TPS8802DCPR [TI]

民用烟雾报警器模拟前端 | DCP | 38 | -40 to 85;
TPS8802DCPR
型号: TPS8802DCPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

民用烟雾报警器模拟前端 | DCP | 38 | -40 to 85

文件: 总78页 (文件大小:2721K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS8802  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
TPS8802 烟雾报警AFE  
1 特性  
2 应用  
• 照相AFE  
• 烟雾和一氧化碳报警器  
3 说明  
8 位可编程电LED 驱动器  
LED 电流温度补偿  
TPS8802 集成了双波光电烟雾报警器和一氧化(CO)  
探测系统所需的所有调节器、放大器和驱动器。它的高  
度灵活性非常适合精度和功耗至关重要的烟雾报警系  
统。  
– 用于光电二极管的超低失调电压运算放大器  
– 可编程和可旁路增益级  
• 一氧化碳传感AFE  
– 超低失调电压增益级  
– 可编程增益和基准  
• 喇叭驱动器  
宽输入电压范围与低待机功耗和省电功能相结合支持  
使用单个锂原电池运行 10 年的电池寿命。TPS8802  
还支持备用电池烟雾报警器在主电源掉电或电池断开  
连接时以无缝方式保持供电状态。  
– 三端压电的自谐振驱动器  
PWM 支持两端压电语音  
• 电源管理  
器件信息(1)  
– 用于外部微控制器的可编LDO  
– 用于喇叭、互连的升压转换器  
• 多报警通信互连总线  
• 超低功耗  
封装尺寸标称值)  
器件型号  
封装  
TSSOP (38)  
9.7mm x 4.4mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
I2C 串行接口  
• 可编程电池测试负载  
TPS8802  
VLX  
COO  
CON  
VBST  
VCC  
CO  
Sensor  
COP  
VBAT  
3-V Battery  
PLDO  
VINT  
REF0P3  
LEDLDO  
PREF  
VMCU  
VBAT  
Photo  
Chamber  
MCUSEL  
PDP  
PDN  
PDO  
Blue IR  
VIN  
ADC  
AMUX  
LEDEN  
GPIO  
GPIO  
DINA  
DINB  
CSA  
CSB  
MCU  
SCL  
I2C  
SDA  
CSEL  
HBEN  
HORNFB  
HORNSL  
HORNBR  
GPIO  
Piezo Horn  
GND  
DGND AGND PGND  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSF25  
 
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
Table of Contents  
8.4 Device Functional Modes..........................................40  
8.5 Programming............................................................ 42  
8.6 Register Maps...........................................................43  
9 Application and Implementation..................................54  
9.1 Application Information............................................. 54  
9.2 Typical Application.................................................... 54  
10 Power Supply Recommendations..............................62  
11 Layout...........................................................................63  
11.1 Layout Guidelines................................................... 63  
11.2 Layout Example...................................................... 64  
12 Device and Documentation Support..........................68  
12.1 接收文档更新通知................................................... 68  
12.2 支持资源..................................................................68  
12.3 Trademarks.............................................................68  
12.4 静电放电警告.......................................................... 68  
12.5 术语表..................................................................... 68  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics..............................................21  
7 Typical Characteristics................................................. 22  
8 Detailed Description......................................................23  
8.1 Overview...................................................................23  
8.2 Functional Block Diagram.........................................24  
8.3 Feature Description...................................................25  
Information.................................................................... 69  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (March 2021) to Revision C (August 2021)  
Page  
• 更新了3-1 ......................................................................................................................................................1  
Updated 8-4 ................................................................................................................................................ 29  
Added Connect a capacitor with a value between 1 µF and 100 µF to the LEDLDO. to 8.3.4.2 ................ 30  
Updated VCCLOW description in 8.6.2 .......................................................................................................44  
Updated 9-1 ................................................................................................................................................ 54  
Updated 9-10 .............................................................................................................................................. 59  
Changes from Revision A (March 2020) to Revision B (March 2021)  
Page  
Changed typical IMCULDO,Q based on measurement data...................................................................................6  
Changed typical ICO,Q based on measurement data.......................................................................................... 6  
Added requirement when enabling the boost converter and disabling the photo input amplifier......................33  
Changes from Revision * (October 2019) to Revision A (March 2020)  
Page  
• 将文档状态从预告信息 更改为量产数据 ............................................................................................................ 1  
Added typical value to VPDIN,OFS ....................................................................................................................... 6  
Added typical value to VOFFS,CO ........................................................................................................................ 6  
Added typical value to VMUX,OFFS ...................................................................................................................... 6  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
2
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
5 Pin Configuration and Functions  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RESERVED  
RESERVED  
RESERVED  
LEDLDO  
AGND  
REF0P3  
PREF  
COP  
2
3
4
CON  
5
COO  
6
PDP  
AMUX  
DGND  
LEDEN  
HBEN  
CSEL  
SDA  
7
PDN  
8
PDO  
9
CSA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
DINA  
CSB  
DINB  
SCL  
Thermal  
Pad  
MCUSEL  
HORNBR  
HORNSL  
HORNFB  
PGND  
GPIO  
INT_MCU  
INT_UNIT  
VMCU  
VINT  
VLX  
PLDO  
VCC  
VBST  
19  
20  
5-1. DCP Package 38-Pin TSSOP Top View  
Pin Functions  
PIN  
NAME  
AGND  
AMUX  
CON  
I/O  
DESCRIPTION  
Analog ground. Connect to ground plane.  
NO.  
5
I
O
I
33  
35  
34  
36  
9
Analog multiplexer output.  
Negative terminal of CO operational amplifier. Connect to GND if unused.  
Output of CO operational amplifier. Connect to GND if unused.  
Positive terminal of CO operational amplifier. Connect to GND if unused.  
LED driver A current sense.  
COO  
O
I
COP  
CSA  
I
CSB  
11  
I
LED driver B current sense. Connect to GND if unused.  
Device address select pin for I2C serial interface. Pull to GND for I2C address 0x3F. Pull to  
VMCU for I2C address 0x2A. Do not leave floating.  
CSEL  
29  
I
DGND  
DINA  
32  
10  
12  
26  
30  
14  
I
I
Digital ground. Connect to AGND.  
LED driver A current sink. Connect to cathode of LED.  
LED driver B current sink. Connect to cathode of LED. Connect to GND if unused.  
Multi-purpose digital input and output.  
DINB  
I
GPIO  
I/O  
I
HBEN  
HORNBR  
Horn block enable. Do not leave floating while device is powered.  
Brass terminal of piezo horn.  
O
Feedback terminal of a three-terminal piezo horn. Do not leave floating while device is  
powered.  
HORNFB  
16  
I
HORNSL  
INT_MCU  
INT_UNIT  
LEDEN  
15  
25  
24  
31  
4
O
I/O  
I/O  
I
Silver terminal of piezo horn.  
Interconnect and interrupt signal to microcontroller.  
Interconnect bus to connect other smoke alarms.  
LED driver enable. Do not leave floating while device is powered.  
LDO output for charging LED supply capacitor. Connect to GND if unused.  
LEDLDO  
O
Default MCULDO and VBST voltage selection input. Leave floating for VMCU = 3.3 V, VBST  
= 4.7 V. Tie to VINT for VMCU = 2.5 V, VBST = 3.8 V. Tie to GND for VMCU = 1.8 V, VBST =  
2.7 V. Connect to GND with a 620-Ωresistor for VMCU = 1.5 V, VBST = 2.7 V.  
MCUSEL  
13  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
PIN  
I/O  
DESCRIPTION  
NAME  
PDN  
NO.  
7
I
O
I
Photo input amplifier negative input. Connect to cathode of photodiode.  
Photo input amplifier output pin.  
PDO  
8
PDP  
6
Photo input amplifier positive Input. Connect to anode of photodiode.  
PGND  
PLDO  
PREF  
REF0P3  
RESERVED  
SCL  
17  
21  
37  
38  
1, 2, 3  
27  
28  
19  
20  
22  
18  
23  
39  
I
Power ground connection to boost converter and horn driver. Connect to AGND.  
Capacitor connection to PLDO regulator.  
O
O
O
N/A  
I
Photo reference voltage and output for testing CO sensor connectivity.  
300mV reference. Connect to GND if unused.  
Connect to GND.  
Clock input for I2C serial interface.  
SDA  
I/O  
I
Data line for I2C serial interface.  
VBST  
VCC  
Boost converter feedback and power input.  
Input supply pin.  
I
VINT  
O
I
Capacitor connection to internal supply LDO.  
Boost converter switch node.  
VLX  
VMCU  
Thermal Pad  
I/O  
N/A  
LDO supply for external microcontroller and internal IO buffers.  
Metal connection for thermal dissipation. Connect to ground plane.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
0.3  
0.3  
3  
MAX  
16.5  
12  
UNIT  
Power IO  
Analog IO  
HORNSL, HORNBR, VBST, VCC  
DINA, DINB, LEDLDO  
V
V
V
V
Horn feedback HORNFB  
6.5  
Boost switch  
VLX  
16.5  
0.3  
VINT + 0.3 or  
3.6, whichever  
is lower  
Analog  
connections  
AMUX, CON, COO, COP, PREF, MCUSEL, PDO, REF0P3  
V
V
V
V
0.3  
0.3  
0.3  
0.3  
PLDO + 0.3 or  
3.6, whichever  
is lower  
LDO outputs  
VINT, VMCU  
CSA  
DINA + 0.3 or  
3.6, whichever  
is lower  
LED current  
sense  
DINB + 0.3 or  
3.6, whichever  
is lower  
LED current  
sense  
CSB  
Photo amplifier  
inputs  
PDN, PDP  
PLDO  
3.6  
7.0  
18  
V
V
V
0.3  
0.3  
0.3  
PLDO voltage  
Interconnect  
bus  
INT_UNIT  
VMCU + 0.3 or  
3.6, whichever  
is lower  
Digital IO  
CSEL, GPIO, HBEN, INT_MCU, LEDEN, SCL, SDA  
V
0.3  
-40  
Max operating  
ambient  
temperature  
TA  
TJ  
125  
125  
°C  
°C  
Max operating  
junction  
-40  
temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted)  
Value  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 1  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 2  
±1500  
1
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
2
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
3 V battery  
VBAT  
2.0  
3.3  
V
voltage  
9 V battery  
VBAT  
6.0  
10  
V
voltage  
Power supply  
LED driver  
VCC, VBST  
DINA, DINB  
2.6(1)  
0
15.6  
11.5  
6
V
V
V
Horn feedback HORNFB  
2  
Interconnect  
INT_UNIT  
bus  
0
0
17  
VMCU  
3.6  
V
V
V
Digital IO  
INT_MCU, SCL, SDA, CSEL, LEDEN, HBEN, GPIO  
Digital IO  
supply  
VMCU  
TA  
1.425  
Ambient  
temperature  
85  
85  
°C  
°C  
40  
40  
Junction  
temperature  
TJ  
(1) Device powers up with VCC < 2.6 V but is not parametrically guaranteed  
6.4 Thermal Information  
TPS8802  
THERMAL METRIC(1)  
DCP  
38 PINS  
29.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
20.0  
10.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
10.0  
ΨJB  
RθJC(bot)  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
INPUT VOLTAGE AND CURRENTS  
Power up threshold. Note:  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPWRUP  
Device enters active state  
when MCU_PG=1.  
VCC rising  
1.2  
1.55  
2.0  
V
VPWRDOWN  
VPWR, HYS  
Power down threshold  
VCC falling  
0.932  
6.4  
1.15  
400  
2.0  
V
VCC power up to power down  
hysteresis  
580  
mV  
PLDO voltage rising  
Deglitch time  
2.35  
110  
2.54  
141  
2.42  
141  
2.7  
172  
2.6  
V
µs  
V
VCC low warning reset  
threshold  
VVCCLOW, RISE  
PLDO voltage falling  
Deglitch time  
2.15  
110  
VCC low warning assert  
threshold  
VVCCLOW, FALL  
172  
µs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
6
Submit Document Feedback  
Product Folder Links: TPS8802  
 
