TPS7H3301HKR/EM [TI]

Radiation-hardened QMLV, 2.3-V to 3.5-V input, 3-A sink and source DDR termination LDO regulator | HKR | 16 | 25 to 25;
TPS7H3301HKR/EM
型号: TPS7H3301HKR/EM
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Radiation-hardened QMLV, 2.3-V to 3.5-V input, 3-A sink and source DDR termination LDO regulator | HKR | 16 | 25 to 25

双倍数据速率
文件: 总31页 (文件大小:2138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
TPS7H3301-SP 内置 VREF 的灌电流/拉电流抗辐射加固型 3A DDR 终端  
稳压器  
1 特性  
3 说明  
QML V 类符合 5962-14228(1)(2)  
TPS7H3301-SP 是一款内置 VREF TID 和单粒子效  
(SEE) 抗辐射加固型双倍数据速率 (DDR) 3A 终端  
稳压器。该稳压器专门用于为空间 DDR 终端应用  
(如单电路板计算机、固态记录器和载荷处理应用)  
提供一套完整的紧凑型、低噪声解决方案。  
1
总电离剂量为 100krad (Si)  
高剂量率 (HDR) (50-100 rad(Si)/s)  
低剂量率 (LDR) (0.01 rad(Si)/s)  
单粒子锁定 (SEL)、单粒子栅穿 (SEGR)、单粒  
子烧毁 (SEB) 对于线性能量传输 (LET) 的抗扰  
= 65MeV-cm2/mg  
TPS7H3301-SP 支持并兼容 DDRDDR2DDR3、  
DDR4 以及相关的低功耗 JEDEC 规范。凭借快速瞬态  
响应,TPS7H3301-SP VTT 稳压器可在读取/写入状态  
下提供稳定性较高的电源。TPS7H3301-SP 还包含一  
个内置的 VREF 电源。该电源可跟踪 VTT 以进一步缩  
减解决方案尺寸。在瞬态变化过程中,VREF 电源的快  
速跟踪功能能够最大限度地降低 VTT VREF 之间的  
电压偏移。请参见说明 (续)。  
单粒子瞬变 (SET)、单粒子功能中断 (SEFI)、  
单粒子翻转 (SEU) 的抗扰度为 65MeV-cm2/mg  
(详细信息请参见辐射报告)  
支持 DDRDDR2DDR3DDR3LP DDR4 终  
端 应用 并兼容 JEDEC 标准  
输入电压:支持 2.5V 3.3V 电源轨(3)  
独立低电压输入 (VLDOIN) 降至  
0.9V 以改善电源效率(3)  
器件信息(1)(2)  
封装  
具有压降补偿功能的 3A 灌电流/拉电流终端稳压器  
用于电源排序的使能输入和电源正常输出  
VTT 终端稳压器  
器件型号  
封装尺寸(标称值)  
TPS7H3301-SP  
CFP (16)  
9.60mm x 11.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
输出电压范围:0.5V 1.75V  
3A 灌电流和拉电流  
(2) 抗辐射加固保障 (RHA) 当前可达 100krad;详细信息请联系制  
造商。  
(3) 适用于 DDR2DDR3DDR3L DDR4 DDR 的标称输入电  
= 3.3VVINDDR1 2.95V 3.5V,所有 DDR VLDOIN  
精度为 ±20mV  
具有感测输入的精密集成分压器网络  
远程感测 (VOSNS)  
> VTT  
DDR2 3A 负载条件下的 Vin 2.45V 3.5V。  
Vin 余量:Vin_min VTT + 1.5V  
VTTREF 缓冲参考输出  
(4) 这些部件仅用于工程评估。以非合规性流程对其进行了处理  
(即未进行老化处理等操作)并且仅在 25°C 的额定温度下进  
行了测试。这些部件不适用于质检、生产、辐射测试或飞行。  
这些零部件无法在 –55°C 125°C 的完整 MIL 额定温度范围  
内或运行寿命中保证其性能。  
精度为 VDDQ/2 ± 1%  
±10mA /拉电流  
集成了内置软启动 (SS)、欠压锁定 (UVLO) 以及过  
流限制 (OCL) 功能  
标准 DDR 应用  
TPS7H3301  
VTTREF = VDDQSNS / 2  
2 应用  
VTTSNS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VTTREF  
VDDQ  
SNS  
AGND  
采用 DDRDDR2DDR3 和低功耗 DDR3 和  
VTT / Vo = VDDQ / 2  
AGND  
VDDQ  
VTT/Vo  
VLDOIN  
DDR4 存储器的 单电路板计算机、固态记录器和载  
荷 应用  
DDR œ 2.5 V  
VTT/Vo  
VTT/Vo  
DDR2 œ 1.8 V  
DDR3 œ 1.5 V  
DDR3L œ 1.35 V  
DDR4 œ 1.2 V  
VLDOIN  
VLDOIN  
超快速瞬态电源 应用  
POWER GOOD  
PGOOD  
PGND  
PGND  
支持军用温度范围(-55°C 125°C)  
提供工程评估 (/EM) 组件(4)  
3.3-V or 2.5-V  
Supply  
VDD/  
Vin  
ENABLE  
EN  
PGND  
AGND  
PGND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCJ5  
 
 
 
 
 
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 15  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ..................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 12  
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
11.3 Thermal Considerations........................................ 25  
12 器件和文档支持 ..................................................... 26  
12.1 器件支持................................................................ 26  
12.2 社区资源................................................................ 26  
12.3 ....................................................................... 26  
12.4 静电放电警告......................................................... 26  
12.5 Glossary................................................................ 26  
13 机械、封装和可订购信息....................................... 26  
8
4 修订历史记录  
日期  
2015 12 月  
修订版本  
注释  
*
最初发布版本  
2
版权 © 2015, Texas Instruments Incorporated  
 
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
5 说明 (续)  
为了简单的启用电源排序,使能输入和电源正常输出 (PGOOD) 已在 TPS7H3301-SP 中集成。PGOOD 输出是开  
漏输出,因此可在所有电源进入稳压状态时将其与多个开漏输出相连来进行监控。使能信号还可用于在挂起至  
RAM (S3) 断电模式时使 VTT 放电。  
TPS7H3301-SP 采用 TI 常用的 16 引脚耐热增强型双陶瓷扁平封装 (HKR)TPS7H1101-SP 同样采用这种封装。  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
6 Pin Configuration and Functions  
HKR Package  
16-Pin CFP  
Top View - Live Bug  
VTTREF  
VTTSNS  
1
2
3
4
5
16  
VDDQSNS  
VLDOIN  
15  
14  
13  
AGND  
VTT/VO  
VLDOIN  
VTT/VO  
VTT/VO  
Thermal Pad  
(Bottom Side)  
VLDOIN  
PGND  
PGND  
PGND  
12  
11  
10  
9
6
7
PGOOD  
VDD/  
EN  
V
IN  
8
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1
VTTREF  
O
I
Reference output. Connect to GND through 0.1-µF ceramic capacitor.  
