when all the conditions in 3 are met.  
7.4.2 Disabled  
When disabled, the pass device is turned off, the internal circuits are shutdown, and the output voltage is actively  
discharged to ground by an internal resistor from the output to ground.  
版权 © 2016, Texas Instruments Incorporated  
17  
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Successfully implementing an LDO in an application depends on the application requirements. This section  
discusses key device features and how to best implement them to achieve a reliable design.  
8.1.1 External Component Selection  
8.1.1.1 Setting the Output Voltage (Adjustable Operation)  
Each LDO resistor feedback network sets the output voltage, as shown in 45, with an output voltage range of  
0.8 V to 5.2 V.  
TPS7A87  
VIN1  
IN1  
VOUT1  
COUT1  
OUT1  
FB1  
R11  
CIN1  
EN1  
SS_CTRL1  
R21  
NR/SS1  
CNR/SS1  
PG1  
VIN2  
VOUT2  
COUT2  
OUT2  
IN2  
R12  
CIN2  
EN2  
FB2  
SS_CTRL2  
NR/SS2  
R22  
CNR/SS2  
PG2  
GND  
Copyright © 2016, Texas Instruments Incorporated  
45. Adjustable Operation  
公式 1 relates the values R1x and R2x to VOUTx(Target) and VFBx. 公式 1 is a rearranged version of 公式 2,  
simplifying the feedback resistor calculation. The current through the feedback network must be equal to or  
greater than 5 μA for optimum noise performance and accuracy, as shown in 公式 3.  
VOUTx = VFBx × (1 + R1x / R2x)  
R1x = (VOUTx / VFBx – 1) × R2x  
R2x < VREF / 5 µA  
(1)  
(2)  
(3)  
The input bias current into the error amplifier (feedback pin current, IFBx) and tighter tolerance resistors must be  
taken into account for optimizing the output voltage accuracy.  
18  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
 