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All blocks that can be  
disabled are off, TJ=27C,  
VCC=3V, VMCU=1.8V  
3.8  
4.4  
µA  
ISTANDBY  
Standby Supply Current  
All blocks that can be  
disabled are off, TJ=27C,  
VCC=9V, VMCU=3.3V  
7.7  
9.1  
µA  
POWER LDO  
VCC = 2.0 V, IPLDO = 10 mA  
VCC = 2.0 V, IPLDO = 30 mA  
VCC = 3.3 V, IPLDO = 30 mA  
VCC = 9 V, IPLDO = 30 mA  
VCC = 11.5 V, IPLDO = 30 mA  
1.93  
1.8  
3.1  
4.1  
4.1  
1.96  
1.89  
3.22  
4.9  
1.99  
1.95  
3.3  
V
V
V
V
V
VPLDO  
Output Voltage  
6.7  
5
6.7  
PLDO capacitor required for  
stability  
CPLDO  
INTERNAL LDO  
Output Voltage  
0.7  
1
1.3  
µF  
IVINT < 10 mA  
2.25  
2.25  
2.3  
2.3  
2.35  
2.40  
V
V
IVINT < 10 uA, T>80C  
No external/internal load,  
VCC = 2.6 V - 11.5 V  
DC Output Voltage Accuacy  
Line Regulation  
2
2
2
8
5
%
%
%
%
%
dB  
2  
2  
2  
8  
5  
50  
VCC = 2.6 V-11.5 V, IOUT =  
10 mA  
IVINT = 0 mA - 10 mA, VCC =  
3 V  
VINTLDO  
Load Regulation  
IVINT stepped from 0 mA to 10  
mA in 1us  
Transient regulation  
PSRR  
IVINT stepped from 10 mA to 0  
mA in 1us  
VIN = 3.0 V, IOUT = 10 mA, f =  
60 Hz (200 mVpp)  
IINTLDO, OUT  
IINTLDO, SC  
Output current range  
0
10  
mA  
mA  
Short Circuit Current Limit  
30  
280  
52  
1
500  
From PLDO to VINT, IVINT  
10 mA, PLDO = 2.2 V  
=
VINTLDO, DO  
Dropout Voltage  
66  
mV  
Output Capacitor  
0.7  
1.3  
µF  
CINTLDO, OUT  
Ceramic  
ESR of Output Capacitor  
100  
mΩ  
MCU LDO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IMCULDO < 30 mA, VCC > 2.2  
V, VMCUSET = 00 (T < 80°C  
for no load)  
1.425  
1.5  
1.575  
V
IMCULDO < 10 uA, VCC > 2.2 V,  
VMCUSET = 00, T > 80°C  
1.425  
1.71  
1.71  
2.38  
2.38  
3.13  
1.5  
1.8  
1.8  
2.5  
2.5  
3.3  
1.65  
1.89  
1.98  
2.63  
2.75  
3.47  
V
V
V
V
V
V
IMCULDO < 30 mA, VCC > 2.6  
V, VMCUSET = 01 (T < 80°C  
for no load)  
IMCULDO < 10 uA, VCC > 2.6 V,  
VMCUSET = 01, T > 80°C  
IMCULDO < 30 mA, VCC > 3.65  
V, VMCUSET = 10 (T < 80°C  
for no load)  
Output Voltage(1)  
VMCULDO  
IMCULDO < 10 uA, VCC > 3.65  
V, VMCUSET = 10, T > 80°C  
IMCULDO < 10 mA, VCC > 3.65  
V, VMCUSET = 11 (T < 80°C  
for no load)  
IMCULDO < 10 uA, VCC > 4.5 V,  
VMCUSET = 11, T > 80°C  
3.13  
3.13  
3.3  
3.3  
3.60  
3.47  
V
V
IMCULDO < 50 mA, VCC > 5.5  
V, VMCUSET = 11  
DC Output Voltage Accuracy T < 80°C  
5
95  
85  
30  
30  
%
%
5  
75  
65  
0
VMCU rising  
82  
78  
MCULDO power good  
threshold  
VMCULDO,PG  
VMCU falling  
%
VCC > 2.2 V, VMCUSET = 00  
VCC > 2.6 V, VMCUSET = 01  
mA  
mA  
0
IMCULDO  
Output Current Range  
VCC > 3.65 V, VMCUSET =  
10  
0
0
30  
50  
7
mA  
mA  
%
VCC > 4.5 V, VMCUSET = 11  
IMCULDO stepped from 0 mA  
to 10 mA in 1us, T < 80°C  
7  
IMCULDO stepped from 0 mA  
to 10 mA in 1us, T > 80°C  
8
5
%
%
8  
5  
MCULDO load transient  
regulation  
VMCULDO, TR  
IMCULDO stepped from 10 mA  
to 0 mA in 1us, T < 80°C  
IMCULDO stepped from 10 mA  
to 0 mA in 1us, T > 80°C  
8
%
8  
IMCULDO, SC  
Short Circuit current limit  
72  
162  
600  
253  
mA  
CMCULDO = 1µF, time from  
VMCU=0V to 90% of target  
voltage  
tMCULDO, PWR Power Up Time  
1100  
158  
µs  
µs  
MCULDO power good  
deglitch time  
TMCULDO, PG  
92  
125  
10  
MCULDO low voltage error  
mask time. MCULDO_ERR is  
masked for  
T_MCULDO,MASK after  
VMCUSET or MCU_DIS is  
changed.  
TMCULDO,  
ms  
MASK  
IMCULDO, Q  
CMCULDO  
Quiescent Current  
Output Capacitor  
IMCULDO = 0µA  
Ceramic  
2.04  
1
3
10  
µA  
µF  
0.7  
ESR of Output Capacitor  
100  
mΩ  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
8
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pull-down resistance to set  
VMCUSET[1:0]=00 on  
powerup  
558  
620  
682  
Ω
Pull-down resistance to set  
VMCUSET[1:0]=01 on  
powerup  
0
0
10  
10  
Ω
Ω
pF  
MCUSEL component  
requirements. Not tested in  
production  
RMCUSEL  
Pull-up resistance to VINT to  
set VMCUSET[1:0]=10 on  
powerup  
Capacitance to set  
VMCUSET[1:0]=11 on  
powerup  
300  
1000  
DCDC BOOST REGULATOR  
IBST < 50 mA, 2.0 V < VBAT <  
2.5 V, VBST =  
0000, BST_CLIM[3:0] = 1111  
2.45  
3.55  
4.40  
5.60  
8.64  
9.6  
2.7  
3.8  
4.7  
6
2.808  
3.952  
4.888  
6.24  
V
V
V
V
V
V
V
V
V
IBST < 50 mA, 2.0 V < VBAT <  
3.5 V, VBST =  
0001, BST_CLIM[3:0] = 1111  
IBST < 50 mA, 2.0 V < VBAT <  
4.0 V, VBST =  
0010, BST_CLIM[3:0] = 1111  
IBST < 50 mA, 2.0 V < VBAT <  
5.2 V, VBST =  
0011, BST_CLIM[3:0] = 1111  
Boost minimum output  
voltage. Load applied after  
IBST < 30 mA, 2.0 V < VBAT <  
voltage settles. Note: average 8.0 V, VBST =  
VBST  
9
9.36  
output voltage depends on  
ripple.  
0100, BST_CLIM[3:0] = 1111  
IBST < 30 mA, 2.0 V < VBAT <  
9.0 V, VBST =  
0101, BST_CLIM[3:0] = 1111  
10  
10.4  
IBST < 30 mA, 2.0 V < VBAT <  
9.5 V, VBST =  
0110, BST_CLIM[3:0] = 1111  
10.08  
10.56  
10.96  
10.5  
11  
10.92  
11.44  
11.96  
IBST < 30 mA, 2.0 V < VBAT <  
10.0 V, VBST =  
0111, BST_CLIM[3:0] = 1111  
IBST < 30 mA, 2.0 V < VBAT <  
10.5 V, VBST =  
11.5  
1000, BST_CLIM[3:0] = 1111  
Boost minimum output  
voltage. Load applied after  
IBST < 20 mA, 2.0 V < VBAT <  
VBST  
voltage settles. Note: average 13.5 V, VBST =  
14.4  
15  
15.6  
V
output voltage depends on  
ripple.  
1001, BST_CLIM[3:0] = 1111  
VBST rising  
VBST falling  
96  
85  
VBST, PG  
Power good threshold  
%
Output current when boost is VBST = 0000, VCC = VBST <  
5
5
mA  
mA  
powering up. The boost  
output current is limited when  
VBST is below the specified  
voltage.  
2.7 V  
IBST, PWRUP  
VBST = 0001:1000, VCC =  
VBST < 3.0 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BST_CLIM[3:0] = 0000,  
VCC=2.6 V  
4
30  
70  
mA  
BST_CLIM[3:0] = 0001,  
VCC=2.6 V  
18  
18  
40  
50  
75  
90  
mA  
mA  
BST_CLIM[3:0] = 0010, 2.6 V  
< VCC < 3.65 V  
BST_CLIM[3:0] = 0011  
BST_CLIM[3:0] = 0100  
BST_CLIM[3:0] = 0101  
BST_CLIM[3:0] = 0110  
BST_CLIM[3:0] = 0111  
BST_CLIM[3:0] = 1000  
BST_CLIM[3:0] = 1001  
BST_CLIM[3:0] = 1010  
BST_CLIM[3:0] = 1011  
BST_CLIM[3:0] = 1100  
BST_CLIM[3:0] = 1101  
BST_CLIM[3:0] = 1110  
BST_CLIM[3:0] = 1111  
18  
43  
60  
80  
105  
130  
150  
190  
220  
275  
324  
384  
444  
504  
566  
640  
720  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
69  
100  
130  
160  
200  
240  
280  
320  
360  
400  
450  
500  
102  
133  
168  
198  
230  
262  
291  
324  
360  
398  
IBST, PEAK  
Inductor peak current setting  
Low-side MOSFET on  
resistance  
RDS, BST  
VCC = 3.3 V  
0
0.9  
1.18  
150  
Ω
Standby current. Current  
does not include bias block or IBST = 0, BST_EN=1.  
8 MHz oscillator.  
IBST,STANDBY  
100  
µA  
Recommended external  
capacitance  
CBST  
4.7  
33  
µF  
µH  
Recommended external  
inductance  
LBST  
Recommended inductor DC  
resistance  
RIND, BST  
TBST, PG  
0.5  
141  
0.8  
Ω
Boost power good deglitch  
time  
110  
172  
µs  
Boost activity monitor delay  
timeBST_nACT is set to 1  
when the boost converter has  
not switched for T_BST,ACT  
while BST_EN=1. Not tested  
in production.  
T_BSTACT[1:0] = 00  
T_BSTACT[1:0] = 01  
T_BSTACT[1:0] = 10  
0.1  
0.9  
9.4  
0.156  
1
0.2  
1.1  
TBST, ACT  
ms  
10  
10.6  
T_BSTACT[1:0] = 11  
94  
100  
10  
106  
Boost converter BST_ERR  
mask time. BST_ERR is  
masked for TBST,MASK after  
VBST or BST_EN is  
changed.  
TBST, MASK  
ms  
V
PHOTO CHAMBER INPUT STAGE AMPLIFIER  
PAMP_EN=1, Feedback  
network: 1.5M , 10pF  
VPDO  
Output voltage range  
0
0.5  
fPDIN, BW  
Unity Gain Bandwidth  
Input Offset Voltage  
1
5
MHz  
µV  
VPDIN, OFS  
-530  
-195  
240  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
10  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
50mV applied to PDP with  
1.5Mseries resistor. 1.5MΩ  
resistor connects PDN to  
PDO. Voltage measured  
between 50mV and PDO.  
VPDO, OFS  
Output Offset Voltage  
Chop Frequency  
-10  
10  
mV  
fPDIN, CHOP  
2
MHz  
µs  
Feedback network: 1.5M ,  
10pF. 1 nA to 10 nA applied  
from PDN to PDP. 0V  
reference  
0
0
30  
40  
Input amplifier settling time.  
Time between stepping the  
current and measuring 90%  
of the final value + 10% of the  
initial value at PDO  
TPDIN, SET  
Feedback network: 1.5M,  
5pF. 1.5Mconnected from  
PDP to PREF. 1 nA to 10 nA  
applied from PDN to PDP.  
PREF_SEL=1  
20  
40  
µs  
Active current. Current does  
not include bias block or 8  
MHz oscillator.  
IPDIN, ACT  
175  
210  
µA  
PHOTO CHAMBER GAIN STAGE AMPLIFIER  
VPDO1=10mV, VPDO2=20mV,  
PREF_SEL=0, PGAIN[1:0] =  
00  
4.75  
10.67  
19.4  
4.9  
11  
5.05  
11.33  
20.6  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
Closed Loop Gain  
VPDO1=10mV, VPDO2=20mV,  
PREF_SEL=0, PGAIN[1:0] =  
01  
Slope (VAOUT_PH2  
-
VAOUT_PH1)/(VSIG2-VSIG1).  
Apply VSIG1 from PREF to  
PDO and measure  
AOUT_PH. Apply VSIG2 from  
COTEST to PDO and  
measure AOUT_PH  
VPDO1=10mV, VPDO2=20mV,  
PREF_SEL=0, PGAIN[1:0] =  
10  
20  
VPDO1=10mV, VPDO2=20mV,  
PREF_SEL=0, PGAIN[1:0] =  
11  
33.95  
4.61  
35  
36.05  
4.89  
GPGAIN  
VSIG1=10mV, VSIG2=20mV,  
PREF_SEL=1, PGAIN[1:0] =  
00  
4.75  
10.4  
18.5  
Closed Loop Gain  
VSIG1=10mV, VSIG2=20mV,  
PREF_SEL=1, PGAIN[1:0] =  
01  
Slope (VAOUT_PH2  
-
10.09  
17.94  
31.28  
10.71  
19.06  
33.22  
VAOUT_PH1)/(VSIG2-VSIG1).  
Apply VSIG1 from PREF to  
PDO and measure  
AOUT_PH. Apply VSIG2 from  
PREF to PDO and measure  
AOUT_PH  
VSIG1=10mV, VSIG2=20mV,  
PREF_SEL=1, PGAIN[1:0] =  
10  
VSIG1=10mV, VSIG2=20mV,  
PREF_SEL=1, PGAIN[1:0] =  
11  
32.25  
5
FPGAIN, BW  
VPGAIN, OFS  
Unity Gain Bandwidth  
Input offset Voltage  
1
8
5
MHz  
mV  
-6  
Gain amplifier settling time.  
Time between stepping the  
PGAIN[1:0]=00. PDO  
TPGAIN, SET  
voltage and measuring 90% stepped from 3mV to 30mV.  
of the final value + 10% of the PREF_SEL=0  
initial value at AOUT_PH  
1.8  
40  
2.522  
70  
µs  
µA  
V
1.0 V input voltage,  
Active current. Current does  
PGAIN[1:0] = 00, PGAIN_EN  
not include bias block.  
IPGAIN, ACT  
= 1  
LED LDO  
LEDLDO output voltage  
range  
VLEDLDO  
7.5  
10  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
%
VLEDLDO,ACC LDO output accuracy  
VLEDLDO, RES LED LDO output step size  
I_LEDLDO = 0uA to 100uA  
-5  
5
0.5  
3
V
ILEDLDO, OUT  
ILEDLDO, Q  
LDO output current limit  
1
6
mA  
Quiescent current. Current  
does not include bias block.  
31  
60  
µA  
VBST=7V,  
VBST=7V,  
VLEDLDO, DROP LED LDO dropout voltage  
ILEDLDO=100u ILEDLDO=100u  
565  
1000  
mV  
A
A
LED DRIVER A  
NPDACA, RES  
Resolution  
8
Bits  
mV  
TJ = 27°C TEMPCOA[1:0] =  
00, PDAC_A = 00, RCSA=1  
kOhms, VDINA=3V  
274  
567  
252  
546  
164  
458  
54  
299  
323  
619  
301  
597  
213  
510  
104  
403  
TJ = 27°C TEMPCOA[1:0] =  
00, PDAC_A = FF, RCSA=1  
kOhms, VDINA=3V  
593  
277  
572  
188  
484  
79  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
TJ = 27°C TEMPCOA[1:0] =  
01, PDAC_A = 00, RCSA=1  
kOhms, VDINA=3V  
TJ = 27°C TEMPCOA[1:0] =  
01, PDAC_A = FF, RCSA=1  
kOhms, VDINA=3V  
VCSA  
CSA output voltage  
TJ = 27°C TEMPCOA[1:0] =  
10, PDAC_A = 00, RCSA=1  
kOhms, VDINA=3V  
TJ = 27°C TEMPCOA[1:0] =  
10, PDAC_A = FF, RCSA=1  
kOhms, VDINA=3V  
TJ = 27°C TEMPCOA[1:0] =  
11, PDAC_A = 00, RCSA=1  
kOhms, VDINA=3V  
TJ = 27°C TEMPCOA[1:0] =  
11, PDAC_A = FF, RCSA=1  
kOhms, VDINA=3V  
350  
376  
DAC step size  
VPDACA, STEP INL  
DNL  
Settling Time  
1.18  
mV  
LSB  
LSB  
µs  
-10  
10  
1.5  
5
-1.5  
tPDACA, SET  
1
TEMPCOA[1:0] = 00,  
PDAC_A[7:0] = 0x00, RCSA=1  
kOhms, VDINA=3V, TJ=0°C,  
50°C  
0.174  
0.208  
0.346  
0.520  
0.347  
0.521  
0.624  
1.039  
1.560  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
TEMPCOA[1:0] = 01,  
PDAC_A[7:0] = 0x00, RCSA=1  
kOhms, VDINA=3V, TJ=0°C,  
50°C  
0.416  
0.693  
1.040  
CSA temperature  
compensation coefficient  
KPDACA, COMP  
TEMPCOA[1:0] = 10,  
PDAC_A[7:0] = 0x00, RCSA=1  
kOhms, VDINA=3V, TJ=0°C,  
50°C  
TEMPCOA[1:0] = 11,  
PDAC_A[7:0] = 0x00, RCSA=1  
kOhms, VDINA=3V, TJ=0°C,  
50°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
12  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PLDO=3.6V, RCSA=820m,  
TEMPCOA[1:0]=11,  
PDAC_A[7:0]=0x28, TJ=27°C  
(I_LED158mA, 0.8% temp  
coefficient)  
300  
mV  
Dropout voltage. Voltage  
required between DINA and  
CSA for current regulation.  
VDINA, DROP  
PLDO=3.6V, RCSA=820m,  
TEMPCOA[1:0]=01,  
PDAC_A[7:0]=0x79, TJ=27°C  
(I_LED507mA, 0.1% temp  
coefficient)  
500  
550  
mV  
mA  
IDINA  
LED current  
Resolution  
0
LED DRIVER B  
NPDACB, RES  
8
Bits  
mV  
TJ = 27°C TEMPCOB[1:0] =  
00, PDAC_B = 00, RCSB=1  
kOhms, VDINB=3V  
271  
562  
250  
541  
163  
456  
55  
299  
327  
626  
305  
604  
216  
516  
108  
408  
TJ = 27°C TEMPCOB[1:0] =  
00, PDAC_B = FF, RCSB=1  
kOhms, VDINB=3V  
594  
277  
572  
189  
486  
81  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
TJ = 27°C TEMPCOB[1:0] =  
01, PDAC_B = 00, RCSB=1  
kOhms, VDINB=3V  
TJ = 27°C TEMPCOB[1:0] =  
01, PDAC_B = FF, RCSB=1  
kOhms, VDINB=3V  
VCSB  
CSB output voltage  
TJ = 27°C TEMPCOB[1:0] =  
10, PDAC_B = 00, RCSB=1  
kOhms, VDINB=3V  
TJ = 27°C TEMPCOB[1:0] =  
10, PDAC_B = FF, RCSB=1  
kOhms, VDINB=3V  
TJ = 27°C TEMPCOB[1:0] =  
11, PDAC_B = 00, RCSB=1  
kOhms, VDINB=3V  
TJ = 27°C TEMPCOB[1:0] =  
11, PDAC_B = FF, RCSB=1  
kOhms, VDINB=3V  
350  
379  
DAC step size  
VPDACB, STEP INL  
DNL  
Settling time  
1.18  
mV  
LSB  
LSB  
µs  
-10  
10  
1.5  
5
-1.5  
tPDACB, SET  
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TEMPCOB[1:0] = 00,  
PDAC[7:0] = 0x00, RCSB=1  
kOhms, VDINB=3V, TJ=0°C,  
50°C  
0.174  
0.347  
0.521  
mV/°C  
TEMPCOB[1:0] = 01,  
PDAC[7:0] = 0x00, RCSB=1  
kOhms, VDINB=3V, TJ=0°C,  
50°C  
0.208  
0.346  
0.520  
0.416  
0.693  
1.040  
0.624  
1.039  
1.560  
mV/°C  
mV/°C  
mV/°C  
CSB temperature  
compensation coefficient  
KPDACB, COMP  
TEMPCOB[1:0] = 10,  
PDAC[7:0] = 0x00, RCSB=1  
kOhms, VDINB=3V, TJ=0°C,  
50°C  
TEMPCOB[1:0] = 11,  
PDAC[7:0] = 0x00, RCSB=1  
kOhms, VDINB=3V, TJ=0°C,  
50°C  
PLDO=3.6V, RCSA=820m,  
TEMPCOB[1:0]=11,  
PDAC[7:0]=0x28, TJ=27°C  
(I_LED158mA, 0.8% temp  
coefficient)  
300  
mV  
Dropout voltage. Voltage  
required between DINB and  
CSB for current regulation.  
VDINB, DROP  
PLDO=3.6V, RCSA=820m,  
TEMPCOB[1:0]=01,  
PDAC[7:0]=0x79, TJ=27°C  
(I_LED507mA, 0.1% temp  
coefficient)  
500  
550  
mV  
mA  
IDINB  
LED current  
0
CO TRANSIMPEDANCE AMPLIFIER  
RI, CO  
CO input resistance  
COSWRI = 1  
0.7  
1
1.5  
kΩ  
kΩ  
COGAIN[1:0] = 00,  
COSWRG = 1  
770  
1100  
1430  
COGAIN[1:0] = 01,  
COSWRG = 1  
210  
350  
560  
0
300  
500  
800  
390  
650  
1040  
0.6  
kΩ  
kΩ  
kΩ  
V
RF, CO  
CO feedback resistance  
COGAIN[1:0] = 10,  
COSWRG = 1  
COGAIN[1:0] = 11, COSWRG  
= 1  
CO amplifier input voltage  
(COP pin)  
VIN, COP  
VIN, CON  
VOFFS, CO  
VOUT, COO  
ICO, Q  
CO amplifier input voltage  
(CON pin)  
0
0.6  
V
CO amplifier input offset  
voltage  
-130  
0.1  
94  
300  
2
µV  
V
CO amplifier output voltage  
(COO pin)  
CO amplifier quiescent  
current  
0.63  
2.1  
µA  
CO amplifier unity gain  
bandwidth  
fCO, BW  
fCO, CHOP  
RCOO  
5
3.8  
70  
12  
4
20  
4.2  
kHz  
kHz  
kΩ  
CO amplifier chop frequency  
CO amplifier output  
resistance  
COSWRO = 1  
95  
130  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
14  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COSWREF=1, COREF[1:0] =  
00, TJ = 27°C  
0.89  
1.14  
1.47  
COSWREF=1, COREF[1:0] =  
00, TJ = -40°C to 85°C  
0.86  
1.75  
1.7  
1.14  
2.23  
2.23  
3.23  
3.23  
4.43  
4.43  
0.76  
0.37  
1.66  
2.7  
COSWREF=1, COREF[1:0] =  
01, TJ = 27°C  
COSWREF=1, COREF[1:0] =  
01, TJ = -40°C to 85°C  
2.95  
4
CO amplifier reference  
voltage  
VCOPREF  
mV  
COSWREF=1, COREF[1:0] =  
10, TJ = 27°C  
2.6  
COSWREF=1, COREF[1:0] =  
10, TJ = -40°C to 85°C  
2.55  
3.45  
3.4  
4.24  
5.38  
5.48  
1.1  
COSWREF=1, COREF[1:0] =  
11, TJ = 27°C  
COSWREF=1, COREF[1:0] =  
11, TJ = -40°C to 85°C  
COTEST pull up FET  
resistance  
RCOTEST, PU  
RCOTEST, PD  
0.36  
0.25  
kΩ  
kΩ  
COTEST pull-down FET  
resistance  
0.82  
INTERCONNECT  
INT_DIR = 1, INT_MCU = 0  
V, VBST = 11.5 V, INT_UNIT  
= 0.8 V  
4
5
9
9
4
4
4
1
7.35  
14.7  
19.4  
19.0  
7.6  
15  
30  
30  
30  
15  
15  
13  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
INT_DIR = 1, INT_MCU = 0  
V, VBST = 11.5 V, INT_UNIT  
= 2.0 V  
ISNK, INT_UNIT Interconnect sink current  
INT_DIR = 1, INT_MCU = 0  
V, VBST = 11.5 V, INT_UNIT  
= 6.0 V  
INT_DIR = 1, INT_MCU = 0  
V, VBST = 11.5 V, INT_UNIT  
= 10 V  
INT_DIR = 1, INT_MCU =  
VMCU, VBST = 11.5  
V, INT_UNIT = 0.8 V  
INT_DIR = 1, INT_MCU =  
VMCU, VBST = 11.5  
V, INT_UNIT = 2.0 V  
7.6  
ISRC, INT_UNIT Interconnect source current  
INT_DIR = 1, INT_MCU =  
VMCU, VBST = 11.5  
V, INT_UNIT = 6.0 V  
7.0  
INT_DIR = 1, INT_MCU =  
VMCU, VBST = 11.5  
V, INT_UNIT = 10 V  
1.6  
INT_DIR = 0, INT_DEG[1:0] =  
00  
0
0.090  
0.9  
0
0.125  
1
0.065  
0.160  
1.1  
INT_DIR = 0, INT_DEG[1:0] =  
01  
tINT, DEG  
Interconnect deglitch time  
ms  
uA  
INT_DIR = 0, INT_DEG[1:0] =  
10  
INT_DIR = 0, INT_DEG[1:0] =  
11  
19.4  
20  
20.6  
0.5  
IINT, Q  
Interconnect standby current INT_DIR = 0  
0.25  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Interconnect input high  
threshold voltage  
VINT_UNIT, IHI  
VINT_UNIT, IHI  
VINT_UNIT, ILO  
VINT_UNIT, ILO  
INT_HYS = 0  
1.3  
2.0  
2.7  
V
Interconnect input high  
threshold voltage  
INT_HYS = 1  
INT_HYS = 0  
INT_HYS = 1  
1.3  
0.5  
1.2  
2.0  
0.8  
1.8  
2.7  
1.1  
2.7  
V
V
V
Interconnect low threshold  
voltage  
Interconnect low threshold  
voltage  
INT_HYS = 0  
INT_HYS = 1  
INT_PD=1  
0.7  
0.01  
65  
1.2  
0.2  
107  
41  
1.7  