VDDQ sense input. Reference input for VTTREF.  
VDDQSNS  
VLDOIN  
2
3
4
I
Supply voltage for the LDO. Connect to VDDQ voltage or an alternate voltage source.  
Power ground. Connect output for the VTT/ V O LDO to negative pin of the output capacitor.  
5
6
PGND  
7
8
Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low disables the  
device.  
EN  
9
I
I
2.5- or 3.3-V power supply. A ceramic decoupling capacitor with a value between 1 and 10 µF is  
required.  
VDD/VIN  
PGOOD  
10  
11  
PGOOD output pin. PGOOD pin is an open drain output to indicate the output voltage is within  
specification.  
O
12  
13  
14  
15  
VTT/VO  
O
Power output for VTT LDO  
AGND  
I
Signal ground. Connect to negative pin of output capacitors.(1)  
VDDQ sense input, reference input for VTTREF. Voltage sense for VTT/ V O . Connect to positive pin of  
the output capacitor or the load.  
VTTSNS  
16  
(1) Thermal pad must be connected to GND.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature, unless otherwise noted(1)  
MIN  
–0.36  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
3.6  
6.5  
0.3  
3.6  
3.6  
UNIT  
VIN /VDD, VLDOIN, VTTSNS, VDDQSNS  
(2)  
Input voltage  
EN  
V
PGND to AGND  
VO /VTT, VTTREF  
PGOOD  
(2)  
Output voltage  
V
Peak output current  
PG pin sink current  
Internally limited  
5
A
mA  
°C  
°C  
TJ  
Maximum operating junction temperature  
Storage temperature  
–55  
–55  
150  
150  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground pin unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins  
Electrostatic  
discharge  
V(ESD)  
V
(2)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
2.375  
0.9  
NOM  
MAX  
3.5  
3.5  
3.5  
3.5  
3.5  
1.8  
0.1  
125  
UNIT  
Supply voltage  
VIN / VDD  
VLDOIN  
EN, VTTSNS  
VDDQSNS  
–0.1  
1.0  
V
Voltage  
VO / VTT, PGOOD  
VTTREF  
–0.1  
–0.1  
–0.1  
–55  
PGND  
T J  
Operating junction temperature  
°C  
7.4 Thermal Information  
TPS7H3301-SP  
HKR (CFP)  
16 PINS  
(1) (2) (3)  
THERMAL METRIC  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
0.6  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) Do not allow package body temperature to exceed 265°C at any time or permanent damage may result.  
(3) Maximum power dissipation may be limited by overcurrent protection.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
7.5 Electrical Characteristics  
Over full temperature range, –55°C to 125°C, VIN/VDD = 3.3 V and 2.375V,VVLDOIN = 1.8 V, VVDDQSNS = 1.8 V,  
VVOSNS/VTTSNS = 0.9 V, VEN = VVIN/VDD, 标准 DDR 应用 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
IIN /IVDD  
Supply current  
V EN = 3.3 V, No Load  
18  
3
30  
5
mA  
mA  
V EN = 0 V, VDDQSNS = 0, No Load  
V EN = 0 V, VDDQSNS > 0.78 V, No Load  
V EN = 3.3 V, No Load  
IVDD(SDN)  
Shutdown current  
6.5  
575  
8
ILDOIN  
Supply current of VLDOIN  
1200  
μA  
μA  
Shutdown current of  
VLDOIN  
ILDOIN(SDN)  
V EN = 0 V, No Load  
50  
100  
INPUT CURRENT  
IVDDQsns  
Input current, VDDQsns  
V EN = 3.3 V  
4
1.25  
0.9  
6
μA  
VO / VTT OUTPUT  
V
mV  
V
V LDOIN = 2.5 V, VVTTREF = 1.25 V (DDR1), I O = 0 A  
V LDOIN = 1.8 V, VVTTREF = 0.9 V (DDR2), I O = 0 A  
V LDOIN = 1.5 V, VVTTREF = 0.75 V (DDR3), I O = 0 A  
V LDOIN = 1.35 V, VVTTREF = 0.675 V (DDR3L), I O = 0 A  
V LDOIN = 1.20 V, VVTTREF = 0.60 V (DDR4), I O = 0 A  
–6  
–6  
–6  
–6  
–6  
6
6
6
6
mV  
V
0.75  
0.675  
0.60  
VVOSNS/VTTSNS  
Output DC voltage, VO  
mV  
V
mV  
V
6
mV  
VIN / VDD = 2.95 V, VVDDQSNS = 2.50 V, V TT = VVTTREF – 50 mV  
(DDR1), I O = 0.5 A  
50  
101  
209  
54  
230  
VIN / VDD = 2.95 V, VVDDQSNS = 2.50 V, V TT = VVTTREF – 50 mV  
(DDR1), I O = 1 A  
300  
400  
230  
300  
400  
230  
300  
400  
230  
300  
400  
230  
300  
400  
VIN / VDD = 2.95 V, VVDDQSNS = 2.50 V, V TT = VVTTREF – 50 mV  
(DDR1), I O = 2.0 A(2)  
VIN / VDD = 2.375 V, VVDDQSNS = 1.80 V, V TT = VVTTREF – 50 mV  
(DDR2), I O = 0.5 A(2)  
VIN / VDD = 2.375 V, VVDDQSNS = 1.80 V, V TT = VVTTREF – 50 mV  
(DDR2), I O = 1 A(2)  
108  
228  
52  
VIN / VDD = 2.375 V, VVDDQSNS = 1.80 V, V TT = VVTTREF – 50 mV  
(DDR2), I O = 2.0 A(2)  
VIN / VDD = 2.375 V, VVDDQSNS = 1.50 V, V TT = VVTTREF – 50 mV  
(DDR3), I O = 0.5 A  
VIN / VDD = 2.375 V, VVDDQSNS = 1.50 V, V TT = VVTTREF – 50 mV  
(DDR3), I O = 1 A  
(1)  
VLODIN – VTT  
VLODIN > VTT  
104  
216  
50  
mV  
VIN / VDD = 2.375 V, VVDDQSNS = 1.50 V, V TT = VVTTREF – 50 mV  
(DDR3), I O = 2.0 A(2)  
VIN / VDD = 2.375 V, VVDDQSNS = 1.35 V, V TT = VVTTREF – 50 mV  
(DDR3L), I O = 0.5 A  
VIN / VDD = 2.375 V, VVDDQSNS = 1.35 V, V TT = VVTTREF – 50 mV  
(DDR3L), I O = 1 A  
102  
212  
50  
VIN / VDD = 2.375 V, VVDDQSNS = 1.35 V, V TT = VVTTREF – 50 mV  
(DDR3L), I O = 2.0 A(2)  
VIN / VDD = 2.375 V, VVDDQSNS = 1.20 V, V TT = VVTTREF – 50 mV  