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
Application Information (接下页)  
4 shows the resistor combinations for several common output voltages using commercially-available, 1%  
tolerance resistors.  
4. Recommended Feedback-Resistor Values  
FEEDBACK RESISTOR VALUES(1)  
TARGETED OUTPUT  
VOLTAGE (V)  
CALCULATED OUTPUT  
VOLTAGE (V)  
R1x (kΩ)  
Short  
1.37  
R2x (kΩ)  
Open  
11.0  
10.2  
10.2  
10.7  
9.53  
10.7  
11.0  
10.2  
10.7  
11.0  
10.7  
10.7  
10.7  
10.7  
10.7  
10.2  
9.53  
10.7  
9.76  
0.80  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.35  
1.50  
1.80  
1.90  
2.50  
2.85  
3.00  
3.30  
3.60  
4.50  
5.00  
5.20  
0.800  
0.900  
0.950  
1.000  
1.048  
1.100  
1.147  
1.199  
1.347  
1.496  
1.796  
1.899  
2.490  
2.849  
2.998  
3.282  
3.600  
4.510  
5.002  
5.193  
1.91  
2.55  
3.32  
3.57  
4.64  
5.49  
6.98  
9.31  
13.70  
14.70  
22.60  
27.40  
29.40  
33.20  
35.70  
44.20  
56.20  
53.60  
(1) R1x is connected from OUTx to FBx; R2x is connected from FBx to GND; see 45.  
8.1.1.2 Capacitor Recommendations  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input  
and output pins. Multilayer ceramic capacitors have become the industry standard for these types of applications  
and are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and  
COG-rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of  
Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, ceramic capacitance varies with operating voltage and  
temperature. As a rule of thumb, derate ceramic capacitors by at least 50%. The input and output capacitors  
recommended herein account for an effective capacitance derating of approximately 50%, but at higher VINx and  
VOUTx conditions (that is, VINx = 5.5 V to VOUTx = 5.0 V) the derating can be greater than 50% and must be taken  
into consideration.  
8.1.1.3 Input and Output Capacitor (CINx and COUTx  
)
The device is designed and characterized for operation with ceramic capacitors of 10 µF or greater (5 µF or  
greater of effective capacitance) at each input and output. Locate the input and output capacitors as near as  
practical to the respective input and output pins to minimize the trace inductance from the capacitor to the  
device.  
版权 © 2016, Texas Instruments Incorporated  
19  
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
8.1.1.4 Feed-Forward Capacitor (CFFx  
)
Although a feed-forward capacitor (CFFx) from the FBx pin to the OUTx pin is not required to achieve stability, a  
10-nF external CFFx optimizes the transient, noise, and PSRR performance. A higher capacitance CFFx can be  
used; however, the start-up time is longer and the power-good signal can incorrectly indicate that the output  
voltage is settled. The maximum recommended value is 100 nF.  
To ensure proper PGx functionality, the time constant defined by CNR/SSx must be greater than or equal to the  
time constant from CFFx. For a detailed description, see the Pros and Cons of Using a Feed-Forward Capacitor  
with a Low Dropout Regulator application report (SBVA042).  
8.1.1.5 Noise-Reduction and Soft-Start Capacitor (CNR/SSx  
)
Although a noise-reduction and soft-start capacitor (CNR/SSx) from the NR/SSx pin to GND is not required, CNR/SSx  
is highly recommended to control the start-up time and reduce the noise-floor of the device. The typical value  
used is 10 nF, and the maximum recommended value is 10 µF.  
8.1.2 Start-Up  
8.1.2.1 Circuit Soft-Start Control (NR/SSx)  
Each output of the device features a user-adjustable, monotonic, voltage-controlled soft-start that is set with an  
external capacitor (CNR/SSx). This soft-start eliminates power-up initialization problems when powering field-  
programmable gate arrays (FPGAs), digital signal processors (DSPs), or other processors. The controlled  
voltage ramp of the output also reduces peak inrush current during start-up, thus minimizing start-up transients to  
the input power bus.  
The output voltage (VOUTx) rises proportionally to VNR/SSx during start-up as the LDO regulates so that the  
feedback voltage equals the NR/SSx voltage (VFBx = VNR/SSx). As such, the time required for VNR/SSx to reach its  
nominal value determines the rise time of VOUTx (start-up time).  
The soft-start ramp time depends on the soft-start charging current (INR/SSx), the soft-start capacitance (CNR/SSx),  
and the internal reference (VREF). The approximate soft-start ramp time (tSSx) can be calculated with 公式 4:  
tSSx = (VREF × CNR/SSx) / INR/SSx  
(4)  
The SS_CTRLx pin for each output sets the value of the internal current source, maintaining a fast start-up time  
even with a large CNR/SSx capacitor. When the SS_CTRLx pin is connected to GND, the typical value for the  
INR/SSx current is 6.2 µA. Connecting the SS_CTRLx pin to INx increases the typical soft-start charging current to  
100 µA. The larger charging current for INR/SSx is useful when smaller start-up ramp times are needed or when  
using larger noise-reduction capacitors.  
Not using a noise-reduction capacitor on the NR/SSx pin and tying the SS_CTRLx pin to VINx results in output  
voltage overshoot of approximately 10%. Connecting the SS_CTRLx pin to GND or using a capacitor on the  
NR/SSx pin minimizes the overshoot.  
Values for the soft-start charging currents are provided in the Electrical Characteristics table.  
8.1.2.1.1 In-Rush Current  
In-rush current is defined as the current into the LDO at the INx pin during start-up. In-rush current then consists  
primarily of the sum of load current and the current used to charge the output capacitor. This current is difficult to  
measure because the input capacitor must be removed, which is not recommended. However, this soft-start  
current can be estimated by 公式 5:  
C
OUTx ´ dVOUTx(t)  
VOUTx(t)  
RLOAD  
IOUTx(t)  
=
+
dt  
where:  
VOUTx(t) is the instantaneous output voltage of the turn-on ramp  
dVOUTx(t) / dt is the slope of the VOUTx ramp  
RLOAD is the resistive load impedance  
(5)  
20  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
8.1.2.2 Undervoltage Lockout (UVLOx) Control  
The UVLOx circuit ensures that the device stays disabled before its input or bias supplies reach the minimum  
operational voltage range, and ensures that the device properly shuts down when the input supply collapses.  
46 and 5 explain the UVLOx circuit response to various input voltage events, assuming VENx VIH(ENx)  
.
UVLOx Rising Threshold  
UVLOx Hysteresis  
VINx  
C
VOUTx  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
46. Typical UVLOx Operation  
5. Typical UVLOx Operation Description  
REGION  
EVENT  
VOUTx STATUS  
COMMENT  
A
B
C
D
Turn-on, VINx VUVLOx  
Regulation  
0
1
1
1
Start-up  
Regulates to target VOUTx  
Brownout, VINx VUVLOx – VHYS  
Regulation  
The output can fall out of regulation but the device is still enabled.  
Regulates to target VOUTx  
The device is disabled and the output falls because of the load and  
active discharge circuit. The device is reenabled when the UVLOx  
rising threshold is reached by the input voltage and a normal start-  
up then follows.  
E
Brownout, VINx < VUVLOx – VHYS  
0
F
Regulation  
1
0
Regulates to target VOUTx  
G
Turn-off, VINx < VUVLOx – VHYS  
The output falls because of the load and active discharge circuit.  
Similar to many other LDOs with this feature, the UVLOx circuit takes a few microseconds to fully assert. During  
this time, a downward line transient below approximately 0.8 V causes the UVLOx to assert for a short time;  
however, the UVLOx circuit does not have enough stored energy to fully discharge the internal circuits inside of  
the device. When the UVLOx circuit is not given enough time to fully discharge the internal nodes, the outputs  
are not fully disabled.  
The effect of the downward line transient can be mitigated by using a larger input capacitor to increase the fall  
time of the input supply when operating near the minimum VINx  
.
版权 © 2016, Texas Instruments Incorporated  
21  
 