0.3  
165  
56  
V
V
VINT_UNIT, HYS Interconnect input hysteresis  
kΩ  
MΩ  
Interconnect input pulldown  
RINT_UNIT, PD  
resistance  
INT_PD=0  
3.5  
HORN DRIVER  
VBST = 11.5 V, IHORNSL = –  
16 mA  
VOH, HORNSL  
VOL, HORNSL  
HORNSL output high voltage  
HORNSL output low voltage  
11  
11  
11.3  
0.1  
V
V
V
V
VBST = 11.5 V, IHORNSL = 16  
mA  
0.5  
VBST = 11.5 V, IHORNBR = –  
16 mA  
VOH, HORNBR HORNBR output high voltage  
11.3  
0.1  
VBST = 11.5 V, IHORNBR = 16  
mA  
VOL, HORNBR  
HORNBR output low voltage  
0.5  
20  
VBST=11.5V, no load,  
HORNSEL=0, HORNFB from  
HORNSL rise time, 2 terminal 0 to VMCU. Time from  
VHORNSL=1.15V to  
tR, HORNSL2  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
VHORNSL=10.35V  
VBST=11.5V, no load,  
HORNSEL=0, HORNFB from  
HORNSL fall time, 2 terminal VMCU to 0. Time from  
VHORNSL=10.35V to  
tF, HORNSL2  
tR, HORNBR2  
tF, HORNBR2  
20  
20  
20  
VHORNSL=1.15V  
VBST=11.5V, no load,  
HORNSEL=0, HBEN from 0  
HORNBR rise time, 2  
to VMCU. Time from  
terminal  
VHORNBR=1.15V to  
VHORNBR=10.35V  
VBST=11.5V, no load,  
HORNSEL=0, HBEN from  
HORNBR fall time, 2 terminal VMCU to 0. Time from  
VHORNBR=10.35V to  
VHORNBR=1.15V  
VBST=11.5V, CHORNSL=82nF  
to GND, HORNSEL=1,  
HORN_THR=00, HORNFB  
from 0V to 3V. Time from  
VHORNSL=1.15V to  
VHORNSL=10.35V  
tR, HORNSL3  
HORNSL rise time, 3 terminal  
2.9  
2.3  
5
5
µs  
µs  
VBST=11.5V, CHORNSL=82nF  
to GND, HORNSEL=1,  
HORN_THR=00, HORNFB  
tF, HORNSL3  
HORNSL fall time, 3 terminal  
from 3V to 0V. Time from  
VHORNSL=10.35V to  
VHORNSL=1.15V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
16  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBST=11.5V, CHORNSL=82nF  
to GND, HORNSEL=1,  
HORN_THR=00, HORNFB  
from 3V to 0V. Time from  
VHORNBR=1.15V to  
HORNBR rise time, 3  
terminal  
tR, HORNBR3  
3.1  
5
µs  
VHORNBR=10.35V  
VBST=11.5V, CHORNSL=82nF  
to GND, HORNSEL=1,  
HORN_THR=00, HORNFB  
from 0V to 3V. Time from  
VHORNBR=10.35V to  
tF, HORNBR3  
HORNBR fall time, 3 terminal  
2.5  
5
µs  
VHORNBR=1.15V  
Horn driver input high  
voltage. HBEN and HORNFB  
VBST = 11.5 V, HORNSEL =  
0
VIH2, HORNFB  
VIL2, HORNFB  
0.35×VMCU  
0.25×VMCU  
0.7× VMCU  
0.65×VMCU  
V
V
Horn driver input low voltage. VBST = 11.5 V, HORNSEL =  
HBEN and HORNFB  
0
Horn driver output high delay  
mismatch. Difference in  
output delay between  
HORNFB to HORNSL and  
HBEN to HORNBR  
HORNSEL=0, VBST=11.5V,  
HORNFB and HBEN switch  
from 0 to VMCU.  
tSKEW,HIGH  
0
0
1
2
10  
10  
ns  
ns  
Horn driver output low delay  
mismatch. Difference in  
output delay between  
HORNFB to HORNSL and  
HBEN to HORNBR  
HORNSEL=0, VBST=11.5V,  
HORNFB and HBEN switch  
from VMCU to 0.  
tSKEW,LOW  
HORNSEL=0, VBST=11.5V,  
HORNFB, HBEN=0,  
HORN_EN=1. Current from  
VBST, VCC pins measured  
0
0
80.1  
65  
150  
150  
uA  
uA  
Horn driver quiescent  
current. Current does not  
include bias block.  
IHORN,Q  
HORNSEL=1, VBST=11.5V,  
HORNFB=0, HBEN=1,  
HORN_EN=1. Current from  
VBST, VCC pins measured  
ANALOG MULTIPLEXER  
Multiplexer buffer input signal  
voltage range  
VMUX  
AMUX_BYP=0  
0.05  
0.99  
-8  
2
1.01  
8
V
GMUX, GAIN  
VMUX, OFFS  
Multiplexer bufffer output gain AMUX_BYP=0  
1
V/V  
mV  
Multiplexer buffer offset  
AMUX_BYP=0  
voltage  
-0.5  
AMUX_BYP=0, AMUX_SEL  
stepped from 000 to 011 with  
PDO=2V, PAMP_EN=0. Time  
until AMUX reaches 99% of  
its final value  
Multiplexer buffer enable  
settling time  
tMUX, EN  
0
0
10  
15  
15  
us  
us  
AMUX_BYP=0,  
AMUX_SEL=011, PDO  
stepped from 50mV to 2V,  
PAMP_EN=0. Time until  
AMUX reaches 99% of its  
final value  
Multiplexer buffer input step  
settling time  
tMUX, STEP  
10  
1
fMUX, BW  
Multiplexer bandwidth  
AMUX_BYP=0  
AMUX_BYP=0  
0.5  
25  
10  
MHz  
uA  
IMUX, OUT  
Multiplexer output current  
10  
Multiplexer quiescent  
current. Current does not  
include bias block.  
IMUX, Q  
AMUX_BYP=0  
8.3  
50  
uA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Multiplexer buffer output  
capacitor required for stability  
CMUX  
AMUX_BYP=0  
150  
1000  
pF  
BATTERY TEST  
VBST = 4.5 V to 11.5  
V, IBATTEST = 000  
9.15  
11.13  
12.94  
14.65  
16.3  
10  
12  
14  
16  
18  
20  
10.76  
12.64  
14.89  
17.29  
19.63  
22.06  
mA  
mA  
mA  
mA  
mA  
mA  
VBST = 4.5 V to 11.5  
V, IBATTEST = 001  
VBST = 4.5 V to 11.5  
V, IBATTEST = 010  
IBATTEST  
Battery test load current.  
VBST = 4.5 V to 11.5  
V, IBATTEST = 011  
VBST = 4.5 V to 11.5  
V, IBATTEST = 100  
VBST = 4.5 V to 11.5  
V, IBATTEST = 101  
17.96  
Battery test rise time. Time  
from enabling battery test  
until 90% of target current is  
reached  
tBATTEST,RISE  
VBST=10V, IBATTEST=101  
VBST=10V, IBATTEST=101  
10  
10  
us  
us  
Battery test fall time. Time  
from disabling battery test  
until 10% of initial current is  
reached  
tBATTEST,FALL  
OSCILLATOR, REFERENCE SYSTEM  
Oscillator frequency  
fOSC8  
8
MHz  
%
Frequency accuracy  
TA = -10°C to 70°C  
TA = -10°C to 70°C  
3
3  
Low-power Oscillator  
32  
kHz  
frequency  
fOSC32  
Frequency accuracy  
3
%
s
3  
TTIMEOUT  
IREF0P3, Q  
Error timeout time  
0.9  
1
1.1  
VCC current difference  
between REF0P3_EN=0 and  
REF0P3=1. IREF0P3=0 µA  
REF0P3 buffer quiescent  
current  
0.38  
0.76  
1.5  
µA  
nF  
ms  
REF0P3 output capacitor  
required for stability  
CREF0P3  
0.7  
1
1
From REF0P3 enabled to  
99% of final output voltage.  
CREF0P3=1nF, IREF0P3=0 µA  
TREF0P3, SET  
REF0P3 settling time  
1.8  
IREF0P3 = 10 µA  
IREF0P3 = -25 µA  
270  
270  
300  
300  
330  
330  
mV  
mV  
VREF0P3, OUT REF0P3 output voltage  
VCC_LOW monitor quiescent  
IVCCLOW,Q  
current  
0.9  
2
uA  
IO BUFFERS  
LEDEN, CSEL, INT_MCU,  
GPIO  
VIO, ILO  
VIO, IHI  
IO buffer input low threshold  
IO buffer input high threshold  
0.3×VMCU  
0.3×VMCU  
0.7× VMCU  
0.7× VMCU  
V
V
LEDEN, CSEL, INT_MCU,  
GPIO  
LEDEN  
HBEN  
CSEL  
100  
100  
100  
nA  
nA  
nA  
IO buffer input leakage  
current  
IIO, LEAK  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
18  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INT_MCU, GPIO. IIO = 3 mA,  
VMCU = 1.8 V  
0
0.19  
0.6  
V
VIO, OL  
IO buffer output low-level  
INT_MCU, GPIO. IIO = 1 mA,  
VMCU = 1.5 V  
0
0
0
0.20  
0.30  
0.37  
0.6  
0.6  
0.6  
V
V
V
INT_MCU, GPIO. IIO = -3 mA,  
VMCU = 1.8 V  
IO buffer output high-level.  
Spec is the voltage drop from  
VMCU (i.e. VMCU - VOH)  
VIO, OH  
INT_MCU, GPIO. IIO = -1 mA,  
VMCU = 1.5 V  
LEDEN, CSEL  
HBEN  
2
2
2
10  
10  
10  
pF  
pF  
pF  
CIN, IO  
Input capacitance  
INT_MCU, GPIO  
IO buffer input pulldown  
resistor  
RIO,PD  
INT_MCU, GPIO  
0.8  
10  
50  
MΩ  
THERMAL WARNING  
TWARNING  
Thermal trip point  
110  
C
THERMAL SHUTDOWN  
Thermal trip point  
125  
15  
TSHTDWN  
C
Thermal hysteresis  
5
20  
Thermal error mask time.  
OTS_ERR is masked for  
tOTS,MASK after device fully  
powers up or OTS_EN set to  
1
tOTS,MASK  
300  
350  
us  
I2C IO  
VI2C,IL  
VI2C,IH  
Low-level input voltage  
High-level input voltage  
-0.5  
0.3 × VMCU  
V
V
0.7 × VMCU  
Hysteresis of Schmitt trigger  
inputs  
VI2C,HYS  
0.05 × VMCU  
V
V
V
3 mA sink current; VMCU  
>2V  
0
0
0.4  
VI2C,OL  
Low-level output voltage  
2 mA sink current; VMCU  
< 2V  
0.2 × VMCU  
VOL = 0.4 V  
VOL = 0.6 V  
2.5  
4
mA  
mA  
µA  
pF  
II2C,OL  
Low-level output current  
II2C,IN  
Input current to each I/O pin 0.1VMCU < VI < 0.9VMCUmax  
Capacitance for each I/O pin  
-10  
10  
10  
CI2C,IN  
From VIHmin to VILmax  
Standard-Mode  
,
250  
250  
ns  
ns  
tI2C,OF  
Output fall time  
From VIHmin to VILmax, Fast-  
Mode  
Pulse width of spikes that  
must be suppressed by the  
input filter  
tI2C,SP  
0
50  
ns  
I2C BUS LINES  
SCL clock frequency,  
Standard-Mode  
0
0
100  
400  
kHz  
kHz  
fSCL  
SCL clock frequency Fast-  
Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
hold time (repeated) START After this period, the first  
condition, Standard-Mode clock pulse is generated.  
hold time (repeated) START After this period, the first  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4
µs  
tHD;STA  
0.6  
4.7  
1.3  
4
µs  
µs  
µs  
µs  
µs  
condition, Fast-Mode  
clock pulse is generated.  
LOW period of the SCL clock,  
Standard-Mode  
tSCL ,LOW  
LOW period of the SCL clock,  
Fast-Mode  
HIGH period of the SCL  
clock, Standard-Mode  
tSCL,HIGH  
HIGH period of the SCL  
clock, Fast-Mode  
0.6  
set-up time for a repeated  
START condition, Standard-  
Mode  
4.7  
0.6  
µs  
µs  
tSU;STA  
set-up time for a repeated  
START condition, Fast-Mode  
tHD;DAT  
tHD;DAT  
tHD;DAT  
tHD;DAT  
CBUS compatible masters  
I2C-bus devices  
5
0
0
0
µs  
µs  
µs  
µs  
data hold time, Standard-  
Mode  
CBUS compatible masters  
I2C-bus devices  
data hold time, Fast-Mode  
data set-up time, Standard-  
Mode  
250  
100  
ns  
ns  
ns  
tSU;DAT  
data set-up time, Fast-Mode  
rise time of both SDA and  
SCL signals, Standard-Mode  
1000  
300  
300  
300  
tI2C,RISE  
rise time of both SDA and  
SCL signals, Fast-Mode  
20  
ns  
ns  
ns  
µs  
µs  
fall time of both SDA and SCL  
signals, Standard-Mode  
tI2C,FALL  
fall time of both SDA and SCL  
signals, Fast-Mode  
20 × (VMCU /  
5.5 V)  
set-up time for STOP  
condition, Standard-Mode  
4
tSU;STO  
set-up time for STOP  
condition, Fast-Mode  
0.6  
bus free time between a  
STOP and START condition,  
Standard-Mode  
4.7  
1.3  
µs  
µs  
tBUF  
bus free time between a  
STOP and START condition,  
Fast-Mode  
data valid time, Standard-  
Mode  
3.45  
0.9  
µs  
µs  
µs  
tVD;DAT  
data valid time, Fast-Mode  
data valid acknowledge time,  
Standard-Mode  
3.45  
tVD;ACK  
data valid acknowledge time,  
Fast-Mode  
0.9  
400  
250  
µs  
pF  
pF  
capacitive load for each bus  
line, Standard-Mode  
CBUS  
capacitive load for each bus  
line, Fast-Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
20  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
noise margin at the LOW  
level  
for each connected device  
(including hysteresis)  
VNL  
VNH  
0.1 × VMCU  
V
noise margin at the HIGH  
level  
for each connected device  
(including hysteresis)  
0.2 × VMCU  
V
(1) MCU LDO output voltage on power-up is determined by the MCUSEL pin state.  
6.6 Typical Characteristics  
TA = 27°C, VCC = 3.65 V  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
32  
26  
22  
16  
16  
13  
10  
7
5
5
1
1
1
1
1
1
0
0
Current (µA)  
Current (µA)  
µ = 63.44 µA  
N = 99 Units  
σ= 1.13 µA  
µ = 175.41 µA  
N = 99 Units  
σ= 3.25 µA  
6-2. Bias Block Current  
6-1. 8 MHz Oscillator Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
7 Typical Characteristics  
TA = 27°C, VCC = 3.65 V  
40  
35  
30  
25  
35  
30  
25  
20  
15  
10  
5
32  
26  
22  
20  
16  
16  
15  
13  
10  
10  
7
5
5
5
0
1
1
1
1
1
1
0
Current (µA)  
Current (µA)  
µ = 63.44 µA  
N = 99 Units  
σ= 1.13 µA  
µ = 175.41 µA  
N = 99 Units  
σ= 3.25 µA  
7-2. Bias Block Current  
7-1. 8 MHz Oscillator Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
22  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8 Detailed Description  
8.1 Overview  
The TPS8802 integrates a boost converter, analog supply LDO, microcontroller supply LDO, photoelectric  
chamber analog front end (AFE), carbon monoxide sensor AFE, interconnect driver, piezo horn driver, analog  
multiplexer, and digital core. The high integration greatly reduces component count in smoke alarms and carbon  
monoxide alarms. The TPS8802 can be powered from a variety of sources:  
9-V battery  
3-V battery  
2-V to 15-V DC supply  
DC supply with battery backup  
The two LED drivers have highly configurable temperature compensation to support IR and blue LEDs over a  
wide range of currents. The wide bandwidth of the photo-amplifier saves power due to reduced LED on-time.  
The CO amplifier has integrated gain resistors. The horn driver is compatible with two-terminal or three-terminal  
piezo horns, and the three-terminal self-resonant mode is tunable to maximize piezo loudness. The wired  
interconnection driver allows multiple smoke alarm units to communicate alarm conditions. Each block is highly  
configurable with the digital core I2C interface, supporting on-the-fly adjustment of amplifier gains, regulator  
voltages, and driver currents. Digital features such as sleep mode, under-voltage boost enabling, and one-time  
boost charging are designed to reduce power consumption for the 10-year battery alarms. Configurable status  
and interrupt signal registers alert the MCU of fault conditions such as under-voltage, over-temperature, and  
interconnection alerts.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.2 Functional Block Diagram  
BST_EN  
VBST  
VLX  
VCC  
Power LDO  
Boost  
PGND  
Under-Voltage  
Monitor  
PLDO  
To Digital Core  
VBST  
Horn Driver  
PGND  
VINT  
HORNFB  
HORNSL  
HORNBR  
VBST  
Internal LDO  
2.3V  
HORN_SEL  
HORN_EN  
Battery Test  
Load  
VMCU  
MCU LDO  
1.5V to 3.3V  
PGND  
MCUSEL  
LED Driver A  
DINA  
Temperature  
Compensated  
DAC  
INT_UNIT  
INT_MCU  
INT_DIR  
+
VBST  
VINT  
Interconnect  
Interface  
œ
CSA  
PDAC_A  
SCL  
LED Driver B  
DINB  
SDA  
CSEL  
VMCU  
I2C Interface  
Temperature  
Compensated  
DAC  
+
œ
CSB  
PDAC_B  
GPIO  
HBEN  
LEDEN  
VINT  
Digital Core  
COTEST_EN  
PREF_SEL  
PREF  
Photo Reference  
and CO Test  
DGND  
Photo Amplifier  
AMUX_SEL  
AMUX_BYP  
AOUT_PH  
PDO  
AMUX  
AMUX  
œ
COO  
PDO  
+
PDN  
PDP  
œ
CO Amplifier  
COO  
+
CON  
COP  
œ
+
VBST  
REF0P3  
REF0P3_EN  
LEDLDO_EN  
LEDLDO  
300mV  
Reference  
LED LDO  
AGND  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
24  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3 Feature Description  
8.3.1 System Power-up  
VCC<VPWRDOWN  
Shutdown  
Active  
VCC>VPWRUP  
INTLDO enabled  
Registers loaded  
Set BST_EN=1  
Set VBST[0:3] =1h  
Wait for BST_PG=1  
BST_PG=1  
MCUSEL sense  
Write to VBST[0:3] and  
VMCUSET[0:1]  
Wait for VBST_PG=1  
BST_PG=1  
MCU_PG=1  
Enable MCU LDO  
Wait for MCU_PG=1  
Power Up  
8-1. Power-up State Diagram  
The TPS8802 can power-up from a battery above 2V connected to the input of the boost converter. This is  
achieved with an automatic power-up sequence. When the VCC voltage exceeds the VPWRUP threshold, the  
device initializes for 6 ms. After the initialization, the boost converter is enabled and set to 3.8V. In a 3V battery  
powered system where VCC is connected to VBST, this raises the VCC and VBST voltage to provide power to  
the internal digital and analog blocks. The VBST voltage must exceed the power-good threshold for the 3.8V  
setting (typically 95% of its target voltage) for the power-up sequence to proceed. The MCUSEL pin is then  
sensed for 2 ms to determine the MCULDO voltage and program the VMCUSET and VBST register accordingly.  
8-1 indicates the VMCU and VBST setting for each MCUSEL configuration. After VBST reaches its power-  
good threshold again, the MCULDO is enabled and the system waits for VMCU to reach its power-good  
threshold (typically 85% of its target voltage). The device enters its active state after VMCU reaches its power-  
good threshold. This sequence of events is outlined in 8-1 and 8-2.  
If the boost converter is not being used, the same power-up sequence occurs, but the boost converter is not able  
to raise the voltage higher than what is supplied. The minimum VCC and VBST voltage depends on the VMCU  
voltage. If the MCUSEL pin sets VMCU to 1.5 V, 1.8 V, or 2.5 V, supply over 3.8V on VBST. If the MCUSEL pin  
sets VMCU to 3.3 V, supply over 4.7 V on VBST. If VMCU is set to 1.5 V, 1.8 V, or 2.5 V, provide over 2.6 V to  
VCC for power-up. If VMCU is set to 3.3 V, provide over 3.6 V to VCC for power-up. Higher VCC voltage may  
required depending on the VMCU load current.  
8-1. VMCU and VBST Power-up Voltage  
MCUSEL  
VMCU (V)  
VBST (V)  
Connection  
620-Ωto GND  
Short to GND  
Short to VINT  
1.5  
1.8  
2.5  
2.7  
2.7  
3.8  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8-1. VMCU and VBST Power-up Voltage  
(continued)  
VMCU (V)  
3.3  
MCUSEL  
Connection  
VBST (V)  
330-pF to GND  
4.7  
VBAT  
VPWRUP  
VBST_PG  
VBST_PG  
VBST  
tBST_PG  
tBST_PG  
BST_PG  
MCUSEL_EN  
ttMCUSEL  
t
VMCU  
VMCULDO,PG  
tMCULDO_PG  
MCU_PG  
8-2. Power-up Timing Diagram  
8.3.2 LDO Regulators  
8.3.2.1 Power LDO Regulator  
The power LDO is a voltage clamp that supplies many of the internal blocks in the TPS8802, including the  
internal LDO and MCU LDO. Because the power LDO is designed to clamp the VCC voltage, it is not precise  
and varies with VCC voltage and load. The power LDO shorts VCC and PLDO when the VCC voltage is below  
approximately 5 V, and regulates VCC when VCC is above approximately 5 V. The power LDO has a dropout  
voltage of approximately 1 V when it is regulating VCC. When the power LDO transitions from shorting to  
regulating, the PLDO voltage drops by approximately 1 V. Connect a 1-µF capacitor to PLDO to stabilize the  
PLDO voltage.  
The power LDO is designed for use by the device and can be used to supply external circuitry that has a voltage  
limit of 7 V. The power LDO can also be used to supply the IR or blue LED anode through a diode.  
8.3.2.2 Internal LDO Regulator  
The internal LDO (INT LDO) regulator powers the TPS8802 amplifiers and digital core with a stable 2.3 V supply.  
Connect a 1-µF capacitor to VINT to stabilize the output. The INT LDO is always enabled when the device is  
powered. The INT LDO can be used to supply external circuitry. It is not recommended to power noisy or  