(DDR4), I O = 0.5 A  
VIN / VDD = 2.375 V, VVDDQSNS = 1.20 V, V TT = VVTTREF – 50 mV  
(DDR4), I O = 1 A  
102  
210  
VIN / VDD = 2.375 V, VVDDQSNS = 1.20 V, V TT = VVTTREF – 50 mV  
(DDR4), I O = 2.0 A(2)  
I VO = –3 A, across VIN voltage range(2)  
I VO = 3 A, across VIN voltage range(2)  
12  
-34  
25  
34  
-12  
8
Output voltage tolerance to  
VVTTREF  
VVOTOL/VTTTOL  
IVOSRCL  
mV  
A
–25  
VO/VTT source current limit With reference to V VTTREF, VVTTSNS = 90% × V VTTREF  
3.25  
(1) Dropout / Headroom information provided to help designer in optimizing system efficiency  
(2) Specified by characterization and not production tested  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
Electrical Characteristics (continued)  
Over full temperature range, –55°C to 125°C, VIN/VDD = 3.3 V and 2.375V,VVLDOIN = 1.8 V, VVDDQSNS = 1.8 V,  
VVOSNS/VTTSNS = 0.9 V, VEN = VVIN/VDD, 标准 DDR 应用 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IVOSNCL  
VO/VTT sink current limit  
Discharge impedance, Ω  
With reference to V VTTREF, VVTTSNS = 110% × V VTTREF  
V DDQSNS = 0 V, VVO = 0.3 V, V EN = 0 V, TA = 25°C  
3.5  
5.5  
25  
A
RDSCHRG  
18  
POWERGOOD COMPARATOR  
PGOOD window lower threshold with respect to VVTTREF  
PGOOD window upper threshold with respect to VVTTREF  
PGOOD hysteresis  
–23.5%  
17.5%  
–20% –17.5%  
VTH(PG)  
VO/VTT PGOOD threshold  
20%  
5%  
2
23.5%  
TPGSTUPDLY  
VPGOODLOW  
TPBADDLY  
PGOOD startup delay  
Output low voltage  
PGOOD bad delay  
Startup rising edge, VOSNS within 15% of VVTTREF  
I SINK = 4 mA  
ms  
V
0.4  
1
V OSNS is outside of the ±20% PGOOD window  
1
μs  
V OSNS = VREFIN (PGOOD high impedance),  
PGOOD = VIN + 0.2 V  
IPGOODLK  
Leakage current  
μA  
VDDQSNS AND VVTTREF OUTPUT  
VDDQSNS  
VDDQSNS voltage range  
1.0  
2.80  
V
VDDQSNS undervoltage  
lockout  
VDDQSNS_UVLO  
V DDQSNS rising  
780  
mV  
VDDQSNS undervoltage  
lockout hysteresis  
VDDQSNSUVHYS  
V VTTREF  
20  
mV  
V
VVTTREF voltage  
VDDQSNS / 2  
–10 mA < I VTTREF <10 mA, VVDDQSNS = 2.5 V  
–10 mA <I VTTREF <10 mA, VVDDQSNS = 1.8 V  
–10 mA <I VTTREF <10 mA, VVDDQSNS = 1.5 V  
–10 mA <I VTTREF <10 mA, VVDDQSNS = 1.35 V  
–10 mA <I VTTREF <10 mA, VVDDQSNS = 1.2 V  
–15  
–15  
–15  
–15  
–15  
10  
15  
15  
15  
15  
15  
mV  
V VTTREF voltage tolerance to  
VVDDQSNS  
V VTTREF  
I VTTREFSRCL  
I VTTREFSNCCL  
I VTTREFDIS  
V VTTREF source current limit VTTREF = 0 V  
40  
40  
mA  
mA  
mA  
V VTTREF sink current limit  
VVTTREF discharge current  
VTTREF = 0 V  
6
EN = 0 V, V DDQSNS = 0 V, VVTTREF = 0.5 V  
1.3  
UVLO/EN LOGIC THRESHOLD  
Wake up, T A = 25°C  
Hysteresis  
Enable  
2.18  
50  
2.25  
V
VVINUVVIN  
UVLO threshold  
mV  
VENIH  
High-level input voltage  
Low-level input voltage  
Hysteresis voltage  
1.7  
–1  
VENIL  
Enable  
0.3  
1
V
VENYST  
IENLEAK  
Enable  
0.5  
Logic input leakage current  
EN, T A = 25°C  
μA  
THERMAL SHUTDOWN  
Thermal shutdown threshold  
Shutdown temperature  
Hysteresis  
210  
12  
TSON  
°C  
(3)  
(3) Ensured by design, not production tested  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
7.6 Typical Characteristics  
For Figure 1 through Figure 15, (3 × 150 µF T530D157M010ATE005 tantalum + 4 × 4.7 µF MLCC) or equivalent  
capacitance/ESR are used on the output.  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
0.94  
0.93  
0.92  
0.91  
0.9  
25°C  
125°C  
œ55°C  
25°C  
125°C  
œ55°C  
0.89  
0.88  
0.87  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D001  
D002  
VVIN = 3.3 V  
VDDQSNS = 2.5 V  
VVIN = 3.3 V  
VDDQSNS = 1.8 V  
Figure 1. Output Voltage vs Output Current  
Figure 2. Output Voltage vs Output Current  
0.79  
0.78  
0.77  
0.76  
0.75  
0.74  
0.73  
0.72  
0.72  
0.71  
0.7  
25°C  
125°C  
œ55°C  
25°C  
125°C  
œ55°C  
0.69  
0.68  
0.67  
0.66  
0.65  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D003  
D004  
VVIN = 3.3 V  
VDDQSNS = 1.5 V  
VVIN = 3.3 V  
VDDQSNS = 1.35 V  
Figure 3. Output Voltage vs Output Current  
Figure 4. Output Voltage vs Output Current  
0.66  
0.65  
0.64  
0.63  
0.62  
0.61  
0.6  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
25°C  
125°C  
œ55°C  
25°C  
125°C  
œ55°C  
0.59  
0.58  
0.57  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D005  
D006  
VVIN = 3.3 V  
VDDQSNS = 1.2 V  
VVIN = 2.95 V  
VDDQSNS = 2.5 V  
Figure 5. Output Voltage vs Output Current  
Figure 6. Output Voltage vs Output Current  
8
Copyright © 2015, Texas Instruments Incorporated  
 
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
Typical Characteristics (continued)  
For Figure 1 through Figure 15, (3 × 150 µF T530D157M010ATE005 tantalum + 4 × 4.7 µF MLCC) or equivalent  
capacitance/ESR are used on the output.  
