TPS7H2221-SEP [TI]

抗辐射、1.6V 至 5.5V 输入、1.25A 负载开关;
TPS7H2221-SEP
型号: TPS7H2221-SEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

抗辐射、1.6V 至 5.5V 输入、1.25A 负载开关

开关
文件: 总29页 (文件大小:1480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
TPS7H2221-SEP 抗辐射、5.5V1.25A115mΩ 负载开关  
1 特性  
3 说明  
提供供应商项目图VID V62/22609  
电离辐射总剂(TID) 30krad(Si)  
TPS7H2221-SEP 器件是一款压摆率可控的小型单通  
道负载开关。此器件包含一个可在 1.6V 5.5V 输入  
电压范围内运行的 N 沟道 MOSFET并且支持 1.25A  
的最大持续电流。  
– 每个晶圆批次TID RLAT辐射批次验收测  
):20krad (Si)  
确定了单粒子效(SEE)  
开关导通状态由数字输入控制此输入可与低压控制信  
号直接连接。首次加电时此器件使用智能下拉电阻来  
保持 ON 引脚不悬空直到系统定序完成。按计划将  
该引脚驱动为高电(VON>VIH) 之后便会断开智能下  
拉电阻以防止不必要的功率损耗。  
– 单粒子闩(SEL)、单粒子烧(SEB) 和单粒子  
穿(SEGR) 对于有效线性能量传(LETEFF  
的抗扰度43MeVcm2/mg。  
– 单粒子瞬(SET) 和单粒子功能中(SEFI) 对  
LETEFF 的额定抗扰度43MeVcm2/mg。  
• 输入电压范(VIN)1.6 5.5V  
)
TPS7H2221-SEP 负载开关也具有自保护特性因此  
可保护自己免受输出短路事件的影响。  
• 建议持续电(IMAX)1.25A  
• 导通电(RON  
)
TPS7H2221-SEP 采用标准 SC-70 封装工作环境温  
度范围-55°C 125°C。  
VIN = 5V 时典型值116mΩ  
VIN = 3.3V 时典型值115mΩ  
VIN = 1.8V 时典型值133mΩ  
• 输出短路保(ISC)3A典型值)  
• 低功耗:  
器件型号(1)  
(2)  
等级  
20krad(Si)  
RLAT  
特征值为  
SC-70 (6)  
2.10mm × 2.00mm  
= 6.9mg  
TPS7H2221MDCKTSEP  
TPS7H2221EVM  
30krad(Si)  
– 导通状(IQ)8.3µA典型值)  
– 关闭状(ISD)3nA典型值)  
EVM  
评估板  
• 可限制浪涌电流的慢速导通时(tON):  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 尺寸和质量为标称值。  
5V tON3.61mV/μs 1.68ms  
3.3V tON2.91mV/μs 1.51ms  
1.8V tON2.15mV/μs 1.32ms  
• 可调节输出放电和下降时间:  
TPS7H2221-SEP  
1.6 to 5.5 V  
1.6 to 5.5 V @ 1.25 A  
IN  
OUT  
RQOD  
VIN = 3.3V 时内QOD 电阻= 9.2Ω典型值)  
• 增强型航天塑(SEP)  
+
H
VIN  
ON  
GND  
QOD  
CIN  
COUT  
ROUT  
L
– 受控基线  
– 金键合线  
NiPdAu 铅涂层  
– 一个组装和测试基地  
– 一个制造基地  
– 军用级-55°C 125°C温度范围  
– 延长了产品生命周期  
– 延长了产品变更通(PCN)  
– 产品可追溯性  
典型应用原理图  
– 采用增强型塑封实现低释气  
2 应用  
• 航天卫星电源管理和配电  
• 抗辐射电源树应用  
• 为控制器上电和断电启用开关电源轨  
卫星电力系(EPS)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGP1  
 
 
 