switching loads with INT LDO, as any noise on VINT couples to the internal amplifiers and can generate noise.  
The INT LDO can be used in the CO connectivity test circuitry and the photo reference circuitry.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
26  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.2.3 Microcontroller LDO Regulator  
The microcontroller LDO (MCU LDO) powers the internal digital input and output buffers (IO buffers) and  
external MCU that controls and programs the TPS8802. Connect a 1-µF capacitor to VMCU to stabilize the  
output. The MCU LDO can be programmed to output 1.5 V, 1.8 V, 2.5 V, and 3.3 V. The default MCU LDO  
setting is determined by the configuration on the MCUSEL pin (see 8-1). After the device is powered, the  
MCU LDO voltage can be changed using the VMCUSET register. The MCU LDO can also be disabled using the  
MCU_DIS register.  
The MCU LDO output VMCU powers the IO buffers on SCL, SDA, CSEL, INT_MCU, GPIO, LEDEN, HBEN, and  
HORNFB. The IO buffers level shift signals from the digital core to a level suitable for the microcontroller and  
signals from the microcontroller to a level suitable for the digital core. In general, connect VMCU to the  
microcontroller supply voltage to guarantee logic level compatibility. If the MCU LDO is disabled, connect an  
external supply to VMCU. This external supply can be a 3-V battery. Connecting a 3-V battery directly to VMCU  
allows the MCU LDO to be disabled, saving some power in the system. When a 3-V battery is connected to  
VMCU, set the MCU LDO to 1.5 V or 1.8 V on power-up. The battery voltage overrides the MCU LDO without  
excess power draw.  
The MCU LDO has a power good signal MCU_PG that indicates whether the MCU LDO is above 85% the  
regulation voltage. A 125-µs deglitch filter prevents noise from affecting the MCU_PG signal. If MCU_PG is low  
after 10 ms of changing the MCU LDO voltage or enabling the MCU LDO, the MCU_ERR flag is set high. If the  
MCU_ERR flag is high and MCUERR_DIS is low, the MCU LDO fault state is entered. See 8.4.2.1 section for  
more information.  
8.3.3 Photo Chamber AFE  
PDO  
To AMUX  
10 pF  
1.5 M  
PDN  
PDP  
VINT  
VINT  
œ
+
PAMP_EN  
+
To AMUX  
PGAIN_EN  
Photodiode  
œ
PGAIN[1:0]  
1.5 Mꢀ  
10 pF  
Photo Reference  
5mV  
1
0
Connect if  
PGAIN set to  
01, 10, or 11  
+
50mV  
œ
PREF_SEL  
VINT  
470 k  
PGAIN_EN  
PAMP_EN  
PREF  
To CO Amp  
Test  
8-3. Photo Amplifier Circuit  
The TPS8802 photo amplifier connects to a photoelectric chamber photodiode and has two stagesan input  
stage and gain stage. When the photoelectric chamber LED is enabled, light scatters off smoke particles in the  
chamber into the photodiode, producing a signal proportional to the smoke concentration. The output of each  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
photo amplifier stage is connected to the AMUX for ADC reading. This configuration provides high bandwidth  
and dynamic range for the photodiode signal chain as the gain stage is on-the-fly adjustable.  
8.3.3.1 Photo Input Amplifier  
The input stage is a wide-bandwidth, low-offset op-amp designed for amplifying photodiode currents. In 8-3,  
negative feedback causes the photodiode to conduct with zero voltage bias. The photo-current flows through  
resistors connected from PDP to a reference (GND or PREF) and PDN to PDO. These two resistors determine  
the gain of the input stage. The same value must be used for these two resistors because PDP and PDN  
leakage is amplified by these resistors. Capacitors installed in parallel with the resistors compensate the op-amp  
feedback loop for optimal response. The optimal compensation capacitance depends on the photodiode's  
capacitance. The compensation capacitance should be adjusted to minimize settling time without having  
overshoot on the output of the amplifier. Overshoot adds unnecessary noise in the output. The input stage  
outputs through the PDO pin, which is internally connected to the integrated photo gain stage and AMUX. When  
measuring the photo amplifier output, disable the boost converter to reduce the noise on the photo amplifier's  
output.  
The input stage has the option of being referenced to GND or PREF. PREF is a reference that is normally pulled  
to VINT and is set to 50 mV when PREF_SEL = 1 and either PAMP_EN = 1 or PGAIN_EN = 1. The 50 mV  
reference keeps the input amplifier in a linear operating region when no signal is applied, improving the speed  
and zero-current sensitivity of the amplifier. It is generally recommended to set PREF_SEL=1 and connect the  
external gain resistor and compensation capacitor to PREF. Connect a 100-pF filtering capacitor from PREF to  
GND to reduce high frequency noise on PREF.  
When measuring the photo amplifier output, it is recommended to take multiple ADC samples. Averaging ADC  
samples approximately reduces the noise by the square root of the amount of samples. The power consumed in  
a photoelectric smoke measurement is dominated by the LED power consumption, which is proportional to the  
LED on-time multiplied by the LED current. To maximize the signal-to-noise ratio for a given power level, set the  
LED pulse length to approximately twice the photo amplifier rise time and take multiple ADC samples while the  
output is stabilized.  
In systems where the compensation capacitor is selected for a slower rise time and lower noise, take multiple  
ADC samples around the peak of the photo amplifier output.  
8.3.3.2 Photo Gain Amplifier  
The high-bandwidth, low noise photo gain amplifier connects to the output of the photo input stage to further  
amplify the photodiode signal. The gain amplifier is adjustable on-the-fly using the I2C interface. The gain  
amplifier has four settings:  
5x (4.75x if PREF_SEL=1)  
11x (10.4x if PREF_SEL=1)  
20x (18.5x if PREF_SEL=1)  
35x (32.3x if PREF_SEL=1)  
The gain stage has the option of being referenced to GND or PREF with the PREF_SEL bit. When  
PREF_SEL=1, a 5 mV reference offset counteracts the gain stage's input offset voltage to keep the gain stage  
output above 50 mV. The 5 mV reference offset is amplified by the gain stage, causing the output to change  
when the gain is changed, even when there is zero photo-current. It is recommended to connect a 470 kΩ  
resistor from PREF to VINT if the gain is set to 11x, 20x, or 35x. This resistor changes the PREF voltage to 70  
mV and prevents the output from dropping below 50 mV in worst-case conditions. Referencing the gain stage to  
PREF causes the 50 mV reference to change with signal level due to the finite impedance of the reference.  
Because the reference is changing with the signal level, the gain is slightly less with PREF_SEL=1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
28  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.4 LED Driver  
VBST  
LEDLDO  
IR LED  
VBAT  
Blue LED  
LEDLDO  
LEDLDO_EN  
LEDLDO[0:2]  
LED LDO  
1 k  
DINA  
CSA  
PLDO  
Blue/IR  
LED  
TEMPCOA[1:0]  
PDAC_A[7:0]  
LED  
DAC  
+
100  
F
GPIO[0:2]  
R
CSA  
PGND  
0.1  
To MCU  
To MCU  
GPIO  
GPIO  
Logic  
IR LED  
VBAT  
Blue LED  
LEDLDO  
LEDEN  
LEDPIN_EN  
LEDSEL=0  
1 k  
DINB  
CSB  
Blue/IR  
LED  
PLDO  
TEMPCOB[1:0]  
PDAC_B[7:0]  
LED  
DAC  
+
100  
F
R
CSB  
PGND  
0.1  
8-4. LED Driver Circuit  
8.3.4.1 LED Current Sink  
The two LED drivers are current regulated, temperature compensated, and adjustable with an 8-bit DAC. When  
the LED driver is enabled, the CSA voltage is regulated, and the current through the CSA resistor also flows  
through the LED and the DINA pin. A current sense resistor connects to the CSA pin. The LED driver is enabled  
with the LEDEN pin and LEDPIN_EN bit. Both the pin and bit must be high for the LED driver to operate. The  
LEDSEL bit switches which driver the LEDEN signal connects to. The GPIO pin can be configured to enable  
either LED driver.  
The LED driver is temperature compensated to account for reduced LED intensity with increasing temperature.  
Four temperature compensation settings are available to support a variety of IR and blue LEDs. Temperature  
compensation is implemented by varying the CSA regulated voltage with temperature, thus the temperature  
compensation also depends on the CSA resistor. Each temperature compensation setting has a different DAC  
output at room temperature. To achieve a specific temperature compensation and current, the PDAC, TEMPCO,  
and CSA resistor must all be adjusted according to the 9.2.2.2 procedure.  
The two LED drivers are interchangeable and support both IR and blue LEDs. The only difference between the  
two LED drivers is a code CSA_BIN available to improve the LED A driver current accuracy for IR LEDs.  
CSA_BIN in register 0x00 categorizes CSA voltage for each unit as close to the minimum, below average, above  
average, or close to the maximum (see 8.6). Use CSA_BIN to adjust the DAC and compensate for the  
variation on the LED A driver's current. After adjusting the DAC, the effective variation is reduced by a factor of 4  
for the TEMPCOA = 11, PDAC_A = 00 setting. IR LEDs typically require the TEMPCOA = 11 temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
compensation setting. Therefore, use the LED driver A for powering IR LEDs. If better accuracy is required,  
calibrate the LED driver current by connecting the CSA or CSB pin to the microcontroller ADC port, measuring  
the CSA or CSB voltage, and adjusting PDAC_A or PDAC_B until the required current is achieved.  
Ensure that the LED current remains below 550 mA, the pulse width remains below 1 ms, and the duty cycle  
remains below 1%. There is no protection to prevent operation outside these conditions. Ensure the PDAC and  
TEMPCO registers are programmed before enabling the LED driver.  
8.3.4.2 LED Voltage Supply  
Enough voltage must be provided to the LED such that the DINA voltage is at least the dropout voltage  
(VDINA,DROP) above the CSA voltage while the LED driver is enabled. Ensure the DINA voltage does not exceed  
11.5 V. Because of the high LED drive currents, a large capacitor connected to the LED anode is required to  
provide pulsed power to the LED. Any of the internal regulators ( PLDO, LEDLDO) or external supply (VBAT,  
VDC) meeting the voltage requirements can be used to charge the LED capacitor. Depending on the LED  
forward voltage, the LED anode can be connected to the battery or to the LEDLDO. Do not connect the LED  
anode directly to VBST in low-power applications, because the boost converter output voltage can exceed the  
DINA absolute maximum.  
The LED LDO clamps the VBST voltage and blocks reverse current with an integrated diode. It is current limited  
to prevent inrush current caused by charging the large capacitor. The regulation voltage is adjustable in the  
LEDLDO register. The LED LDO may be operated with VBST below the regulation voltage. In this case, the  
LEDLDO voltage stabilizes to VBST minus a diode voltage drop.  
The LED driver current and rise time can vary by a few millivolts and microseconds across the LED anode  
supply and VCC voltages. It is recommended to use a consistent LED anode voltage whenever the LED driver is  
enabled. If the LEDLDO is used to supply the LED anode, ensure the boost converter is enabled to the same  
voltage whenever the LEDLDO is enabled.  
Connect a capacitor with a value between 1 µF and 100 µF to the LEDLDO.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
30  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.5 Carbon Monoxide Sensor AFE  
To AMUX  
COSWRO=1  
RO=100 k  
COO  
CON  
CO Connectivity Test  
0.22 F  
COGAIN[1:0]  
VINT  
COSWRI=1  
COSWRG=1  
100 kꢀ  
VINT  
RI=1 k  
œ
COAMP_EN  
+
Working  
COP  
10 kœ  
100 kꢀ  
CO  
Sensor  
100 kꢀ  
REF0P3  
REF0P3_EN  
To MCU GPIO  
Counter  
COSWREF=1  
COREF[1:0]  
+
+
300 mV  
œ
œ
PREF  
To Photo Amp Reference  
To Photo  
Amp  
For CO Connectivity Test  
Use in place of pull-up resistor and  
pull-down FET if PREF_SEL=0  
VINT  
200 kꢀ  
COTEST_EN  
COTEST_DIR  
8-5. Carbon Monoxide Detection Circuit Referenced to GND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
To AMUX  
COSWRO=1  
RO=100 k  
COO  
CON  
CO Connectivity Test  
VINT  
0.22 F  
COGAIN[1:0]  
COSWRI=1  
COSWRG=1  
100 kꢀ  
VINT  
RI=1 k  
œ
COAMP_EN  
+
Working  
COP  
10 kœ  
100 kꢀ  
CO  
Sensor  
100 kꢀ  
REF0P3  
REF0P3_EN  
COSWREF=0  
To MCU GPIO  
Counter  
+
+
COREF[1:0]  
300 mV  
1 nF  
œ
œ
PREF  
To Photo Amp Reference  
To Photo  
Amp  
For CO Connectivity Test  
Use in place of pull-up resistor and  
pull-down FET if PREF_SEL=0  
VINT  
200 kꢀ  
COTEST_EN  
COTEST_DIR  
8-6. Carbon Monoxide Detection Circuit Referenced to 300mV  
The TPS8802 CO AFE connects to an electrochemical CO sensor. The amplifier converts the microamps of  
sensor current into a voltage readable by an ADC. This is achieved with a low-offset, low-power op-amp with  
configurable input, gain, and output resistors.  
8.3.5.1 CO Transimpedance Amplifier  
The CO transimpedance amplifier is a low-offset, low-power op-amp with integrated input, gain, and output  
resistors. Each of these resistors can be disconnected using the COSW register bits if using external resistors.  
The input resistor limits amplifier current during a CO sensor connectivity test. The gain resistor amplifies the CO  
sensor signal. Adjust the gain resistor by changing the COGAIN register bits. Use the output resistor with an  
external capacitor to filter the CO amplifier output signal.  
The CO amplifier has two integrated references. A programmable 1.25-mV to 5-mV reference COREF is  
internally connected to the op-amp positive terminal. A 300-mV reference is connected to the REF0P3 pin. When  
the millivolt reference is used, the CO sensor must be connected to GND. The millivolt reference is amplified to  
offset the amplifier output above GND. When the 300 mV reference is used, the reference offsets the CO  
amplifier output by 300 mV. In general, either reference can be used. The 300-mV reference offers better DC  
accuracy at the cost of extra power consumption. The 300 mV reference is generated with a reference and op-  
amp buffer for high precision. The REF0P3 pin must connect to a 1 nF capacitor for stability if it is enabled. The  
buffer is designed to source and sink small currents as required by the CO amplifier. The 300 mV reference and  
the 1.25 mV to 5mV reference cannot be enabled simultaneously.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
32  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
A resistor connected in parallel with the CO sensor prevents charge from accumulating across its terminals. The  
output of the CO amplifier is connected to the COO pin for continuous monitoring and the AMUX for periodic  
sampling.  
8.3.5.2 CO Connectivity Test  
The built-in CO connectivity test function connects to the PREF pin and is available when the photo amplifier is  
not referenced to PREF. The COTEST_EN and COTEST_DIR register bits program a pull-up and pull-down  
switch on PREF. A 200 kΩ pull-up resistor charges the 1 µF capacitor when the CO test is not in use. When  
PREF is pulled low, charge is injected into the amplifier and the output pulse shape can be used to determine if  
the sensor is connected. An external MOSFET and pull-up resistor achieves the same function as the internal  
COTEST circuitry.  
8.3.6 Boost Converter  
33 H  
VLX  
To Battery  
VBST_CLIM[3:0]  
VBST[3:0]  
4.7 F  
DCDC  
Boost  
BST_EN  
BST_CHARGE  
BST_PG  
Hysteretic  
Controller  
VBST  
PGND  
4.7 F  
BST_nACT  
To LED LDO, Battery Test,  
Horn Driver, Interconnect  
8-7. DC to DC Hysteretic Boost Circuit  
The boost converter operates with a wide range of input and output voltages to support multiple battery  
configurations and driver voltages. The boost converter output VBST is internally connected to the LED LDO,  
interconnect driver, horn driver, and battery test load, and may be externally connected to VCC. The boost  
converter has a power-good register bit BST_PG to notify the MCU when the boost converter is above 95% of  
the target voltage. The BST_PG signal is deglitched for 200 μs to prevent load transients from causing a false  
indication. If the BST_PG signal is low after 10 ms of enabling the boost or changing the VBST setting, the  
BST_ERR signal latches high. The BST_PG signal reads low if the boost converter is disabled.  
The boost converter is enabled if any of the following conditions are met:  
BST_EN = 1 or BST_CHARGE=1, except if SLP_BST = 1 and SLP_EN = 1  
VCCLOW_BST = 1 and the deglitched VCCLOW comparator trips  
Device is in MCULDO_ERR state  
The SLP_BST signal disables the boost while the device is in sleep mode if the boost is enabled with BST_EN.  
The BST_CHARGE register bit enables the boost converter until the BST_PG signal is high, at which point  
BST_CHARGE resets to 0 and the boost converter is disabled. VCCLOW_BST enables the boost if the  
deglitched VCCLOW comparator trips. MCULDO_ERR state also enables the boost converter.  
A specific I2C command sequence must be used when enabling the boost converter and disabling the photo  
amplifier. Do not enable the boost converter (changing BST_EN from 0 to 1) and disable the photo input  
amplifier (changing PAMP_EN from 1 to 0) in the same I2C command. Use either of the following I2C command  
sequences to enable the boost converter and disable the photo input amplifier:  
Write BST_EN=1 and PAMP_EN=1, then write BST_EN=1 and PAMP_EN=0  
Write BST_EN=0 and PAMP_EN=0, then write BST_EN=1 and PAMP_EN=0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.6.1 Boost Hysteretic Control  
The hysteretic control guarantees stability across input and output voltages and has a fast transient response.  
When the VBST voltage is below its target (as programmed in the VBOOST register), a charging cycle initiates  
by enabling the VLX switch until the current through the inductor exceeds the programmable inductor peak  
current setting. After the peak current is reached, the VLX switch is disabled and the inductor charges the VBST  
output capacitor. The charging cycle completes when the inductor current reaches zero, and a new cycle initiates  
when VBST drops again. Because of the hysteretic control scheme, the average output voltage varies  
depending on the input voltage, inductor peak current, inductance, output capacitor, output voltage, and output  
load.  
When the VBST voltage is above the boost regulation voltage, the boost does not switch. In a battery backup  
system, the battery draws no power if the DC supply is providing a VBST voltage above the boost regulation  
voltage. The boost starts switching if the DC supply drops, drawing power from the battery to regulate VBST. A  
timer, BST_nACT, monitors the time that the boost is not switching to notify the MCU if the boost is inactive. This  
timer is programmable from 100 µs to 100 ms. This timer can be used to determine if the battery voltage is  
higher than the regulation voltage or if an DC supply is connected.  
The default inductor peak current is 500 mA. This sets the boost converter to provide maximum output current.  
After the TPS8802 is powered, the peak current can be adjusted using the I2C interface to change the boost  
switching frequency or to limit the battery current. The switching frequency is inversely proportional to the square  
of the current limit. For example, changing the current limit from 500 mA to 50 mA causes the frequency to  
increase by a factor of 100. The peak current determines how much current the boost converter can output. 方程  
1 calculates the maximum boost output current.  
D × VBAT × IPEAK  
IOUT max  
:
=
;
2 × VBST  
(1)  
Typical boost efficiency is shown in 9-5. If the boost output current draw exceeds the maximum, the boost  
voltage drops until the converter can supply the output current draw.  
8.3.6.2 Boost Soft Start  
When the boost converter is enabled and the VBST voltage is below 3 V, the peak inductor current is  
automatically lowered to reduce inrush current. As a result, the boost converter cannot deliver full output current  
while the VBST voltage is low. For the 2.7-V boost setting, the inductor current is released to the register value  
when BST_PG = 1. Maintain the VBST load current below 5 mA during the soft-start period.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
34  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.7 Interconnect Driver  
VBST  
INT_EN  
INTDIR  
Enable  
INT_EN  
INT_DIR  
INT_UNIT  
VINT  
INT_MCU  
To MCU  
Enable  
+
Interconnect  
Bus  
To STATUS1  
Register  
Digital  
Deglitch  
INT_UNIT  
œ
+
INT_HYS  
INT_DEG  
œ
INT_UNIT  
Interrupt  
STATUS_INT  
Enable  
INT_EN  
INTDIR  
INT_PD  
8-8. Interconnect Driver and Receiver  
In mains-wired smoke alarm systems, the alarms can alert each other of smoke conditions with a wired  
interconnect bus. The TPS8802 has a driver and comparator to interface with the interconnect bus. The driver  
pulls the bus high when smoke is detected and low when smoke is cleared. The driver is current limited to  
handle short circuit conditions, and has a diode on the high side driver to prevent the bus from driving VBST. The  
hysteretic comparator senses when the bus is pulled high, filters the signal with a digital deglitch, and outputs  
the result to the INT_MCU pin and STATUS1 register. The comparator output is synchronized with the 32 kHz  
clock. The hysteresis has two settings and the deglitch is programmable from 0 ms to 20 ms. A 35-MΩ resistor  
prevents the INT_UNIT pin from floating, and a switchable 100-kΩ resistor pulls down the bus to prevent  
leakage from causing a false alarm. When the comparator outputs a high signal through the deglitch filter, the  
INT_UNIT register bit is latched high in the STATUS1 register.  
The INT_MCU pin has the additional function to output status interrupt signals. The STATUS_INT bit in the  
MASK register enables interrupt signals to output through the INT_MCU pin. When the interconnect driver is  
enabled, the interrupt signal output is disconnected to allow the microcontroller to drive the INT_MCU pin.  
8.3.8 Piezoelectric Horn Driver  
The horn driver is designed to drive two types of piezo horns: three-terminal self-resonant piezos and two-  
terminal piezos. The HORN_SEL bit configures the horn driver for the three-terminal or two-terminal operation.  
During operation, 120-kΩ pulldown resistors discharge any residual charge on the piezo element. Because  
VBST powers the horn driver, the loudness of the horn can be adjusted by changing the VBST voltage with the  
VBST register bits.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.8.1 Three-Terminal Piezo  
HORNFB  
5.6 M  
2.4 Mꢀ  
1nF  
0 kto 500 kꢀ  
220 k(typ)  
1 Mꢀ  
VBST  
0
1
HORNSL  
HORN_THR  
Horn Driver  
Logic  
HORN_SEL  
1
VBST  
HORNBR  
HBEN  
From MCU  
0
3-terminal  
enable  
HORN_EN  
HBEN  
Driver  
enable  
HORN_SEL  
HORN_EN  
2-terminal  
enable  
HORN_SEL=0 for 2 Terminal Piezo  
HORN_SEL=1 for 3 Terminal Piezo  
8-9. Three-Terminal Piezoelectric Horn Driver Circuit  
In the three-terminal mode, the piezo silver and brass terminals connect directly to the HORNSL and HORNBR  
pins, and the feedback terminal connects through a resistor-capacitor network to the HORNFB pin. The driver is  
enabled and begins oscillating when the HORN_EN register bit and HBEN pin are set high. Adjust the value of  
the resistor connected to the piezo feedback terminal to tune the oscillation frequency. Trial and error is required  
to select this resistance. After the driver achieves resonant oscillation, the duty cycle of the HORNSL and  
HORNBR outputs can be adjusted using the HORN_THR bits to maximize the loudness. It is recommended to  
try each HORN_THR value and select the one that operates the horn closest to 50% duty cycle.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
36  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.8.2 Two-Terminal Piezo  
HORNFB  
From MCU  
VBST  
0
HORNSL  
1 mH  
1
HORN_THR  
Horn Driver  
Logic  
HORN_SEL  
1
VBST  
HORNBR  
HBEN  
From MCU  
0
3-terminal  
enable  
HORN_EN  
HBEN  
Driver  
enable  
HORN_SEL  
HORN_EN  
2-terminal  
enable  
HORN_SEL=0 for 2 Terminal Piezo  
HORN_SEL=1 for 3 Terminal Piezo  
8-10. Two-Terminal Piezoelectric Horn Driver Circuit  
In the two-terminal mode, the piezo connects to the HORNSL and HORNBR terminals through an inductor. The  
HORNFB pin directly controls the HORNSL pin, and the HBEN pin directly controls the HORNBR pin. The two  
drivers are matched to minimize skew between the two outputs. The MCU sends a digital signal to control the  
driving voltage across the piezo. The signal can be a square wave of the oscillation frequency, a pulse width  
modulation (PWM) sine wave of the oscillation frequency, or a PWM arbitrary shape for voice applications. The  
inductor improves the rise time and fall time of the output and reduces power dissipation.  
8.3.9 Battery Test  
The battery test load is used to check the integrity of the battery connected to the TPS8802 device. When  
enabled, a load is connected to VBST. The load is programmable from 10 mA to 20 mA with the I_BATTEST  
register bits. This load emulates the horn driver current draw during an alarm condition. The boost input voltage,  
output voltage, and efficiency affect the current drawn from the battery because the battery test load is  
connected to VBST. Therefore, the battery current is programmable with the VBST register as well. Ensure  
VBST is greater than 4.5 V when enabling the battery test load. The load is enabled with the BATTEST_EN  
register bit or with the GPIO register bit and pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.10 AMUX  
AMUX_BYP  
AMUX_SEL[1:0]0  
Hi-Z  
VINT  
0
1
To MCU  
ADC  
COO  
10 k  
AMUX  
AMUX  
AOUT_PH  
PDO  
2
1 nF  
3
AMUX_BYP AMUX_SEL[1:0]  
8-11. Analog Multiplexer Circuit  
The AMUX switch and buffer are used to connect the various TPS8802 amplifier outputs to a single ADC. The  
unity-gain amplifier improves the drive strength and fidelity of the analog signals when connected to an ADC. A  
330 pF to 1 nF capacitor must be connected to the AMUX pin to stabilize its output. The 10-kΩ resistor filters  
high-frequency noise in the analog signal. Using a 10-kΩresistor and 1-nF capacitor reduces noise levels in the  
photo amplifier signal. The buffer has the option of being bypassed to remove the added offset introduced by the  
unity-gain amplifier. Because the AMUX requires the bias block (see 8.3.11), bypassing the buffer does not  
eliminate the AMUX current consumption.  
8.3.11 Analog Bias Block and 8 MHz Oscillator  
A central analog bias block connects to many of the amplifiers, drivers, and regulators. This block is enabled  
when any of its connected blocks are enabled. Similarly, an internal 8-MHz oscillator is enabled when the boost  
converter or photo input amplifier is enabled. 8-2 lists the conditions when the bias block and 8-MHz oscillator  
are enabled. The bias block and 8-MHz oscillator consume current in addition to the connecting blocks whenever  
they are enabled. Because the specified current consumption of each block does not include the bias block or  
the 8-MHz oscillator, add the bias block and 8-MHz oscillator currents when calculating system power  
consumption. Typical values of the bias block and 8-MHz oscillator current are shown in 6.6.  
8-2. Conditions for Enabling the Bias Block and 8 MHz Oscillator  
BLOCK  
Photo input amplifier  
Boost converter  
AMUX buffer  
CONDITION  
BIAS ENABLED?  
8-MHZ OSC ENABLED?  
PAMP_EN = 1  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
BST_EN = 1  
AMUX_SEL[0:2] 000  
HORN_EN = 1  
Horn driver  
LED LDO  
LEDLDO_EN = 1  
PGAIN_EN = 1  
Photo gain amplifier  
Battery test load  
LED driver  
BATTEST_EN = 1  
LEDEN = VMCU and  
LEDPIN_EN = 1  
Yes  
Yes  
No  
No  
Temperature monitor  
OTS_EN = 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
38  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.3.12 Interrupt Signal Alerts  
SLP_DONE  
SLP_DONEM  
VCCLOW  
VCCLOWM  
MCULDO_ERR  
MCULDO_ERRM  
OTS_ERR  
Interrupt  
Signal  
To GPIO Logic  
OTS_ERRM  
OTS_WRN  
To Interconnect Block  
OTS_WRNM  
BST_nACT  
BST_nACTM  
BST_ERR  
BST_ERRM  
8-12. Interrupt Signal Alert Logic  
Configurable interrupt signals notify the MCU when a system anomaly occurs. The interrupt signal indicates the  
STATUS1 register, which has bits that latch high when reaching various condition limits such as temperature or  
voltage. Each of the bits in the STATUS1 register can be independently configured to send an interrupt signal by  
setting the MASK register bit corresponding to each STATUS1 bit. The GPIO bits must be set to 0x2 to output  
interrupt signals through the GPIO pin, and the STATUS_INT bit must be set to 1 to output interrupt signals  
through the INT_MCU pin. By connecting the GPIO or INT_MCU pin to the microcontroller, the MCU can be  
immediately notified when a STATUS1 bit changes instead of having to repeatedly read the STATUS1 register.  
After the device sends the interrupt signal, the signal remains high until the STATUS1 register is read, at which  
point the fault clears if the error condition is removed.  
Under some conditions the INT_MCU pin has other functions. If INT_EN = 1 and INT_DIR = 0, the INT_MCU pin  
also outputs the INT_UNIT pin status. If INT_EN = 1 and INT_DIR = 1, the INT_MCU pin becomes an input to  
control the INT_UNIT driver. See 8.3.7 for more information.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.4 Device Functional Modes  
8.4.1 Sleep Mode  
Active  
SLP_EN=1  
Disable MCU LDO if SLP_MCU=1  
Disable boost if SLP_BST=1  
Disable high-current analog blocks if  
SLP_ANALOG=1  
Start sleep timer  
Timeout  
Set SLP_DONE=1  
Set SLP_EN=0  
Enable MCU LDO and boost  
if previously enabled  
Sleep Mode  
8-13. Sleep Mode State Diagram  
The device integrates a sleep timer to manage critical analog and regulator blocks independent of the external  
microcontroller. When sleep mode is enabled, the timer starts and various blocks (MCU LDO, boost, or drivers  
and amplifiers) are disabled depending on the CONFIG1 register configuration. After the sleep timer finishes,  
SLP_EN is reset and the SLP_DONE bit in STATUS1 register is latched high and can be configured to output  
through the GPIO or INT_MCU pins. This notifies the microcontroller that the sleep timer is finished and sleep  
mode is exited. Alternatively, sleep mode is exited by writing zero to the SLP_EN bit. Writing zero to SLP_EN  
does not trigger the SLP_DONE bit in the STATUS1 register. 8-14 shows the sleep mode state diagram.  
Sleep mode reduces power consumption in three ways:  
by quickly disabling analog blocks  
by powering off the boost and MCU LDO during sleep mode  
by allowing the MCU to enter its lowest power idle state  
Every I2C transaction takes time and consumes a small amount of power. The SLP_ANALOG bit configures  
sleep mode to disable high-power amplifiers and drivers simultaneously when entering sleep mode. This  
functionality can save several I2C transactions and reduces time that the amplifiers and drivers are idly enabled.  
The device may require the boost converter and MCU LDO while the microcontroller is performing sensing and  
testing operations, but may not require the boost and MCU LDO while the microcontroller is in its idle state.  
SLP_BST and SLP_MCU disable the boost converter and MCU LDO during sleep mode. If the boost converter  
and MCU LDO were previously enabled, they are re-enabled when sleep mode is exited. This process reduces  
system current consumption caused by the MCU LDO and boost converter while preventing a system brown-out  
if the MCU loses power, because the exit of sleep mode returns power to the MCU.  
During sleep mode operation, the MCU can enter its lowest power idle state and monitor a GPIO pin for the  
SLP_DONE interrupt signal. This monitoring allows the MCU clocks to be disabled as the sleep timer signals the  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
40  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
MCU to wake up after a precise programmed time. The amount of time is programmable from 1 ms to 65535 ms  
in 1 ms intervals in the SLPTMR1 and SLPTMR2 registers.  
The device is nearly fully functional in sleep mode. The microcontroller can access all registers and configure all  
blocks. Only three functions are disabled in sleep mode:  
boost converter inactivity timer  
the MCULDO fault state  
over-temperature shutdown fault state  
The MCULDO undervoltage and system over-temperature monitors remain enabled if the MCU LDO and OTS  
monitors are enabled, so as soon as the device exits sleep mode, the system enters the fault state that  
corresponds to any detected fault.  
8.4.2 Fault States  
Active  
MCU_PG=0 after 10 ms  
TJ>125°C after 300 µs  
of enabling MCU LDO or  
of enabling OTS_EN  
changing VMCUSET  
Set MCULDO_ERR=1  
Set OTS_ERR=1  
MCUERR_DIS=0  
Enable temperature monitor  
Disable amplifiers, drivers, boost,  
and MCU LDO  
Enable boost converter  
Enable temperature monitor  
Disable amplifiers and drivers  
TJ>125°C  
Start 1-second timer  
Start 1-second timer  
MCU_PG=0  
Timeout  
TJ>110°C  
Timeout  
Check TJ  
Check MCU_PG  
TJ<110°C  
MCU_PG=1  
Enable blocks if previously  
enabled  
Enable blocks if previously  
enabled  
No  
Yes  
Was OTS entered from MCU  
LDO fault state?  
Over-Temperature Shutdown  
MCU LDO Fault  
8-14. Fault States Diagram  
The TPS8802 device uses several monitors to alert the MCU when system irregularities occur. In addition to  
alerting the MCU, two monitors cause the device to enter protective fault states:  
MCULDO under-voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
system over-temperature  
The fault states reduce risk of damage and brown-outs to the system in the event of short circuits or other power  
errors.  
8.4.2.1 MCU LDO Fault  
The MCU LDO has an undervoltage monitor to notify the MCU if the LDO falls out of regulation. This monitor is  
enabled any time the MCU LDO is enabled and its status is in the MCU_PG register bit. A 125-μs deglitch time  
rejects load and line transient spikes that may briefly drop the MCU LDO voltage below the under-voltage  
threshold. If MCU_PG is low while the MCU LDO is enabled and it has been more than 10 ms since the LDO  
was enabled or changed voltage, the MCU_ERR register bit latches high. When the MCU_ERR bit is set high  
and the MCUERR_DIS bit is low, the MCU LDO fault state is entered.  
Two scenarios can cause the LDO to drop voltage:  
input voltage (PLDO) drops  
load current exceeds the LDO current limit  
If the input voltage drops, it can be because the boost converter is disabled. If the load current exceeds the LDO  
current limit, the die temperature could exceed safe limits. The MCU fault state automatically enables the boost  
converter and temperature monitor (OTS_EN) to handle both of these cases. The device disables all analog  
blocks to prevent further issues caused by an underpowered MCU.  
There are two methods to exit the fault state. Every second in the fault state, the MCU_PG register bit is  