0.94  
0.93  
0.92  
0.91  
0.9  
0.79  
0.78  
0.77  
0.76  
0.75  
0.74  
0.73  
0.72  
25°C  
125°C  
œ55°C  
25°C  
125°C  
œ55°C  
0.89  
0.88  
0.87  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D007  
D008  
VVIN = 2.95 V  
VDDQSNS = 1.8 V  
VVIN = 2.375 V  
VDDQSNS = 1.5 V  
Figure 7. Output Voltage vs Output Current  
Figure 8. Output Voltage vs Output Current  
0.72  
0.71  
0.7  
0.66  
0.65  
0.64  
0.63  
0.62  
0.61  
0.6  
25°C  
125°C  
œ55°C  
25°C  
125°C  
œ55°C  
0.69  
0.68  
0.67  
0.66  
0.65  
0.59  
0.58  
0.57  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D009  
D010  
VVIN = 2.375 V  
VDDQSNS = 1.35 V  
VVIN = 2.375 V  
VDDQSNS = 1.2 V  
Figure 9. Output Voltage vs Output Current  
Figure 10. Output Voltage vs Output Current  
1.26  
1.259  
1.258  
1.257  
1.256  
1.255  
1.254  
1.253  
1.252  
1.251  
1.25  
0.91  
0.909  
0.908  
0.907  
0.906  
0.905  
0.904  
0.903  
0.902  
0.901  
0.9  
25°C  
125°C  
œ55°C  
25°C  
125°C  
œ55°C  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
VTTREF Current (mA)  
VTTREF Current (mA)  
D011  
D012  
VDDQSNS = 2.5 V  
VDDQSNS = 1.8 V  
Figure 11. RF Voltage vs REFOUT Current  
Figure 12. RF Voltage vs REFOUT Current  
Copyright © 2015, Texas Instruments Incorporated  
9
 
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
For Figure 1 through Figure 15, (3 × 150 µF T530D157M010ATE005 tantalum + 4 × 4.7 µF MLCC) or equivalent  
capacitance/ESR are used on the output.  
0.76  
0.759  
0.758  
0.757  
0.756  
0.755  
0.754  
0.753  
0.752  
0.751  
0.75  
0.686  
0.685  
0.684  
0.683  
0.682  
0.681  
0.68  
25°C  
125°C  
œ55°C  
25°C  
125°C  
œ55°C  
0.679  
0.678  
0.677  
0.676  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
VTTREF Output Current (mA)  
VTTREF Output Current (mA)  
D013  
D014  
VDDQSNS = 1.5 V  
VDDQSNS = 1.35 V  
Figure 13. RF Voltage vs REFOUT Current  
Figure 14. RF Voltage vs REFOUT Current  
0.275  
0.25  
0.225  
0.2  
0.61  
0.609  
0.608  
0.607  
0.606  
0.605  
0.604  
0.603  
0.602  
0.601  
0.6  
25°C  
125°C  
œ55°C  
0.175  
0.15  
0.125  
0.1  
0.6 V  
0.075  
0.05  
0.025  
0
0.675 V  
0.75 V  
0.9 V  
1.25 V  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
-15  
-10  
-5  
0
5
10  
15  
Output Current (A)  
VTTREF Output Current (mA)  
D016  
D015  
VVIN = 3.6 V  
VDDQSNS = 1.2 V  
Figure 16. Dropout Voltage vs Output Current  
Figure 15. RF Voltage vs REFOUT Current  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.5  
1.4  
1.3  
1.2  
1.1  
1
25èC  
25èC  
125èC  
œ55èC  
125èC  
œ55èC  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
Output Current (A)  
Output Current (A)  
D017  
D018  
VIN = 2.375 V  
VDDQSNS = 1.5 V  
VIN = 3.5 V  
VDDQSNS = 1.5 V  
Figure 17. Output Voltage vs Output Current, DDR3  
Figure 18. Output Voltage vs Output Current, DDR3  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
Typical Characteristics (continued)  
For Figure 1 through Figure 15, (3 × 150 µF T530D157M010ATE005 tantalum + 4 × 4.7 µF MLCC) or equivalent  
capacitance/ESR are used on the output.  
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
25èC  
25èC  
125èC  
œ55èC  
125èC  
œ55èC  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
Output Current (A)  
Output Current (A)  
D019  
D020  
VIN = 2.375 V  
VDDQSNS = 1.8 V  
VIN = 3.5 V  
VDDQSNS = 1.8 V  
Figure 19. Output Voltage vs Output Current, DDR2  
Figure 20. Output Voltage vs Output Current, DDR2  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS7H3301-SP device is a sink and source double data rate (DDR) termination regulator specifically  
designed for low input voltage, low-cost, low-noise systems where space and weight is a key consideration.  
8.2 Functional Block Diagram  
2
VDDQSNS  
3,4,5 VLDOIN  
+
1
VTTREF  
2.25 V  
UVLO  
+
10  
Gm  
VDD/VIN  
DchgREF  
DchgVTT  
16  
12,13,14  
VOSNS/VTTSNS  
VO/VTT  
+
ENVTT  
EN  
9
Gm  
6,7,8 PGND  
REFINOK  
PGND 15  
11  
PGOOD  
+
+
Startup  
Delay  
8.3 Feature Description  
8.3.1 VO Sink/Source Regulator  
The TPS7H3301-SP is a 3A sink/source tracking termination regulator specifically designed for low input voltage,  
low-cost, and low external component count systems where space is a key application parameter. The  
TPS7H3301-SP integrates a high-performance, low-dropout (LDO) linear regulator that is capable of both  
sourcing and sinking current. The LDO regulator employs a fast feedback loop so that ceramic capacitors can be  
used to support the fast load transient response. To achieve tight regulation with minimum effect of trace  
resistance, a remote sensing pin, VOSNS/VTTSNS, should be connected to the positive pin of the output  
capacitor(s) as a separate trace from the high current path from Vo/VTT.  
The TPS7H3301-SP has a dedicated pin VLDOIN, for VTT power supply to minimize the LDO power dissipation  
on user application. The minimum VLDOIN voltage is 400mV above the 1/2 VDDQSNS voltage or as highlighted  
in electrical table VLDOIN to VTT headroom for various load conditions.  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
Feature Description (continued)  
8.3.2 Reference Input (VDDQSNS)  
The output voltage, Vo/VTT, is regulated to VTTREF. VDDQSNS incorporates integrated resistor divider network.  