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
8.1.2.3 Power-Good (PGx) Function  
The power-good circuit monitors the voltage at the feedback pin to indicate the status of the output voltage. The  
power-good circuit asserts whenever FBx, VINx, or ENx are below their thresholds. The PGx operation versus the  
output voltage is shown in 47, which is described by 6.  
PGx Rising Threshold  
PGx Falling Threshold  
VOUTx  
E
C
PGx  
tAt  
tBt  
tDt  
tFt  
tGt  
47. Typical PGx Operation  
6. Typical PGx Operation Description  
REGION  
EVENT  
Turn-on  
PGx STATUS  
FBx VOLTAGE  
A
B
C
D
E
F
0
VFBx < VIT(PGx) + VHYS(PGx)  
Regulation  
Output voltage dip  
Regulation  
Hi-Z  
Hi-Z  
Hi-Z  
0
VFBx VIT(PGx)  
Output voltage dip  
Regulation  
VFBx < VIT(PGx)  
FBx VIT(PGx)  
VFBx < VIT(PGx)  
Hi-Z  
0
V
G
Turn-off  
The PGx pin is open-drain and connecting a pullup resistor to an external supply enables others devices to  
receive power-good as a logic signal that can be used for sequencing. Make sure that the external pullup supply  
voltage results in a valid logic signal for the receiving device or devices.  
To ensure proper operation of the power-good circuit, the pullup resistor value must be between 10 kΩ and  
100 kΩ. The lower limit of 10 kΩ results from the maximum pulldown strength of the power-good transistor, and  
the upper limit of 100 kΩ results from the maximum leakage current at the power-good node. If the pullup resistor  
is outside of this range, then the power-good signal may not read a valid digital logic level.  
Using a large CFFx with a small CNR/SSx causes the power-good signal to incorrectly indicate that the output  
voltage has settled during turn-on. The CFFx time constant must be greater than the soft-start time constant to  
ensure proper operation of the PGx during start-up. For a detailed description, see the Pros and Cons of Using a  
Feed-Forward Capacitor with a Low Dropout Regulator application report (SBVA042).  
The state of PGx is only valid when the device operates above the minimum supply voltage. During short  
brownout events and at light loads, power-good does not assert because the output voltage (therefore VFBx) is  
sustained by the output capacitance.  
8.1.3 AC and Transient Performance  
LDO ac performance for a dual-channel device includes power-supply rejection ratio, channel-to-channel output  
isolation, output current transient response, and output noise. These metrics are primarily a function of open-loop  
gain, bandwidth, and phase margin that control the closed-loop input and output impedance of the LDO. The  
output noise is primarily a result of the reference and error amplifier noise.  
22  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
8.1.3.1 Power-Supply Rejection Ratio (PSRR)  
PSRR is a measure of how well the LDO control-loop rejects signals from VINx to VOUTx across the frequency  
spectrum (usually 10 Hz to 10 MHz). 公式 6 gives the PSRR calculation as a function of frequency for the input  
signal [VINx(f)] and output signal [VOUTx(f)].  
«
÷
V
INx(f)  
PSRR (dB) = 20 Log10  
VOUTx(f)  
(6)  
Even though PSRR is a loss in signal amplitude, PSRR is shown as positive values in decibels (dB) for  
convenience.  
A simplified diagram of PSRR versus frequency is shown in 48.  
PSRR Boost Circuit Improves PSRR in This Region  
Band-Gap  
RC Filter  
Error Amplifier,  
Flat-Gain Region  
Error Amplifier,  
Gain Roll-Off  
Output Capacitor  
|ZCOUTx| Decreasing  
Output Capacitor  
|ZCOUTx| Increasing  
Band Gap  
Sub 10 Hz  
10 Hzœ1 MHz  
100 kHz +  
Frequency (Hz)  
48. Power-Supply Rejection Ratio Diagram  
An LDO is often employed not only as a dc-dc regulator, but also to provide exceptionally clean power-supply  
voltages that exhibit ultra-low noise and ripple to sensitive system components. This usage is especially true for  
the TPS7A87.  
The TPS7A87 features an innovative circuit to boost the PSRR between 200 kHz and 1 MHz; see 4. To  
achieve the maximum benefit of this PSRR boost circuit, using a capacitor with a minimum impedance in the  
100-kHz to 1-MHz band is recommended.  
8.1.3.2 Channel-to-Channel Output Isolation and Crosstalk  
Output isolation is a measure of how well the device prevents voltage disturbances on one output from affecting  
the other output. This attenuation appears in load transient tests on the other output; however, to numerically  
quantify the rejection, the output channel isolation is expressed in decibels (dB).  
Output isolation performance is a strong function of the PCB layout. See the Layout section on how to best  
optimize the isolation performance.  
版权 © 2016, Texas Instruments Incorporated  
23  
 
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
8.1.3.3 Output Voltage Noise  
The TPS7A87 is designed for system applications where minimizing noise on the power-supply rail is critical to  
system performance. For example, the TPS7A87 can be used in a phase-locked loop (PLL)-based clocking  
circuit can be used for minimum phase noise, or in test and measurement systems where even small power-  
supply noise fluctuations reduce system dynamic range.  
LDO noise is defined as the internally-generated intrinsic noise created by the semiconductor circuits alone. This  
noise is the sum of various types of noise (such as shot noise associated with current-through-pin junctions,  
thermal noise caused by thermal agitation of charge carriers, flicker noise, or 1/f noise and dominates at lower  
frequencies as a function of 1/f). 49 shows a simplified output voltage noise density plot versus frequency.  
Charge Pump Spurs  
Wide-Band Noise  
Integrated Noise  
From Band-Gap and Error Amplifier  
Measurement Noise Floor  
Frequency (Hz)  
49. Output Voltage Noise Diagram  
For further details, see the How to Measure LDO Noise white paper (SLYY076).  
8.1.3.4 Optimizing Noise and PSRR  
The ultra-low noise floor and PSRR of the device can be improved in several ways, as described in 7.  
7. Effect of Various Parameters on AC Performance(1)(2)  
NOISE  
PSRR  
PARAMETER  
LOW-  
MID-  
HIGH-  
LOW-  
MID-  
HIGH-  
FREQUENCY  
FREQUENCY  
FREQUENCY  
FREQUENCY  
FREQUENCY  
FREQUENCY  
CNR/SSx  
CFFx  
+++  
No effect  
No effect  
+++  
++  
+
No effect  
+
++  
No effect  
+
+++  
+
+
+++  
+
+++  
+
COUTx  
No effect  
+++  
+++  
++  
VINx – VOUTx  
PCB layout  
+
+++  
+++  
++  
++  
+
+
+++  
(1) The number of +'s indicates the improvement in noise or PSRR performance by increasing the parameter value.  
(2) Shaded cells indicate the easiest improvement to noise or PSRR performance.  
The noise-reduction capacitor, in conjunction with the noise-reduction resistor, forms a low-pass filter (LPF) that  
filters out the noise from the reference before being gained up with the error amplifier, thereby minimizing the  
output voltage noise floor. The LPF is a single-pole filter and the cutoff frequency can be calculated with 公式 7.  
The typical value of RNR is 250 kΩ. The effect of the CNR/SSx capacitor increases when VOUTx(Target) increases  
because the noise from the reference is gained up when the output voltage increases. For low-noise  
applications, a 10-nF to 10-µF CNR/SSx is recommended.  
fcutoff = 1 / (2 × π × RNR × CNR/SSx  
)
(7)  
The feed-forward capacitor reduces output voltage noise by filtering out the mid-band frequency noise. The feed-  
forward capacitor can be optimized by placing a pole-zero pair near the edge of the loop bandwidth and pushing  
out the loop bandwidth, thus improving mid-band PSRR.  
24  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
A larger COUTx or multiple output capacitors reduces high-frequency output voltage noise and PSRR by reducing  
the high-frequency output impedance of the power supply.  
Additionally, a higher input voltage improves the noise and PSRR because greater headroom is provided for the  
internal circuits. However, a high power dissipation across the die increases the output noise because of the  
increase in junction temperature.  
Good PCB layout improves the PSRR and noise performance by providing heatsinking at low frequencies and  
isolating VOUTx at high frequencies.  
8 lists the output voltage noise for the 10-Hz to 100-kHz band at a 5-V output for a variety of conditions with  
an input voltage of 5.4 V, an R1x of 12.1 kΩ, and a load current of 0.5 A. The 5-V output is chosen because this  
output is the worst-case condition for output voltage noise.  
8. Output Noise Voltage at a 5-V Output with a 5.4-V Input  
OUTPUT VOLTAGE  
CNR/SSx (nF)  
CFFx (nF)  
COUTx (µF)  
SS_CTRLx  
NOISE (µVRMS  
)
10  
10  
22  
22  
VINx  
VINx  
GND  
VINx  
10.8  
5.6  
1000  
1000  
1000  
100  
100  
100  
22  
5.6  
22 || 1000  
5.0  
8.1.3.4.1 Charge Pump Noise  
The device internal charge pump generates a minimal amount of noise.  
The high-frequency components of the output voltage noise density curve are filtered out in most applications by  
using 10-nF to 100-nF bypass capacitors close to the load. Using a ferrite bead between the LDO output and the  
load input capacitors forms a pi-filter, further reducing the high-frequency noise contribution.  
版权 © 2016, Texas Instruments Incorporated  
25  
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
8.1.3.5 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current, whereby  
output voltage regulation is maintained. There are two key transitions during a load transient response: the  
transition from a light to a heavy load and the transition from a heavy to a light load. The regions shown in 50  
are broken down in this section and are described in 9. Regions A, E, and H are where the output voltage is in  
steady-state.  
VOUTx  
B
F
A
C
D
E
G
H
IOUTx  
50. Load Transient Waveform  
9. Load Transient Waveform Description  
REGION  
DESCRIPTION  
COMMENT  
A
B
Regulation  
Regulation  
Output current ramping  
Initial voltage dip is a result of the depletion of the output capacitor charge.  
Recovery from the dip results from the LDO increasing its sourcing current, and leads  
to output voltage regulation.  
C
LDO responding to transient  
At high load currents the LDO takes some time to heat up. During this time the output  
voltage changes slightly.  
D
E
F
Reaching thermal equilibrium  
Regulation  
Regulation  
Initial voltage rise results from the LDO sourcing a large current, and leads to the  
output capacitor charge to increase.  
Output current ramping  
Recovery from the rise results from the LDO decreasing its sourcing current in  
combination with the load discharging the output capacitor.  
G
H
LDO responding to transient  
Regulation  
Regulation  
26  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
The transient response peaks (VOUTx(max) and VOUTx(min)) are improved by using more output capacitance;  
however, doing so slows down the recovery time (Wrise and Wfall). 51 shows these parameters during a load  
transient, with a given pulse duration (PW) and current levels (IOUTx(LO) and IOUTx(HI)).  
VOUTx(max)  
Wrise  
VOUTx  
Wfall  
VOUTx(min)  
IOUTx(HI)  
PW  
IOUTx  
IOUTx(LO)  
IOUTx(LO)  
trise  
tfall  
51. Simplified Load Transient Waveform  
8.1.4 DC Performance  
8.1.4.1 Output Voltage Accuracy (VOUTx  
)
The device features an output voltage accuracy of 1% maximum that includes the errors introduced by the  
internal reference, load regulation, line regulation, and operating temperature as specified by the Electrical  
Characteristics table. Output voltage accuracy specifies minimum and maximum output voltage error, relative to  
the expected nominal output voltage stated as a percent.  
8.1.4.2 Dropout Voltage (VDO  
)
Generally speaking, the dropout voltage often refers to the minimum voltage difference between the input and  
output voltage (VDO = VINx – VOUTx) that is required for regulation. When VINx drops below the required VDO for  
the given load current, the device functions as a resistive switch and does not regulate output voltage. Dropout  
voltage is proportional to the output current because the device is operating as a resistive switch, as shown in 图  
52.  
VDO  
IOUTx  
52. Dropout Voltage versus Output Current  
Dropout voltage is affected by the drive strength for the gate of the pass element, which is nonlinear with respect  
to VINx on this device because of the internal charge pump. Dropout voltage increases exponentially when the  
input voltage nears its maximum operating voltage because the charge pump multiplies the input voltage by a  
factor of 4 and then is internally clamped to 8.0 V.  
8.1.4.2.1 Behavior when Transitioning from Dropout into Regulation  
Some applications can have transients that place the LDO into dropout, such as slower ramps on VINX for start-  
up or load transients. As with many other LDOs, the output can overshoot on recovery from these conditions.  
版权 © 2016, Texas Instruments Incorporated  
27  
 
 
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
A ramping input supply can cause an LDO to overshoot on start-up when the slew rate and voltage levels are in  
the right range, as shown in 53. This condition is easily avoided through either the use of an enable signal, or  
by increasing the soft-start time with CSS/NRx  
.
Input Voltage  
Response time for  
LDO to get back into  
regulation.  
Load current discharges  
output voltage.  
VINx = VOUTx(nom) + VDO  
Output Voltage  
Dropout  
VOUTx = VINx - VDO  
Output Voltage in  
normal regulation.  
Time  
53. Start-Up Into Dropout  
8.1.5 Reverse Current Protection  
As with most LDOs, this device can be damaged by excessive reverse current.  
Reverse current is current that flows through the body diode on the pass element instead of the normal  
conducting channel. This current flow, at high enough magnitudes, degrades long-term reliability of the device  
resulting from risks of electromigration and excess heat being dissipated across the device. If the current flow  
gets high enough, a latch-up condition can be entered.  
Conditions where excessive reverse current can occur are outlined in this section, all of which can exceed the  
absolute maximum rating of VOUTx > VINx + 0.3 V:  
If the device has a large COUTx and the input supply collapses quickly with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
If excessive reverse current flow is expected in the application, then external protection must be used to protect  
the device. 54 shows one approach of protecting the device.  
Schottky Diode  
Internal Body Diode  
INx  
OUTx  
TI Device  
COUTx  
CINx  
GND  
Copyright © 2016, Texas Instruments Incorporated  
54. Example Circuit for Reverse Current Protection Using a Schottky Diode  
28  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
8.1.6 Power Dissipation (PD)  
Circuit reliability demands that proper consideration is given to device power dissipation, location of the circuit on  
the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must  
be as free as possible of other heat-generating devices that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. PD can be approximated using 公式 8:  
PD = (VOUTx – VINx) × IOUTx  
(8)  
An important note is that power dissipation can be minimized, and thus greater efficiency achieved, by proper  
selection of the system voltage rails. Proper selection allows the minimum input-to-output voltage differential to  
be obtained. The low dropout of the device allows for maximum efficiency across a wide range of output  
voltages.  
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal  
pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that  
conduct heat to any inner plane areas or to a bottom-side copper plane.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(θJA) of the combined PCB, device package, and the temperature of the ambient air (TA), according to 公式 9.  
The equation is rearranged for output current in 公式 10.  
TJ = TA + θJA × PD  
(9)  
IOUTx = (TJ – TA) / [θJA × (VINx – VOUTx)]  
(10)  
Unfortunately, this thermal resistance (θJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The θJA recorded in the table is determined by the JEDEC standard, PCB, and copper-spreading area,  
and is only used as a relative measure of package thermal performance. Note that for a well-designed thermal  
layout, θJA is actually the sum of the VQFN package junction-to-case (bottom) thermal resistance (θJCbot) plus the  
thermal resistance contribution by the PCB copper.  
8.1.6.1 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are given in the table and are used in accordance with 公式 11.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as explained in 公式 8  
TT is the temperature at the center-top of the device package, and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(11)  
版权 © 2016, Texas Instruments Incorporated  
29  
 
 
 
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
8.1.6.2 Recommended Area for Continuous Operation (RACO)  
The operational area of an LDO is limited by the dropout voltage, output current, junction temperature, and input  
voltage. The recommended area for continuous operation for a linear regulator can be separated into the  
following parts, and is shown in 55:  
Limited by dropout: Dropout voltage limits the minimum differential voltage between the input and the output  
(VINx – VOUTx) at a given output current level; see the Dropout Voltage (VDO) section for more details.  
Limited by rated output current: The rated output current limits the maximum recommended output current  
level. Exceeding this rating causes the device to fall out of specification.  
Limited by thermals: The shape of the slope is given by 公式 10. The slope is nonlinear because the junction  
temperature of the LDO is controlled by the power dissipation across the LDO; therefore, when VINx – VOUTx  
increases, the output current must decrease in order to ensure that the rated junction temperature of the  
device is not exceeded. Exceeding this rating can cause the device to fall out of specifications and reduces  
long-term reliability.  
Limited by VINx range: The rated input voltage range governs both the minimum and maximum of VINx  
VOUTx  
.
Output Current Limited  
by Dropout  
Rated Output  
Current  
Output Current Limited by Thermals  
Limited by  
Minimum VINx  
Limited by  
Maximum VINx  
VINx œ VOUTx (V)  
55. Continuous Operation Slope Region Description  
30  
版权 © 2016, Texas Instruments Incorporated  
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
56 to 61 show the recommended area of operation curves for this device on a JEDEC-standard, high-K  
board with a θJA = 35.4°C/W, as given in the table.  
0.75  
0.6  
0.45  
0.3  
0.15  
0
0.75  
0.6  
0.45  
0.3  
0.15  
0
TA = 55èC  
TA = 70èC  
TA = 85èC  
TA = 105èC  
RACO at TA = 105èC  
TA = 55èC  
TA = 70èC  
TA = 85èC  
TA = 105èC  
RACO at TA = 105èC  
0
1.5  
3
4.5  
6
0
1.5  
3
4.5  
6
VINx - VOUTx (V)  
VINx - VOUTx (V)  
56. Recommended Area for Continuous Operation for  
57. Recommended Area for Continuous Operation for  
VOUTx = 0.8 V  
VOUTx = 1.2 V  
0.75  
0.75  
TA = 55èC  
TA = 70èC  
TA = 85èC  
TA = 105èC  
RACO at TA = 105èC  
TA = 55èC  
TA = 70èC  
TA = 85èC  
TA = 105èC  
RACO at TA = 105èC  
0.6  
0.45  
0.3  
0.6  
0.45  
0.3  
0.15  
0
0.15  
0
0
1.5  
3
4.5  
6
0
1.5  
3
4.5  
6
VINx - VOUTx (V)  
VIN - VOUT (V)  
58. Recommended Area for Continuous Operation for  
59. Recommended Area for Continuous Operation for  
VOUTx = 1.8 V  
VOUTx = 2.5 V  
0.75  
0.75  
TA = 55èC  
TA = 70èC  
TA = 85èC  
TA = 105èC  
RACO at TA = 105èC  
TA = 55èC  
TA = 70èC  
TA = 85èC  
TA = 105èC  
RACO at TA = 105èC  
0.6  
0.45  
0.3  
0.6  
0.45  
0.3  
0.15  
0
0.15  
0
0
1.5  
3
4.5  
6
0
0.5  
1
1.5  
2
VINx - VOUTx (V)  
VINx - VOUTx (V)  
60. Recommended Area for Continuous Operation for  
61. Recommended Area for Continuous Operation for  
VOUTx = 3.3 V  
VOUTx = 5.0 V  
版权 © 2016, Texas Instruments Incorporated  
31  
 
 
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
8.2 Typical Application  
This section discusses the implementation of the TPS7A87 to regulate from a common input voltage to two  
output voltages of the same value. This application is common for when two noise-sensitive loads must have the  
same supply voltage but have high channel-to-channel isolation. The schematic for this application circuit is  
provided in 62.  
VINx  
INx  
VOUTx  
COUTx  
OUTx  
FBx  
R1x  
CINx  
ENx  
SS_CTRLx  
R2x  
NR/SSx  
VPULL-UP  
RPGx  
CNR/SSx  
TI Device  
VPGx  
PGx  
GND  
Copyright © 2016, Texas Instruments Incorporated  
62. Application Example (Single Channel)  
8.2.1 Design Requirements  
For the design example shown in 62, use the parameters listed in 10 as the input parameters.  
10. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
1.8 V, ±3%, provided by the dc-dc converter switching at 750 kHz  
85°C  
Input voltages (VIN1 and VIN2  
)
Maximum ambient operating temperature  
Output voltages (VOUT1 and VOUT2  
)
1.2 V, ±1%, output voltages are isolated  
400 mA (maximum), 10 mA (minimum)  
Isolation greater than 50 dB at 100 kHz  
< 5 µVRMS, bandwidth = 10 Hz to 100 kHz  
> 40 dB  
Output currents (IOUT2 and IOUT2  
Channel-to-channel isolation  
RMS noise  
)
PSRR at 750 kHz  
Startup time  
< 5 ms  
8.2.2 Detailed Design Procedure  
The output voltages can be set to 1.2 V by selecting the correct values for R1x and R2x; see 公式 1.  
Input and output capacitors are selected in accordance with the External Component Selection section. Ceramic  
capacitances of 10 µF for both inputs and outputs are selected.  
To minimize noise, a feed-forward capacitance (CFFx) of 10 nF is selected.  
Channel-to-channel isolation depends greatly on the layout of the design. To minimize crosstalk between the  
outputs, keep the output capacitor grounds on separate sides of the design. See the Layout section for an  
example of how to layout the TPS7A87 to achieve best PSRR, channel-to-channel isolation, and noise.  
32  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
8.2.3 Application Curves  
100  
50  
25  
0
2
IOUTx = 10 mA  
IOUTx = 50 mA  
IOUTx = 100 mA  
IOUTx = 250 mA  
IOUTx = 500 mA  
VOUTx = 5.0 V  
VOUTx = 3.3 V  
VOUTx = 1.2 V  
VOUTx = 0.9 V  
IOUTx  
80  
1.5  
1
60  
40  
20  
0
-25  
-50  
0.5  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0
200  
400  
600  
800  
1000  
Frequency (Hz)  
Time (ms)  
63. Power-Supply Rejection Ratio vs Frequency  
64. Load Transient Response vs Time and VOUTx  
9 Power Supply Recommendations  
Both inputs of the TPS7A87 are designed to operate from an input voltage range between 1.4 V and 6.5 V. The  
input voltage range must provide adequate headroom in order for the device to have a regulated output. This  
input supply must be well regulated. If the input supply is noisy or has a high output impedance, additional input  
capacitors with low ESR can help improve the output noise performance.  
版权 © 2016, Texas Instruments Incorporated  
33  
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
General guidelines for linear regulator designs are to place all circuit components on the same side of the circuit  
board and as near as practical to the respective LDO pin connections. Place ground return connections to the  
input and output capacitor, and to the LDO ground pin as close to each other as possible, connected by a wide,  
component-side, copper surface. The use of vias and long traces to create LDO circuit connections is strongly  
discouraged and negatively affects system performance.  
10.1.1 Board Layout  
To maximize the performance of the device, following the layout example illustrated in 65 is recommended.  
This layout isolates the analog ground (AGND) from the noisy power ground. Components that must be  
connected to the quiet analog ground are the noise-reduction capacitors (CNR/SSx) and the lower feedback  
resistors (R2x). These components must have a separate connection back to the thermal pad of the device. To  
minimize crosstalk between the two outputs, the output capacitor grounds are positioned on opposite sides of the  
layout and only connect back to the device at opposite sides of the thermal pad. Connecting the GND pins  
directly to the thermal pad and not to any external plane is recommended.  
To maximize the output voltage accuracy, the connection from each output voltage back to the top output divider  
resistors (R1x) must be made as close as possible to the load. This method of connecting the feedback trace  
eliminates the voltage drop from the device output to the load.  
To improve thermal performance, a 3 × 3 thermal via array must connect the thermal pad to internal ground  
planes. A larger area for the internal ground planes improves the thermal performance and lowers the operating  
temperature of the device.  
34  
版权 © 2016, Texas Instruments Incorporated  
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
10.2 Layout Example  
Thermal Ground  
RPG1  
AGND  
R21  
PG1  
R11  
CNR/SS1  
CFF1  
VOUT1 SENSE  
on Bottom  
Layer  
20  
19  
18  
17  
16  
CIN1  
COUT1  
1
2
3
4
5
15  
14  
13  
12  
11  
IN1  
IN1  
OUT1  
VIN1  
VOUT1  
OUT1  
GND  
GND  
IN2  
IN2  
OUT2  
OUT2  
VOUT2  
VIN2  
CIN2  
COUT2  
6
7
8
9
10  
VOUT2 SENSE  
on Bottom  
Layer  
CFF2  
CNR/SS2  
R12  
PG2  
R22  
AGND  
RPG2  
Thermal Ground  
Circles denote PCB via connections.  
65. TPS7A87 Example Layout  
版权 © 2016, Texas Instruments Incorporated  
35  
TPS7A87  
ZHCSF74A MARCH 2016REVISED JULY 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
评估模块 (EVM) 可与 TPS7A87 配套使用,帮助评估初始电路性能。有关此固定装置的相关摘要信息,请参见表  
11。  
11. 设计套件与评估模块(1)  
名称  
部件号  
TPS7A88 评估模块  
TPS7A88EVM 用户指南》  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com 查看器件产品文件夹。  
在德州仪器 (TI) 网站 (www.ti.com) 上,可通过 TPS7A87 产品文件夹获取 EVM。  
11.1.1.2 SPICE 模型  
分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。您可以从 TPS7A87 产品  
文件夹中的仿真模型下获取 TPS7A87 SPICE 模型。  
11.1.2 器件命名规则  
12. 订购信息(1)  
产品  
说明  
XX 表示输出电压。01 为可调输出版本。  
YYY 为封装标识符。  
TPS7A87XXYYYZ  
Z 为封装数量。  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com 查看器件产品文件夹。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
数据表《TPS37xx 双通道、低功耗、高精度电压检测器》(文献编号:SBVS250)  
用户指南《TPS7A88 评估模块》(文献编号:SBVU027)  
应用报告《使用前馈电容器和低压降稳压器的优缺点》(文献编号:SBVA042)  
白皮书《如何测量 LDO 噪声》(文献编号:SLYY076)  
11.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
36  
版权 © 2016, Texas Instruments Incorporated  
 
TPS7A87  
www.ti.com.cn  
ZHCSF74A MARCH 2016REVISED JULY 2016  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A8701RTJR  
TPS7A8701RTJT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTJ  
RTJ  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TPS7A87  
TPS7A87  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2016  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A8701RTJR  
TPS7A8701RTJT  
QFN  
QFN  
RTJ  
RTJ  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2016  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A8701RTJR  
TPS7A8701RTJT  
QFN  
QFN  
RTJ  
RTJ  
20  
20  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTJ 20  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224842/A  
www.ti.com  
DATA BOOK  
PACKAGE OUTLINE  
LEADFRAME EXAMPLE  
4222370  
DRAFTSMAN:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
H. DENG  
09/12/2016  
09/12/2016  
09/12/2016  
DESIGNER:  
CHECKER:  
ENGINEER:  
APPROVED:  
RELEASED:  
CODE IDENTITY  
NUMBER  
H. DENG  
01295  
SEMICONDUCTOR OPERATIONS  
V. PAKU & T. LEQUANG  
T. TANG  
ePOD, RTJ0020D / WQFN,  
20 PIN, 0.5 MM PITCH  
09/12/2016  
10/06/2016  
10/24/2016  
E. REY & D. CHIN  
WDM  
SCALE  
SIZE  
REV  
PAGE  
OF  
TEMPLATE INFO:  
4219125  
A
15X  
04/07/2016  
A
EDGE# 4218519  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
RTJ0020D  
A
4.1  
3.9  
B
PIN 1 INDEX AREA  
4.1  
3.9  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
16X 0.5  
(A) TYP  
6
10  
EXPOSED  
THERMAL PAD  
5
11  
SYMM  
ꢀꢁꢂ“ꢃꢁꢄ  
4X 2  
21  
15  
1
0.5  
0.3  
20X  
PIN 1 ID  
(OPTIONAL)  
20  
16  
SYMM  
0.29  
0.19  
0.1  
20X  
C A B  
C
0.05  
4219125 / A 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTJ0020D  
PLASTIC QUAD FLATPACK - NO LEAD  
2.7)  
SYMM  
20  
16  
20X (0.6)  
1
20X (0.24)  
15  
(1.1)  
TYP  
21  
SYMM  
(3.8)  
(0.5)  
TYP  
ꢅ‘ꢃꢁꢀꢆꢇ7<3  
VIA  
5
11  
(R0.05)  
TYP  
6
10  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219125 / A 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTJ0020D  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.69)  
TYP  
20  
16  
20X (0.6)  
1
20X (0.24)  
15  
(0.69)  
TYP  
SYMM  
(3.8)  
(0.5)  
TYP  
5
11  
(R0.05)  
TYP  
21  
6
10  
4X ( 1.19)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219125 / A 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
R E V I S I O N S  
REV  
A
DESCRIPTION  
ECR  
DATE  
ENGINEER / DRAFTSMAN  
T. TANG / H. DENG  
RELEASE NEW DRAWING  
2160736  
10/24/2016  
SCALE  
SIZE  
REV  
PAGE  
4219125  
5 OF 5  
A
NTS  
A
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7A88

1A、低噪声、高 PSRR、双通道可调节超低压降稳压器
TI

TPS7A88-Q1

汽车类 1A、低噪声、高精度、双通道可调节低压降稳压器
TI

TPS7A8801QRTJRQ1

汽车类 1A、低噪声、高精度、双通道可调节低压降稳压器 | RTJ | 20 | -40 to 140
TI

TPS7A8801RTJR

1A、低噪声、高 PSRR、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125
TI

TPS7A8801RTJT

1A、低噪声、高 PSRR、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125
TI

TPS7A89

2A、低噪声、高精度、双通道可调节超低压降稳压器
TI

TPS7A8901RTJR

2A、低噪声、高精度、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125
TI

TPS7A8901RTJT

2A、低噪声、高精度、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125
TI

TPS7A90

500mA、低噪声、高 PSRR、高精度、可调节超低压降稳压器
TI

TPS7A9001DSKR

500mA、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125
TI

TPS7A9001DSKT

500mA、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125
TI

TPS7A91

1A、低噪声、高 PSRR、高精度、可调节超低压降稳压器
TI