automatically read. If high, the fault state is exited. The MCU_ERR bit remains high until the STATUS1 register is  
read. Alternatively, if the STATUS1 register is read and MCU_PG is high, the fault state is exited. When the  
device exits the MCU_ERR fault state, the device re-enables all blocks that were enabled before the fault state  
occurred.  
If an over-temperature fault occurs while in the MCU LDO fault state, the device enters the over-temperature  
fault state. The over-temperature fault state disables the MCU LDO and boost converter in addition to the blocks  
that are disabled by the MCU LDO fault state. After the device exits the over-temperature fault state, it  
immediately re-enters the MCU LDO fault state to confirm the MCU LDO status.  
8.4.2.2 Over-Temperature Fault  
An over-temperature shutdown (OTS) fault occurs if OTS_EN = 1 and the die temperature exceeds 125°C. The  
fault is masked for 300 μs after setting OTS_EN = 1. OTS_EN must be enabled for at least 300 μs in order to  
determine if the die has overheated. After the device detects an over-temperature condition, it disables all  
drivers, amplifiers, and regulators and sets OTS_ERR to 1. This action prevents additional temperature stress  
caused by a short circuit.  
Similar to the MCU LDO fault, the device exits the OTS fault state with two methods:  
The device checks the die temperature once every second. If the temperature is below 110°C, the device  
exits the fault state.  
Reading the STATUS1 register with the die temperature below 110°C exits the fault state.  
When the device exits the OTS fault state, it re-enables all blocks that were enabled before the OTS fault  
occurred.  
8.5 Programming  
The TPS8802 serial interface follows the I2C industry standard. The device supports both standard and fast  
mode, and it supports auto-increment for fast reading and writing of sequential registers. A 33-kΩpullup resistor  
connecting the SDA and SCL pins to VMCU is recommended for fast mode operation. The VMCU voltage  
determines the logic level for I2C communication. The CSEL pin selects the device address. When CSEL is  
pulled to GND, the device address is 0x3F. When CSEL is pulled to VMCU, the device address is 0x2A.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
42  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.6 Register Maps  
8-3 lists the memory-mapped registers for the Device registers. All register offset addresses not listed in 表  
8-3 should be considered as reserved locations and the register contents should not be modified.  
8-3. Device Registers  
Offset  
0h  
Acronym  
REVID  
Register Name  
Device Information  
Status 1  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
1h  
STATUS1  
STATUS2  
MASK  
2h  
Status 2  
3h  
Interrupt Mask  
Config 1  
4h  
CONFIG1  
CONFIG2  
ENABLE1  
ENABLE2  
CONTROL  
SLPTMR1  
SLPTMR2  
GPIO_AMUX  
CO_BATTEST  
CO  
5h  
Config 2  
6h  
Enable 1  
7h  
Enable 2  
8h  
Control  
9h  
Sleep Timer 1  
Sleep Timer 2  
GPIO and AMUX  
CO and Battery Test  
CO Amplifier  
Boost Converter  
LED LDO  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
VBOOST  
LEDLDO  
10h  
11h  
12h  
PH_CTRL  
LED_DAC_A  
LED_DAC_B  
Photo Amplifier  
LED DAC A  
LED DAC B  
Complex bit access types are encoded to fit into small table cells. 8-4 shows the codes that are used for  
access types in this section.  
8-4. Device Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
RC  
R
C
Read  
to Clear  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1 REVID Register (Offset = 0h) [reset = 0h]  
REVID is shown in 8-5.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
Return to Summary Table.  
8-5. REVID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CSA_BIN  
R
0h  
CSA voltage bin for TEMPCOA=11, PDAC_A=00 setting  
0h = CSA voltage between specified minimum and typical, closer to  
minimum  
1h = CSA voltage between specified minimum and typical, closer to  
typical  
2h = CSA voltage between specified maximum and typical, closer to  
typical  
3h = CSA voltage between specified maximum and typical, closer to  
maximum  
5-0  
RESERVED  
R
0h  
Reserved  
8.6.2 STATUS1 Register (Offset = 1h) [reset = 0h]  
STATUS1 is shown in 8-6.  
Return to Summary Table.  
8-6. STATUS1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SLP_DONE  
RC  
0h  
Sleep timer wakeup flag  
0h = device has not transitioned from sleep to active state via timer  
1h = device transitioned from sleep to active state via timer  
6
5
VCCLOW  
RC  
RC  
0h  
0h  
VCC low warning  
0h = no VCCLOW error has occurred  
1h = VCC below V_VCCLOW,FALL threshold and VCCLOW_DIS=1  
for VCCLOW deglitch time. VCCLOW is masked for 1 ms after  
VCCLOW_DIS is set to 0.  
MCULDO_ERR  
MCU LDO power good error  
0h = no MCULDO error has occurred  
1h = MCU_PG=0 and MCU_EN=1 for TMCULDO,PG.  
MCULDO_ERR is masked for TMCULDO,MASK after VMCUSET or  
MCU_DIS has changed  
4
3
2
OTS_ERR  
OTS_WRN  
BST_nACT  
RC  
RC  
RC  
0h  
0h  
0h  
Thermal shutdown error  
0h = no thermal shutdown error has occurred  
1h = junction temperature has exceeded T_SHUTDOWN  
Thermal warning flag  
0h = no thermal warning has occurred  
1h = junction temperature has exceeded T_WARNING  
Boost activity monitor  
0h = boost converter is actively switching or BST_EN=0 or  
SLP_EN=1  
1h = boost converter has not switched for T_BST,ACT, BST_EN=1  
and SLP_EN=0  
1
0
BST_ERR  
INT_UNIT  
RC  
RC  
0h  
0h  
Boost converter power good error  
0h = no boost converter error has occurred  
1h = BST_PG=0 and BST_EN=1 for T_BST,PG. BST_ERR is  
masked for T_BST,MASK after VBST or BST_EN has changed  
INT_UNIT pin value  
0h = INT_UNIT is below VINT_UNIT,ILO or INT_DIR=1  
1h = INT_UNIT is high and INT_DIR=0  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.6.3 STATUS2 Register (Offset = 2h) [reset = 0h]  
STATUS2 is shown in 8-7.  
Return to Summary Table.  
8-7. STATUS2 Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
MCU_PG  
R
0h  
Reserved  
R
0h  
MCU LDO power good indicator  
0h = MCU LDO is below power good threshold or MCU_DIS=1  
1h = MCU LDO is above power good threshold and MCU_DIS=0  
0
BST_PG  
R
0h  
Boost power good indicator  
0h = VBST is below power good threshold or BST_EN=0  
1h = VBST is above power good threshold and BST_EN=1  
8.6.4 MASK Register (Offset = 3h) [reset = 0h]  
MASK is shown in 8-8.  
Return to Summary Table.  
8-8. MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SLP_DONEM  
R/W  
0h  
Sleep timer wakeup interrupt mask  
0h = interrupt on device transition from sleep to active state  
1h = no interrupt on device transition from sleep to active state  
6
5
4
3
2
1
0
VCCLOWM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
VCC low warning interrupt mask  
0h = interrupt on VCC low  
1h = no interrupt on VCC low  
MCULDO_ERRM  
OTS_ERRM  
OTS_WRNM  
BST_nACTM  
BST_ERRM  
STATUS_INT  
MCU LDO power good error interrupt mask  
0h = interrupt on MCULDO power good error  
1h = no interrupt on MCULDO power good error  
Thermal shutdown error interrupt mask  
0h = interrupt on thermal shutdown error  
1h = no interrupt on thermal shutdown error  
Thermal warning flag interrupt mask  
0h = interrupt on thermal warning  
1h = no interrupt on thermal warning  
Boost activity monitor interrupt mask  
0h = interrupt if boost has not switched for T_BSTACT  
1h = no interrupt if boost has not switched for T_BSTACT  
Boost converter power good error interrupt mask  
0h = interrupt on BST_PG transition from 1 to 0 while BST_EN=1  
1h = no interrupt on BST_PG transition from 1 to 0 while BST_EN=1  
Status interrupt on the INT_MCU pin  
0h = disable  
1h = INT_MCU outputs high if any unmasked STATUS1 flags  
8.6.5 CONFIG1 Register (Offset = 4h) [reset = 20h]  
CONFIG1 is shown in 8-9.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8-9. CONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
INT_DEG  
R/W  
0h  
INT_UNIT deglitch control  
0h = none  
1h = 125us  
2h = 1ms  
3h = 20ms  
5
INT_PD  
R/W  
R/W  
1h  
0h  
INT_UNIT pulldown resistor enable  
0h = >1MOhm pulldown resistor on INT_UNIT  
1h = 100k pulldown resistor on INT_UNIT  
4-3  
VMCUSET  
MCU LDO voltage. Default value is set by MCUSEL on power-up.  
0h = 1.5V  
1h = 1.8V  
2h = 2.5V  
3h = 3.3V  
2
1
SLP_BST  
R/W  
R/W  
0h  
0h  
Disable boost converter in sleep mode  
0h = boost converter unchanged in sleep mode  
1h = boost converter disabled when SLP_EN is set to 1. Boost re-  
enabled upon exiting sleep mode if previously enabled  
SLP_ANALOG  
Disable analog blocks in sleep mode. Set AMUX_SEL=000,  
BATTEST_EN=0, HORN_EN=0, INT_EN=0, LEDLDO_EN=0,  
PAMP_EN=0, PGAIN_EN=0 when SLP_EN is set to 1.  
0h = analog blocks unchanged in sleep mode  
1h = analog blocks shut off in sleep mode  
0
SLP_MCU  
R/W  
0h  
Disable MCULDO in sleep mode  
0h = MCULDO unchanged in sleep mode  
1h = MCULDO disabled in sleep mode. MCULDO re-enabled upon  
exiting sleep mode if previously enabled  
8.6.6 CONFIG2 Register (Offset = 5h) [reset = 2h]  
CONFIG2 is shown in 8-10.  
Return to Summary Table.  
8-10. CONFIG2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
RESERVED  
RESERVED  
INT_HYS  
R
0h  
6
R
0h  
5
R/W  
0h  
Interconnect comparator hysteresis  
0h = 1.2V hysteresis  
1h = 0.1V hysteresis  
4
HORN_SEL  
HORN_THR  
R/W  
R/W  
0h  
0h  
Horn block piezo select  
0h = 2-terminal piezo  
1h = 3-terminal piezo  
3-2  
Horn driver setting for three-terminal piezo duty cycle tuning  
0h = -6%  
1h = -3%  
2h = Nominal  
3h = +3%  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8-10. CONFIG2 Register Field Descriptions (continued)  
Bit  
Field  
T_BSTACT  
Type  
Reset  
Description  
1-0  
R/W  
2h  
Boost activity monitor alert time. BST_nACT flag goes high if the  
boost converter has not switched for the set amount of time  
0h = 100us  
1h = 1ms  
2h = 10ms  
3h = 100ms  
8.6.7 ENABLE1 Register (Offset = 6h) [reset = 10h]  
ENABLE1 is shown in 8-11.  
Return to Summary Table.  
8-11. ENABLE1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
BATTEST_EN  
R
0h  
Reserved  
6
R/W  
0h  
Battery test enable  
0h = disabled  
1h = enabled  
5
4
INT_EN  
BST_EN  
R/W  
R/W  
0h  
1h  
Control of interconnect interface  
0h = disable  
1h = enable  
Boost converter control. See 8.3.6 for the required I2C command  
sequence when enabling the boost converter and disabling the photo  
input amplifier.  
0h = disabled  
1h = boost converter enabled  
3
2
PAMP_EN  
PGAIN_EN  
R/W  
R/W  
0h  
0h  
Photo input amplifier control  
0h = amplifier disabled  
1h = amplifier enabled  
Photo gain amplifier control  
0h = amplifier disabled  
1h = amplifier enabled  
1
0
RESERVED  
LEDLDO_EN  
R
0h  
0h  
Reserved  
R/W  
LED LDO control  
0h = disabled  
1h = enabled  
8.6.8 ENABLE2 Register (Offset = 7h) [reset = 0h]  
ENABLE2 is shown in 8-12.  
Return to Summary Table.  
8-12. ENABLE2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LEDSEL  
R/W  
0h  
LED input select  
0h = LEDENA  
1h = LEDENB  
6
BST_CHARGE  
R/W  
0h  
Enable boost while BST_CHARGE=1. When BST_PG=1, set  
BST_CHARGE=0.  
0h = boost controlled by BST_EN  
1h = Boost is enabled until BST_PG=1. Boost remains enabled if  
BST_EN=1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8-12. ENABLE2 Register Field Descriptions (continued)  
Bit  
5-4  
3
Field  
Type  
Reset  
Description  
RESERVED  
INT_DIR  
R
0h  
Reserved  
R/W  
0h  
Interconnect direction control  
0h = from INT_UNIT to INT_MCU  
1h = from INT_MCU to INT_UNIT  
2
1
0
LEDPIN_EN  
HORN_EN  
SLP_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
LEDEN pin enable  
0h = LEDEN pin does not enable LED block  
1h = LEDEN pin enables LED block  
Horn block enable  
0h = Horn block disabled  
1h = HBEN enables horn block  
Sleep timer enable  
0h = sleep timer disabled, sleep mode is exited  
1h = sleep timer initialized - SLP_DONE is set to 1 and SLP_EN is  
set to 0 after sleep timer expires  
8.6.9 CONTROL Register (Offset = 8h) [reset = 0h]  
CONTROL is shown in 8-13.  
Return to Summary Table.  
8-13. CONTROL Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
MCU_DIS  
R
0h  
Reserved  
R/W  
0h  
MCU LDO disable  
0h = MCU LDO enabled  
1h = MCU LDO disabled  
4
3
2
VCCLOW_DIS  
MCUERR_DIS  
OTS_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
VCCLOW brown-out monitor disable  
0h = VCCLOW monitor is enabled  
1h = VCCLOW monitor is disabled  
MCULDO error mode disable  
0h = in case of MCULDO error, FAULT mode is entered  
1h = disable entering FAULT mode in case of MCULDO error  
Over-temperature shutdown mode disable  
0h = disable entering over-temperature FAULT mode.  
1h = in case of over-temperature, FAULT mode is entered and  
OTS_ERR flag is raised.  
1
0
SOFTRESET  
R/W  
R/W  
0h  
0h  
Set registers to the default value  
0h = do not reset registers  
1h = reset all registers. SOFTRESET is reset. BST_EN,  
BST_CHARGE, VBST, VMCUSET bits and STATUS1 register is  
unchanged.  
VCCLOW_BST  
VCCLOW boost control  
0h = boost controlled by BST_EN  
1h = boost enabled if VCCLOW=1 or BST_EN=1  
8.6.10 SLPTMR1 Register (Offset = 9h) [reset = 0h]  
SLPTMR1 is shown in 8-14.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8-14. SLPTMR1 Register Field Descriptions  
Bit  
Field  
SLPTMR  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Sleep timer most significant bits. See SLPTMR2 register for details  
8.6.11 SLPTMR2 Register (Offset = Ah) [reset = 0h]  
SLPTMR2 is shown in 8-15.  
Return to Summary Table.  
8-15. SLPTMR2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SLPTMR  
R/W  
0h  
Sleep timer duration. If SLPTMR is changed while SLP_EN=1, the  
new sleep timer setting will apply the next time SLP_EN is enabled.  
Sleep timer can be exited early if SLP_EN is written 0.  
0000h = Sleep timer is disabled. If SLP_EN=1, then the sleep timer  
is enabled when SLPTMR is changed.  
0001h to FFFFh = 1 ms to 65535 ms  
8.6.12 GPIO_AMUX Register (Offset = Bh) [reset = 0h]  
GPIO_AMUX is shown in 8-16.  
Return to Summary Table.  
8-16. GPIO_AMUX Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AMUX_BYP  
R/W  
0h  
Analog multiplexer bypass  
0h = analog multiplexer buffer is enabled when AMUX_SEL[1:0] !=  
000  
1h = analog multiplexer buffer is bypassed with a low-resistance  
switch  
6
RESERVED  
AMUX_SEL  
R
0h  
0h  
Reserved  
5-4  
R/W  
Analog multiplexer input select  
0h = AMUX off  
1h = COO  
2h = AOUT_PH  
3h = PDO  
3
RESERVED  
GPIO  
R
0h  
0h  
Reserved  
2-0  
R/W  
Multi-purpose digital input and output  
0h = Hi-Z  
1h = TI Reserved  
2h = output low if no status errors, high if any unmasked errors  
3h = TI Reserved  
4h = GPIO or LEDENA enables LED A  
5h = GPIO or LEDENB enables LED B  
6h = TI Reserved  
7h = GPIO or BATTEST_EN enables battery test  
8.6.13 CO_BATTEST Register (Offset = Ch) [reset = 0h]  
CO_BATTEST is shown in 8-17.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8-17. CO_BATTEST Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
COSWRO  
R/W  
0h  
CO amplifier output resistor (output of amplifier to COO pin) enable  
0h = 0 Ohms  
1h = 100 kOhms  
6
COSWRG  
R/W  
0h  
CO gain resistor (output of amplifier to inverting input of amplifier)  
enable  
0h = Hi-Z  
1h = Resistance set by COGAIN register  
5
4
COSWRI  
R/W  
R/W  
0h  
0h  
CO input resistor (inverting input of amplifier to CON pin) enable  
0h = 0 Ohms  
1h = 1 kOhms  
COSWREF  
CO reference switch enable  
0h = positive input of amplifier connected to COP  
1h = positive input of amplifier connected to 1mV to 5mV COREF  
3
RESERVED  
I_BATTEST  
R
0h  
0h  
Reserved  
2-0  
R/W  
Battery test current  
0h = 10mA  
1h = 12mA  
2h = 14mA  
3h = 16mA  
4h = 18mA  
5h = 20mA  
6h = Reserved  
7h = Reserved  
8.6.14 CO Register (Offset = Dh) [reset = 0h]  
CO is shown in 8-18.  
Return to Summary Table.  
8-18. CO Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
REF0P3_EN  
R/W  
0h  
300mV reference enable  
0h = Buffer disabled  
1h = Buffer enabled  
6-5  
4-3  
COREF  
R/W  
R/W  
0h  
0h  
Reference voltage for CO amplifier  
0h = 1.25mV  
1h = 2.5mV  
2h = 3.75mV  
3h = 5mV  
COGAIN  
CO amplifier feedback resistance  
0h = 1100 kOhm  
1h = 300 kOhm  
2h = 500 kOhm  
3h = 800 kOhm  
2
1
COTEST_DIR  
COTEST_EN  
R/W  
R/W  
0h  
0h  
CO test output direction  
0h = pull-down  
1h = pull-up  
Enable COTEST output on PREF  
0h = disabled  
1h = enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
50  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8-18. CO Register Field Descriptions (continued)  
Bit  
Field  
COAMP_EN  
Type  
Reset  
Description  
0
R/W  
0h  
CO amplifier control  
0h = disabled  
1h = enabled  
8.6.15 VBOOST Register (Offset = Eh) [reset = F2h]  
VBOOST is shown in 8-19.  
Return to Summary Table.  
8-19. VBOOST Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
BST_CLIM  
R/W  
Fh  
Boost converter inductor peak current setting  
0h = 30mA  
1h = 40mA  
2h = 50mA  
3h = 60mA  
4h = 80mA  
5h = 100mA  
6h = 130mA  
7h = 160mA  
8h = 200mA  
9h = 240mA  
Ah = 280mA  
Bh = 320mA  
Ch = 360mA  
Dh = 400mA  
Eh = 450mA  
Fh = 500mA  
3-0  
VBST  
R/W  
2h  
Boost converter output voltage setting. Default value is set during  
power-up based on MCUSEL pin.  
0h = 2.7V  
1h = 3.8V  
2h = 4.7V  
3h = 6V  
4h = 9V  
5h = 10V  
6h = 10.5V  
7h = 11V  
8h = 11.5V  
9h = 15V  
Ah = Reserved  
Bh = Reserved  
Ch = Reserved  
Dh = Reserved  
Eh = Reserved  
Fh = Reserved  
8.6.16 LEDLDO Register (Offset = Fh) [reset = 0h]  
LEDLDO is shown in 8-20.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8-20. LEDLDO Register Field Descriptions  
Bit  
7-4  
3-1  