VDDQSNS can be connected to memory supply bus (VDDQ). VDDQSNS should be connected to the memory  
supply bus (VDDQ). The TPS7H3301-SP supports VDDQSNS voltage from 1.0 V to 3.5 V, making it versatile  
and ideal for many types of low-power LDO applications.  
8.3.3 Reference Output (VTTREF)  
When it is configured for DDR termination applications, VTTREF generates the DDR VTT reference voltage for  
the memory application. VTTREF block consists of an on-chip 1/2 divider and a low-pass filter (LPF). VTTREF  
tracks 1/2 of VDDQSNS with 1% accuracy. It is capable of supporting both a sourcing and sinking load of 10 mA.  
VTTREF becomes active when VDDQSNS voltage rises to 0.78 V and Vin/VDD is above the UVLO threshold.  
When VTTREF is less than 0.375 V, VTTREF is disabled and subsequently discharges to GND through an  
internal MOSFET. VO/ VTT is also dicharged following discharge of VTTREF. VTTREF is independent of the EN  
pin state. To meet stability criteria, a capacitor of 0.1 µF min must be installed close to VTTREF (pin1). Capacitor  
value at VTTREF (pin 1) must not exceed 2.2 µF.  
8.3.4 EN ControL (EN)  
When EN is driven high, the TPS7H3301-SP Vo/ VTT regulator begins normal operation. When EN is driven low,  
Vo/VTT is discharges to GND through an internal 18-MOSFET. VTTREF remains on when EN is driven low.  
EN is not tied high internally to prevent power sequencing issues with an external signal that may be controlling  
the enable. EN is floating input and not internally tied, thus the user can have complete control over where and  
when the EN signal is generated. EN feeds directly into PowerGood (PGOOD). When enable is low Pgood is  
low.  
8.3.5 PowerGood Function (PGOOD)  
The TPS7H3301-SP provides an open-drain PGOOD output that goes high when the Vo/VTT output is within  
20% of VTTREF (typ). PGOOD deasserts within 1 μs after the output exceeds the size of the powergood  
window. During initial Vo/VTT startup, PGOOD asserts high 2 ms (typ) after the Vo/ VTT enters power good  
window. Because PGOOD is an open-drain output, a 100-k, pullup resistor between PGOOD and a stable  
active supply voltage rail is required.  
8.3.6 VO Current Protection  
The LDO has a constant OCL.  
8.3.7 VIN UVLO Protection  
For VIN/ VDD undervoltage lockout (UVLO) protection, the TPS7H3301-SP monitors VIN/ VDD voltage. When  
the VIN/ VDD voltage is lower than the UVLO threshold voltage, both the VTT nd VTTREF regulators are  
powered off. This shutdown is a non-latch protection.  
8.3.8 Thermal Shutdown  
The TPS7H3301-SP monitors its junction temperature. If the device junction temperature exceeds its threshold  
value, (typically 210°C), the VO/VTT and VTTREF regulators are both shut off, discharged by the internal  
discharge MOSFETs. This shutdown is a non-latch protection.  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
8.4 Device Functional Modes  
TPS7H3301-SP a 3-A source-sink LDO provides low output noise to meet system needs. In order to improve  
efficiency in the LDO, TPS7H3301-SP LDO can operate from low VLDOIN voltage rail, thus using dual voltage  
source one for the VLDOIN that supports high current and an alternate voltage source that provides voltage for  
VDDQSNS pin.  
Typcically VLDOIN and VDDQSNS pins are tied together. In the memory system VDDQ is a high-current supply  
that powers the core, the I/O, and the logic of the memory, VTTREF is a low-current, precision reference voltage  
that provides a threshold between a logic high (one) and a logic low (zero) that adapts to changes in the I/O  
supply voltage. By providing a precision threshold that adapts to the supply voltage, VTTREF realizes wider  
noise margins than those possible with a fixed threshold and normal variations in termination and drive  
impedance. Specifications vary from device manufacturer to manufacturer, but the most common specification is  
0.49 to 0.51 times VDDQ and draws only tens to hundreds of microamps. For TPS7H3301-SP VTTREF is  
desinged to source / sink 10 mA.  
14  
Copyright © 2015, Texas Instruments Incorporated  
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS7H3301-SP device is a highly-integrated source sink LDO. The device is targeted to support VTT  
voltage for DDR memory applications and is capable of sourcing and sinking 3-A load current. The TPS7H3301-  
SP user’s guide is available on www.ti.com, SLVUAK2. The guide highlights standard EVM test results,  
schematic, and bill of materials (BOM) for reference.  
9.2 Typical Application  
The design example describes a 2.5-V Vin, DDR3 configuration.  
TPS7H3301  
R1  
VTTREF = VDDQSNS / 2  
VTTSNS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VTTREF  
C2  
C1  
VDDQ  
SNS  
AGND  
VTT / Vo = 0.75 V  
AGND  
VTT/Vo  
VLDOIN  
VDDQ  
C7  
C9  
C11  
C5  
DDR3 œ 1.5 V  
C6  
C10  
C8  
VTT/Vo  
VTT/Vo  
VLDOIN  
VLDOIN  
C3  
C4  
POWER GOOD  
PGOOD  
PGND  
PGND  
R3  
2.5-V Supply  
VDD/  
Vin  
ENABLE  
C12  
EN  
PGND  
AGND  
PGND  
Figure 21. Typical Application Circuit  
9.2.1 Design Requirements  
See the Recommended Operating Conditions for recommended limits.  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
Table 1. Design Example 1 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1  
392 Ω  
100 kΩ  
CRCW0603392RFKEA  
CRCW0603100KJNEA  
T530D157M010ATE005  
GRM188R71H102KA01D  
08053C104KAT2A  
Resistor  
R3  
C3, C5, C6, C7  
150 µF, 10 V  
1000 pF  
Kemet  
MuRata  
AVX  
C2  
C1  
C4, C8, C9, C10, C11  
C12  
Capacitor  
0.1 µF  
4.7 µF, 10 V  
10 µF, 10 V  
1210ZC475KAT2A  
Murata  
Murata  
GRM21BR71A106KE51L  
9.2.2.1 VIN/VDD Capacitor  
Add a ceramic capacitor, with a value between 1- and 10-μF, placed close to the VIN/VDD pin, to stabilize the  
bias supply (2.5-V rail or 3.3-V rail) from any parasitic impedance from the supply.  