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................16  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Application ................................................... 17  
9.3 Application Curves....................................................19  
9.4 Power Supply Recommendations.............................20  
9.5 Layout....................................................................... 20  
10 Device and Documentation Support..........................21  
10.1 Related Documentation.......................................... 21  
10.2 接收文档更新通知................................................... 21  
10.3 支持资源..................................................................21  
10.4 Electrostatic Discharge Caution..............................21  
10.5 术语表..................................................................... 21  
10.6 Export Control Notice..............................................21  
10.7 第三方产品免责声明................................................21  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................4  
6.6 Switching Characteristics............................................6  
6.7 Derating Curves..........................................................6  
6.8 Typical Characteristics ...............................................8  
7 Parameter Measurement Information..........................13  
7.1 Test Circuit and Timing Waveforms Diagrams.......... 13  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................14  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (August 2022) to Revision A (September 2022)  
Page  
• 将销售状态从“预告信息”更新为“初始发行版”.............................................................................................1  
• 添加VID 数据表、TIDSEE 报告的链接。更新tON 在不VIN RPD,QOD 条件下的典型值....................1  
Added RPD,QOD typical values for VIN= 1.8 V, 3.3 V and 5 V.............................................................................. 4  
Added tFALL with ROUT=Open, COUT=10 μF, RQOD=100 Ω, ROUT=Open, COUT=100 μF and RQOD=0 Ω....... 4  
Added links to related documentation...............................................................................................................21  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
QOD  
NC  
IN  
GND  
ON  
1
2
3
6
5
4
5-1. DCK Package  
6-Pin SC-70  
(Top View)  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
1
NAME  
IN  
I
Switch input.  
Device ground.  
2
GND  
ON  
3
I
Active high switch control input. Do not leave floating.  
No connect. This pin is not internally connected. It is recommended to connect this pin  
to GND to prevent charge buildup; however, this pin can also be left open or tied to any  
voltage between GND and IN.  
4
NC  
Quick Output Discharge pin. This pin can be utilized in one of three ways:  
Placing an external resistor between VOUT and QOD  
Tying QOD directly to VOUT and using the internal resistor value (RPD  
Disabling QOD by leaving pin floating  
)
5
6
QOD  
OUT  
O
O
See the Fall Time (tFALL) and Quick Output Discharge (QOD) section for more  
information.  
Switch output.  
(1) I = Input, O = Output, = Other  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7H2221-SEP  
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
6
UNIT  
V
VIN  
Maximum Input Voltage Range (IN to GND)  
Maximum Output Voltage Range (OUT to GND)  
Maximum ON Pin Voltage Range (ON to GND)  
Maximum QOD Pin Voltage Range (QOD to GND)  
Maximum Continuous Current  
VOUT  
VON  
VQOD  
IMAX  
IPLS  
TJ  
6
V
6
V
6
V
1.5  
2.5  
150  
150  
A
Maximum Pulsed Current (ts=2 ms, 2% Duty Cycle)  
Junction temperature  
A
-55  
°C  
°C  
TSTG  
Storage temperature  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
0
TYP  
MAX  
5.5  
UNIT  
VIN  
Input Voltage Range (IN to GND)  
Output Voltage Range (OUT to GND)  
ON Voltage Range (ON to GND)  
Maximum Continuous Current  
Junction temperature  
VOUT  
VON  
IMAX  
TJ  
5.5  
V
0
5.5  
0
1.25  
125  
A
°C  
55  
6.4 Thermal Information  
TPS7H2221-SEP  
DCK (SC-70)  
6 PINS  
237.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
173.7  
93.9  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
74.4  
93.6  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
 
 
 
 
 
 
 
 
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over VIN = 1.6 to 5.5 -V, VON VIH , over the temperature range (TA=-55 to 125 ), unless otherwise specified. All  
voltage levels are reference to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Input Supply (VIN)  
VOUT = Open,  
VOUT = Open,  
8.3  
8.7  
3
15  
20  
25 ℃  
25 ℃  
IQ, VIN  
VIN Quiescent Current  
VIN Shutdown Current  
µA  
nA  
20  
V
ON VIL, VOUT = GND  
ON VIL, VOUT = GND  
ISD, VIN  
800  
V
ON-Resistance (RON)  
90  
116  
150  
89  
150  
150  
200  
150  
150  
250  
300  
300  
350  
-55 ℃  
25 ℃  
VIN = 5 V, IOUT = -200 mA  
VIN = 3.3 V, IOUT = -200 mA  
VIN = 1.8 V, IOUT = -200 mA  
mΩ  
mΩ  
125 ℃  
-55 ℃  
25 ℃  
RON  
ON-State Resistance  
115  
150  
103  
133  
173  
125 ℃  
-55 ℃  
25 ℃  
mΩ  
125 ℃  
Output Short Protection (ISC)  
3
A
V
V
OUT VIN - 1.5 V  
OUT VSC  
ISC  
Short Circuit Current Limit  
30  
512  
900 mA  
VSC  
TSD  
Output Short Detection Threshold  
Thermal Shutdown  
0.22  
0.36 0.57  
180  
V
25 ℃  
Rising  
Falling  
145  
Enable Pin (ON)  
ION  
ON Pin Leakage  
100 nA  
V
V
ON VIH  
ON VIL  
RPD, ON  
VIH,ON  
VIL,ON  
Smart Pull Down Resistance  
ON Pin Input High (VIH Rising)  
ON Pin Input Low (VIL Falling)  
499  
kΩ  
1
V
0.35  
Quick-output Discharge (QOD)  
VIN = 1.8-V  
VIN = 3.3-V  
VIN = 5-V  
45.4  
8.5  
6
RPD, QOD  
QOD Pin Internal Discharge Resistance  
V
ON VIL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7H2221-SEP  
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
6.6 Switching Characteristics  
Unless otherwise noted, the typical characteristics in the following table apply to an input voltage of 3.3V, an ambient  
temperature of 25°C, RQOD= 0 and a load of COUT= 0.1 µF, ROUT = 100 Ω. See 7-2  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1680  
1510  
1320  
1120  
915  
MAX  
UNIT  
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 5.0 V  
tON  
Turn ON Time  
µs  
tR  
Output Rise Time  
µs  
674  
3.61  
2.91  
2.15  
5.22  
9.6  
SRON  
Turn ON Slew Rate VIN = 3.3 V  
VIN = 1.8 V  
mV/µs  
tOFF  
Turn OFF Time  
VIN = 1.8 V to 5.0V  
µs  
µs  
ROUT = 100Ω, COUT = 0.1uF  
0.35  
3.12  
4.3  
ms  
ms  
ms  
COUT = 10uF, RQOD=0 Ω  
COUT = 10uF, RQOD=100 Ω  
COUT = 100uF; RQOD=0 Ω  
tFALL  
Output Fall Time (1)  
ROUT = Open (2)  
(1) Output may not discharge completely if QOD is not connected to VOUT  
(2) See the Timing Application section for information on how ROUT and COUT affect Fall Time.  
6.7 Derating Curves  
FIT = 50  
6-1. Estimated Life Rating Due to Electromigration vs Junction Temperature at 50% Duty Cycle  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
 
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
IOUT= 1.25-A  
IOUT= 0.57-A  
0
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
Junction Temperature (C)  
FIT=50  
6-2. Estimated Life Rating Due to Electromigration vs Junction Temperature at 100% Duty Cycle  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7H2221-SEP  
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
200  
15  
13.5  
12  
10.5  
9
-55 C  
180  
-40 C  
25 C  
160  
85 C  
125 C  
140  
120  
100  
80  
7.5  
6
4.5  
3
-55 C  
-40 C  
25 C  
85 C  
125 C  
60  
40  
1.5  
0
20  
0
1.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
V
ON VIH  
V
ON VIL  
6-4. Quiescent Current vs Input Voltage  
6-3. Shutdown Current vs Input Voltage  
V
ON VIL  
ILOAD = 200 mA  
6-6. QOD Resistance vs Input Voltage  
6-5. On-Resistance vs Junction Temperature  
520  
VIN=1.8-V  
VIN=3.3-V  
VIN=5-V  
510  
500  
490  
480  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
V
ON VIL  
6-7. VIH/VIL vs Junction Temperature  
6-8. ON Pull Down Resistance vs Junction  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
2500  
3000  
2500  
2000  
1500  
1000  
500  
-55 C  
-40 C  
25 C  
85 C  
125 C  
2000  
1500  
1000  
500  
0
-55 C  
-40 C  
25 C  
85 C  
125 C  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
COUT = 0.1 μF  
ROUT = 100 Ω  
RQOD = 0 Ω  
COUT = 0.1 μF  
ROUT = 100 Ω  
RQOD = 0 Ω  
6-9. Turn ON Time vs Input Voltage  
6-10. Rise Time vs Input Voltage  
5.5  
5
2000  
4.5  
4
1800  
1600  
1400  
3.5  
3
2.5  
2
-55 C  
-40 C  
1.5  
COUT = 0.1 F  
1
0.5  
0
25 C  
85 C  
125 C  
COUT = 1 F  
COUT = 10 F  
1200  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
TJ = 25°C  
ROUT = 100 Ω  
RQOD = 0 Ω  
COUT = 0.1 μF  
ROUT = 100 Ω RQOD = 0 Ω  
6-12. Turn ON Time vs Input Voltage Across  
6-11. Output Slew Rate vs Input Voltage  
Load Capacitance  
1400  
1200  
1000  
800  
4
3.5  
3
2.5  
600  
2
COUT = 0.1s  
COUT = 0.1 F  
COUT = 1 s  
COUT = 1 F  
COUT = 10 s  
COUT = 10 F  
400  
1.5  
1.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
TJ = 25°C  
ROUT = 100 Ω  
RQOD = 0 Ω  
TJ = 25°C  
ROUT = 100 Ω  
RQOD = 0 Ω  
6-13. Rise Time vs Input Voltage Across Load  
6-14. Slew Rate vs Input Voltage Across Load  
Capacitance  
Capacitance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7H2221-SEP  
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
1400  
1200  
1000  
800  
600  
ROUT=100   
ROUT= Open  
400  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
TJ = 25°C  
COUT = 0.1 μF  
RQOD = 0 Ω  
TJ = 25°C  
COUT = 0.1 μF  
RQOD = 0 Ω  
6-16. Rise Time vs Input Voltage Across Load  
6-15. Turn ON Time vs Input Voltage Across  
Resistance  
Load Resistance  
10  
8
6
4
-55 C  
-40 C  
2
25 C  
85 C  
125 C  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
TJ = 25°C  
COUT = 0.1 μF  
RQOD = 0 Ω  
COUT = 0.1 μF  
ROUT = 100 Ω  
RQOD = 0 Ω  
6-17. Output Slew Rate vs Input Voltage Across  
6-18. Turn OFF Time vs Input Voltage  
Load Resistance  
13.5  
-55 C  
13  
12.5  
12  
-40 C  
25 C  
85 C  
125 C  
11.5  
11  
10.5  
10  
9.5  
9
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
COUT = 0.1 μF  
ROUT = 100 Ω  
RQOD = 0 Ω  
6-19. Fall Time vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
CIN = 1 μF  
COUT = 0.1 μF  
ROUT = 100 Ω  
RQOD = 0 Ω  
CIN = 1 μF  
ROUT = 100 Ω  
RQOD = 0 Ω  
COUT = 0.1 μF  
6-20. Rise Time with VIN = 1.8 V  
6-21. Rise Time with VIN = 3.3 V  
CIN = 1 μF  
ROUT = 100 Ω  
RQOD = 0 Ω  
CIN = 1 μF  
ROUT = 100 Ω  
RQOD = 2k Ω  
COUT = Open  
COUT = 0.1 μF  
6-23. Turn Off with a Small Load Capacitance  
6-22. Rise Time with VIN = 5 V  
CIN = 1 μF  
ROUT = 100 Ω  
RQOD = 2k Ω  
CIN = 58 μF  
ROUT = 4m Ω  
RQOD = 0 Ω  
VIN = 3.3 V  
COUT = 10 μF  
COUT = 10 μF  
6-24. Turn Off with a Large Load Capacitance  
6-25. Turn On Into an Output Short  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7H2221-SEP  
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
CIN = 58 μF  
ROUT = 300m Ω  
RQOD = 0 Ω  
CIN = 58 μF  
ROUT = 300m Ω  
RQOD = 0 Ω  
VIN = 3.3 V  
VON=VIN  
VIN = 3.3 V  
VON=VIN  
COUT = 10 μF  
COUT = 10 μF  
6-26. Hot Short Event when ON  
6-27. Hot Short Event when ON and Recovery  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Test Circuit and Timing Waveforms Diagrams  
TPS7H2221-SEP  
IN  
OUT  
RQOD  
+
H
VIN  
ON  
GND  
CIN  
COUT  
ROUT  
QOD  
L
A. Rise and fall times of the control signal are 100 ns.  
B. Turn-off times and fall times are dependent on the time constant at the load. For the TPS7H2221-SEP, the internal pull-down resistance  
QOD is enabled when the switch is disabled. When QOD is connected to OUT using a resistor (RQOD), the time constant is (RQOD  
+
RPD,QOD || ROUT) × COUT  
.
7-1. Test Circuit  
VIL  
VIH  
VON  
ttON  
t
ttOFF  
t
ttFALLt  
ttRISE  
t
90%  
ttDELAY  
t
90%  
VOUT  
10%  
10%  
SRON  
7-2. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7H2221-SEP  
 
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS7H2221-SEP device is a 5.5-V, 1.25-A load switch in a 6-pin SOT-23 package. To reduce voltage drop  
for low voltage and high current rails, the device implements a low resistance N-channel MOSFET that reduces  
the drop out voltage across the device.  
The TPS7H2221-SEP device has a slow slew rate, which helps reduce or eliminate power supply droop because  
of large inrush currents during power up. Furthermore, the device features a Quick-Output-Discharge (QOD) pin,  
which allows the configuration of the discharge rate of VOUT once the switch is disabled. During shutdown, the  
device has very low leakage currents, thereby reducing unnecessary leakages for downstream devices during  
standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the need for any  
external components, which reduces solution size and bill of materials (BOM) count.  
The TPS7H2221-SEP load switch is also self-protected, meaning that it will protect from short circuit events on  
the output of the device. It also has thermal shutdown to prevent thermal runaway.  
8.2 Functional Block Diagram  
Short  
Circuit  
Protection  
IN  
OUT  
Charge  
Pump  
Control Logic  
Driver  
ON  
Smart  
Pull  
Down  
QOD  
GND  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8.3 Feature Description  
8-1. Smart-ON Pull Down  
VON  
PULL DOWN  
Connected  
VIL,ON  
VIH,ON  
Disconnected  
8.3.1 On and Off Control  
The ON pin controls the state of the switch. The ON pin is compatible with standard CMOS logic threshold so it  
can be used in a wide variety of applications. When power is first applied to VIN a Smart Pull Down is used to  
keep the ON pin from floating until the system sequencing is complete. Once the ON pin is deliberately driven  
high (VIH,ON), the Smart Pull Down is disconnected to prevent unnecessary power loss. See 8-1 to  
determine the state of the ON Pin Smart Pull Down state as function of ON pin voltage.  
8.3.2 Output Short Circuit Protection (ISC  
)
The device will limit current to the output in case of output shorts. When a short occurs, the large VIN to VOUT  
voltage drop causes the switch to limit the output current (ISC). When the output is below the hard short threshold  
(VSC), a lower limit is used to minimize the power dissipation while the fault is present. The device will continue  
to limit the current until it reaches thermal shutdown temperature. At this time, the device will turn off until its  
temperature has lowered by the thermal hysteresis (35°C typical) before turning on again.  
ISC (Higher-Limit)  
ISC (Lower-Limit)  
V
OUT (V)  
VIN  
VSC  
1.5  
ROUT Decremen ng  
8-1. Output Short Circuit Current Limit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7H2221-SEP  
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8.3.3 Fall Time (tFALL) and Quick Output Discharge (QOD)  
The TPS7H2221-SEP device includes a QOD pin that can be configured in one of three ways:  
QOD pin shorted to VOUT pin. Using this method, after the switch becomes disabled the discharge rate is  
controlled with the value of the internal resistance QOD (RPD,QOD).  
QOD pin connected to VOUT pin using an external resistor RQOD. After the switch becomes disabled, the  
discharge rate is controlled by the value of the total discharge resistance. To adjust the total discharge  
resistance, 方程1 can be used:  
RDIS = RPD,QOD + RQOD  
(1)  
where:  
RDIS is the total output discharge resistance ()  
RPD,QOD (6 Ωtyp.) is the internal pulldown resistance (Ω)  
RQOD is the external resistance placed between the VOUT and QOD pins (Ω)  
QOD pin is unused and left floating. Using this method, there will be no quick output discharge functionality  
and the output will remain floating after the switch is disabled.  
The fall times of the device depend on many factors including the total discharge resistance (RDIS) and the  
output capacitance (COUT). To calculate the approximate fall time of VOUT use 方程2.  
tFALL = 2.2 × (RDIS || ROUT) × COUT  
(2)  
where:  
tFALL is the output fall time from 90% to 10% (µs)  
RDIS is the total QOD + RQOD resistance (Ω)  
ROUT is the output load resistance (Ω)  
COUT is the output load capacitance (µF)  
8.3.3.1 QOD When System Power is Removed  
The adjustable QOD can be used to control the power down sequencing of a system even when the system  
power supply is removed. When the power is removed, the input capacitor discharges at VIN. Past a certain VIN  
level, the strength of the RPD will be reduced. If there is still remaining charge on the output capacitor, this will  
result in longer fall times. For further information regarding this condition, see the Setting Fall Time for Shutdown  
Power Sequencing section.  
8.4 Device Functional Modes  
8-2 describes the connection of the VOUT pin depending on the logical state of the ON pin as well as the  
various QOD pin configurations.  
8-2. VOUT Connection  
ON  
Low  
Low  
Low  
High  
QOD CONFIGURATION  
QOD pin connected to VOUT with RQOD  
QOD pin tied to VOUT directly  
QOD pin left open  
VOUT  
Pull-down with (RPD, QOD + RQOD  
)
Pull-down with (RPD, QOD  
)
Floating  
VIN  
N/A  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
 
 
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
This section highlights some of the design considerations when implementing this device in various applications.  
9.2 Typical Application  
This typical application demonstrates how the TPS7H2221-SEP devices can be used to power downstream  
modules.  
TPS7H2221-SEP  
IN  
OUT  
RQOD  
+
H
VIN  
ON  
GND  
CIN  
COUT  
ROUT  
QOD  
L
9-1. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the values listed in Design Parameters as the design parameters:  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage (VIN  
Load current resistance (ROUT  
EXAMPLE VALUE  
)
3.3 V  
1 kΩ  
)
Load capacitance (COUT  
Minimum fall time (tF)  
)
47 µF  
40 ms  
150 mA  
Maximum inrush current (IRUSH  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7H2221-SEP  
 
 
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Limiting Inrush Current  
Use 方程3 to find the maximum slew rate value to limit inrush current for a given capacitance:  
(Slew Rate) = IRUSH ÷ COUT  
where  
(3)  
IINRUSH = maximum acceptable inrush current (mA)  
COUT = capacitance on VOUT (μF)  
Slew Rate = Output Slew Rate during turn on (mV/μs)  
Based on 方程式 3, the required slew rate to limit the inrush current to 150 mA is 3.2 mV/μs. The TPS7H2221-  
SEP has a slew rate of 2.3 mV/μs, so the inrush current will be below 150 mA.  
9.2.2.2 Setting Fall Time for Shutdown Power Sequencing  
Microcontrollers and processors often have a specific shutdown sequence in which power must be removed.  
Using the adjustable Quick Output Discharge function of the TPS7H2221-SEP device, adding a load switch to  
each power rail can be used to manage the power down sequencing. To determine the QOD values for each  
load switch, first confirm the power down order of the device you wish to power sequence. Be sure to check if  
there are voltage or timing margins that must be maintained during power down.  
Once the required fall time is determined, the maximum external discharge resistance (RDIS) value can be found  
using 方程2:  
tFALL(min) = 2.2 × (RDIS || ROUT) × COUT  
(4)  
(5)  
RDIS(min) = 630 Ω  
方程1 can then be used to calculate the RQOD resistance needed to achieve a particular discharge value:  
RDIS = QOD + RQOD  
(6)  
RQOD = 624 Ω  
(7)  
To ensure a fall time greater than, choose an RQOD value greater than 624 Ω.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.2.3 Application Curves  
CIN = 58.1 µF  
COUT = 47.1 µF  
ROUT = 1 kΩ  
9-2. Fall Time (RQOD = 1 kΩ)  
9.3 Application Curves  
CIN = 58.1 µF  
COUT = 47.1 µF  
ROUT = 1 kΩ  
9-3. Fall Time (RQOD = 1 kΩ)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7H2221-SEP  
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4 Power Supply Recommendations  
The device is designed to operate with a VIN range of 1.6 V to 5.5 V. The VIN power supply must be well  
regulated. The power supply must be able to withstand all transient load current steps. In most situations, using  
an minimum input capacitance (CIN) of 1 μF is sufficient to prevent the supply voltage from dipping when the  
switch is turned on. In cases where the power supply is slow to respond to a large transient current or large load  
current step, additional bulk capacitance may be required on the input.  
9.5 Layout  
9.5.1 Layout Guidelines  
For best performance, all traces must be as short as possible. To be most effective, the input and output  
capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for IN, OUT, and GND helps minimize the parasitic electrical effects.  
9.5.2 Layout Example  
GND Plane  
IN  
1
2
3
6
5
4
OUT  
CIN  
RROD  
COUT  
QOD  
GND  
GND Plane  
From controller  
ON  
NC  
GND Plane  
9-4. Recommended Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Related Documentation  
For related documentation see the following:  
Texas Intruments, TPS7H2221-SEP Total Ionizing Dose (TID)  
Texas Intruments,TPS7H2221-SEP Single-Event Effects (SEE) Test Report  
Texas Intruments, TPS7H2221-SEP Neutron Displacement Damage (NDD) Characterization  
Texas Intruments, TPS7H2221-SEP Evaluation Module (EVM)  
Texas Intruments, TPS7H2221-SEP PSpice Transient Model  
Texas Intruments, Basics of Load Switches  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10.6 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
10.7 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7H2221-SEP  
 
 
 
 
 
 
 
 
 
TPS7H2221-SEP  
ZHCSPJ5A AUGUST 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7H2221-SEP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7H2221MDCKTSEP  
V62/22609-01XE  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
6
6
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7H2221MDCKTSEP  
SC70  
DCK  
6
250  
180.0  
8.4  
2.47  
2.3  
1.25  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SC70 DCK  
SPQ  
Length (mm) Width (mm) Height (mm)  
202.0 201.0 28.0  
TPS7H2221MDCKTSEP  
6
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7H2221MDCKTSEP

抗辐射、1.6V 至 5.5V 输入、1.25A 负载开关 | DCK | 6 | -55 to 125
TI

TPS7H3301-SP

耐辐射 QMLV、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器
TI

TPS7H3301HKR/EM

Radiation-hardened QMLV, 2.3-V to 3.5-V input, 3-A sink and source DDR termination LDO regulator | HKR | 16 | 25 to 25
TI

TPS7H3302-SEP

耐辐射、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器
TI

TPS7H4001-SP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器
TI

TPS7H4001HKY/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | HKY | 34 | 25 to 25
TI

TPS7H4001MDDWTSHP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | DDW | 44 | -55 to 125
TI

TPS7H4001Y/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | KGD | 0 | 25 to 25
TI

TPS7H4002-SP

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器
TI

TPS7H4002HKH/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | HKH | 20 | 25 to 25
TI

TPS7H4002Y/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | KGD | 0 | 25 to 25
TI

TPS7H4003-SEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器
TI