Field  
Type  
Reset  
Description  
RESERVED  
LEDLDO  
R
0h  
Reserved  
R/W  
0h  
LED LDO settings  
0h = 7.5V  
1h = 8.0V  
2h = 8.5V  
3h = 9.0V  
4h = 9.5V  
5h = 10V  
6h = Reserved  
7h = Reserved  
0
RESERVED  
R
0h  
Reserved  
8.6.17 PH_CTRL Register (Offset = 10h) [reset = 0h]  
PH_CTRL is shown in 8-21.  
Return to Summary Table.  
8-21. PH_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
TEMPCOB  
R
0h  
Reserved  
6-5  
R/W  
0h  
LED B Temperature Coefficient Setting  
0h = 0.347 mV/C  
1h = 0.416 mV/C  
2h = 0.693 mV/C  
3h = 1.040 mV/C  
4-3  
TEMPCOA  
R/W  
0h  
LED A Temperature Coefficient Setting  
0h = 0.347 mV/C  
1h = 0.416 mV/C  
2h = 0.693 mV/C  
3h = 1.040 mV/C  
2
PREF_SEL  
PGAIN  
R/W  
R/W  
0h  
0h  
Photo Reference setting  
0h = Photo gain amplifier referenced to 0mV  
1h = Photo gain amplifier and PREF pin connected to 50mV internal  
reference  
1-0  
Photo Gain setting  
0h = 5  
1h = 11  
2h = 20  
3h = 35  
8.6.18 LED_DAC_A Register (Offset = 11h) [reset = 0h]  
LED_DAC_A is shown in 8-22.  
Return to Summary Table.  
8-22. LED_DAC_A Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PDAC_A  
R/W  
0h  
LED DAC A setting  
00h to FFh = 0mV to 300mV  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
52  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
8.6.19 LED_DAC_B Register (Offset = 12h) [reset = 0h]  
LED_DAC_B is shown in 8-23.  
Return to Summary Table.  
8-23. LED_DAC_B Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PDAC_B  
R/W  
0h  
LED DAC B setting  
00h to FFh = 0mV to 300mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS8802 supports a variety of smoke alarm platforms:  
single-wave or dual-wave photoelectric smoke and CO detection  
3-V battery, 9-V battery, or AC/DC supply with battery backup  
tone or voice alarm  
9.2 Typical Application  
33 μH  
VBST  
VLX  
VBAT  
VCC  
0.1 μF  
4.7 μF  
3V Battery  
4.7 μF  
PLDO  
VINT  
PGND  
1 μF  
2.4 M  
5.6 M  
1 μF  
VBAT  
To MCU  
HORNFB  
HORNSL  
1 nF  
VMCU  
1 μF  
MCUSEL  
Piezoelectric Horn  
HORNBR  
VBAT  
1 k  
INT_UNIT  
INT_MCU  
To MCU GPIO  
VMCU  
DINA  
CSA  
IR LED  
47 μF  
0.92  
SCL  
To MCU I²C  
To MCU I²C  
SDA  
CSEL  
DINB  
CSB  
Blue LED  
6.8  
To MCU GPIO  
From MCU GPIO  
To MCU GPIO  
GPIO  
47 μF  
HBEN  
LEDEN  
To MCU  
DGND  
LEDLDO  
PDO  
To MCU  
ADC Port  
10 k  
1 nF  
AMUX  
10 pF  
VINT  
0.22 µF  
PDN  
COO  
100 k  
1 µF  
CON  
COP  
PDP  
Photodiode  
To MCU  
GPIO  
CO  
Sensor  
10 pF  
VINT  
REF0P3  
470 k  
PREF  
Thermal Pad  
AGND  
RESERVED  
9-1. Dual-Wave Photoelectric Smoke and CO Alarm with Backup Battery  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
9.2.1 Design Requirements  
In this example, a smoke alarm requires the following:  
100 MΩphotoamplifier transconductance with sub-nanoamp detection  
100 mA IR LED current with 1-mA/°C temperature compensation  
50mA blue LED current with 0.1mA/°C temperature compensation  
9.2.2 Detailed Design Procedure  
9.2.2.1 Photo Amplifier Component Selection  
To meet the 100-MΩ photoamplifier transconductance requirement, set the gain stage to 35x with PGAIN = 11.  
Because the application requires sub-nanoamp current detection, reference the photo amplifier to PREF and set  
PREF_SEL = 1. This reference offsets the input stage output by 50 mV and offsets the gain stage output by 225  
mV. Because the application uses PREF, the gain stage amplification reduces to 32.25x. Divide 100 MΩ by  
32.25x to get 3.1 MΩ. The gain is distributed across two resistors, therefore use a resistor with a value of  
approximately 1.55 MΩ. A 1.5-MΩ resistor is selected. The achieved transconductance is 96.8 MΩ. Use 10-pF  
of compensation capacitance in parallel with the 1.5-MΩ resistors. Use an oscilloscope with averaging to verify  
the photo amplifier is quickly settling but not overshooting. If the photo amplifier has overshoot, increase the  
compensation capacitance. If the photo amplifier is settling slowly, decrease the compensation capacitance.  
9.2.2.2 LED Driver Component Selection  
The LED current depends on the TEMPCO bits, PDAC register and CSA and CSB resistors. Changing any of  
these values affects the LED current and temperature compensation. The following method selects the  
TEMPCO, PDAC, and CSA resistor value based on the required LED current and temperature compensation.  
The 100-mA LED current and 1 mA/°C temperature compensation is used as an example for LED A. Repeat the  
process for LED B.  
1. Determine the room temperature current and temperature compensation required by the application.  
100mA and 1mA/°C is required by the design.  
2. Calculate the compensation in percentage per degree by dividing the compensation coefficient by the  
current and multiplying by 100.  
1 mA/°C divided by 100 mA is 1%/°C.  
3. Use 9-1 or 9-2 to select a TEMPCO setting which contains the required compensation. If the required  
compensation is in two ranges, use the range with a higher TEMPCO setting. If the required temperature  
coefficient is not in any of the ranges, choose the TEMPCO and PDAC setting closest to the required  
temperature coefficient, then go to step 5.  
1%/°C is between the mimumum and maximum for TEMPCO = 11.  
4. Calculate the target CSA voltage. Divide the driver temperature coefficient [mV/°C] by the desired  
temperature coefficient [%/°C] and multiply by 100.  
1.040 mV/°C divided by 1 %/°C is 104 mV.  
5. Calculate the CSA resistor by dividing the target CSA voltage by the required current and subtracting 0.1 Ω  
for internal resistance.  
104 mV divided by 100 mA is 1.04 Ω. Subtract 0.1 Ωto get 0.94 Ω.  
6. Select the closest available resistor and calculate the final CSA voltage by multiplying the required current by  
the total resistance (external and internal).  
Use a 0.92 Ωresistor. Multiply 100 mA and 1.02 Ωto get 102mV CSA voltage.  
7. Calculate the PDAC value by subtracting the final CSA voltage by the specified CSA voltage at PDAC =  
0x00 and dividing the result by 1.176 mV (the DAC LSB, equal to 300 mV divided by 255).  
102 mV minus 79 mV is 23 mV, divided by 1.176 mV is 20. Write 0x14 to the PDAC register.  
8. Calibrate the PDAC value. If using the LED A driver, read the CSA_BIN register bits and add 0x11 if  
CSA_BIN=00b, add 0x06 if CSA_BIN=01b, subtract 0x06 if CSA_BIN=10b, or subtract 0x11 if  
CSA_BIN=11b. The CSA_BIN value varies from unit to unit and must be read on each unit calibrated using  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
this method. Alternatively, measure the CSA or CSB voltage using the MCU ADC and adjust PDAC  
accordingly.  
The microcontroller reads that a unit has CSA_BIN=01b. 0x20 is written to PDAC_A.  
9-1. Temperature Coefficients for Each TEMPCOA and DAC_A Setting  
CSA Voltage [mV],  
T = 27°C  
Temperature Coefficient Temperature Coefficient  
Register Setting  
Coefficient Information  
Max for TEMPCO = 11b  
Min for TEMPCO = 11b  
Max for TEMPCO = 10b  
Min for TEMPCO = 10b  
Max for TEMPCO = 01b  
Min for TEMPCO = 01b  
Max for TEMPCO = 00b  
Min for TEMPCO = 00b  
[mV/°C]  
[%/°C]  
TEMPCOA[1:0] = 11,  
PDAC_A = 0x00  
79  
1.040  
1.316%  
TEMPCOA[1:0] = 11,  
PDAC_A = 0xFF  
376  
188  
484  
277  
572  
299  
593  
1.040  
0.693  
0.693  
0.416  
0.416  
0.347  
0.347  
0.277%  
0.369%  
0.143%  
0.150%  
0.073%  
0.116%  
0.059%  
TEMPCOA[1:0] = 10,  
PDAC_A = 0x00  
TEMPCOA[1:0] = 10,  
PDAC_A = 0xFF  
TEMPCOA[1:0] = 01,  
PDAC_A = 0x00  
TEMPCOA[1:0] = 01,  
PDAC_A = 0xFF  
TEMPCOA[1:0] = 00,  
PDAC_A = 0x00  
TEMPCOA[1:0] = 00,  
PDAC_A = 0xFF  
9-2. Temperature Coefficients for Each TEMPCOB and DAC_B Setting  
CSB Voltage [mV], T =  
27°C  
Temperature Coefficient Temperature Coefficient  
[mV/°C] [%/°C]  
Register Setting  
Coefficient Information  
TEMPCOB[1:0] = 11,  
PDAC_B = 0x00  
81  
1.040  
1.040  
0.693  
0.693  
0.416  
0.416  
0.347  
0.347  
1.284%  
0.272%  
0.369%  
0.143%  
0.150%  
0.073%  
0.116%  
0.059%  
Max for TEMPCO = 11b  
TEMPCOB[1:0] = 11,  
PDAC_B = 0xFF  
379  
189  
486  
277  
572  
299  
594  
Min for TEMPCO = 11b  
Max for TEMPCO = 10b  
Min for TEMPCO = 10b  
Max for TEMPCO = 01b  
Min for TEMPCO = 01b  
Max for TEMPCO = 00b  
Min for TEMPCO = 00b  
TEMPCOB[1:0] = 10,  
PDAC_B = 0x00  
TEMPCOB[1:0] = 10,  
PDAC_B = 0xFF  
TEMPCOB[1:0] = 01,  
PDAC_B = 0x00  
TEMPCOB[1:0] = 01,  
PDAC_B = 0xFF  
TEMPCOB[1:0] = 00,  
PDAC_B = 0x00  
TEMPCOB[1:0] = 00,  
PDAC_B = 0xFF  
Use the same procedure for the blue LED, requiring 50 mA and 0.1 mA/°C, to calculate TEMPCOB = 10, RCSB  
= 6.8 Ω, VCSB = 345 mV, PDAC_B = 0x85 (before calibration).  
The two drivers are identical, except for the CSA_BIN code to improve the accuracy of the LED_A driver for IR  
LEDs. Connect the IR LED to the LED A driver and the blue LED to the LED B driver in multi-wave systems.  
9.2.2.3 LED Voltage Supply Selection  
Each of the LED anodes must have enough voltage to forward bias the LED, regulate the CSA and CSB voltage,  
and exceed the driver dropout voltage requirement from DINA to CSA and DINB to CSB. A typical IR LED at 100  
mA has 1.5-V forward voltage. The LED driver dropout voltage at 100 mA is 300 mV. With the CSA voltage set  
to 100 mV, the dropout voltage of 300 mV, and forward voltage of 1.5 V, at least 1.9 V must be applied to the IR  
LED anode for current regulation. Connect the IR LED anode to the LEDLDO. Enable the boost converter set to  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
2.7 V and enable the LED LDO to charge the IR LED anode capacitor. Alternatively, the IR LED anode can be  
connected to PLDO through a diode.  
A typical blue LED at 50 mA has 4 V forward voltage. For the blue LED, the CSB voltage is 340 mV, the dropout  
voltage is 300 mV, and the forward voltage is 4 V. Supply over 4.64 V to the anode for the duration of the LED  
pulse. With a 47 µF capacitor derated to 30 µF, 100 µs LED pulse, the anode voltage drops by 170 mV. Thus,  
the capacitor must be charged to 4.81 V. Enable the boost converter set to 6 V and enable the LED LDO to  
charge the blue LED anode capacitor. The LED LDO has a diode voltage drop between the VBST voltage and  
LEDLDO voltage. The LEDLDO prevents the DINA pin from exceeding its recommended operating limit of 11.5  
V.  
9.2.2.4 Boost Converter Component Selection  
A 4.7-μF, 16-V or 25-V, X5R or X7R capacitor is recommended on VBST. This value provides the best tradeoff  
between boost ripple and power loss (from charging and discharging VBST).  
A 4.7-μF X5R or X7R capacitor rated for the battery voltage is recommended to be connected to the battery.  
This capacitor provides a low-impedance supply for the inductor when the boost converter is rapidly switching.  
A 33-μH inductor rated for 700 mA of saturation current with less than 800 mΩ of DC resistance (DCR) is  
recommended. Smaller DCR improves the efficiency of the boost converter. Comparing 800 mΩ to 400 mΩ,  
approximately 3% efficiency improvement is expected.  
9-3. Recommended Inductors for Boost Converter  
PART NUMBER  
SUPPLIER  
VALUE  
33 μH  
33 μH  
ISAT (A)  
DIMENSIONS  
DCR (Ω)  
SDR0503-330KL  
Bourns  
0.38  
0.85  
5.0mm × 4.8mm x 3.0mm  
4.0mm x 4.0mm x 1.8mm  
NRS4018T330MDGJV  
Taiyo Yuden  
0.552  
0.70  
A Schottky diode with low forward voltage and low leakage current is recommended. Ensure the leakage is low  
enough to prevent battery recharging issues.  
9-4. Recommended Diode for Boost Converter  
PART NUMBER  
SUPPLIER  
SIZE  
MBR0520LT1  
ON Semiconductor Corp.  
SOD-123  
9.2.2.5 Regulator Component Selection  
To stabilize the output voltage on each regulator, install 1-µF capacitors on VINT, VMCU, and PLDO. Connect  
the MCUSEL pin to GND to set the MCU LDO voltage to 1.8V. The MCU LDO can be set to other voltages by  
changing the MCUSEL pin connection. Connect the MCUSEL pin to GND through a 1 nF capacitor to set the  
MCU LDO voltage to 3.3 V. Connect MCUSEL to VINT to set the MCU LDO to 2.5 V. Connect MCUSEL to GND  
with a 620-Ωresistor to set the MCU LDO to 1.5 V.  
9.2.3 Application Curves  
All curves use the schematics shown in 9-1. The photo amplifier curves do not have the 470 kΩ PREF  
resistor installed.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
9-2. Power-up Waveforms  
9-3. Boost Soft-Start  
78  
76  
74  
72  
70  
68  
VBAT=2V, 10mA Load  
VBAT=3V, 10mA Load  
9-4. 15V AC/DC Supply with Battery Backup  
Handoff  
2
4
6
8 10  
VBST (V)  
12  
14  
16  
9-5. Boost Converter Efficiency  
9-6. LED Driver and Photo Amplifier Waveforms 9-7. LED Driver and Photo Amplifier Waveforms  
with 128 Averages  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
58  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
9-9. 3-Terminal Horn Driver Waveforms  
9-8. Carbon Monoxide Amplifier Waveforms with  
Calibration Gas  
9.2.4 3V Battery Smoke and CO Alarm  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
33 μH  
4.7 μF  
VBST  
VLX  
VBAT  
VCC  
0.1 μF  
3V Battery  
4.7 μF  
PLDO  
PGND  
1 μF  
VINT  
2.4 M  
5.6 M  
1 μF  
VBAT  
HORNFB  
HORNSL  
1 nF  
To MCU  
VMCU  
1 μF  
MCUSEL  
Piezoelectric Horn  
HORNBR  
VBAT  
1 k  
INT_UNIT  
INT_MCU  
To MCU GPIO  
DINA  
CSA  
VMCU  
IR LED  
47 μF  
0.92  
SCL  
To MCU I²C  
To MCU I²C  
SDA  
CSEL  
DINB  
CSB  
Blue LED  
6.8  
GPIO  
To MCU GPIO  
From MCU GPIO  
To MCU GPIO  
47 μF  
HBEN  
LEDEN  
To MCU  
DGND  
LEDLDO  
PDO  
To MCU  
ADC Port  
10 k  
1 nF  
AMUX  
10 pF  
VINT  
0.22 µF  
PDN  
COO  
100 k  
1 µF  
CON  
COP  
PDP  
Photodiode  
To MCU  
GPIO  
CO  
Sensor  
10 pF  
VINT  
REF0P3  
470 k  
PREF  
Thermal Pad  
AGND  
RESERVED  
9-10. 3-V Battery Smoke and CO Alarm  
9.2.4.1 Design Requirements  
In this example, a smoke alarm requires the following:  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
60  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
100 MΩphotoamplifier transconductance with sub-nanoamp detection  
100mA IR LED current with 1mA/°C temperature compensation  
50mA blue LED current with 0.1mA/°C temperature compensation  
10-year battery life with 3V lithium primary battery  
9.2.4.2 Detailed Design Procedure  
In this application, a 3V battery is the only power source. The 3V battery is used to directly power the IR LED  
and the MCU, saving power. The MCU LDO can be disabled after power-up. Ensure the MCU and IR LED can  
operate over the range of voltages supplied by the battery.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
10 Power Supply Recommendations  
These power sources, among others, can power the TPS8802 device:  
3-V lithium battery  
9-V battery  
two 1.5-V batteries  
an AC/DC supply  
When the boost converter is used, the power supply must be able to supply 650-mA peak current to the boost  
converter. Ensure that the power supply voltage does not drop below 2 V during the initial powerup sequence. A  
rise time less than 1 ms may cause VBST to overshoot due to LC ringing. Ensure the power supply's rise time is  
less than 100ms.  
If the boost converter is not used, ensure the power supply can tolerate transient currents caused by the LED  
driver or horn driver. A supply capable of 50 mA average current is generally sufficient. The supply voltage must  
be high enough to power the horn driver, LED driver and interconnect. Ensure the power supply's rise time is  
less than 100ms.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
62  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
11 Layout  
11.1 Layout Guidelines  
These blocks require careful layout placement:  
Boost converter  
Photo amplifier  
CO amplifier  
Ground plane and traces  
11.1.1 Photo Amplifier Layout  
The photo amplifier is a very sensitive analog block in the TPS8802 device. Minimal trace lengths must be used  
to connect the photodiode and relevant external components to PDP, PDN, PDO, PREF and AGND. It is  
recommended to shield the PDP, PDN, PDO, and PREF traces with the AGND plane.  
11.1.2 CO Amplifier Layout  
Similar to the photo amplifier, the CO amplifier is very sensitive to noise. Connect the CO electrochemical sensor  
close to the TPS8802 device and shield the COP, CON, and COO traces with the AGND plane.  
11.1.3 Boost Converter Layout  
The boost converter components must be positioned close to the VLX, VBST, and PGND pins. To minimize  
switching noise, ensure that the VLX trace is as short as possible. A PGND plane can assist with connecting the  
PGND connections together, but may not be necessary if the PGND routing is short enough without the PGND  
plane. All PGND routing must remain separated from the AGND plane. Connect PGND to AGND at a single  
point near the AGND pin.  
11.1.4 Ground Plane Layout  
Connect AGND and DGND to the ground plane. Ensure there is a short path from AGND to DGND. Route  
PGND and its associated blocks (LED driver, boost converter) separately from the ground plane. Connect PGND  
to AGND at a single point near the IC.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
11.2 Layout Example  
11-1. Photo Amplifier Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
64  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
11-2. CO Amplifier Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
11-3. Boost Converter Layout with PGND Plane  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
66  
Submit Document Feedback  
Product Folder Links: TPS8802  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
AGND  
DGND  
AGND Plane  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND Pla ne  
11-4. Ground Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSF25  
68  
Submit Document Feedback  
Product Folder Links: TPS8802  
 
 
 
 
 
 
TPS8802  
www.ti.com.cn  
ZHCSL07C SEPTEMBER 2019 REVISED AUGUST 2021  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS8802  
English Data Sheet: SLVSF25  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS8802DCPR  
ACTIVE  
HTSSOP  
DCP  
38  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
TPS8802DCP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS8802DCPR  
TPS8802DCPR  
HTSSOP DCP  
HTSSOP DCP  
38  
38  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.9  
6.9  
10.2  
10.2  
1.8  
1.8  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS8802DCPR  
TPS8802DCPR  
HTSSOP  
HTSSOP  
DCP  
DCP  
38  
38  
2000  
2000  
367.0  
356.0  
367.0  
356.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DCP 38  
4.4 x 9.7, 0.5 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224560/B  
www.ti.com  
PACKAGE OUTLINE  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
36X 0.5  
38  
1
2X  
9
9.8  
9.6  
NOTE 3  
19  
20  
0.27  
0.17  
0.08  
38X  
4.5  
4.3  
B
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
19  
20  
2X 0.95 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
39  
4.70  
3.94  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
38  
2.90  
2.43  
4218816/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(2.9)  
SYMM  
38X (1.5)  
38X (0.3)  
SEE DETAILS  
38  
1
(R0.05) TYP  
36X (0.5)  
3X (1.2)  
SYMM  
39  
(4.7)  
(9.7)  
NOTE 9  
(0.6) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
20  
19  
(1.2)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4218816/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.9)  
BASED ON  
0.125 THICK  
STENCIL  
38X (1.5)  
38X (0.3)  
METAL COVERED  
BY SOLDER MASK  
1
38  
(R0.05) TYP  
36X (0.5)  
(4.7)  
SYMM  
39  
BASED ON  
0.125 THICK  
STENCIL  
19  
20  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.24 X 5.25  
2.90 X 4.70 (SHOWN)  
2.65 X 4.29  
0.125  
0.15  
0.175  
2.45 X 3.97  
4218816/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS8804

商用烟雾探测器模拟前端
TI

TPS8804DCPR

商用烟雾探测器模拟前端 | DCP | 38 | -40 to 85
TI

TPS9103

POWER SUPPLY FOR GaAs POWER AMPLIFIERS
TI

TPS9103PW

POWER SUPPLY FOR GaAs POWER AMPLIFIERS
TI

TPS9103PWLE

Integrated GaAs Power Supply And Protection 20-TSSOP
TI

TPS9103PWR

DC-to-DC Voltage Converter
ETC

TPS9103Y

POWER SUPPLY FOR GaAs POWER AMPLIFIERS
TI

TPS9103_09

POWER SUPPLY FOR GAAS POWER AMPLIFIERS
TI

TPS9104

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY/AUDIO SYSTEM
TI

TPS9104IPT

SPECIALTY TELECOM CIRCUIT, PQFP48, PLASTIC, TQFP-48
TI

TPS9104IPTR

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY/AUDIO SYSTEM
TI

TPS9104PT

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY/AUDIO SYSTEM
TI