9.2.2.2 VLDO Input Capacitor  
Depending on the trace impedance between the VLDOIN/ VDDQ bulk power supply to the device, a transient  
increase of source current is supplied mostly by the charge from the VLDOIN/ VDDQ input capacitor. Use a 150-  
μF (or greater) tantalum capacitor in parallel with 4.7uf ceramic capacitor to supply this transient charge. Provide  
more input capacitance as more output capacitance is used at VO. In general, use one-half of the COUT value for  
input. One can also determine the input capacitance based upon headroom between VLDOIN and VTT/ Vo  
voltage differential in the application.  
9.2.2.3 VTT Output Capacitor  
For stable operation, the total capacitance of the VTT/ Vo output pin must be greater than 470 μF. Attach three,  
3 x 150-μF low esr tantalum capacitors in parallel with ceramic capacitors to minimize the effect of equivalent  
series resistance (ESR) and equivalent series inductance (ESL). If the ESR is greater than 2 m, insert an R-C  
filter between the output and the VTTSNS input to achieve loop stability. The R-C filter time constant should be  
almost the same as or slightly lower than the time constant of the output capacitor and its ESR.  
9.2.2.4 VTTSNS Connection  
To achieve tight regulation with minimum effect of trace resistance, a remote sensing pin, the VTTSNS pin  
should be connected to the positive pin of the VTT pin output capacitor or capacitors as a separate trace from  
the high-current path from VTT. Consider adding a low-pass R-C filter at the VTTSNS pin in case the ESR of the  
VTT output capacitor or capacitors is larger than 2 mΩ. The R-C filter time constant should be approximately the  
same or slightly lower than the time constant of the VTT output capacitance and ESR.  
12  
13
14  
VTT  
VTT  
VTT  
TPS7H3301-SP  
VTT  
RC  
16  
VTTSNS  
CC  
C3  
470 µF  
PGND  
PGND  
PGND  
6
7
8
Figure 22. R-C Filter for VTTSNS  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
9.2.2.5 Low VIN Applications  
TPS7H3301-SP can be used in an application system where either a 2.5-V rail or a 3.3-V rail is available. The  
TPS7H3301-SP minimum input voltage requirement is 2.375 V. If a 2.5-V rail is used, ensure that the absolute  
minimum voltage (both DC and transient) at the device pin is be 2.375 V or greater. The voltage tolerance for a  
2.5-V rail input is between –5% and 5% accuracy, or better.  
9.2.2.6 S3 and Pseudo-S5 Support  
The TPS7H3301-SP provides S3 support by an EN function. The EN pin could be connected to an SLP_S3  
signal in the end application. Both VTTREF and Vo/VTT are on when EN = high (S0 state). VTTREF is  
maintained while Vo/ VTT is turned off and discharged via an internal discharge MOSFET when EN = low (S3  
state). When EN = low and the VDDQSNS voltage is less than 0.780 V, TPS7H3301-SP enters pseudo-S5 state.  
Both VTTREF and VTTREF outputs are turned off and discharged to GND through internal MOSFETs when  
pseudo-S5 support is engaged (S4/S5 state). Figure 23 shows a typical startup and shutdown timing diagram for  
an application that uses S3 and pseudo-S5 support.  
9.2.2.7 Tracking Startup and Shutdown  
The TPS7H3301-SP also supports tracking startup and shutdown when EN is tied directly to the system bus and  
not used to turn on or turn off the device. During tracking startup, VO/VTT follows VTTREF once VDDQSNS  
voltage is greater than 0.78 V. VDDQSNS incorporates the resistor divider network. The typical soft-start time for  
the VDDQ rail is approximately 3 ms, however it may vary depending on the system configuration. The SS time  
of the VO/VTT output no longer depends on the OCL setting, but it is a function of the SS time of the VDDQ rail.  
PGOOD is asserted 2 ms after VO/VTT is within ±20% of VTTREF. During tracking shutdown, VO/VTT falls  
following VTTREF until VTTREF reaches 0.37 V. Once VTTREF falls below 0.37 V, the internal discharge  
MOSFETs are turned on and quickly discharge both VTTREF and VO/VTT to GND. PGOOD is deasserted once  
VO/VTT is beyond the ±20% range of VTTREF. Figure 24 shows the typical timing diagram for an application  
that uses tracking startup and shutdown.  
There are no sequencing requirements between Vin/VDD and VLDOIN. If VLDOIN is applied first followed by  
VDD/Vin there is no issue. Vin UVLO protection monitors Vin/VDD voltage, when Vin/Vdd is lower than UVLO  
threshold both VTT and VTTREF regulators are powered off.  
3.3VIN  
V
= 1.5 V  
VDDQ  
0.780 V  
VLDOIN  
0.370 V  
0.370 V  
VDDQSNS  
VTTREF  
EN  
(S3_SLP)  
t
V
= 0.75 V  
SS  
VO  
VO  
C
x
V
O
O
t
=
SS  
I
OOCL  
PGOOD  
2 ms  
Figure 23. Typical Timing Diagram for S3 and Pseudo-S5 Support  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
3.3VIN  
EN  
VLDOIN  
VDDQSNS  
VTTREF  
VO  
t
determined  
SS  
by the SS time  
of VLDOIN  
V
= 0.75 V  
VO  
PGOOD  
2ms  
Figure 24. Typical Timing Diagram of Tracking Startup and Shutdown  
9.2.2.8 Output Tolerance Consideration for VTT DIMM Applications  
The TPS7H3301-SP is specifically designed to power up the memory termination rail (as shown in Figure 25).  
The DDR memory termination structure determines the main characteristics of the VTT rail, which is to be able to  
sink and source current while maintaining acceptable VTT tolerance. See Figure 26 for typical characteristics for  
a single memory cell.  
DDR3 240-Pin Socket  
VO  
TPS7H3301-SP  
150 µF  
150 µF  
150 µF  
Figure 25. Typical Application Diagram for DDR3 VTT DIMM using TPS7H3301-SP  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
V
V
TT  
DDQ  
Q1  
Q2  
25 W  
R
S
20 W  
Receiver  
Ouput  
Buffer  
(Driver)  
V
V
IN  
OUT  
V
SS  
UDG-08023  
Figure 26. DDR Physical Signal System Bidirectional SSTL Signaling  
In Figure 26, when Q1 is on and Q2 is off:  
Current flows from VDDQ via the termination resistor to VTT  
VTT sinks current  
In Figure 26, when Q2 is on and Q1 is off:  
Current flows from VTT via the termination resistor to GND  
VTT sources current  
Because VTT accuracy has a direct impact on the memory signal integrity, it is imperative to understand the  
tolerance requirement on VTT. Based on JEDEC VTT specifications for DDR and DDR2 (JEDEC standard: DDR  
JESD8-9B May 2002; DDR2 JESD8-15A Sept 2003).  
VTTREF – 40 mV <VTT <VTTREF + 40 mV, for both dc and ac conditions  
The specification itself indicates that VTT must keep track of VTTREF for proper signal conditioning.  
