TPS7B7050QPWPRQ1 [TI]

具有复位延迟功能的汽车类 300mA、电池供电运行 (40V)、低 IQ、低压降稳压器 | PWP | 16 | -40 to 125;
TPS7B7050QPWPRQ1
型号: TPS7B7050QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有复位延迟功能的汽车类 300mA、电池供电运行 (40V)、低 IQ、低压降稳压器 | PWP | 16 | -40 to 125

电池 稳压器
文件: 总26页 (文件大小:1918K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
具有电源正常指示功能的 TPS7B70-Q1 汽车类 300mA 40V IQ LDO  
1 特性  
3 说明  
1
符合汽车类应用的 应用  
TPS7B70-Q1 是一款通过汽车电池供电的 300mA 低  
压降线性稳压器 (LDO)。该器件在轻负载条件下的静  
态电流仅有 19µA。因此,TPS7B70-Q1 是用于为微控  
制器 (MCU) 和控制器局域网 (CAN) 收发器等常开式组  
件供电的绝佳选择。  
具有符合 AEC-Q100 标准的下列结果:  
器件温度 1 级:–40°C 125°C 的环境工作温  
度范围  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C4B  
TPS7B70-Q1 的输入电压范围扩展到了 40V。该电压  
可帮助该器件承受瞬态条件,例如负载突降。该器件还  
具有电源正常 (PG) 引脚,可在输出电压实现稳压后通  
知系统。要实现必要的操作,您可以调整 PG 阈值电  
压和延迟。PG 信号的阈值电压通过外部电阻器进行调  
整。请使用外部电容器来调整延迟。  
器件结温范围:  
–40°C +150°C  
最大输出电流:300mA  
4V 40V VIN 输入电压范围,瞬态电压高达  
45V  
3.3V 5V 两种固定输出电压  
最大压降电压:400mV(电流为 300mA)  
此器件可在 –40°C +125°C 的环境温度下运行,且  
结温范围为 –40°C +150°C。此外,此器件还采用  
了热传导封装,即使整个器件散热较多,也能实现持久  
运行,这是一种典型的脱离电池供电运行的特征。这些  
特性以及所包含的电流限制和热关断保护使得  
在宽电容(4.7µF 500µF)和 ESR0.001Ω 至  
20Ω)范围内,与输出电容器搭配使用时可保持稳  
低静态电流 (I(Q))  
EN 为低电平(关断模式)时 < 4µA  
TPS7B70-Q1 成为为汽车系统组件供电的绝佳选择。  
轻负载(VINT 为高电平)时为 19µA(典型  
值)  
器件信息(1)  
器件编号  
输出电压  
3.3V 5V  
封装  
完全可调的电源正常阈值和电源正常延迟计时  
针对欠压闭锁 (UVLO) 的低输入电压跟踪功能  
集成故障保护  
TPS7B70-Q1  
HTSSOP (16)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
过载限流保护  
热关断  
典型应用  
TPS7B7033-Q1  
TPS7B7050-Q1  
16 引脚 HTSSOP PowerPAD™封装  
热阻 (RθJA)39.7°C/W  
VIN  
VOUT  
IN  
OUT  
Vreg  
Vbat  
2 应用  
PGADJ  
车身控制模块 (BCM)  
EV HEV 电池管理系统  
变速器控制单元 (TCU)  
音响主机  
EN  
PG  
VINT  
电动助力转向 (EPS)  
DELAY  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEK5  
 
 
 
 
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 14  
Power Supply Recommendations...................... 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................. 16  
10.2 Layout Example .................................................... 16  
11 器件和文档支持 ..................................................... 17  
11.1 文档支持................................................................ 17  
11.2 接收文档更新通知 ................................................. 17  
11.3 社区资源................................................................ 17  
11.4 ....................................................................... 17  
11.5 静电放电警告......................................................... 17  
11.6 术语表 ................................................................... 17  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (August 2018) to Revision A  
Page  
已更改 将器件状态从高级信息 更改为生产数据 ..................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPS7B70-Q1  
www.ti.com.cn  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
5 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP With PowerPAD  
Top View  
IN  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT  
PGADJ  
PG  
GND  
GND  
GND  
GND  
GND  
DELAY  
GND  
GND  
VINT  
GND  
GND  
PowerPAD™  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DELAY  
NO.  
Power-good delay adjustment pin. Connect this pin through a capacitor to ground to adjust  
the power-good delay time.  
8
O
I
Device enable pin. Pull this pin down to low-level voltage to disable the device. Pull this pin  
up to high-level voltage to enable the device.  
EN  
2
3, 4, 5, 6, 7,  
9, 10, 12, 13  
GND  
Ground reference  
IN  
1
I
Device input power supply pin  
OUT  
16  
O
Device 3.3-V or 5-V regulated output-voltage pin  
Power-good pin. Open-drain output pin. Pull this pin up to VOUT or to a reference through a  
resistor. When the output voltage is not ready, this pin is pulled down to ground.  
PG  
14  
O
Power-good threshold-adjustment pin. Connect a resistor divider between the PGADJ and  
OUT pins to set the power-good threshold. Connect this pin to ground to set the threshold to  
PGADJ  
15  
O
91.6% of output voltage VOUT  
Internal voltage rail. Tie this pin above 2 V for lowest IGND  
Solder thermal pad to board to improve the thermal performance.  
.
VINT  
11  
I
.
PowerPAD  
Copyright © 2018, Texas Instruments Incorporated  
3
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
45  
7
UNIT  
V
Unregulated input  
IN, EN  
DELAY  
OUT  
Power-good delay-timer output  
Regulated output  
V
7
V
Power-good output voltage  
V-internal  
PG  
7
V
VINT  
7
V
Power-good threshold-adjustment voltage  
Operating junction temperature  
Storage temperature  
PGADJ  
7
V
TJ  
150  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Corner pins (1, 14, 15, and 28)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
NOM  
MAX  
40  
UNIT  
V
Unregulated input  
40-V pins  
IN  
EN  
0
VIN  
5.5  
V
Regulated output  
Power good  
OUT  
0
V
PG  
0
5.5  
V
Low voltage pins  
Output current  
PGADJ, DELAY  
0
5.5  
V
IOUT  
TA  
0
300  
125  
150  
mA  
°C  
°C  
Ambient temperature  
Junction temperature  
–40  
–40  
TJ  
6.4 Thermal Information  
TPS7B70-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
39.7  
28.9  
23.8  
1.3  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
23.7  
3.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
TPS7B70-Q1  
www.ti.com.cn  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
6.5 Electrical Characteristics  
TJ = –40°C to 150°C, VIN = 14 V, COUT 4.7 µF, and 1 mΩ < ESR < 20 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND CURRENT (IN)  
I(SLEEP)  
Input sleep current  
EN = off  
4.5  
29.6  
2.6  
µA  
µA  
VIN = VOUT + 1 V to 40 V, EN = on, VINT >  
2 V, IOUT < 1 mA, –40°C TJ 85°C  
I(GND)  
Input quiescent current  
Undervoltage lockout, falling  
19  
V(UVLO)  
Ramp VIN down until output is turned off  
V
V
V(UVLO_HYST) UVLO hysteresis  
0.5  
ENABLE INPUT (EN)  
VIL  
Low-level input voltage  
0.7  
V
V
VIH  
Vhys  
High-level input voltage  
Hysteresis  
2
150  
mV  
REGULATED OUTPUT (OUT)  
VIN = VOUT + 1 V to 40 V, IOUT = 0 mA to  
300 mA, –40°C TJ 125°C  
–2%  
2%  
VOUT  
Regulated output  
Line regulation  
VIN = VOUT + 1 V to 40 V, IOUT = 0 mA to  
300 mA  
–2.5%  
2.5%  
ΔVOUT(ΔVIN)  
VIN = VOUT + 1 V to 40 V, IOUT = 1 mA  
IOUT = 1 mA to 300 mA  
IOUT = 300 mA  
10  
20  
mV  
mV  
ΔVOUT(ΔIOUT) Load regulation  
V(dropout) Dropout voltage (VIN – VOUT  
I(LIM) Output current limit  
300  
170  
680  
400  
325  
1000  
(1)(2)  
)
mV  
mA  
IOUT = 200 mA  
VOUT shorted to ground, VIN = 5.6 V  
301  
IOUT = 100 mA, COUT = 10 µF,  
frequency (f) = 100 Hz  
60  
40  
PSRR  
Power-supply ripple rejection(3)  
dB  
IOUT = 100 mA, COUT = 10 µF,  
frequency (f) = 100 kHz  
POWER GOOD (PG, PGADJ)  
VOL(PG) PG output, low voltage  
Ilkg(PG)  
IOL = 5 mA, PG pulled low  
0.4  
1
V
PG pin leakage current  
PG pulled to VOUT through a 10kΩ resistor  
µA  
VOUT powered above the internally set  
tolerance, PGADJ pin shorted to ground  
% of  
VOUT  
V(PG_TH)  
Default power-good threshold  
88.6  
91.6  
2
93.6  
VOUT falling below the internally set  
tolerance hysteresis  
% of  
VOUT  
V(PG_HYST)  
Power-good hysteresis  
(1) This test is done with VOUT in regulation, measuring the VIN – VOUT when VOUT drops by 100 mV from the rated output voltage at the  
specified load.  
(2) Dropout is not measured for VOUT = 3.3 V in this test because VIN must be 4 V or greater for proper operation.  
(3) Design information—not tested, determined by characterization.  
Copyright © 2018, Texas Instruments Incorporated  
5
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ = –40°C to 150°C, VIN = 14 V, COUT 4.7 µF, and 1 mΩ < ESR < 20 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PGADJ  
Switching voltage for the power-  
good adjust pin  
V(PGADJ_TH)  
VOUT is falling  
1.067  
1.1  
1.133  
V
POWER-GOOD DELAY  
DELAY capacitor charging  
current  
I(DLY_CHG)  
V(DLY_TH)  
I(DLY_DIS)  
3
0.95  
0.5  
5
1
10  
µA  
V
DELAY pin threshold to release  
PG high  
Voltage at DELAY pin is ramped up  
VDELAY = 1 V  
1.05  
DELAY capacitor discharging  
current  
mA  
TEMPERATURE  
T(SD)  
Junction shutdown temperature  
Hysteresis of thermal shutdown  
175  
25  
°C  
°C  
T(HYST)  
6.6 Switching Characteristics  
TJ = –40°C to 150°C, VI = 14 V, CO 4.7 µF, and 1 mΩ < ESR < 20 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER-GOOD DELAY (DELAY)  
t(DEGLITCH)  
t(DLY_FIX)  
t(DLY)  
Power-good deglitch time  
180  
248  
20  
250  
900  
µs  
µs  
Fixed power-good delay  
Power-good delay  
No capacitor connect at DELAY pin  
Delay capacitor value: C(DELAY) = 100 nF  
ms  
6
版权 © 2018, Texas Instruments Incorporated  
TPS7B70-Q1  
www.ti.com.cn  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
6.7 Typical Characteristics  
TJ = –40ºC to 150ºC, VIN = 14 V, and VEN 2 V (unless otherwise noted)  
80  
70  
60  
50  
40  
30  
20  
10  
0
400  
350  
300  
250  
200  
150  
100  
50  
-40 °C  
25 °C  
125 °C  
IOUT = 1 mA  
IOUT = 100 mA  
IOUT = 200 mA  
0
0
50  
100  
150  
200  
250  
300  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (mA)  
Input Voltage (V)  
D001  
D002  
1. Ground Current vs Output Current  
2. Ground Current vs Input Voltage  
35  
30  
25  
20  
15  
10  
5
4
3
2
1
0
IOUT = 1 mA  
IOUT = 100 mA  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (èC)  
D003  
D004  
EN = 0 V  
3. Shutdown Current vs Ambient Temperature  
4. Ground Current vs Ambient Temperature  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
-40 °C  
25 °C  
125 °C  
0
0
0
50  
100  
150  
200  
250  
300  
350  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Output Current (mA)  
D005  
D006  
IOUT = 200 mA  
6. Dropout Voltage vs Ambient Temperature  
5. Dropout Voltage vs Output Current  
版权 © 2018, Texas Instruments Incorporated  
7
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
TJ = –40ºC to 150ºC, VIN = 14 V, and VEN 2 V (unless otherwise noted)  
5.06  
5.03  
5
6
5
4
3
2
1
0
4.97  
-40èC  
25èC  
125èC  
4.94  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
0
5
10  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
D007  
D008  
VOUT = 5 V  
7. Output Voltage vs Ambient Temperature  
VOUT = 5 V  
8. Output Voltage vs Input Voltage  
900  
800  
700  
600  
500  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40 °C  
25 °C  
125 °C  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
0
50  
100  
150  
200  
250  
300  
350  
Output Current (mA)  
D009  
D010  
VIN = 5.6 V  
9. Output Current Limit (ILIM) vs Ambient Temperature  
10. Load Regulation  
1
120  
100  
80  
60  
40  
20  
0
-40èC  
0.8  
25èC  
125èC  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
5
10  
15  
20  
25  
30  
35  
40  
10  
100  
1k  
10k  
100k  
1M  
10M  
Input Voltage (V)  
Frequency (Hz)  
D011  
D012  
COUT = 10 µF  
IOUT = 1 mA  
12. PSRR vs Frequency  
TA = 25°C  
11. Line Regulation  
8
版权 © 2018, Texas Instruments Incorporated  
TPS7B70-Q1  
www.ti.com.cn  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
TJ = –40ºC to 150ºC, VIN = 14 V, and VEN 2 V (unless otherwise noted)  
120  
100  
80  
60  
40  
20  
0
1k  
Unstable Region  
Stable Region  
500  
100  
10  
4.7  
Unstable Region  
1
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.01  
0.1  
ESR (W)  
1
10 20  
Frequency (Hz)  
D013  
D014  
COUT = 10 µF  
IOUT = 100 mA  
13. PSRR vs Frequency  
TA = 25°C  
14. ESR Stability vs Output Capacitance  
VIN (10 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VIN (10 V/div)  
VOUT(AC) (100 mV/div)  
IOUT (10 mA/div)  
VOUT(AC) (100 mV/div)  
IOUT (10 mA/div)  
VIN = 6 V to 40 V  
IOUT = 1 mA  
VOUT = 5 V  
COUT = 10 µF  
VIN = 40 V to 6 V  
IOUT = 1 mA  
VOUT = 5 V  
COUT = 10 µF  
15. Line Transient  
16. Line Transient  
VIN (5 V/div)  
VIN (5 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VOUT(AC) (50 mV/div)  
IOUT (200 mA/div)  
VOUT(AC) (50 mV/div)  
IOUT (200 mA/div)  
VIN = 6 V to 40 V  
IOUT = 200 mA  
VOUT = 5 V  
COUT = 10 µF  
VIN = 40 V to 6 V  
IOUT = 200 mA  
VOUT = 5 V  
COUT = 10 µF  
17. Line Transient  
18. Line Transient  
版权 © 2018, Texas Instruments Incorporated  
9
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
TJ = –40ºC to 150ºC, VIN = 14 V, and VEN 2 V (unless otherwise noted)  
VIN (5 V/div)  
VIN (5 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VOUT(AC) (500 mV/div)  
VOUT(AC) (500 mV/div)  
IOUT (200 mA/div)  
IOUT (200 mA/div)  
VOUT = 5 V  
COUT = 10 µF  
IOUT = 1 mA to 200 mA  
VOUT = 5 V  
COUT = 10 µF  
IOUT = 200 mA to 1 mA  
19. Load Transient  
20. Load Transient  
10  
版权 © 2018, Texas Instruments Incorporated  
TPS7B70-Q1  
www.ti.com.cn  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
7 Detailed Description  
7.1 Overview  
The TPS7B70-Q1 is a 300-mA, 40-V monolithic low-dropout linear voltage regulator with adjustable power-good  
threshold functionality. This voltage regulator consumes only 19-µA quiescent current in light-load applications.  
Because of the adjustable power-good delay (also called power-on-reset delay) and the adjustable power-good  
threshold, this device is an excellent choice as a power supply for microprocessors and microcontrollers in  
automotive applications.  
7.2 Functional Block Diagram  
IN  
OUT  
VINT  
PG  
Undervoltage  
Lockout  
Overcurrent  
Protection  
Band Gap Filter  
Regulator Control  
Thermal Shutdown  
+
EN  
Error  
Amp  
VREF  
œ
Power Good  
Control With  
Delay  
DELAY  
V(PG_REF)  
GND  
œ
GND  
Amp  
+
PGADJ  
7.3 Feature Description  
7.3.1 Device Enable (EN)  
The EN pin is a high-voltage-tolerant pin. A high input activates the device and turns the regulator on. Connect  
this input pin to an external microcontroller or a digital control circuit to enable and disable the device, or connect  
to the IN pin for self-bias applications.  
版权 © 2018, Texas Instruments Incorporated  
11  
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Adjustable Power-Good Threshold (PG, PGADJ)  
The PG pin is an open-drain output with an external pullup resistor to the regulated supply, and the PGADJ pin is  
a power-good threshold adjustment pin. Connecting the PGADJ pin to GND sets the power-good threshold value  
to the default, V(PG_TH). When VOUT exceeds the default power-good threshold, the PG output turns high after the  
power-good delay has expired. When VOUT falls below V(PG_TH) – V(PG_HYST), the PG output turns low after a short  
deglitch time.  
The power-good threshold is also adjustable from 1.1 V to 5 V by using an external resistor divider between  
PGADJ and OUT. 公式 1 calculates the threshold:  
R1+ R2  
R2  
V PG_ ADJ falling = V PGADJ_ TH falling  
ì
(
)
(
)
R1+ R2  
R2  
»
ÿ
V PG_ ADJ risng = V PGADJ_ TH falling + 26 mV typ  
ì
(
)
(
)
(
)
where:  
V(PG_ADJ) is the adjustable power-good threshold  
V(PG_REF) is the internal comparator reference voltage of the PGADJ pin, 1.1 V typical, 2% accuracy specified  
under all conditions (1)  
By setting the power-good threshold V(PG_ADJ) when VOUT exceeds this threshold, the PG output turns high after  
the power-good delay has expired. When VOUT falls below V(PG_ADJ) – V(PG_HYST), the PG output turns low after a  
short deglitch time. 21 shows a block diagram of this threshold.  
OUT  
VREG  
Adjustable  
Power-Good  
Threshold  
R1  
PG  
DELAY  
Power-Good  
Control  
R2  
V(PG_REF)  
PGADJ  
Amp  
21. Adjustable Power-Good Threshold  
7.3.3 Adjustable Power-Good Delay Timer (DELAY)  
The power-good delay, t(DLY), is the time from when PGADJ is greater than V(PG,REF) until the PG pin goes high.  
The power-good delay is a function of the value of the external capacitor that is connected to the DELAY pin  
(CDELAY). Connecting an external capacitor from this pin to GND sets the power-good delay. The constant current  
charges an external capacitor until the voltage exceeds a threshold to trip an internal comparator, and 公式 2  
determines the power-good delay. 22 illustrates a timing diagram for power-good power-up conditions.  
C
DELAY ´ 1 V  
t(DLY)  
=
5 mA  
where  
t(DLY) is the adjustable power-good delay  
CDELAY is the value of the power-good delay capacitor  
(2)  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
TPS7B70-Q1  
www.ti.com.cn  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
Feature Description (接下页)  
VIN  
V
(UVLO)  
t < t(DEGLITCH)  
V(PG_HYST)  
V(PG_TH) rising  
V(PG_TH) falling  
V(PG_ADJ) falling  
V(PG_ADJ) rising  
VOUT  
V
(DLY_TH)  
DELAY  
t(DEGLITCH)  
t(DEGLITCH)  
t
t
(DLY)  
(DLY)  
PG  
Power Up  
Input Voltage Drop  
Undervoltage  
Power Down  
22. Power-Up and Conditions for Activation of Power Good  
If the DELAY pin is open, the default delay time is t(DLY_FIX)  
7.3.4 Undervoltage Shutdown  
.
This device has an integrated undervoltage lockout (UVLO) circuit that shuts down the output if the input voltage  
falls below an internal UVLO threshold, V(UVLO). The UVLO circuit makes sure that the regulator does not latch  
into an unknown state during low-input-voltage conditions. If the input voltage has a negative transient that drops  
below the UVLO threshold and recovers, the regulator shuts down and powers up with a normal power-up  
sequence after the input voltage rises above the required level.  
7.3.5 Current Limit  
The TPS7B70-Q1 has current-limit protection to keep the device in a safe operating area when an overload or  
output short-to-ground condition occurs. This feature protects the device from excessive power dissipation. For  
example, during a short-circuit condition on the output, fault protection limits the current through the pass  
element to I(LIM) to protect the device from excessive power dissipation.  
7.3.6 Thermal Shutdown  
This device incorporates a thermal shutdown (TSD) circuit as a protection from overheating. For continuous  
normal operation, the junction temperature must not exceed the TSD trip point. If the junction temperature  
exceeds the TSD trip point, the output turns off. When the junction temperature falls below T(SD) – T(HYST), the  
output turns on again.  
7.4 Device Functional Modes  
7.4.1 Operation With Input Voltage Less Than 4 V  
The device normally operates with input voltages above 4 V. The device can also operate at lower input  
voltages; the maximum UVLO voltage is 2.6 V. At input voltages below the actual UVLO voltage, the device does  
not operate.  
7.4.2 Operation With Input Voltage Greater Than 4 V  
If the input voltage is greater than the output set value plus the device dropout voltage when the input voltage is  
greater than 4 V, then the output voltage is equal to the set value. Otherwise, the output voltage is equal to the  
input voltage minus the dropout voltage.  
版权 © 2018, Texas Instruments Incorporated  
13  
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7B70-Q1 is a 300-mA low-dropout linear regulator with ultra-low quiescent current. The PSpice transient  
model is available for download on the product folder and can be used to evaluate the basic function of the  
device.  
8.2 Typical Application  
23 shows a typical application circuit for the TPS7B70-Q1. Different values of external components can be  
used, depending on the end application. An application may require a larger output capacitor during fast load  
steps to prevent a large drop on the output voltage. Use a low-ESR ceramic capacitor with a dielectric of type  
X7R.  
CAN  
OUT  
VIN  
I/O  
IN  
10 F  
10 F  
MCU  
10 k  
31.6 k  
TPS7B70-Q1  
PG  
PGADJ  
EN  
10 kꢀ  
VINT  
GND  
DELAY  
100 nF  
23. Supply Power to an MCU  
14  
版权 © 2018, Texas Instruments Incorporated  
 
TPS7B70-Q1  
www.ti.com.cn  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this design, the TPS7B70-Q1 must be able to supply a CAN transceiver and an MCU from a 12-V automotive  
battery. To provide good MCU operation, the PG pin must trip when the output is at 95% of the nominal value.  
The PG pin must have a 20-ms delay in order to avoid shutting down as a result of temporary glitches.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Capacitor  
A 10-µF capacitor in parallel with a 0.1-µF ceramic bypass capacitor is placed at the input in order to keep the  
input voltage stable. The input can tolerate transients up to 40 V, so the input capacitors have a 50-V voltage  
rating.  
8.2.2.2 Output Capacitor  
For this application, a 10-µF X7R ceramic capacitor is used to provide good output transient performance and  
good loop stability.  
8.2.2.3 Power-Good Threshold  
The power-good threshold is set by connecting PGADJ to GND, or by connecting PGADJ to a resistor divider  
from OUT to GND. The Adjustable Power-Good Threshold (PG, PGADJ) section provides the method to setup  
the power-good threshold. Rearranging 公式 1 yields 公式 3, and solves the values of R1 and R2 that are  
needed to get the 95% falling threshold. In this design, R2 is a 10-kΩ resistor. Solving 公式 3 for R1 gives a  
value of 33.18 kΩ. This value is not a standard 1% resistor value, so a 31.6-kΩ resistor is chosen for R1.  
V
(PGADJ)falling  
(PTGADJ_ TH)falling  
R1= R2  
«
÷
÷
V
(3)  
8.2.2.4 Power-Good Delay, t(DLY)  
Set the power-good delay with an external capacitor (CDELAY) to ground. Calculate the correct capacitance with  
公式 2. This application requires a delay of 20 ms, so solve for the correct capacitance required to get this delay.  
As shown in 公式 4, rearrange 公式 2 to solve for CDELAY  
.
CDELAY = tDLY ×5A  
(4)  
8.2.3 Application Curve  
VIN (5 V/div)  
VOUT (2 V/div)  
VPG (2 V/div)  
IOUT (10 mA/div)  
24. Power-Up Waveform  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
TPS7B70-Q1  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate from an input-voltage supply range from 4 V to 40 V. This input supply must  
be well regulated. If the input supply is located more than a few inches from the TPS7B70-Q1, add a capacitor  
with a value of 10 µF with a 0.1-µF ceramic bypass capacitor in parallel at the input.  
10 Layout  
10.1 Layout Guidelines  
For LDO power supplies, especially high-voltage and high-current supplies, layout is an important step. If the  
layout is not carefully designed, the regulator cannot deliver enough output current because of thermal  
limitations. To improve the thermal performance of the device and maximize the current output at high ambient  
temperature, spread out the thermal pad as much as possible, and put enough thermal vias on the thermal pad.  
25 shows an example layout.  
10.2 Layout Example  
1
IN  
EN  
20  
OUT  
PGADJ  
PG  
19  
18  
2
3
GND  
GND  
GND  
17  
16  
15  
4
5
6
7
8
GND  
GND  
VINT  
GND  
GND  
GND  
GND  
14  
13  
DELAY  
Denotes a via  
25. Layout Example  
16  
版权 © 2018, Texas Instruments Incorporated  
 
TPS7B70-Q1  
www.ti.com.cn  
ZHCSIQ1A AUGUST 2018REVISED OCTOBER 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TPS7B70EVM-008 评估模块》用户指南  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
版权 © 2018, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B7033QPWPRQ1  
TPS7B7050QPWPRQ1  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
7B7033Q  
7B7050Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B7033QPWPRQ1 HTSSOP PWP  
TPS7B7050QPWPRQ1 HTSSOP PWP  
16  
16  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B7033QPWPRQ1  
TPS7B7050QPWPRQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.166 MAX  
NOTE 5  
2X 1.34 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.3  
2.7  
17  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.3  
2.7  
4214868/A 02/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
17  
SYMM  
(3.3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4214868/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3.3)  
17  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4214868/A 02/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7B7701-Q1

汽车类 300mA、电池供电运行 (40V)、可调节天线低压降稳压器
TI

TPS7B7701QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、可调节天线低压降稳压器 | PWP | 16 | -40 to 125
TI

TPS7B7702-Q1

汽车类 300mA、电池供电运行 (40V)、双通道可调节天线低压降稳压器
TI

TPS7B7702QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、双通道可调节天线低压降稳压器 | PWP | 16 | -40 to 125
TI

TPS7B81

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器
TI

TPS7B81-Q1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器
TI

TPS7B8125QDGNRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 150
TI

TPS7B8133DGNR

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器 | DGN | 8 | -40 to 125
TI

TPS7B8133DRVR

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器 | DRV | 6 | -40 to 125
TI

TPS7B8133QDGNRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 150
TI

TPS7B8133QDRVRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 150
TI

TPS7B8133QKVURQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | KVU | 5 | -40 to 150
TI