The TPS7H3301-SP ensures the regulator output voltage to be:  
VTTREF –34 mV <VTT <VTTREF + 34mV, for both DC and AC conditions and –3 A <IVTT <3 A  
The regulator output voltage is measured at the regulator side, not the load side. The tolerance is applicable to  
DDR, DDR2, DDR3 and Low Power DDR3/DDR4 applications (see Table 2 for detailed information). To meet the  
stability requirement, a minimum output capacitance of 470 μF is needed, combination of both Tantalum and  
ceramic capacitors. Considering the actual tolerance on the MLCC capacitors, four or higher 4.7-μF ceramic  
capacitors in parallel with 3 × 150 µF low esr tantalum capacitor are sufficient to meet the above requirement.  
For higher esr tantalum capacitors it will require multiple tantalum capacitors in parallel with ceramic capacitors to  
meet system needs.  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
Table 2. DDR, DDR2, DDR3, and LP DDR3 Termination Technology and Their Differences  
LOW POWER DDR3  
(DDR3L)  
DDR  
DDR2  
DDR3  
FSB Data Rates 200, 266, 333 and 400 MHz 400, 533, 677 and 800 MHz  
On-die termination for data  
800, 1066, 1330 and 1600 MHz  
Same as DDR3  
On-die termination for data  
group. VTT termination for  
Motherboard termination to group. VTT termination for  
Termination  
Same as DDR3  
VTT for all signals  
address, command and control address, command and control  
signals  
signals  
Not as demanding  
Not as demanding  
Only 34 signals (address,  
command, control) tied to  
VTT  
Only 34 signals (address,  
command, control) tied to  
VTT  
Max source/sink transient  
currents of up to 2.6 A to  
2.9 A  
Termination  
Current Demand  
Same as DDR3  
ODT handles data signals  
ODT handles data signals  
Less than 1 A of burst current  
Less than 1 A of burst current  
2.5-V Core and I/O 1.25-V  
VTT  
1.35-V Core and I/O  
0.68-V VTT  
Voltage Level  
1.8-V Core and I/O 0.9-V VTT  
1.5-V Core and I/O 0.75-V VTT  
The TPS7H3301-SP is designed as a Gm driven LDO. The voltage droop between the reference input and the  
output regulator is determined by the transconductance and output current of the device. The typical Gm is 250 S  
at 3 A and changes with respect to the load in order to conserve the quiescent current (that is, the Gm is very  
low at no load condition). The Gm LDO regulator is a single pole system. Its unity gain bandwidth for the voltage  
loop is only determined by the output capacitance, as a result of the bandwidth nature of the Gm (see  
Equation 1).  
Gm  
F
=
UGBW  
2´ p´ C  
OUT  
where  
FUGBW is the unity gain bandwidth  
Gm is transconductance  
COUT is the output capacitance  
(1)  
There are two limitations to this type of regulator when it comes to the output bulk capacitor requirement. To  
maintain stability, the zero location contributed by the ESR of the output capacitors should be greater than the  
–3-dB point of the current loop. This constraint means that higher ESR capacitors should not be used in the  
design. In addition, the impedance characteristics of the ceramic capacitor should be well understood in order to  
prevent the gain peaking effect around the Gm –3-dB point because of the large ESL, the output capacitor and  
parasitic inductance of the VO trace.  
Figure 27 shows the bode plot simulation for a typical DDR3 configuration of the TPS7H3301-SP, where:  
VIN = 2.4 V  
VVLDOIN = 1.5 V  
VVO = 0.75 V  
IIO = 2 A  
3 × 150-μF low-ESR tantalum capacitors (T530D157M010ATE005) in parallel with 4 × 4.7-µF ceramic  
capacitor include  
ESR = 1.66 mΩ  
ESL = 800 pH  
The unity-gain bandwidth is approximately 87.3 kHz and the phase margin is 82°. The 0-dB level is crossed, the  
gain peaks because of the ESL effect. However, the peaking is kept well below 0 dB.  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
Figure 27. Bode Plot for a Typical DDR3 Configuration  
Figure 8 shows the load regulation and Figure 28 shows the transient response for a typical DDR3 configuration.  
When the regulator is subjected to ±1.5-A load step and release, the output voltage measurement shows no  
difference between the DC and AC conditions.  
Figure 28. Transient Plot  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
9.2.2.9 LDO Design Guidelines  
The minimum input (VLDOIN) to output voltage (VO/Vtt) difference (headroom) decides the lowest usable supply  
voltage Gm-driven to drive a certain load. For TPS7H3301-SP, a minimum of 300 mV (VLDOINMIN – VOMAX) is  
needed in order to support a Gm driven sourcing current of 3 A based on a design of VIN = 3.3 V and C  
=
OUT  
470 μF. Because the TPS7H3301-SP is essentially a Gm driven LDO, its impedance characteristics are both a  
function of the 1/Gm and RDS(on) of the sourcing MOSFET (see Figure 29). The current inflection point of the  
design is between 3 A and 4 A. When I  
is less than the inflection point, the LDO is considered to be  
SRC  
operating in the Gm region; when ISRC is greater than the inflection point but less than the overcurrent limit point,  
the LDO is operating in the RDS(on) region. The typical sourcing RDS(on) is 154 mwith V  
= 3.0 V and TJ =  
IN  
125°C.  
1/Gm  
Inflection  
Point  
1/R  
DS(on)  
(between  
3Aand 4 A)  
Overcurrent  
Limit  
I
- Source Current - A  
SRC  
UDG-08026  
Figure 29. TPS7H3301-SP Impedance Characteristics  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
9.2.3 Application Curve  
Figure 30. DDR2 2-A Load Vin 2.4 V 0.9 Vtt  
10 Power Supply Recommendations  
TPS7H3301-SP is designed to support DDR, DDR2, DDR3, DDR3L, and DDR4 VTT applications. TPS7H3301-  
SP VLDOIN supports voltage range from 0.9 V to 3.5 V. The supply must be well regulated. Having a separate  
VLDOIN and VDDQSNS allows designer to optimize system efficiency. Vin/VDD is used to bias the TPS7H3301-  
SP IC and its voltage range is from 2.375 V to 3.5 V. This supply must be well regulated and bypassed with a  
ceramic capacitor with a value of 1 µF and 10 µF. TI recommends that VLDOIN and VDDQSNS be isolated from  
each other. If this is not possible then an RC filter must be used to isolated VLDOIN and VDDQNSS. However, in  
so doing the dynamic tracking of VTT and VTTREF will be lost. See the user's guide SLVUAK2 for additional  
details.  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Consider the following points before starting the TPS7H3301-SP layout design.  
The input bypass capacitor for VLDOIN should be placed as close as possible to the pin with short and wide  
connections.  
The output capacitor for VO/VTT should be placed close to the pin with short and wide connection in order to  
avoid additional ESR and/or ESL trace inductance.  
VOSNS should be connected to the positive node of VO/VTT output capacitors as a separate trace from the  
high current power line. This configuration is strongly recommended to avoid additional ESR and/or ESL. If  
sensing the voltage at the point of the load is required, it is recommended to attach the output capacitor or  
capacitors at that point. Also, it is recommended to minimize any additional ESR and/or ESL of ground trace  
between the GND pin and the output capacitor or capacitors.  
Consider adding low-pass filter at VOSNS if the ESR of the VO/VTT output capacitor or capacitors is larger  
than 2 m.  
VDDQSNS can be connected separately from VLDOIN. Remember that this sensing potential is the reference  
voltage of VTTREF. Avoid any noise-generating lines.  
The negative node of the VO/VTT output capacitor or capacitors and the VTTREF capacitor should be tied  
together by avoiding common impedance to the high current path of the VO/VTT source/sink current.  
The GND and PGND pins should be connected to the thermal land underneath the die pad with multiple vias  
connecting to the internal system ground planes (for better result, use at least two internal ground planes).  
Use as many vias as possible to reduce the impedance between PGND/GND and the system ground plane.  
Also, place bulk caps close to the DIMM load point, route the VOSNS to the DIMM load sense point.  
In order to effectively remove heat from the package, properly prepare the thermal land. Apply solder directly  
to the package’s thermal pad. The wide traces of the component and the side copper connected to the  
thermal land pad help to dissipate heat. Numerous vias 0.33 mm in diameter connected from the thermal land  
to the internal/solder side ground plane or planes should also be used to help dissipation.  
11.2 Layout Example  
TPS7H3301  
VTTREF = VDDQSNS / 2  
VTTSNS  
1
2
3
4
5
6
7
8
16  
15  
14  
VTTREF  
Cref  
VDDQ  
SNS  
AGND  
VTT / Vo  
AGND  
VTT/Vo  
VLDOIN  
VDDQ = VLDOIN  
COUT  
VTT/Vo 13  
VLDOIN  
VLDOIN  
C1N  
VTT/Vo  
12  
POWER GOOD  
11  
10  
9
PGOOD  
VDD/Vin  
PGND  
PGND  
3.3-V or 2.5-V Supply  
ENABLE  
CVin  
EN  
PGND  
AGND  
Power Ground Plane  
Figure 31. Layout Recommendation  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPS7H3301-SP  
www.ti.com.cn  
ZHCSEJ1 DECEMBER 2015  
11.3 Thermal Considerations  
Because the TPS7H3301-SP is a linear regulator, the VO current flows in both source and sink directions,  
thereby dissipating power from the device. When the device is sourcing current, the voltage difference between  
VLDOIN and VO times IO (IIO ) current becomes the power dissipation as shown in Equation 2.  
P
=
V
(
- V  
x I  
O _SRC  
)
DISS _SRC  
VLDOIN  
VO  
(2)  
In this case, if VLDOIN is connected to an alternative power supply lower than the VDDQ voltage, overall power  
loss can be reduced. For the sink phase, VO voltage is applied across the internal LDO regulator, and the power  
dissipation, PDISS_SNK can be calculated by Equation 3.  
P
= V ´ I  
VO O _SNK  
DISS _SNK  
(3)  
Because the device does not sink and source current at the same time and the IO current may vary rapidly with  
time, the actual power dissipation should be the time average of the above dissipations over the thermal  
relaxation duration of the system. Another source of power consumption is the current used for the internal  
current control circuitry from the VIN supply and the VLDOIN supply. This can be estimated as 5 mW or less  
during normal operating conditions. This power must be effectively dissipated from the package.  
The thermal performance of an LDO depends on the printed circuit board (PCB) layout. Because the  
TPS7H3301-SP device is shipped unformed, only the recommended heat pad pattern is shown. Lead pad  
placement depends on final form factor.  
To further improve the thermal performance of this device, using a larger than recommended thermal land as  
well as increasing the number of vias helps lower the thermal resistance from junction to heat slug. TI  
recommends that up to 48 (0.01 inch) thermal vias can be located under the device package.  
版权 © 2015, Texas Instruments Incorporated  
25  
 
 
TPS7H3301-SP  
ZHCSEJ1 DECEMBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962-1422801VXC  
5962R1422801VXC  
TPS7H3301HKR/EM  
ACTIVE  
CFP  
CFP  
CFP  
HKR  
16  
16  
16  
1
RoHS-Exempt  
& Green  
NIAU  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
25 to 25  
5962-1422801VXC  
TPS7H3301-SP  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
HKR  
1
RoHS-Exempt  
& Green  
NIAU  
NIAU  
5962R1422801VXC  
TPS7H3301-RHA  
HKR  
1
RoHS-Exempt  
& Green  
TPS7H3301HKREM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
HKR0016A  
CFP - 2.416 mm max height  
S
C
A
L
E
0
.
7
0
0
CERAMIC DUAL FLATPACK  
9.88  
9.38  
B
METAL LID  
A
PIN 1 ID  
14X 1.27  
16  
1
11.26  
10.76  
(10.41)  
2X 8.89  
8
9
0.482  
16X  
0.382  
(9.14)  
0.2  
C A B  
METAL LID  
C
2.416  
1.850  
0.177  
0.097  
(6.59)  
1.04  
0.84  
25.142  
24.642  
HEATSINK  
8
9
8.95  
8.65  
16  
1
6.74  
6.44  
PIN 1 ID  
4226020/C 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid. Lid is connected to Heatsink.  
4. The terminals are gold plated.  
5. Falls within MIL-STD-1835 CDFP-F11A.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
HKR0016A  
CFP - 2.416 mm max height  
CERAMIC DUAL FLATPACK  
(6.59)  
(1.2) TYP  
(0.6)  
(1.2) TYP  
(0.6)  
(8.8)  
PKG  
(
0.2) TYP  
(R0.05) TYP  
PKG  
HEATSINK LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
4226020/C 08/2022  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS7H3302-SEP

耐辐射、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4001-SP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4001HKY/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | HKY | 34 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4001MDDWTSHP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | DDW | 44 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4001Y/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | KGD | 0 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002-SP

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002HKH/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | HKH | 20 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002Y/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | KGD | 0 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003-SEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003MDDWSEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器 | DDW | 44 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003MDDWTSEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器 | DDW | 44 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4010-SEP

TPS7H4010-SEP Radiation Hardened 3.5-V to 32-V, 6-A Synchronous Step-Down Voltage Converter in Space Enhanced Plastic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI