TPSM831D31MOA [TI]

具有 AVS 和监控功能的 8V-14V 输入、120A + 40A 双输出 PMBus 模块 | MOA | 28 | -40 to 105;
TPSM831D31MOA
型号: TPSM831D31MOA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 AVS 和监控功能的 8V-14V 输入、120A + 40A 双输出 PMBus 模块 | MOA | 28 | -40 to 105

监控
文件: 总88页 (文件大小:3009K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
TPSM831D31 8V 14V 输入、0.25V 1.52V 双路输出、  
120A + 40A PMBus™ 电源模块  
1 特性  
3 说明  
• 输入电压范围8V 14V  
• 双路输出120A三相+ 40A一相)  
• 输出电压范围0.25 V 1.52 V  
– 可编程阶跃5mV)  
– 差分遥感  
±0.5% Vref 精度具有遥感功能  
PMBus 接口  
TPSM831D31 是一款 PMBus控制型双输出四相电  
源模块该电源模块将一个具有四个高效智能功率级的  
高性D-CAP+控制器组合在一个坚固耐用的热增强  
型表面贴装封装中。用户提供输入和输出电容器以及一  
些无源组件即可完成系统。第一个输出是能够提供高达  
120A 连续输出电流的三相功率级。第二个输出是能够  
提供高40A 输出电流的单相功率级。  
– 可编VOUTUVLO、故障限制  
VINVOUTIOUT、温度遥测  
– 支持高1MHz 的总线速度  
– 片上非易失性配置存储器  
PMBus 接口提供每个输出电压、UVLO、软启动、过  
流和热关断参数的转换器配置。该接口具有遥测支持功  
可报告实际输入电压、输出电压、输出电流和器件  
温度。该器件可报告输入和输出功率。该器件支持标准  
PMBus 警告 故障 功能。该器件支持高达 1MHz 的  
PMBus 通信速度具有 1.8V 3.3V 逻辑电平详见  
SMBus 规范 V3.0 4.3 节。该模块器件支持 PMBus  
1.3 规范中的一部分命令。  
• 超快瞬态响应  
• 开关频率范围350 kHz 700 kHz  
15mm × 48mm 封装尺寸12mm 高度  
• 效率高95%  
• 双电源正常状态指示输出  
• 过流、过压、过热保护  
IC 工作结温范围40°C 125°C  
• 工作环境温度范围40°C 105°C  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPSM831D31  
QFM (28)  
48.00mm × 15.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
具有双电源轨的高性能处理器/ASIC  
网络处理器电源Broadcom®Cavium®、  
Marvell®NXP®)  
高电FPGA 电源Intel®Xilinx®)  
高性ARM 处理器电源  
VOUTA 120 A  
ASIC Core  
VIN  
8 V to 14 V  
TPSM831D31  
PMBUS  
VOUTB 40 A  
ASIC I/O  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDC9  
 
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
Table of Contents  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................17  
7.5 Programming............................................................ 17  
8 Application and Implementation..................................72  
8.1 Application Information............................................. 72  
8.2 Typical Application.................................................... 72  
9 Power Supply Recommendations................................78  
10 Layout...........................................................................78  
10.1 Layout Guidelines................................................... 78  
10.2 Layout Examples.................................................... 78  
11 Device and Documentation Support..........................80  
11.1 接收文档更新通知................................................... 80  
11.2 支持资源..................................................................80  
11.3 Trademarks............................................................. 80  
11.4 静电放电警告...........................................................80  
11.5 术语表..................................................................... 80  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................6  
6.5 Electrical Characteristics ............................................6  
6.6 References: DAC .......................................................8  
6.7 Telemetry ................................................................... 8  
6.8 Current Sense and Calibration ...................................8  
6.9 Logic Interface Pins: A_EN, A_PGOOD, B_EN,  
B_PGOOD,RESET .......................................................9  
6.10 Protections: OVP and UVP ......................................9  
6.11 Typical Characteristics (VIN = 12 V)........................ 10  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
Information.................................................................... 81  
4 Revision History  
Changes from Revision * (August 2018) to Revision A (June 2021)  
Page  
• 将数据表状态从预告信息更改为量产数..........................................................................................................1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND  
VIN  
1
2
28  
27  
VOUT_A  
GND  
VIN  
3
4
VOUT_A  
PMBDAT  
PMBCLK  
PMBALERT  
RESET  
A_PGOOD  
A_EN  
26  
25  
24  
23  
22  
21  
20  
19  
GND  
GND  
DNC  
ADDR  
B_PGOOD  
B_EN  
BVSP  
BVSN  
5
6
7
8
9
10  
11  
12  
AVSP  
AVSN  
13  
14  
GND  
VIN  
18  
VOUT_A  
GND  
VIN  
15  
16  
17  
VOUT_B  
5-1. MOA Package, 28-Pin QFM (Top View)  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Connect a resistor from this pin to GND to set the desired PMBus address. Do not leave this pin  
floating. See PMBus ADDRESS section.  
ADDR  
23  
I
I
Active high enable input for VOUT_A. Asserting this pin high enables power conversion on the  
VOUT_A channel.  
A_EN  
10  
9
Open drain Power Good signal of the VOUT_A channel. This pin requires a pullup resistor. This  
pin is pulled low when a shutdown fault occurs.  
A_PGOOD  
AVSN  
O
I
Negative input of the remote voltage sense of channel A. Connect this pin to ground at the  
VOUT_A load for best voltage regulation. Do not let this pin float.  
12  
11  
21  
22  
19  
Positive input of the remote voltage sense of channel A. Connect this pin to VOUT_A at the  
load for best voltage regulation. Do not let this pin float.  
AVSP  
I
Active high enable input for VOUT_B. Asserting this pin high enables power conversion on the  
VOUT_B channel.  
B_EN  
I
Open drain Power Good signal of the VOUT_B channel. This pin requires a pullup resistor. This  
pin is pulled low when a shutdown fault occurs.  
B_PGOOD  
BVSN  
O
I
Negative input of the remote voltage sense of channel B. Connect this pin to ground at the  
VOUT_B load for best voltage regulation. Do not let this pin float.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Positive input of the remote voltage sense of channel B. Connect this pin to VOUT_A at the  
load for best voltage regulation. Do not let this pin float.  
BVSP  
20  
I
Do not connect. This pin is connected to internal circuitry. Do not connect this pin to other signal  
or voltage source. Connecting the pin to GND is recommended.  
DNC  
GND  
24  
1
3
Power ground of the device. Connect pins 1, 3, 13, and 15 to the bypass caps associated with  
VIN. Connect pads 1, 3, 13, 15 to the PCB ground planes using multiple vias for optimal thermal  
performance.  
13  
15  
25  
26  
6
G
PMBCLK  
I
PMBus serial clock interface. (Open Drain)  
PMBDAT  
5
I/O  
I/O  
PMBus bi-directional serial data interface. (Open Drain)  
PMBus bi-directional ALERT pin interface. (Open Drain)  
PMBALERT  
7
Active low RESET input that resets the output voltage to its programmed BOOT voltage. This  
pin requires a pullup resistor.  
RESET  
VIN  
8
I
2
4
Input voltage. These pins provide voltage to the power conversion stages of the module.  
Connect these pins to the PCB VIN planes using multiple vias for optimal thermal performance.  
I
14  
16  
18  
27  
28  
Output voltage of channel A. Connect these pins to the output A load. Connect external bypass  
capacitors between these pins and GND pins 1, 3, and 13.  
VOUT_A  
VOUT_B  
O
O
Output voltage of channel B. Connect this pin to the output B load. Connect external bypass  
capacitors between this pin and GND pin 15.  
17  
(1) G = ground, I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
19  
UNIT  
V
VIN  
Input voltage(2)  
ADDR, AVSP, BVSP, RESET, PMBCLK, PMBDAT  
AGND, AVSN, BVSN  
3.6  
0.3  
3.6  
500  
10  
V
V
Output voltage(1) (2)  
Mechanical shock  
Mechanical vibration  
VOUT_A, VOUT_B, A_PGOOD, B_PGOOD, PMBALERT  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
V
G
G
Operating junction temperature, TJ  
Storage temperature, TSTG  
150  
150  
°C  
°C  
40  
55  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal GND unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
NOM  
MAX  
14  
UNIT  
VIN  
12  
V
V
VOUT_A, VOUT_B, AVSP, BVSP  
0.25  
0
1.52  
120  
40  
IOUTA  
A
IOUTB  
0
A
PMBCLK, PMBDAT, RESET pullup, A_PGOOD pullup, B_PGOOD pullup, PMBALERT pullup  
Switching frequency  
3.3  
3.5  
V
350  
40  
40  
400  
700  
125  
105  
kHz  
°C  
°C  
µF  
µF  
µF  
µF  
µF  
µF  
Operating junction temperature, TJ  
Operating ambient temperature, TA  
Ceramic  
500  
1000  
1200  
5500  
400  
External input capacitance, CIN  
Non-ceramic  
Ceramic  
External output capacitance, COUT_A  
600  
2750  
200  
Non-ceramic  
Ceramic  
External output capacitance, COUT_B  
Non-ceramic  
900  
1800  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
 
 
 
 
 
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.4 Thermal Information  
TPSM831D31  
THERMAL METRIC(4)  
MOA (QFN)  
28 PINS  
5.5  
UNIT  
Natural Convection  
200 LFM  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C  
RθJA  
Junction-to-ambient thermal resistance (1)  
3.4  
400 LFM  
2.8  
Junction-to-top characterization parameter (2)  
Junction-to-board characterization parameter (3)  
Thermal shutdown temperature (default setting)  
0.3  
ψJT  
ψJB  
TSD  
1.6  
135  
(1) The junction-to-ambient thermal resistance applies to devices soldered directly to a 100 mm x 150 mm, 8-layer PCB with 2 oz. copper.  
(2) The junction-to-top board characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the inductor.  
(3) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB  
is the temperature of the board 1 mm from the device.  
(4) For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report .  
6.5 Electrical Characteristics  
TA = 40°C to +105°C, VIN = 12 V, VOUTA = VAVSP = 1 V, VOUTB = VBVSP = 1 V, VAVSN = VBVSN = 0V, IOUTA = IOUTB = 0 A, FSW  
= 400 kHz, CIN1 = 24 × 22-µF, 25-V, 1210 ceramic, CIN2 = 2 × 470 µF, electrolytic bulk, COUTA1 = 12 × 100 µF, 6.3-V, 1210  
ceramic, COUTA2 = 12 × 470 µF, 6.3 V, COUTB1 = 4 × 100 µF, 6.3-V, 1210 ceramic, COUTB2 = 4 × 470 µF, 6.3-V polymer bulk.  
Minimum and maximum limits are specified through production test or design of the module/internal controller. Typical values  
represent the most likely parametric norm and are provided for reference only (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE  
VIN  
Input voltage range  
8
14  
V
V
VIN increasing (default setting)  
7.25  
6.5  
8
UVLO  
VIN undervoltage lockout  
VIN decreasing (default setting)  
A_EN = B_EN = GND  
V
IIN(STBY)  
Input standby current  
mA  
OUTPUT VOLTAGE  
Boot voltage  
5-mV DAC (default setting)  
5-mV DAC  
0.492  
0.25  
0.5  
5
0.508  
1.52  
V
V
Programmable range  
Programmable step size  
Set-point voltage tolerance  
Line regulation  
5-mV DAC  
mV  
0.5%  
5-mV DAC, 0.8 V VOUT 1 V  
8 V VIN 14 V, IOUT = 0 A  
0 A IOUT 120 A  
0.5%  
VOUT_A  
0.1%  
0.1%  
10  
Load regulation  
Output voltage ripple  
Boot voltage  
20-MHz bandwidth, IOUT = 90 A  
5-mV DAC (default setting)  
5-mV DAC  
mV  
V
0.492  
0.25  
0.5  
0.508  
1.52  
Programmable range  
Programmable step size  
Set-point voltage tolerance  
Line regulation  
V
5-mV DAC  
5
mV  
0.5%  
5-mV DAC, 0.8 V VOUT 1 V  
8 V VIN 14 V, IOUT = 0 A  
0 A IOUT 120 A  
0.5%  
VOUT_B  
0.1%  
0.1%  
20  
Load regulation  
Output voltage ripple  
20-MHz bandwidth, IOUT = 30 A  
mV  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
 
 
 
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
TA = 40°C to +105°C, VIN = 12 V, VOUTA = VAVSP = 1 V, VOUTB = VBVSP = 1 V, VAVSN = VBVSN = 0V, IOUTA = IOUTB = 0 A, FSW  
= 400 kHz, CIN1 = 24 × 22-µF, 25-V, 1210 ceramic, CIN2 = 2 × 470 µF, electrolytic bulk, COUTA1 = 12 × 100 µF, 6.3-V, 1210  
ceramic, COUTA2 = 12 × 470 µF, 6.3 V, COUTB1 = 4 × 100 µF, 6.3-V, 1210 ceramic, COUTB2 = 4 × 470 µF, 6.3-V polymer bulk.  
Minimum and maximum limits are specified through production test or design of the module/internal controller. Typical values  
represent the most likely parametric norm and are provided for reference only (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT CURRENT  
Output current  
Natural convection(2)  
0
120  
A
A
A
A
A
A
A
A
Overcurrent fault threshold  
Per phase OCL level  
Factory default setting (150% of IOUT max)  
(default setting)  
180  
54  
IOUT_A  
Overcurrent warning threshold Factory default setting (100% of IOUT max)  
120  
Output current  
Natural convection(2)  
0
40  
Overcurrent fault threshold  
Per Phase OCL level  
Factory default setting (150% of IOUT max)  
(default setting)  
60  
54  
40  
IOUT_B  
Overcurrent warning threshold Factory default setting (100% of IOUT max)  
PERFORMANCE  
IOUT_A = 90 A, VOUT_B disabled  
Efficiency(1)  
92%  
92%  
IOUT_B = 30 A, VOUT_A = disabled  
TIMING  
VVBOOT > 0 V, no faults, TON_DELAY = 0xB1EC  
VOUTA start-up time  
tSTARTUPA  
0.38  
0.8  
0.48  
0.9  
0.58  
ms  
(PAGE 0) (default setting)  
VVBOOT > 0 V, no faults, TON_DELAY = 0xB396  
VOUTB start-up time  
tSTARTUPB  
tVCCVID  
1
500  
92  
ms  
ns  
ns  
(PAGE 1) (default setting)  
VID change to VSP change  
Rising-edge blanking time(3)  
ACK of SetVID_x command to start of voltage ramp  
MFR_SPEC_09<8:6> = 110b  
(default setting)  
tON_BLANK  
53  
72  
2.5  
VOUT_TRANSITION_RATE = 0xE028 (default  
setting)  
SLSET  
SLSS  
Slew rate setting(3)  
mV/µs  
mV/µs  
AVSP and BVSP slew rate soft-  
start(3)  
MFR_SPEC_13<8> = 0b (default setting)  
SLSET /4  
SWITCHING FREQUENCY  
FREQUENCY_SWITCH = 0x0190 (VOUTA default  
setting)  
360  
400  
450  
440  
kHz  
Switching frequency  
fSW  
FREQUENCY_SWITCH = 0x01C2 (VOUTB default  
setting)  
405  
350  
495  
700  
kHz  
kHz  
Range(3)  
(1) Phase shedding disabled.  
(2) See SOA graph for derating over temperature.  
(3) Applies to both VOUTA and VOUTB.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.6 References: DAC  
Over recommended operating conditions. Minimum, typical and maximum values are specified through production test or  
design of the internal controller (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVIDSTP  
VID step size(1)  
5 mV DAC: Change VID0 HI to LO to HI  
5
mV  
VOUT_SCALE_LOOP = 0xe808,  
VOUT_SCALE_MONITOR = 0xe808  
KRATIO  
Voltage divider ratio(1)  
VOUT offset LSB(1)  
1.000  
VOUT_TRIML  
MFR_SPECIFIC_05 = 0x01  
MFR_SPECIFIC_05 = 0x1F  
MFR_SPECIFIC_05 = 0xA0  
MFR_SPECIFIC_05 = 0x5F  
MFR_SPECIFIC_05 = 0xE0  
0
37.5  
1.25  
38.75  
40  
2.5  
40  
mV  
mV  
43.25  
56.25  
63  
37.75  
61.25  
57  
VOUT_TRIMR  
VOUT offset range  
58.75  
60  
(1) Applies to both VOUTA and VOUTB.  
6.7 Telemetry  
Over recommended operating conditions. Minimum, typical and maximum values are specified through production test or by  
design of the module/internal controller (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
5-mV DAC : 0.25 V VVSP 1.52 V  
8 V VIN 14 V  
MIN  
TYP  
MAX  
UNIT  
VREAD_VOUT  
VREAD_VIN  
MFR_READ_VOUT accuracy  
READ_VIN accuracy  
12  
mV  
12  
±2.25%  
±3%  
Digital current monitor accuracy,  
Rail A (READ_IOUT)  
IMON_ACC_A  
IOUT = 120 A  
Digital current monitor accuracy,  
Rail B (READ_IOUT)  
IMON_ACC_B  
Temp  
IOUT = 40 A  
±3%  
0
READ_TEMP1  
2
°C  
40°C TSEN 150°C  
2  
6.8 Current Sense and Calibration  
Over recommended operating conditions. Typical values are specified through production test or design of the internal  
controller (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Current monitor calibration offset  
LSB (per-phase)  
IMON_CAL_OF1  
IMON_CAL_OF2  
IMON_CAL_OF3  
IMON_CAL_OF4  
IMON_CAL_LSB  
IMON_CAL_GAIN  
IOUT_CAL_OFFSET resolution (per-phase)  
0.125  
A
IOUT_CAL_OFFSET = 0xE808 (per-phase)  
IOUT_CAL_OFFSET = 0xEFF9 (per-phase)  
1
A
A
Current monitor calibration offset  
range (per-phase)  
0.875  
Current monitor calibration offset  
LSB (total)  
IOUT_CAL_OFFSET resolution (total)  
0.25  
A
IOUT_CAL_OFFSET = 0xE820 (total)  
IOUT_CAL_OFFSET = 0xEFE2 (total)  
4
A
A
Current monitor calibration offset  
range (total)  
3.75  
Current monitor calibration gain  
LSB  
IOUT_CAL_GAIN resolution  
0.3125%  
IOUT_CAL_GAIN = 0xD131  
IOUT_CAL_GAIN = 0xD150  
4.7656  
5.25  
mΩ  
mΩ  
Current monitor calibration gain  
range  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.9 Logic Interface Pins: A_EN, A_PGOOD, B_EN, B_PGOOD,RESET  
Over recommended operating conditions. Minimum, typical and maximum values are specified through production test or  
design of the internal controller (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RRPGDL  
IVRTTLK  
Open-drain pulldown resistance  
VA_PGOOD = VB_PGOOD = 0.45 V  
36  
50  
Ω
SDIO, A_PGOOD, B_PGOOD, Hi Z Leakage, 3.3-V  
applied in off state  
Open-drain leakage current  
0.2  
2
µA  
2  
VAENL  
Channel A ENABLE logic low  
Channel A ENABLE logic high  
Channel A ENABLE hysteresis  
Channel A ENABLE deglitch(1)  
Channel A I/O 1.1-V leakage  
Channel B ENABLE logic low  
Channel B ENABLE logic high  
Channel B ENABLE hysteresis  
Channel B ENABLE deglitch(1)  
0.7  
V
V
VAENH  
VAENHYS  
tAENDIG  
IAENH  
0.8  
0.028  
0.2  
0.05  
0.07  
V
µs  
µA  
V
VA_EN = 1.1 V  
25  
VBENL  
0.7  
VBENH  
VBENHYS  
tBENDIG  
0.8  
0.028  
0.2  
V
0.05  
0.07  
1.5  
V
µs  
Channel A ENABLE low to  
A_PGOOD low  
tAENVRRDYF  
From A_EN low to A_PGOOD low  
VBENH = 1.1 V  
µs  
IBENH  
Channel B I/O 1.1-V leakage  
RESET logic low  
25  
µA  
V
VRSTL  
VRSTH  
tRSTTDLY  
0.8  
RESET logic high(1)  
RESET delay time  
1.09  
V
1
µs  
(1) Specified by design. Not production tested.  
6.10 Protections: OVP and UVP  
Over recommended operating conditions. Minimum, typical and maximum values are specified through production test or  
design of the internal controller (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured at the VSP pin wrt VID code. Device  
latches OFF.  
VRDYH5  
VRDYH0  
330  
400  
mV  
Tracking OVP  
Measured at the VSP pin wrt VID code. Device  
latches OFF.  
140  
200  
2.5  
mV  
tRDYDGLTO  
tRDYDGLTU  
VRDYL  
VR_RDY deglitch time  
VR_RDY deglitch time  
Undervoltage protection(2)  
See(1)  
µs  
µs  
fSW = 500 kHz  
4
(VVSP + VDROOP) with respect to VID  
370  
400  
430  
mV  
Fixed overvoltage protection,  
channel A(2)  
VAVSP > VOVP for 1 µs, ENABLE = HI or LO, PWM  
to LO  
VOVPA  
VOVPB  
2.75  
2.75  
1.9  
2.86  
V
V
Fixed overvoltage protection,  
channel B(2)  
VBVSP > VOVP for 1 µs, ENABLE = HI or LO, PWM  
to LO  
1.85  
1.95  
(1) Time from VSP out of 200-mV or 400-mV VDAC boundary to VR_RDY low.  
(2) Can be programmed with different configurations.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
 
 
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
6.11 Typical Characteristics (VIN = 12 V)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
VOUT  
1.5 V  
1.2 V  
1.0 V  
0.85 V  
VOUT  
1.5 V  
1.2 V  
1.0 V  
0.85 V  
0
5
10  
15  
20  
25  
Output Current (A)  
30  
35  
40  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (A)  
D007  
D001  
6-2. VOUTB Efficiency  
6-1. VOUTA Efficiency  
16  
14  
12  
10  
8
8
7
6
5
4
3
2
1
VOUT  
1.5 V  
1.2 V  
1.0 V  
0.85 V  
VOUT  
1.5 V  
1.2 V  
1.0 V  
0.85 V  
6
4
2
0
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (A)  
5
10  
15  
20  
25  
Output Current (A)  
30  
35  
40  
D002  
D008  
6-3. VOUTA Power Dissipation  
6-4. VOUTB Power Dissipation  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
VOUT  
1.0 V  
VOUT  
1.0 V  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (A)  
0
5
10  
15  
20  
25  
Output Current (A)  
30  
35  
40  
D004  
D010  
6-5. VOUTA Load Regulation  
6-6. VOUTB Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
Airflow  
400LFM  
Airflow  
400LFM  
45  
45  
200LFM  
100LFM  
Nat conv  
200LFM  
100LFM  
Nat conv  
35  
35  
25  
25  
0
0
20  
40  
60  
80  
100  
Output Current (A)  
120  
140  
160  
20  
40  
60  
80  
100  
Output Current (A)  
120  
140  
160  
D022  
D021  
VIN = 12 V  
VOUTA = VOUTB = 0.8 V  
All phases evenly loaded  
VIN = 12 V  
VOUTA = VOUTB = 1.0 V  
All phases evenly loaded  
FSW = 400 kHz  
FSW = 400 kHz  
6-8. Thermal Safe Operating Area  
6-7. Thermal Safe Operating Area  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM831D31 is a PMBus-controlled, dual output 4-phase power module. Both outputs have a  
programmable output voltage range of 0.25 V to 1.52 V. The first output is configured as a 3-phase power stage  
that can deliver up to 120 A of output current. The second output is a single phase power stage that can deliver  
up to 40 A of output current  
7.2 Functional Block Diagram  
TPSM831D31  
Internal  
Regultors  
(5V/3.3V)  
VIN  
AVSP  
AVSN  
Remote  
Sense  
Amplifier  
VOUTA  
Loadline  
Control  
Programmable  
Loop  
BVSP  
BVSN  
VIN  
VIN  
VIN  
Ramp  
Generator  
A_EN  
B_EN  
Mode Control,  
Phase Manager,  
FET Drivers  
RESET  
I2C Interface  
CPU Logic,  
Protection,  
Status  
A_PGOOD  
Circuitry  
B_PGOOD  
Adaptive  
On-Time  
Control and  
Current  
Share  
Circutry  
VOUTB  
PMBDATA  
PMBCLK  
AFE  
ADC  
DAC  
NVM  
PMBALERT  
GND  
ADDR  
Copyright © 2018, Texas Instruments Incorporated  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 DCAP+ Control  
For high current applications, D-CAP+ control architecture, combines the benefits of D-CAP constant on-time  
control with those of multiphase converters. D-CAP+ control ensures that inductor currents of individual phases  
are fed back so the system has accurate droop control and good current-sharing performance as well an error  
amplifier is utilized to improve DC accuracy over load and line.  
7-1 illustrates the operational waveforms of D-CAP+ control architecture with 3 phases in steady state. By  
using the adaptive on-time control concept, a pseudo fixed switching frequency of SW_CLK is generated by  
comparing the summed inductor currents, ISUM, and the error amplifier output, EA, signal. By distributing the  
switching signal to different phases, all phases can be perfectly interleaved in steady state. During load  
transients, the switching frequency is varied to improve the transient performance as shown in 7-2. Variable  
switching frequencies of different phases can be observed.  
One important feature of a multiphase converter is the capability to dynamically add or drop the number of  
operational phases based on load conditions. The goal is to optimize efficiency while maintaining good load  
transient performance.  
7-1. 3-Phase Steady State Switching  
7-2. 3-Phase Transient Operation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.3.2 Setting the Load-Line (DROOP)  
V
DAC  
Slope of Loadline R  
LL  
V
V
= R x I  
DROOP LL OUT  
DROOP  
I
OUT  
7-3. Load Line  
The loadline can be set with VOUT_DROOP register via PMBus. The programmable range for channel A is  
between 0 mand 3.125 mwith 64 options, and the range for channel B is between 0 mand 0.875 mwith  
16 options to fulfill the requirements for different applications. See 7-27 for the DC load line settings.  
7.3.3 Start-Up Timing  
The start-up time is the time from when a start condition is received (as programmed by the ON_OFF_CONFIG  
command) until the output voltage starts to rise. The start-up time for both outputs can be programmed using the  
TON_DELAY command as shown in 7-1.  
7-1. Start-Up Time  
START-UP TIME (ms)(1)  
MIN  
0.38  
0.8  
TYP  
0.48  
0.9  
MAX  
0.58  
1
TON_DELAY = 0xB1EC  
TON_DELAY = 0xB396  
TON_DELAY = 0xBAD1  
TON_DELAY = 0xC26E  
TON_DELAY = others  
1.308 1.408 1.508  
2.28  
2.432 2.584  
Invalid  
(1) Channel A (PAGE 0); Channel B (PAGE 1)  
7.3.4 Load Transitions  
The TPSM831D31 achieves fast load transient performance using the inherent variable switching frequency  
characteristics. When there is a sudden load increase, the output voltage rapidly drops, which forces the PWM  
pulses to switch sooner and more frequently which causes the inductor current to rapidly increase. As the  
inductor current reaches the new load current, the device reaches a steady-state operating condition and the  
PWM switching resumes the steady-state frequency.  
When there is a sudden load release, the output voltage rapidly rises, which forces the PWM pulses to be  
delayed until the inductor current reaches the new load current. At that point, the switching resumes and steady-  
state switching continues.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.3.5 Switching Frequency  
The TPSM831D31 switching frequency can be selected from several values between 350 kHz to 700 kHz as  
shown in 7-2. The FREQUENCY_SWITCH command is used to select the desired switching frequency.  
7-2. Switching Frequency Select  
FREQUENCY  
SELECT (kHz)  
COMMAND  
350  
400  
FREQUENCY_SWITCH = 0x015E  
FREQUENCY_SWITCH = 0x0190  
(VOUTA factory default setting)  
FREQUENCY_SWITCH = 0x01C2  
(VOUTB factory default setting)  
450  
500  
550  
600  
650  
700  
FREQUENCY_SWITCH = 0x01F4  
FREQUENCY_SWITCH = 0x0226  
FREQUENCY_SWITCH = 0x0258  
FREQUENCY_SWITCH = 0x028A  
FREQUENCY_SWITCH = 0x02BC  
7.3.6 RESET Function  
During adaptive voltage scaling (AVS) operation, the voltage may become falsely adjusted to be out of ASIC  
operating range. The RESET function returns the voltage to the VBOOT voltage. When the voltage is out of  
ASIC operating range, the ASIC issues a RESET signal to the TPSM831D31 device. The device senses this  
signal and after a delay of greater than 1 µs, it sets an internal RESET_FAULT signal and sets  
VOUT_COMMAND to VBOOT. The device pulls the output voltage to the VBOOT level with the slew rate set by  
VOUT_TRANSITION_RATE command.  
When the RESET pin signal goes high, the internal RESET_FAULT signal goes low.  
7-3. VBOOT  
BOOT VOLTAGE SETTING (5-mV DAC)  
MFR_SPEC_11<7:0> = 00h  
MFR_SPEC_11<7:0> = 33h  
MFR_SPEC_11<7:0> = 83h  
MFR_SPEC_11<7:0> = 97h  
MFR_SPEC_11<7:0> = BFh  
BOOT VOLTAGE (V)  
0.000  
0.500  
0.900  
1.000  
1.200  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.3.7 VID Table  
The DAC voltage VDAC can be changed via PMBus according to 7-4.  
7-4. VID Table (5 mV DAC)  
VID Hex  
VALUE  
DAC  
STEP  
VID Hex  
VALUE  
DAC  
STEP  
VID Hex  
VALUE  
DAC  
STEP  
VID Hex  
VALUE  
DAC  
STEP  
VID Hex  
VALUE  
DAC  
STEP  
VID Hex  
DAC  
STEP  
VALUE  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
0.000  
0.250  
0.255  
0.260  
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0.350  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
0.420  
0.425  
0.430  
0.435  
0.440  
0.445  
0.450  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
0.460  
0.465  
0.470  
0.475  
0.480  
0.485  
0.490  
0.495  
0.500  
0.505  
0.510  
0.515  
0.520  
0.525  
0.530  
0.535  
0.540  
0.545  
0.550  
0.555  
0.560  
0.565  
0.570  
0.575  
0.580  
0.585  
0.590  
0.595  
0.600  
0.605  
0.610  
0.615  
0.620  
0.625  
0.630  
0.635  
0.640  
0.645  
0.650  
0.655  
0.660  
0.665  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
0.675  
0.680  
0.685  
0.690  
0.695  
0.700  
0.705  
0.710  
0.715  
0.720  
0.725  
0.730  
0.735  
0.740  
0.745  
0.750  
0.755  
0.760  
0.765  
0.770  
0.775  
0.780  
0.785  
0.790  
0.795  
0.800  
0.805  
0.810  
0.815  
0.820  
0.825  
0.830  
0.835  
0.840  
0.845  
0.850  
0.855  
0.860  
0.865  
0.870  
0.875  
0.880  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
0.890  
0.895  
0.900  
0.905  
0.910  
0.915  
0.920  
0.925  
0.930  
0.935  
0.940  
0.945  
0.950  
0.955  
0.960  
0.965  
0.970  
0.975  
0.980  
0.985  
0.990  
0.995  
1.000  
1.005  
1.010  
1.015  
1.020  
1.025  
1.030  
1.035  
1.040  
1.045  
1.050  
1.055  
1.060  
1.065  
1.070  
1.075  
1.080  
1.085  
1.090  
1.095  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
1.105  
1.110  
1.115  
1.120  
1.125  
1.130  
1.135  
1.140  
1.145  
1.150  
1.155  
1.160  
1.165  
1.170  
1.175  
1.180  
1.185  
1.190  
1.195  
1.200  
1.205  
1.210  
1.215  
1.220  
1.225  
1.230  
1.235  
1.240  
1.245  
1.250  
1.255  
1.260  
1.265  
1.270  
1.275  
1.280  
1.285  
1.290  
1.295  
1.300  
1.305  
1.310  
1.320  
1.325  
1.330  
1.335  
1.340  
1.345  
1.350  
1.355  
1.360  
1.365  
1.370  
1.375  
1.380  
1.385  
1.390  
1.395  
1.400  
1.405  
1.410  
1.415  
1.420  
1.425  
1.430  
1.435  
1.440  
1.445  
1.450  
1.455  
1.460  
1.465  
1.470  
1.475  
1.480  
1.485  
1.490  
1.495  
1.500  
1.505  
1.510  
1.515  
1.520  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
VID Hex  
7-4. VID Table (5 mV DAC) (continued)  
DAC  
VID Hex  
VALUE  
DAC  
VID Hex  
VALUE  
DAC  
VID Hex  
VALUE  
DAC  
VID Hex  
VALUE  
DAC  
STEP  
VID Hex  
VALUE  
DAC  
STEP  
VALUE  
STEP  
STEP  
STEP  
STEP  
2A  
0.455  
55  
0.670  
80  
0.885  
AB  
1.100  
D6  
1.315  
7.4 Device Functional Modes  
7.4.1 Continuous Conduction Mode  
The TPSM831D31 device operates in continuous conduction mode (CCM) at a fixed frequency. As programmed  
from the factory, phase shedding is disabled and can be enabled with a PMBus command. To begin power  
conversion, the EN signal and/or OPERATION command must be asserted high. Following a fault that stops  
power conversion, the enable contol must be pulled low and then re-asserted high to resume power conversion.  
7.4.2 Operation With EN Signal Control  
According to a bit value in the ON_OFF_CONFIG register, the TPSM831D31 device can be commanded to use  
the EN pin to enable or disable power conversion, regardless of the state of the OPERATION command. The  
TPSM831D31 is factory programmed to use the EN pin only. When the EN pin is pulled low, power conversion  
stops immediately without first waiting for a turn-off delay or actively ramping down the output voltage.  
7.4.3 Operation With OPERATION Control  
According to a bit value in the ON_OFF_CONFIG register, the TPSM831D31 device can be commanded to use  
the OPERATION command to enable or disable conversion, regardless of the state of the EN signal.  
7.4.4 Operation With EN and OPERATION Control  
According to a bit value in the ON_OFF_CONFIG register, the TPSM831D31 device can be commanded to  
require both the assertion of the EN pin, and the OPERATION command to enable or disable conversion.  
7.5 Programming  
7.5.1 PMBus Connections  
The TPSM831D31 device can support either 100-kHz class, 400-kHz class or 1-MHz class operation, with 1.8-V  
or 3.3-V logic levels. Connection for the PMBus interface should follow the DC specifications given in Section 4.3  
of the System Management Bus (SMBus) Specification V3.0 . The complete SMBus specification is available  
from the SMBus website, smbus.org.  
7.5.2 PMBus Address Selection  
The PMBus slave address is set by the voltage on the ADDR pin and is selected with a resistor from the ADDR  
pin to GND. Refer to 7-5.  
Note that TPSM831D31 uses 7 bit addressing, per the SMBus specification. Users communicating to the device  
using generic I2C drivers should be aware that these 7 bits occupy the most significant bits of the first byte in  
each transaction, with the least significant bit being the data direction bit (0 for write operations, 1 for read  
operations). That is, for read transactions, the address byte is A6A5A4A3A2A1A01 and for write operations the  
address byte is A6A5A4A3A2A1A00. Refer to the SMBus specification for more information.  
7-5. PMBus Slave Address Selection  
VADDR (V)  
PMBus Address  
(7 bit binary)  
PMBus Address  
(7 bit decimal)  
I2C Address Byte  
(Write Operation)  
I2C Address Byte  
(Read Operation)  
RADDRL (kΩ)  
A6A5A4A3A2A1A0  
1011000b  
1011001b  
1011010b  
1011011b  
1011100b  
1011101b  
88d  
89d  
90d  
91d  
92d  
93d  
0
B0h  
B2h  
B4h  
B6h  
B8h  
BAh  
B1h  
B3h  
B5h  
B7h  
B9h  
BBh  
0.039 V  
0.073 V ± 15 mV  
0.122 V ± 15 mV  
0.171 V ± 15 mV  
0.219 V ± 15 mV  
0.268 V ± 15 mV  
0.453  
0.768  
1.13  
1.47  
1.87  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-5. PMBus Slave Address Selection (continued)  
VADDR (V)  
PMBus Address  
(7 bit binary)  
PMBus Address  
(7 bit decimal)  
I2C Address Byte  
(Write Operation)  
I2C Address Byte  
(Read Operation)  
RADDRL (kΩ)  
A6A5A4A3A2A1A0  
0.317 V ± 15 mV  
0.366 V ± 15 mV  
0.415 V ± 15 mV  
0.464 V ± 15 mV  
0.513 V ± 15 mV  
0.562 V ± 15 mV  
0.610 V ± 15 mV  
0.660 V ± 15 mV  
0.708 V ± 15 mV  
0.757 V ± 15 mV  
0.806 V ± 15 mV  
0.854 V ± 15 mV  
0.903 V ± 15 mV  
0.952 V ± 15 mV  
1.000 V ± 15 mV  
1.050 V ± 15 mV  
1.098 V ± 15 mV  
1.147 V ± 15 mV  
1.196 V ± 15 mV  
1.245 V ± 15 mV  
1.294 V ± 15 mV  
1.343 V ± 15 mV  
1.392 V ± 15 mV  
1.440 V ± 15 mV  
1.489 V ± 15 mV  
1.540 V ± 15 mV  
1011110b  
1011111b  
1100000b  
1100001b  
1100010b  
1100011b  
1100100b  
1100101b  
1100110b  
1100111b  
1101000b  
1101001b  
1101010b  
1101011b  
1101100b  
1101101b  
1101110b  
1101111b  
1110000b  
1110001b  
1110010b  
1110011b  
1110100b  
1110101b  
1110110b  
1110111b  
94d  
95d  
2.32  
2.74  
3.24  
3.74  
4.32  
4.99  
5.62  
6.34  
7.15  
8.06  
9.09  
10.0  
11.3  
12.7  
14.3  
16.2  
18.2  
20.5  
23.7  
27.4  
31.6  
37.4  
45.3  
54.9  
69.8  
95.3  
BCh  
BEh  
C0h  
C2h  
C4h  
C6h  
C8h  
CAh  
CCh  
CEh  
D0h  
D2h  
D4h  
D6h  
D8h  
DAh  
DCh  
DEh  
E0h  
E2h  
E4h  
E6h  
E8h  
EAh  
ECh  
EEh  
BDh  
BFh  
C1h  
C3h  
C5h  
C7h  
C9h  
CBh  
CDh  
CFh  
D1h  
D3h  
D5h  
D7h  
D9h  
DBh  
DDh  
DFh  
E1h  
E3h  
E5h  
E7h  
E9h  
EBh  
EDh  
EFh  
96d  
97d  
98d  
99d  
100d  
101d  
102d  
103d  
104d  
105d  
106d  
107d  
108d  
109d  
110d  
111d  
112d  
113d  
114d  
115d  
116d  
117d  
118d  
119d  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.3 Supported Commands  
The table below summarizes the PMBus commands supported by the TPSM831D31. Only selected commands,  
which are most commonly used during device configuration and usage are reproduced in this document. For a  
full set of register maps, refer to the accompanying Technical Reference Manual for the controller (TPS53681)  
used internal to this device.  
DEFAULT VALUE  
R/W,  
NVM  
DEFAULT  
BEHAVIOR  
CMD  
COMMAND NAME  
DESCRIPTION  
Ch. A  
Ch. B  
PAGE 0 PAGE 1  
Selects which channel subsequent PMBus  
commands address  
All commands  
address Channel A  
00h PAGE  
RW  
RW  
RW,  
N/A  
Conversion  
disabled. Margin  
None.  
Enable or disable each channel, enter or  
exit margin.  
01h OPERATION  
00h  
17h  
00h  
17h  
Configure the combination of OPERATION,  
and enable pin required to enable power  
conversion for each channel.  
AVR_EN/BEN pins  
NVM only.  
02h ON_OFF_CONFIG  
Clears all fault status registers to 00h and  
releases PMB_ALERT  
03h CLEAR_FAULT  
04h PHASE  
W
Write-only  
N/A  
00h  
Selects which phase of the active channel  
subsequent PMBus commands address  
Commands  
address all phases.  
RW  
FFh  
FFh  
Used to control writing to the volatile  
operating memory (PMBus and restore from  
NVM).  
Writes to all  
commands are  
allowed  
10h WRITE_PROTECT  
RW  
Stores all current storable register settings  
into NVM as new defaults.  
11h STORE_DEFAULT_ALL  
W
W
Write-only  
Write-only  
N/A  
N/A  
Restores all storable register settings from  
NVM.  
12h RESTORE_DEFAULT_ALL  
Provides a way for a host system to  
determine key PMBus capabilities of the  
device.  
1 MHz, PEC,  
PMB_ALERT  
Supported  
19h CAPABILITY  
R
D0h  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may to  
assert PMB_ALERT  
RW,  
All bits may assert  
00h  
00h  
00h  
00h  
(STATUS_VOUT)  
NVM PMB_ALERT  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may to  
assert PMB_ALERT  
RW,  
All bits may assert  
(STATUS_IOUT)  
NVM PMB_ALERT  
LOW_VIN does not  
assert  
PMB_ALERT  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may to  
assert PMB_ALERT  
RW,  
NVM  
08h  
08h  
(STATUS_INPUT)  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may to  
assert PMB_ALERT  
RW,  
All bits may assert  
00h  
00h  
00h  
00h  
00h  
00h  
(STATUS_TEMPERATURE)  
NVM PMB_ALERT  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may to  
assert PMB_ALERT  
RW,  
All bits may assert  
(STATUS_CML)  
NVM PMB_ALERT  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may to  
assert PMB_ALERT  
RW,  
All bits may assert  
(STATUS_MFR_SPECIFIC)  
NVM PMB_ALERT  
VID mode.  
5 mV Step (Ch A),  
20h VOUT_MODE  
Read-only output mode indicator  
R(1)  
27h  
27h  
5 mV Step (Ch B)  
RW,  
0.500 V (Ch A)  
21h VOUT_COMMAND  
24h VOUT_MAX  
Output voltage target  
0033h  
00FFh  
0033h  
00FFh  
NVM 0.500 V (Ch B)  
RW, 1.520 V (Ch A)  
NVM 1.520 V (Ch B)  
Sets the maximum output voltage  
Load the unit with the voltage to which the  
output is to be changed when OPERATION  
command is set to Margin High.  
0.000 V (CH A)  
RW  
25h VOUT_MARGIN_HIGH  
26h VOUT_MARGIN_LOW  
0000h  
0000h  
0000h  
0000h  
0.000 V (Ch B)  
Load the unit with the voltage to which the  
output is to be changed when OPERATION  
command is set to Margin Low.  
0.000 V (CH A)  
RW  
0.000 V (Ch B)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
DEFAULT VALUE  
R/W,  
NVM  
DEFAULT  
BEHAVIOR  
CMD  
COMMAND NAME  
DESCRIPTION  
Ch. A  
Ch. B  
PAGE 0 PAGE 1  
Used to set slew rate settings for output  
voltage updates  
RW,  
2.5 mV/µs (Ch A)  
27h VOUT_TRANSITION_RATE  
28h VOUT_DROOP  
E028h  
D000h  
E028h  
D000h  
NVM 2.5 mV/µs (Ch B)  
The VOUT_DROOP sets the rate, in mV/A  
(mΩ) at which the output voltage decreases  
(or increases) with increasing (or  
decreasing) output current for use with  
Adaptive Voltage Positioning  
RW,  
NVM  
0.000 mΩ(Ch A)  
0.000 mΩ(Ch B)  
RW,  
1.000 (Ch A)  
29h VOUT_SCALE_LOOP  
2Ah VOUT_SCALE_MONITOR  
2Bh VOUT_MIN  
Used for scaling the VID code  
E808h  
E808h  
0000h  
0190h  
E808h  
E808h  
0000h  
01C2h  
NVM 1.000 (Ch B)  
RW, 1.000 (Ch A)  
NVM 1.000 (Ch B)  
RW, 0.000 V (Ch A)  
NVM 0.000 V (Ch B)  
RW, 400 kHz (Ch A)  
Used for scaling output voltage telemetry  
Sets the minimum output voltage  
Sets the switching frequency  
33h FREQUENCY_SWITCH  
35h VIN_ON  
NVM 450 kHz (Ch B)  
Sets value of input voltage at which the  
device should start power conversion.  
RW,  
7.25 V  
NVM  
F01Dh  
Sets the ratio of voltage at the current sense  
pins to the sensed current.  
RW,  
NVM  
5.0625 mΩ(Ch A)  
5.0625 mΩ(Ch B)  
38h IOUT_CAL_GAIN  
D144h  
E800h  
D144h  
E800h  
0.000 A (Ch A)  
0.000 A (Ch B)  
(All Phases)  
Used to null offsets in the output current  
sensing circuit  
RW,  
NVM  
39h IOUT_CAL_OFFSET  
Sets the value of the sensed output voltage  
which triggers an output overvoltage fault  
1.520 V (Ch A)  
1.520 V (Ch B)  
40h VOUT_OV_FAULT_LIMIT  
41h VOUT_OV_FAULT_RESPONSE  
44h VOUT_UV_FAULT_LIMIT  
45h VOUT_UV_FAULT_RESPONSE  
46h IOUT_OC_FAULT_LIMIT  
47h IOUT_OC_FAULT_RESPONSE  
4Ah IOUT_OC_WARN_LIMIT  
4Fh OT_FAULT_LIMIT  
R
R
00FFh  
80h  
00FFh  
80h  
Sets the converter response to an output  
overvoltage event  
Shutdown, do not  
restart  
Sets the value of the sensed output voltage  
which triggers an output undervoltage fault  
0.000 V (Ch A)  
0.000 V (Ch B)  
R
0000h  
80h  
0000h  
80h  
Sets the converter response to an output  
undervoltage event  
RW,  
Shutdown, do not  
NVM restart  
Sets the output overcurrent fault limit, in  
amperes  
RW,  
180 A (Ch A)  
00B4h  
C0h  
003Ch  
C0h  
NVM(1) 60 A (Ch B)  
RW,  
Shutdown, do not  
NVM restart  
Defines the overcurrent fault response  
Sets the output overcurrent warning limit, in  
amperes  
RW,  
120 A (Ch A)  
0078h  
0087h  
80h  
0028h  
0087h  
80h  
NVM(1) 40 A (Ch B)  
Sets the output overtemperature fault limit,  
in degrees Celsius.  
RW,  
135 °C (Ch A)  
NVM(1) 135 °C (Ch B)  
RW, Shutdown, do not  
NVM restart  
50h OT_FAULT_RESPONSE  
51h OT_WARN_LIMIT  
Defines the overtemperature fault response  
Sets the output overtemperature warning  
limit, in degrees Celsius.  
105 °C (Ch A)  
105 °C (Ch B)  
RW  
0069h  
0069h  
RW,  
NVM  
55h VIN_OV_FAULT_LIMIT  
56h VIN_OV_FAULT_RESPONSE  
59h VIN_UV_FAULT_LIMIT  
5Ah VIN_UV_FAULT_RESPONSE  
5Bh IIN_OC_FAULT_LIMIT  
Sets the VIN overvoltage fault limit, in volts  
Defines the VIN overvoltage fault response  
Sets the VIN undervoltage fault limit, in volts  
Defines the VIN undervoltage fault response  
17.000 V  
0011h  
Continue  
Uninterrupted  
R
00h  
F80Dh  
C0h  
RW,  
NVM  
6.500 V  
Shutdown, do not  
restart  
R
Sets the input current overcurrent fault limit,  
in amperes  
RW,  
NVM  
40.0 A  
F850h  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
CMD  
DEFAULT VALUE  
R/W,  
NVM  
DEFAULT  
BEHAVIOR  
COMMAND NAME  
DESCRIPTION  
Ch. A  
Ch. B  
PAGE 0 PAGE 1  
Shutdown, do not  
restart  
5Ch IIN_OC_FAULT_RESPONSE  
5Dh IIN_OC_WARN_LIMIT  
Defines the input overcurrent fault response  
R
C0h  
Sets the input current overcurrent warning  
limit, in amperes  
RW,  
NVM  
32.0 A  
F840h  
Sets the time, in milliseconds, from when a  
start condition is received (as programmed  
by the ON_OFF_CONFIG command) until  
the output voltage starts to rise  
RW,  
0.480 ms (Ch A)  
60h TON_DELAY  
B1ECh  
B396h  
NVM 0.896 ms (Ch B)  
The PIN_OP_WARN_LIMIT command sets  
the value of the input power, in watts, that  
causes a warning that the input power is  
high  
6Bh PIN_OP_WARN_LIMIT  
RW  
450 W  
08E1h  
78h STATUS_BYTE  
79h STATUS_WORD  
7Ah STATUS_VOUT  
7Bh STATUS_IOUT  
7Ch STATUS_INPUT  
7Dh STATUS_TEMPERATURE  
7Eh STATUS_CML  
80h STATUS_MFR_SPECIFIC  
88h READ_VIN  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
Returns the input voltage in volts  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
89h READ_IIN  
Returns the input current in amperes  
Returns the output voltage in VID format  
Returns the output current in amperes  
R
8Bh READ_VOUT  
R
N/A  
N/A  
N/A  
N/A  
8Ch READ_IOUT  
R
Returns the highest power stage  
temperature in °C  
8Dh READ_TEMPERATURE_1  
R
Current Status  
N/A  
N/A  
N/A  
N/A  
96h READ_POUT  
97h READ_PIN  
Returns the output power in Watts  
Returns the input power in Watts  
R
R
Current Status  
Current Status  
N/A  
33h  
Returns the version of the PMBus  
specification to which this device complies  
PMBus 1.3  
Part I, Part II  
98h PMBUS_REVISION  
99h MFR_ID  
R
Loads the unit with bits that contain the  
manufacturers ID  
RW,  
NVM  
TI  
5449h  
4331h  
0001h  
1207h  
Loads the unit with bits that contain the  
manufacturers model number  
RW,  
3+1 Phase  
9Ah MFR_MODEL  
9Bh MFR_REVISION  
NVM Configuration  
Loads the unit with bits that contain the  
manufacturers model revision  
RW,  
Rev 1.0  
NVM  
Loads the unit with bits that contain the  
manufacture date  
RW,  
9Dh MFR_DATE  
9Eh MFR_SERIAL  
ADh IC_DEVICE_ID  
July 2018  
NVM  
NVM Checksum  
R
R
NVM checksum  
TPSM831D31  
679E8B7Dh  
81h  
Returns a number indicating the part  
number of the device  
Returns a number indicating the device  
revision  
AEh IC_DEVICE_REV  
B0h USER_DATA_00  
B1h USER_DATA_01  
B2h USER_DATA_02  
B3h USER_DATA_03  
R
Rev 1.0  
Current  
00h  
RW  
Factory Default  
Settings  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
DEFAULT VALUE  
R/W,  
NVM  
DEFAULT  
BEHAVIOR  
CMD  
COMMAND NAME  
DESCRIPTION  
Ch. A  
Ch. B  
PAGE 0 PAGE 1  
RW  
Current  
Factory Default  
Settings  
B4h USER_DATA_04  
B5h USER_DATA_05  
B6h USER_DATA_06  
B7h USER_DATA_07  
B8h USER_DATA_08  
B9h USER_DATA_09  
BAh USER_DATA_10  
BBh USER_DATA_11  
BCh USER_DATA_12  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Configures per-phase overcurrent levels,  
current share thresholds, and other  
miscellaneous settings.  
RW  
Misc. configuration,  
D0h MFR_SPECIFIC_00  
003Eh  
203Dh  
NVM See register maps  
Returns information regarding current  
imbalance warnings for each phase  
D3h MFR_SPECIFIC_03  
D4h MFR_SPECIFIC_04  
R
R
Current status  
Current status  
1.25 mV offset  
N/A  
N/A  
N/A  
N/A  
Returns the output voltage for the active  
channel, in linear format  
Used to trim the output voltage of the active  
channel, by applying an offset to the  
currently selected VID code.  
RW  
D5h MFR_SPECIFIC_05  
D6h MFR_SPECIFIC_06  
01h  
01h  
NVM (Ch A and Ch B)  
Configures dynamic load line options for  
both channels, and selects Auto-DCM  
operation.  
RW Misc. configuration,  
NVM See register maps  
0605h  
1000h  
Misc. configuration,  
Configures the internal loop compensation  
for both channels.  
RW  
D7h MFR_SPECIFIC_07  
D8h MFR_SPECIFIC_08  
D9h MFR_SPECIFIC_09  
See to register  
NVM  
0906h  
00h  
01C6h  
00h  
maps  
Used to identify catastrophic faults which  
occur first, and store this information to NVM  
RW  
Current status  
NVM  
Used to configure non-linear transient  
performance enhancements such as  
undershoot reduction (USR)  
RW  
Misc. configuration,  
46C5h  
06C7h  
NVM See register maps  
Used to configure input current sensing, and  
set the maximum output current  
RW  
Misc. configuration,  
DAh MFR_SPECIFIC_10  
DBh MFR_SPECIFIC_11  
DCh MFR_SPECIFIC_12  
C878h  
33h  
0028h  
33h  
NVM See register maps  
RW VID 051d (Ch A)  
NVM VID 051d (Ch B)  
RW Misc. configuration,  
NVM See register maps  
Boot-up VID code for each channel  
Used to configure input current sensing and  
other miscellaneous settings  
C570h  
07F0  
Used to configure output voltage slew rates,  
DAC stepsize, and other miscellaneous  
settings.  
RW  
Misc. configuration,  
DDh MFR_SPECIFIC_13  
9CE5h  
00E5h  
NVM See register maps  
Used to configure dynamic phase shedding,  
and compensation ramp amplitude, and  
dynamic ramp amplitude during USR, and  
different power states  
RW  
Misc. configuration,  
DEh MFR_SPECIFIC_14  
DFh MFR_SPECIFIC_15  
0007h  
1FFAh  
0007h  
0000h  
NVM See register maps  
RW  
Misc. configuration,  
Used to configure dynamic phase shedding.  
NVM See register maps  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
CMD  
DEFAULT VALUE  
R/W,  
NVM  
DEFAULT  
BEHAVIOR  
COMMAND NAME  
DESCRIPTION  
Ch. A  
Ch. B  
PAGE 0 PAGE 1  
Used to set the maximum operational phase  
number, on-the-fly.  
RW  
Misc. configuration,  
Hardware  
Configured  
E4h MFR_SPECIFIC_20  
F0h MFR_SPECIFIC_32  
FAh MFR_SPECIFIC_42  
NVM See register maps  
Used to set the input over-power warning  
NVM Security  
RW  
450 W  
00E1h  
0000h  
RW  
NVM  
NVM Security Key  
(1) NVM-backed bits in the MFR_SPECIFIC or USER_DATA commands affect the reset value of these commands. Refer to the individual  
register maps for more detail.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.4 Commonly Used PMBus Commands  
The following sections describe the most commonly used PMBus commands and their usage in the  
configuration, operation and testing of TPSM831D31 power solutions:  
Voltage, Current, Power, and Temperature Readings  
Output Current Sense and Calibration  
Output Voltage Margin Testing  
Loop Compensation  
Converter Protection and Response  
Dynamic Phase Shedding  
NVM Programming  
NVM Security  
Black Box Fault Recording  
Board Identification and Inventory Tracking  
Status Reporting  
7.5.5 Voltage, Current, Power, and Temperature Readings  
Using an internal ADC, the TPSM831D31 provides a full set of telemetry capabilities, allowing the user to read  
back critical information about the converter's input voltage, input current, input power, output voltage, output  
current, output power and temperature. The table below summarizes the available commands and their formats.  
Register maps for each command are included.  
7-6. Telemetry Functions  
Command  
Description  
Format  
Units  
Channel/Phase  
Shared, Channel A and  
B
READ_VIN  
READ_IIN  
Input voltage telemetry  
Linear  
V
Shared, Channel A and  
B
Input current telemetry  
Linear  
VID  
A
VID Code  
A
READ_VOUT  
READ_IOUT  
Output voltage telemetry (VID format)  
Output current telemetry  
Per Channel  
Per Channel and Per  
Phase  
Linear  
Per Channel, Highest  
phase temperature only  
READ_TEMPERATURE_1  
READ_POUT  
Power stage temperature telemetry  
Output power telemetry  
Linear  
Linear  
Linear  
Linear  
°C  
W
W
V
Per Channel  
Shared, Channel A and  
B
READ_PIN  
Input power telemetry  
MFR_SPECIFIC_04  
Output voltage telemetry (linear format)  
Per Channel  
7.5.5.1 (88h) READ_VIN  
The READ_VIN command returns the input voltage in volts. The two data bytes are formatted in the Linear Data  
format. The refresh rate is 1200 µs. The device accesses this command through Read Word transactions, and is  
shared between channel A and channel B.  
READ_VIN  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_VIN_EXP  
READ_VIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_VIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-7. READ_VIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
10:0  
READ_VIN_EXP  
READ_VIN_MAN  
R
Current Status  
Current Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
R
7.5.5.2 (89h) READ_IIN  
The READ_IIN command returns the input current in amperes. The refresh rate is 100 µs. The two data bytes  
are formatted in the Linear Data format. The device accesses this command through Read Word transactions,  
and is shared between channel A and channel B.  
READ_IIN  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_IIN_EXP  
READ_IIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_IIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-8. READ_IIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
READ_IIN_EXP  
R
Current Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
10:0  
READ_IIN_MAN  
R
Current Status  
7.5.5.3 (8Bh) READ_VOUT  
The READ_VOUT command returns the actual, measured output voltage. The two data bytes are formatted in  
the VID Data format, and the refresh rate is 1200 us. The device accesses this command through Read Word  
transactions. READ_VOUT is a paged register. In order to access READ_VOUT command for channel A, PAGE  
must be set to 00h. In order to access READ_VOUT register for channel B, PAGE must be set to 01h.  
READ_VOUT  
15  
R
14  
R
13  
R
12  
11  
R
0
10  
R
9
R
0
8
R
0
R
0
0
0
0
0
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_VOUT_VID  
LEGEND: R/W = Read/Write; R = Read only  
7-9. READ_VOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
READ_VOUT_VID  
R
Current Status  
Output voltage, VID format  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.5.4 (8Ch) READ_IOUT  
The READ_IOUT command returns the output current in amperes.  
READ_IOUT is a linear format command.  
READ_IOUT is a paged register. In order to access READ_IOUT for channel A, PAGE must be set to 00h. In  
order to access the READ_IOUT register for channel B, PAGE must be set to 01h. For simultaneous access of  
channels A and B, the PAGE command must be set to FFh. READ_IOUT is also a phased register. Depending  
on the configuration of the design, for channel A, PHASE must be set to 00h to access Phase 1, 01h to access  
Phase 2, etc... PHASE must be set to FFh to access all phases simultaneously. PHASE may also be set to 80h  
to readack the total phase current (sum of all active phase currents for the active channel) measurement, as  
described in 7.5.6. Note that READ_IOUT is only a phased command for Channel A (PAGE 0).  
The READ_IOUT command must be accessed through Read Word transactions.  
READ_IOUT  
15  
R
14  
R
13  
12  
11  
10  
R
9
8
R
R
R
R
R
READ_IOUT_EXP  
READ_IOUT_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_IOUT_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-10. READ_IOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
READ_IOUT_EXP  
R
Current Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
10:0  
READ_IOUT_MAN  
R
Current Status  
Attempts to write to this command results in invalid transactions. The device ignores the invalid data, sets the  
appropriate flags in STATUS_CML and STATUS_WORD, and asserts the PMB_ALERT signal to notify the  
system host of an invalid transaction.  
7.5.5.5 (8Dh) READ_TEMPERATURE_1  
The READ_TEMPERATURE_1 command returns the temperature in degree Celsius. The two data bytes are  
formatted in the Linear Data format. The refresh rate is 1200 µs.  
READ_TEMPERATURE_1 is a linear format command.  
READ_TEMPERATURE_1 is a paged register. In order to access OPERATION command for channel A,  
READ_TEMPERATURE_1 must be set to 00h. In order to access READ_TEMPERATURE_1 register for  
channel B, PAGE must be set to 01h. For simultaneous access of channels A and B, the PAGE command must  
be set to FFh.  
The READ_TEMPERATURE_1 command must be accessed through Read Word transactions.  
READ_TEMPERATURE_1  
15  
R
14  
R
13  
12  
11  
10  
R
9
8
R
R
R
R
R
READ_TEMP_EXP  
READ_TEMP_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_TEMP_MAN  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
LEGEND: R/W = Read/Write; R = Read only  
7-11. READ_TEMPERATURE_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
10:0  
READ_TEMP_EXP  
READ_TEMP_MAN  
R
Current Status  
Current Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
R
Attempts to write to this command results in invalid transactions. The device ignores the invalid data, sets the  
appropriate flags in STATUS_CML and STATUS_WORD, and asserts the PMB_ALERT signal to notify the  
system host of an invalid transaction  
7.5.5.6 (96h) READ_POUT  
The READ_POUT command returns the calculated output power, in watts for the active channel. The refresh  
rate is 1200 µs.  
READ_POUT is a linear format command.  
READ_POUT is a paged register. In order to access READ_POUT command for channel A, PAGE must be set  
to 00h. In order to access READ_POUT register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh.  
The READ_POUT command must be accessed through Read Word transactions.  
READ_POUT  
15  
R
14  
R
13  
12  
11  
10  
R
9
8
R
R
R
R
R
READ_POUT_EXP  
READ_POUT_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_POUT_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-12. READ_POUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
READ_POUT_EXP  
R
Current Status  
Current Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
10:0  
READ_POUT_MAN  
R
Attempts to write to this command results in invalid transactions. The device ignores the invalid data, sets the  
appropriate flags in STATUS_CML and STATUS_WORD, and asserts the PMB_ALERT signal to notify the  
system host of an invalid transaction  
7.5.5.7 (97h) READ_PIN  
The READ_PIN command returns the calculated input power. The refresh rate is 1200 µs.  
READ_PIN is a linear format command.  
The READ_PIN command must be accessed through Read Word transactions.  
The READ_PIN command is shared between Channel A and Channel B. All transactions to this command  
affects both channels regardless of the PAGE command.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
READ_PIN  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_PIN_EXP  
READ_PIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_PIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-13. READ_PIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
10:0  
READ_PIN_EXP  
READ_PIN_MAN  
R
Current Status  
Current Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
R
7.5.5.8 (D4h) MFR_SPECIFIC_04  
The MFR_SPECIFIC_04 command is used to return the output voltage for the active channel, in the linear  
format (READ_VOUT uses VID format).  
The MFR_SPECIFIC_04 command must be accessed through Read Word transactions.  
MFR_SPECIFIC_04 is a Linear format command.  
MFR_SPECIFIC_04 is a paged register. In order to access MFR_SPECIFIC_04 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_04 register for channel B, PAGE must be set to 01h.  
MFR_SPECIFIC_04  
15  
R
14  
R
13  
12  
11  
10  
R
9
8
R
R
R
R
R
VOUT_LIN_EXP  
VOUT_LIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VOUT_LIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-14. MFR_SPECIFIC_04 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
10:0  
VOUT_LIN_EXP  
VOUT_LIN_MAN  
R
Current Status  
Current Status  
Linear format two's complement exponent.  
Linear format two's complement mantissa.  
R
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.6 Output Current Sense and Calibration  
The READ_IOUT command may be used to read the individual phase currents, and the total channel current.  
7.5.6.1 Reading Individual Phase Currents  
Using the PAGE and PHASE commands, the TPSM831D31 can be configured to return output current  
information for each individual phase. The examples below demonstrate this process:  
Example #1: Read back the output current of Channel A, First Phase  
1. Select Channel A. Write PAGE to 00h  
2. Select first phase. Write PHASE to 00h  
3. Read READ_IOUT  
Example #2: Read back the output current of Channel B, Second Phase  
1. Select Channel B. Write PAGE to 01h  
2. Select second phase. Write PHASE to 01h  
3. Read READ_IOUT  
7.5.6.1.1 Reading Total Current  
When the PHASE command is set to 80h, the TPSM831D31 device is configured to return the total channel  
current (sum of individual phase currents) in response to the READ_IOUT command.  
7.5.6.1.2  
Example: Read the Total Output Current of Channel A  
1. Select Channel A. Write PAGE to 00h  
2. Select total current measurement. Write PHASE to 80h  
3. Read READ_IOUT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.7 Output Voltage Margin Testing  
The TPSM831D31 provides several commands to enable voltage margin testing.  
The upper two MARGIN bits in the OPERATION command can be used to toggle the active channel between  
three states:  
1. Margin None (MARGIN = 0000b). The output voltage target is equal to VOUT_COMMAND.  
2. Margin Low (MARGIN = 01xxb). The output voltage target is equal to VOUT_MARGIN_LOW.  
3. Margin High (MARGIN = 10xxb). The output voltage target is equal to VOUT_MARGIN_HIGH.  
In order to use OPERATION, the active channel must be configured for to respect the OPERATION command,  
via ON_OFF_CONFIG. Output voltage transitions occur at the slew rate defined by VOUT_TRANSITION_RATE.  
7-15. Slew Rate Settings  
PARAMETER  
TEST CONDITIONS  
MIN  
5
TYP  
6
MAX  
UNIT  
VOUT_TRANSITION_RATE = 0xE050  
VOUT_TRANSITION_RATE = 0xE0A0  
VOUT_TRANSITION_RATE = 0xE0F0  
VOUT_TRANSITION_RATE = 0xE140  
VOUT_TRANSITION_RATE = 0xE190  
VOUT_TRANSITION_RATE = 0xE1E0  
VOUT_TRANSITION_RATE = 0xE230  
VOUT_TRANSITION_RATE = 0xE280  
VOUT_TRANSITION_RATE = 0xE005  
VOUT_TRANSITION_RATE = 0xE00A  
VOUT_TRANSITION_RATE = 0xE00F  
VOUT_TRANSITION_RATE = 0xE014  
VOUT_TRANSITION_RATE = 0xE019  
VOUT_TRANSITION_RATE = 0xE01E  
VOUT_TRANSITION_RATE = 0xE023  
VOUT_TRANSITION_RATE = 0xE028  
VOUT_TRANSITION_RATE = others  
7
mV/µs  
10  
12  
18  
24  
30  
36  
42  
48  
14 mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
15  
20  
25  
30  
35  
40  
SLSET Slew rate setting  
0.3125  
0.625  
0.9375  
1.25  
1.5625  
1.875  
2.1875  
2.5  
Invalid data  
SLSET  
AVSP and BVSP slew rate  
SLF  
mV/µs  
SetVID_Fast  
SLSET / 4  
SLSET / 2  
SLSET / 4  
SLSET / 16  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
SLS1  
AVSP and BVSP slew rate slow  
MFR_SPEC_13<8> = 0b  
MFR_SPEC_13<8> = 1b  
AVSP and BVSP slew rate slew  
rate soft-start  
SLSS  
The lower two MARGIN bits in the OPERATION command select overvoltage or undervoltage fault handling  
during margin testing:  
1. Ignore Faults (MARGIN = xx01b) . Overvoltage and undervoltage faults do not trigger during margin tests.  
2. Act on Faults (MARGIN = xx10b). Overvoltage and undervoltage faults trigger during margin tests.  
Example: Output Voltage Margin Testing (Ignore Faults)  
1. Write to the PAGE command to select the desired channel (E.g. PAGE = 00h for channel A).  
2. Write VOUT_COMMAND to the desired VID code during Margin None operation.  
3. Write VOUT_MARGIN_LOW to the desired VID code during Margin Low operation.  
4. Write VOUT_MARGIN_HIGH to the desired VID code during Margin High operation.  
5. Write MFR_SPECIFIC_02 to 01h to ensure that the PMBus interface has control of the output voltage.  
6. Set the CMD bit in OPERATION to 1b to ensure the device is configured to respect the OPERATION  
command.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7. Margin None. Write OPERATION to 80h.  
8. Margin Low. Write OPERATION to 94h.  
9. Margin High. Write OPERATION to A4h.  
7.5.7.1 (01h) OPERATION  
The OPERATION command is used to turn the device output on or off in conjunction with the input from the  
AVR_EN pin for channel A, and BEN pin for channel B, acc ording to the configuration of the ON_OFF_CONFIG  
command. It is also used to set the output voltage to the upper or lower MARGIN levels.  
OPERATION is a paged register. In order to access OPERATION command for channel A, PAGE must be set to  
00h. In order to access OPERATION register for channel B, PAGE must be set to 01h. For simultaneous access  
of channels A and B, the PAGE command must be set to FFh.  
The OPERATION command must be accessed through Read Byte/Write Byte transactions.  
OPERATION  
7
6
R
0
5
4
3
2
1
RW  
0
0
RW  
0
RW  
ON  
RW  
RW  
RW  
RW  
MARGIN  
LEGEND: R/W = Read/Write; R = Read only  
7-16. OPERATION Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enable/disable power conversion for the currently selected  
channel(s) according to the PAGE command, when the  
ON_OFF_CONFIG command is configured to require input from  
the ON bit for output control. Note that there may be several  
other requirements that must be satisfied before the currently  
selected channel(s) can begin converting power (e.g. input  
voltages above UVLO thresholds, AVR_EN/BEN pins high if  
required by ON_OFF_CONFIG, etc...)  
7
ON  
RW  
0b  
0b: Disable power conversion  
1b: Enable power conversion  
Set the output voltage to either the value selected by the  
VOUT_MARGIN_HIGH or MARGIN_LOW commands, for the  
currently selected channel(s), according to the PAGE command.  
0000b: Margin Off. Output voltage is set to the value of  
VOUT_COMMAND  
0101b: Margin Low (Ignore Fault). Output voltage is set to the  
value of VOUT_MARGIN_LOW.  
5:2  
MARGIN  
RW  
0000b  
0110b: Margin Low (Act on Fault). Output voltage is set to the  
value of VOUT_MARGIN_LOW.  
1001b: Margin High (Ignore Fault). Output voltage is set to the  
value of VOUT_MARGIN_HIGH  
1010b: Margin High (Act on Fault). Output voltage is set to the  
value of VOUT_MARGIN_HIGH.  
1:0  
0
RW  
00b  
These bits are writeable but should always be set to 00b.  
Note that the VOUT_MAX_WARN bit in STATUS_VOUT can be caused by a margin operation, if "Act on Fault"  
is selected, and the VOUT_MARGIN_HIGH/VOUT_MARGIN_LOW value loaded by the margin operation  
exceeds the value of VOUT_COMMAND.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.7.2 (26h) VOUT_MARGIN_LOW  
The VOUT_MARGIN_LOW command loads the unit with the voltage to which the output is to be changed when  
the OPERATION command is set to Margin Low.  
VOUT_MARGIN_LOW is a VID format command. The VOUT_MARGIN_LOW command must be accessed  
through Read Word/Write Word transactions.  
VOUT_MARGIN_LOW is a paged register. In order to access VOUT_MARGIN_LOW for channel A, PAGE must  
be set to 00h. In order to access the VOUT_MARGIN_LOW register for channel B, PAGE must be set to 01h.  
For simultaneous access of channels A and B, the PAGE command must be set to FFh.  
VOUT_MARGIN_LOW  
15  
R
14  
R
13  
R
12  
11  
R
0
10  
R
9
R
0
8
R
0
R
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MARGL_VID  
LEGEND: R/W = Read/Write; R = Read only  
7-17. VOUT_MARGIN_LOW Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Used to set the output voltage to be loaded when the active  
PAGE is set to Margin Low, in VID format.  
7:0  
VOUT_MARGL_VID  
RW  
00h  
7.5.7.3 (25h) VOUT_MARGIN_HIGH  
The VOUT_MARGIN_HIGH command loads the unit with the voltage to which the output is to be changed when  
the OPERATION command is set to Margin High.  
VOUT_MARGIN_HIGH is a VID format command. The VOUT_MARGIN_HIGH command must be accessed  
through Read Word/Write Word transactions.  
VOUT_MARGIN_HIGH is a paged register. In order to access VOUT_MARGIN_HIGH for channel A, PAGE  
must be set to 00h. In order to access the VOUT_MARGIN_HIGH register for channel B, PAGE must be set to  
01h. For simultaneous access of channels A and B, the PAGE command must be set to FFh.  
VOUT_MARGIN_HIGH  
15  
R
14  
R
13  
R
12  
11  
R
0
10  
R
9
R
0
8
R
0
R
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MARGH_VID  
LEGEND: R/W = Read/Write; R = Read only  
7-18. VOUT_MARGIN_HIGH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Used to set the output voltage to be loaded when the active  
PAGE is set to Margin High, in VID format.  
7:0  
VOUT_MARGH_VID  
RW  
00h  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.8 Loop Compensation  
The TPSM831D31 provides several options for tuning the output voltage feedback and response to transients.  
These may be configured by programming the MFR_SPECIFIC_07, VOUT_DROOP, and MFR_SPECIFIC_14.  
Several such parameters may be configured through these commands:  
DC Load Line - Selects the DC shift in output voltage corresponding to increased output current. The DC  
load line affects both the final value the output voltage settles to, as well as the settling time. Use the  
VOUT_DROOP command to select the DC load line.  
Integration Time Constant - In order to maintain DC accuracy, the control loop includes an integration  
stage. Use MFR_SPECIFIC_07 to select the integration time constant.  
Integration Path Gain - The gain of the integration and AC paths may be selected independently. The AC  
and DC gains both affect the small-signal bandwidth of the converter. Use MFR_SPECIFIC_07 to select the  
integration path gain.  
AC Load Line - Selects the AC response to output voltage error. The AC load line affects the settling and  
response time following a load transient event. MFR_SPECIFIC_07 Use the MFR_SPECIFIC_07 command  
to select the AC load line.  
AC Path Gain - The gain of the integration and AC paths may be selected independently. The AC and DC  
gains both affect the small-signal bandwidth of the converter. Use MFR_SPECIFIC_07 to select the AC path  
gain.  
Ramp Amplitude - Smaller ramp settings result in faster response, but may also lead to increased frequency  
jitter. Likewise, large ramp settings result in lower frequency jitter, but may be slightly slower to respond to  
changing conditions. The ramp setting also affects the small-signal bandwidth of the converter. Use  
MFR_SPECIFIC_14 to select the ramp high setting.  
7-19. Dynamic Integration and Undershoot Reduction (TA = 25°C)  
PARAMETER  
TEST CONDITIONS  
MFR_SPEC_12<10:8> = 000b;  
MFR_SPEC_12<10:8> = 001b;  
MFR_SPEC_12<10:8> = 010b;  
MFR_SPEC_12<10:8> = 011b;  
MFR_SPEC_12<10:8> = 100b;  
MFR_SPEC_12<10:8> = 101b;  
MFR_SPEC_12<10:8> = 110b;  
MFR_SPEC_12<10:8> = 111b;  
MFR_SPEC_12<7:4> = 0000b;  
MFR_SPEC_12<7:4> = 0001b;  
MFR_SPEC_12<7:4> = 0010b;  
MFR_SPEC_12<7:4> = 0011b;  
MFR_SPEC_12<7:4> = 0100b;  
MFR_SPEC_12<7:4> = 0101b;  
MFR_SPEC_12<7:4> = 0110b;  
MFR_SPEC_12<7:4> = 0111b;  
MFR_SPEC_12<7:4> = 1000b;  
MFR_SPEC_12<7:4> = 1001b;  
MFR_SPEC_12<7:4> = 1010b;  
MFR_SPEC_12<7:4> = 1011b;  
MFR_SPEC_12<7:4> = 1100b;  
MFR_SPEC_12<7:4> = 1101b;  
MFR_SPEC_12<7:4> = 1110b;  
MFR_SPEC_12<7:4> = 1111b;  
MIN  
TYP  
100  
150  
200  
250  
300  
350  
400  
OFF  
1
MAX  
116  
175  
230  
285  
345  
400  
455  
UNIT  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
µs  
90  
135  
175  
225  
270  
315  
360  
Dynamic integration voltage  
setting  
VDYN  
2
µs  
3
µs  
4
µs  
5
µs  
6
µs  
7
µs  
8
µs  
Dynamic integration time  
constant  
tDINT  
12  
13  
14  
15  
16  
17  
18  
19  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-19. Dynamic Integration and Undershoot Reduction (TA = 25°C) (continued)  
PARAMETER  
TEST CONDITIONS  
MFR_SPEC_09<14:12> = 000b;  
MFR_SPEC_09<14:12> = 001b;  
MFR_SPEC_09<14:12> = 010b;  
MFR_SPEC_09<14:12> = 011b;  
MFR_SPEC_09<14:12> = 100b;  
MFR_SPEC_09<14:12> = 101b;  
MFR_SPEC_09<14:12> = 110b;  
MFR_SPEC_09<14:12> = 111b;  
MFR_SPEC_09<2:0> = 000b;  
MFR_SPEC_09<2:0> = 001b;  
MFR_SPEC_09<2:0> = 010b;  
MFR_SPEC_09<2:0> = 011b;  
MFR_SPEC_09<2:0> = 100b;  
MFR_SPEC_09<2:0> = 101b;  
MFR_SPEC_09<2:0> = 110b;  
MFR_SPEC_09<2:0> = 111b;  
MFR_SPEC_09<5> = 0b;  
MIN  
120  
155  
190  
230  
265  
300  
335  
TYP  
140  
180  
220  
260  
300  
340  
380  
OFF  
90  
MAX  
UNIT  
mV  
160  
205  
245  
290  
335  
375  
420  
mV  
mV  
mV  
VUSR2  
USR level 2 voltage setting  
mV  
mV  
mV  
mV  
70  
100  
130  
160  
185  
215  
240  
110  
140  
170  
205  
240  
270  
305  
mV  
120  
150  
180  
210  
240  
270  
OFF  
3
mV  
mV  
mV  
VUSR1  
USR level 1 voltage setting  
mV  
mV  
mV  
mV  
phases  
phases  
mV  
Maximum phase added in USR  
level 1  
PHUSR1  
MFR_SPEC_09<5> = 1b;  
4
MFR_SPEC_09<4:3> = 00b;  
MFR_SPEC_09<4:3> = 01b;  
MFR_SPEC_09<4:3> = 10b;  
MFR_SPEC_09<4:3> = 11b;  
2
5
5
9
15  
20  
25  
10  
mV  
Dynamic integration/USR voltage  
hysteresis  
VOUSRHYS  
10  
15  
15  
mV  
20  
mV  
7-20. Ramp Selections  
TEST CONDITIONS  
PARAMETER  
MIN  
30  
TYP  
40  
MAX  
55  
UNIT  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
MFR_SPEC_14<2:0> = 000b  
MFR_SPEC_14<2:0> = 001b  
MFR_SPEC_14<2:0> = 010b  
MFR_SPEC_14<2:0> = 011b  
MFR_SPEC_14<2:0> = 100b  
MFR_SPEC_14<2:0> = 101b  
MFR_SPEC_14<2:0> = 110b  
MFR_SPEC_14<2:0> = 111b  
70  
80  
95  
110  
150  
190  
230  
270  
305  
120  
160  
200  
240  
280  
320  
135  
175  
215  
255  
300  
335  
VRAMP  
RAMP Setting  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.8.1 (D7h) MFR_SPECIFIC_07  
The MFR_SPECIFIC_07 command is used to configure the internal loop compensation for both channels. The  
MFR_SPECIFIC_07 command must be accessed through Write Word/Read Word transactions.  
MFR_SPECIFIC_07 is a paged register. In order to access MFR_SPECIFIC_07 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_07 register for channel B, PAGE must be set to 01h.  
MFR_SPECIFIC_07  
15  
R
14  
R
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
0
0
INT_GAIN  
INT_TC  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
AC_GAIN  
ACLL  
LEGEND: R/W = Read/Write; R = Read only  
7-21. MFR_SPECIFIC_07 Register Field Descriptions  
Bit  
15:14  
13:12  
11:8  
7:6  
Field  
Type  
Reset  
Description  
Not used  
INT_GAIN  
INT_TC  
AC_GAIN  
ACLL  
R
0
Not used and set to 0.  
Integration path gain. See 7-22.  
RW  
RW  
RW  
RW  
NVM  
NVM  
NVM  
NVM  
Integration time constant. See 7-23.  
AC path gain. See 7-24.  
5:0  
AC Load Line. See 7-25.  
7-22. Integration path gain settings  
INT_GAIN (binary)  
Integration path gain (V/V)  
00b  
01b  
10b  
11b  
2 × AC_GAIN  
1 × AC_GAIN  
0.66 × AC_GAIN  
0.5 × AC_GAIN  
7-23. Integration time constant settings  
INT_TC (binary)  
Time constant (µs)  
0000b  
5
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
10  
15  
20  
25  
30  
35  
40  
1
2
3
4
5
6
7
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-23. Integration time constant settings (continued)  
INT_TC (binary)  
Time constant (µs)  
1111b  
8
7-24. AC path gain settings  
AC_GAIN (binary)  
AC path gain (V/V)  
00b  
01b  
10b  
11b  
1
1.5  
2
0.5  
7-25. AC load line settings  
Bin  
0
ACLL (hex)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
Bin  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
ACLL (hex)  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
AC Load line (mΩ)  
AC Load line (mΩ)  
0.0000  
0.1250  
0.2500  
0.3125  
0.3750  
0.4375  
0.5000  
0.5625  
0.6250  
0.7500  
0.7969  
0.8125  
0.8281  
0.8438  
0.8594  
0.8750  
0.8906  
0.9063  
0.9219  
0.9375  
0.9531  
0.9688  
0.9844  
1.000  
1.6250  
1.7500  
1.8750  
1.9375  
2.000  
1
2
3
4
5
2.0625  
2.1250  
2.1875  
2.2500  
2.375  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
2.4218  
2.4375  
2.4531  
2.4687  
2.4843  
2.5000  
2.5156  
2.5312  
2.5468  
2.5625  
2.5781  
2.5937  
2.609  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
2.625  
1.0156  
1.0313  
1.0469  
1.0625  
1.1250  
1.2500  
1.3750  
1.5000  
2.6406  
2.6562  
2.6718  
2.6875  
2.750  
2.875  
3.000  
3.125  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.8.2 (28h) VOUT_DROOP  
The VOUT_DROOP command sets the rate, in mV/A (mΩ) at which the output voltage decreases (or increases)  
with increasing (or decreasing) output current for use with adaptive voltage positioning. This is also referred to as  
the DC Load Line (DCLL).  
VOUT_DROOP is a linear format command. The VOUT_DROOP command must be accessed through Read  
Word/Write Word transactions.  
VOUT_DROOP is a paged register. In order to access VOUT_DROOP for channel A, PAGE must be set to 00h.  
In order to access the VOUT_DROOP register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh.  
VOUT_DROOP  
15  
R
14  
R
13  
12  
11  
10  
9
RW  
8
R
R
R
RW  
RW  
VDROOP_EXP  
VDROOP_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VDROOP_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-26. VOUT_DROOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
VDROOP_EXP  
R
11010b  
Linear two's complement fixed exponent, 6. LSB = 0.015625 mΩ  
Linear two's complement mantissa. See table of acceptable values  
below, note that Channel A and Channel B support different  
acceptable values of VOUT_DROOP.  
10:0  
VDROOP_MAN  
RW  
NVM  
The table below summarizes the acceptable values of VOUT_DROOP for channel A and channel B. Attempts to  
write any value other than those specified in the table below are treated as invalid data. The device ignores  
invalid data, sets the appropriate flags in STATUS_CML and STATUS_WORD and asserts the PMB_ALERT to  
notify the system host of an invalid transaction.  
7-27. Acceptable VOUT_DROOP Values  
DC Load Line  
VOUT_DROOP  
(hex)  
Supported by  
Channel A  
Supported by  
Channel B  
Bin  
(mΩ)  
0
1
D000h  
D008h  
D010h  
D014h  
D018h  
D01Ch  
D020h  
D024h  
D028h  
D030h  
D033h  
D034h  
D035h  
D036h  
D037h  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0
0.125  
0.25  
2
3
0.3125  
0.375  
0.4375  
0.5  
4
5
6
7
0.5625  
0.625  
0.7031  
0.7969  
0.8125  
0.8281  
0.8438  
0.8594  
8
9
10  
11  
12  
13  
14  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-27. Acceptable VOUT_DROOP Values (continued)  
DC Load Line  
VOUT_DROOP  
(hex)  
Supported by  
Channel A  
Supported by  
Channel B  
Bin  
(mΩ)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
D038h  
D039h  
D03Ah  
D03Bh  
D03Ch  
D03Dh  
D03Eh  
D03Fh  
D040h  
D041h  
D042h  
D043h  
D044h  
D048h  
D050h  
D058h  
D060h  
D068h  
D070h  
D078h  
D07Ch  
D080h  
D084h  
D088h  
D08Ch  
D090h  
D098h  
D09Bh  
D09Ch  
D09Dh  
D09Eh  
D09Fh  
D0A0h  
D0A1h  
D0A2h  
D0A3h  
D0A4h  
D0A5h  
D0A6h  
D0A7h  
D0A8h  
D0A9h  
D0AAh  
D0ABh  
D0ACh  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
0.875  
0.8906  
0.9063  
0.9219  
0.9375  
0.9531  
0.9688  
0.9844  
1
1.0156  
1.0313  
1.0469  
1.0625  
1.125  
1.25  
1.375  
1.5  
1.625  
1.75  
1.875  
1.9375  
2
2.0625  
2.125  
2.1875  
2.25  
2.328  
2.4218  
2.4375  
2.4531  
2.4687  
2.4843  
2.5  
2.5156  
2.5312  
2.5468  
2.5625  
2.5781  
2.5937  
2.609  
2.625  
2.6406  
2.6562  
2.6718  
2.6875  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-27. Acceptable VOUT_DROOP Values (continued)  
DC Load Line  
VOUT_DROOP  
(hex)  
Supported by  
Channel A  
Supported by  
Channel B  
Bin  
(mΩ)  
60  
61  
62  
63  
D0B0h  
D0B8h  
D0C0h  
D0C8h  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
2.75  
2.875  
3
3.125  
7.5.9 Converter Protection and Response  
The TPSM831D31 supports a variety of power supply protection features. The table below summarizes these  
protection features, and their related PMBus registers. See the following sections for more details.  
7-28. TPSM831D31 Protection and Response  
Threshold  
Response  
Command Name  
Default Value  
Command Name  
Default Value  
Output Voltage  
1.520 V (Ch A)  
1.520 V (Ch B)  
Shutdown,  
do not restart  
Over-Voltage Protection  
VOUT_OV_FAULT_LIMIT  
VOUT_MAX  
VOUT_OV_FAULT_RESPONSE  
VOUT_UV_FAULT_RESPONSE  
Maximum Allowed Output  
Voltage  
1.520 V (Ch A)  
1.520 V (Ch B)  
Refer to Register Description  
0.000 V (Ch A)  
0.000 V (Ch B)  
Shutdown,  
do not restart  
Under-Voltage Protection  
VOUT_UV_FAULT_LIMIT  
VOUT_MIN  
Minimum Allowed Output  
Voltage  
0.000 V (Ch A)  
0.000 V (Ch B)  
Refer to Register Description  
Output Current  
180 A (Ch A)  
60 A (Ch B)  
Shutdown,  
do not restart  
Over-Current Protection  
IOUT_OC_FAULT_LIMIT  
IOUT_OC_WARN_LIMIT  
IOUT_OC_FAULT_RESPONSE  
N/A. Warning Only.  
120 A (Ch A)  
40 A (Ch B)  
Over-Current Warning  
Input Voltage  
Turn-On Threshold  
VIN_ON  
7.25 V  
N/A  
Continue  
Uninterrupted  
Over-Voltage Protection  
VIN_OV_FAULT_LIMIT  
17.000 V  
VIN_OV_FAULT_RESPONSE  
Shutdown,  
do not restart  
Under-Voltage Protection  
Input Current  
VIN_UV_FAULT_LIMIT  
6.50 V  
VIN_UV_FAULT_RESPONSE  
Shutdown,  
do not restart  
Over-Current Protection  
IIN_OC_FAULT_LIMIT  
IIN_OC_WARN_LIMIT  
40.0 A  
32.0 A  
IIN_OC_FAULT_RESPONSE  
N/A. Warning Only  
Over-Current Warning  
Temperature  
Over-Temperature  
Protection  
135 °C (Ch A)  
135 °C (Ch B)  
Shutdown,  
do not restart  
OT_FAULT_LIMIT  
OT_FAULT_RESPONSE  
N/A. Warning Only.  
105 °C (Ch A)  
105 °C (Ch B)  
Over-Temperature Warning OT_WARN_LIMIT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.10 Output Overvoltage Protection and Response  
The output overvoltage thresholds track the configured maximum output voltage, VOUT_MAX, with a fixed  
offset, and may be read back in VID format via the read-only VOUT_OV_FAULT_LIMIT command. The converter  
response to an overvoltage fault is configured by the read-only VOUT_OV_FAULT_RESPONSE command.  
7.5.10.1 (40h) VOUT_OV_FAULT_LIMIT  
The VOUT_OV_FAULT_LIMIT is used to read back the value of the output voltage measured at the sense or  
output pins that causes an output overvoltage fault in VID format. VOUT_OV_FAULT_LIMIT is a VID format  
command, and must be accessed through Read Word/Write Word transactions. VOUT_OV_FAULT_LIMIT is a  
paged register. In order to access VOUT_OV_FAULT_LIMIT for channel A, PAGE must be set to 00h. In order to  
access the VOUT_OV_FAULT_LIMIT register for channel B, PAGE must be set to 01h. For simultaneous access  
of channels A and B, the PAGE command must be set to FFh.  
VOUT_OV_FAULT_LIMIT  
15  
R
14  
R
13  
R
12  
11  
R
0
10  
R
9
R
0
8
R
0
R
0
0
0
0
0
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VO_OVF_VID  
LEGEND: R/W = Read/Write; R = Read only  
7-29. VOUT_OV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
VO_OVF_VID  
R
See below.  
Read-only overvoltage fault limit, in VID format.  
When the 5-mV DAC mode VID table is selected via MFR_SPECIFIC_13, the device sets  
VOUT_OV_FAULT_LIMIT register to FFh. When the 10-mV DAC mode VID table is enabled, the device  
determines VOUT_OV_FAULT_LIMIT according to the value of VOUT_MAX, and applies a fixed offset value.  
7.5.10.2 (41h) VOUT_OV_FAULT_RESPONSE  
The VOUT_OV_FAULT_RESPONSE instructs the device on what action to take in response to an output  
overvoltage fault. The VOUT_OV_FAULT_RESPONSE command must be accessed through Read Byte  
transactions. The VOUT_OV_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command affects both channels regardless of the PAGE command.  
Upon triggering the over-voltage fault, the device is latched off, and:  
sets the VOUT_OV_FAULT bit in the STATUS_BYTE  
sets the VOUT bit in the STATUS_WORD  
sets the VOUT_OV_FAULT bit in the STATUS_VOUT register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set)  
VOUT_OV_FAULT_RESPONSE  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VO_OV_RESP  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-30. VOUT_OV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
80h: Latch-off and do not restart. To clear a shutdown event due to a fault event,  
the user must toggle the AVR_EN/BEN pin and/or the ON bit in OPERATION, per  
the settings in ON_OFF_CONFIG, or power cycle the bias power to the V3P3 pin  
of the controller device.  
7:0  
VO_OV_RESP  
R
80h  
7.5.11 Maximum Allowed Output Voltage Setting  
The VOUT_MAX command sets an upper limit on the output voltage that the unit may be commanded to,  
regardless of an other commands or combinations. The intent of this command is to provide a safeguard against  
a user accidentally setting the output voltage to a possibly destructive level.  
7.5.11.1 (24h) VOUT_MAX  
The VOUT_MAX command sets an upper limit on the output voltage that the unit may be commanded to,  
regardless of an other commands or combinations. The intent of this command is to provide a safeguard against  
a user accidentally setting the output voltage to a possibly destructive level. VOUT_MAX is a VID format  
command, and must be accessed through Read Word/Write Word transactions. VOUT_MAX is a paged register.  
In order to access VOUT_MAX for channel A, PAGE must be set to 00h. In order to access the  
VOUT_COMMAND register for channel B, PAGE must be set to 01h. For simultaneous access of channels A  
and B, the PAGE command must be set to FFh.  
The device detects that an attempt has been made to program the output to a voltage greater than the value set  
by the VOUT_MAX command. Attempts to program the output voltage greater than VOUT_MAX can include  
VOUT_COMMAND attempts, and margin events while the VOUT_MARGIN_HIGH/VOUT_MARGIN_LOW  
values exceed the value of VOUT_MAX. The device treats these events as warning conditions and not as fault  
conditions. If an attempt is made to program the output voltage higher than the limit set by the VOUT_MAX  
command, the device:  
clamps the commanded output voltage to VOUT_MAX,  
sets the OTHER bit in the STATUS_BYTE,  
sets the VOUT bit in the STATUS_WORD,  
sets the VOUT_MAX warning bit in the STATUS_VOUT register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set).  
It is important for the user to program this register according to the maximum output voltage the device can  
support.  
VOUT_MAX  
15  
R
14  
R
13  
R
12  
11  
R
0
10  
R
9
R
0
8
R
0
R
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MAX_VID  
LEGEND: R/W = Read/Write; R = Read only  
7-31. VOUT_MAX Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
VOUT_MAX_VID  
RW  
NVM  
Used to set the maximum VOUT of the device in VID format.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.12 Output Undervoltage Protection and Response  
The output undervoltage protection threshold is configured based on commanded output voltage,  
VOUT_COMMAND, including the shift due to the DC load line, and a fixed offset. The undervoltage threshold  
may be read back in VID format via the read-only VOUT_UV_FAULT_LIMIT command. The converter response  
to an overvoltage fault is configured by the read-only VOUT_UV_FAULT_RESPONSE command.  
7.5.12.1 (44h) VOUT_UV_FAULT_LIMIT  
The VOUT_UV_FAULT_LIMIT is used to read back the value of the output voltage measured at the sense or  
output pins that causes an output undervoltage fault in VID format. VOUT_UV_FAULT_LIMIT is a VID format  
command, and must be accessed through Read Word transactions. VOUT_UV_FAULT_LIMIT is a paged  
register. In order to access VOUT_UV_FAULT_LIMIT for channel A, PAGE must be set to 00h. In order to  
access the VOUT_UV_FAULT_LIMIT register for channel B, PAGE must be set to 01h. For simultaneous access  
of channels A and B, the PAGE command must be set to FFh.  
VOUT_UV_FAULT_LIMIT  
15  
R
14  
R
13  
R
12  
11  
R
0
10  
R
9
R
0
8
R
0
R
0
0
0
0
0
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VO_UVF_VID  
LEGEND: R/W = Read/Write; R = Read only  
7-32. VOUT_UV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
VO_UVF_VID  
R
See below.  
Read-only undervoltage fault limit, in VID format.  
7.5.12.2 (45h) VOUT_UV_FAULT_RESPONSE  
The VOUT_UV_FAULT_RESPONSE instructs the device on what action to take in response to an output  
undervoltage fault.  
Upon triggering the undervoltage fault, the device:  
sets the OTHER bit in the STATUS_BYTE  
sets the VOUT bit in the STATUS_WORD  
sets the VOUT_UV_FAULT bit in the STATUS_VOUT register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set)  
The VOUT_UV_FAULT_RESPONSE command must be accessed through Read Byte/Write Byte transactions.  
The VOUT_UV_FAULT_RESPONSE command is shared between Channel A and Channel B. All transactions to  
this command affects both channels regardless of the PAGE command.  
VOUT_UV_FAULT_RESPONSE  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VO_UV_RESP  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-33. VOUT_UV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
00h: Ignore. The controller sets the appropriate status bits, and alerts the host, and  
continues converting power.  
BAh: Shutdown and restart. The controller shuts down the channel on which the fault  
occurred, and attempts to restart after a delay of 20 ms. This process occurs  
continuously until the condition causing the fault has been removed, or the controller  
has been disabled.  
7:0  
VO_UV_RESP  
RW  
NVM  
80h: Latch-off and do not restart. To clear a shutdown event due to a fault event, the  
user must toggle the AVR_EN/BEN pin and/or the ON bit in OPERATION, per the  
settings in ON_OFF_CONFIG, or power cycle the bias power to the V3P3 pin of the  
controller device.  
7.5.13 Minimum Allowed Output Voltage Setting  
The VOUT_MIN command sets a lower bound on the output voltage to which the unit can be commanded,  
regardless of any other commands or combinations. The intent of this command is to provide a safeguard  
against a user accidentally setting the output voltage to a possibly destructive level rather than to be the primary  
output under voltage protection.  
7.5.13.1 (2Bh) VOUT_MIN  
The VOUT_ MIN command sets a lower bound on the output voltage to which the unit can be commanded,  
regardless of any other commands or combinations. The intent of this command is to provide a safeguard  
against a user accidentally setting the output voltage to a possibly destructive level rather than to be the primary  
output under voltage protection. VOUT_MIN is a VID format command, and must be accessed through Read  
Word/Write Word transactions. VOUT_MIN is a paged register. In order to access VOUT_MIN for channel A,  
PAGE must be set to 00h. In order to access the VOUT_MIN register for channel B, PAGE must be set to 01h.  
For simultaneous access of channels A and B, the PAGE command must be set to FFh.  
If an attempt is made to program the output voltage lower than the limit set by this command, the device:  
clamps the commanded output voltage to VOUT_MIN  
sets the OTHER bit in the STATUS_BYTE  
sets the VOUT bit in the STATUS_WORD  
sets the VOUT_MIN warning bit in the STATUS_VOUT register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set).  
VOUT_MIN  
15  
R
14  
R
13  
R
12  
R
11  
R
0
10  
R
9
R
0
8
R
0
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MIN_VID  
LEGEND: R/W = Read/Write; R = Read only  
7-34. VOUT_MIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Sets a lower bound for output voltage programming for the  
active PAGE, is set to in VID format.  
7:0  
VOUT_MIN_VID  
RW  
NVM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.14 Output Overcurrent Protection and Response  
Overcurrent thresholds are configured using the IOUT_OC_FAULT_LIMIT. When the overcurrent fault threshold  
is reached, the converter will respond according to the settings in IOUT_OC_FAULT_RESPONSE. The  
IOUT_OC_WARN_LIMIT may also be used to configure an information-only overcurrent warning, which triggers  
prior to an overcurrent fault. Note, that the MFR_SPECIFIC_00 command, not listed below, also contains  
settings for per-phase overcurrent limits. Refer to the device Technical Reference Manual for more information.  
7.5.14.1 (46h) IOUT_OC_FAULT_LIMIT  
The IOUT_OC_FAULT_LIMIT command sets the value of the total output current, in amperes, that causes the  
over-current detector to indicate an over-current fault condition. The command has two data bytes and the data  
format is Linear as shown in the table below. The units are amperes. IOUT_OC_FAULT_LIMIT is a linear format  
command, and must be accessed through Read Word/Write Word transactions. IOUT_OC_FAULT_LIMIT is a  
paged register. In order to access IOUT_OC_FAULT_LIMIT command for channel A, PAGE must be set to 00h.  
In order to access IOUT_OC_FAULT_LIMIT register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh.  
IOUT_OC_FAULT_LIMIT  
15  
R
14  
R
13  
R
12  
11  
10  
9
8
R
R
RW  
RW  
RW  
IOOCF_EXP  
IOOCF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOOCF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-35. IOUT_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IOOCF_EXP  
R
00000b  
Linear two's complement exponent, 0. LSB = 1.0 A  
10:0  
IOOCF_MAN  
RW  
See below.  
Linear two's complement mantissa  
At power-on, or after a RESTORE_DEFAULT_ALL operation, the device loads the IOUT_OC_FAULT_LIMIT  
command with the value of IOUT_MAX × 1.50. The IOUT_MAX bits for each channel are stored in  
MFR_SPECIFIC_10 (PAGE 0 for channel A, PAGE 1 for channel B). IOUT_OC_FAULT_LIMIT may be changed  
during operation, but returns to this value on reset.  
7.5.14.2 (4Ah) IOUT_OC_WARN_LIMIT  
The IOUT_OC_WARN_LIMIT command sets the value of the output current, in amperes, that causes the over-  
current detector to indicate an over-current warning condition. IOUT_OC_WARN_LIMIT is a linear format  
command, and must be accessed through Read Word/Write Word transactions. IOUT_OC_WARN_LIMIT is a  
paged register. In order to access IOUT_OC_WARN_LIMIT command for channel A, PAGE must be set to 00h.  
In order to access IOUT_OC_WARN_LIMIT register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh.  
Upon triggering the overcurrent warning, the device:  
sets the OTHER bit in the STATUS_BYTE  
sets the IOUT bit in the STATUS_WORD  
sets the IOUT Over current Warning bit in the STATUS_IOUT register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set)  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
IOUT_OC_WARN_LIMIT  
15  
R
14  
R
13  
R
12  
11  
10  
9
8
R
R
RW  
RW  
RW  
IOOCW_EXP  
IOOCW_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOOCW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-36. IOUT_OC_WARN_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
10:0  
IOOCW_EXP  
IOOCW_MAN  
R
00000b  
See below.  
Linear two's complement exponent, 0. LSB = 1.0 A  
Linear two's complement mantissa.  
RW  
At power-on, or after a RESTORE_DEFAULT_ALL operation, the device loads the IOUT_OC_WARN_LIMIT  
command with the value of IOUT_MAX. The IOUT_MAX bits for each channel are stored in MFR_SPECIFIC_10  
(PAGE 0 for channel A, PAGE 1 for channel B). IOUT_OC_WARN_LIMIT may be changed during operation, but  
returns to this value on reset.  
7.5.14.3 (47h) IOUT_OC_FAULT_RESPONSE  
The IOUT_OC_FAULT_RESPONSE instructs the device on what action to take in response to an output over-  
current fault. The IOUT_OC_FAULT_RESPONSE command must be accessed through Read Byte/Write Byte  
transactions. The IOUT_OC_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command affects both channels regardless of the PAGE command.  
备注  
IOUT_OC_WARN_LIMIT maximum default value is 180A for VOUTA and 60A for VOUTB. If an  
application maximum load current is less than 180A, IOUT_OC_WARN_LIMIT needs to change as the  
default maximum load current value is restored each time after power-on or  
RESTORE_DEFAULT_ALL operation.  
Upon triggering the over-current fault, the device is latched off, and:  
sets the IOUT_OC_FAULT bit in the STATUS_BYTE  
sets the IOUT bit in the STATUS_WORD  
sets the IOUT_OC_FAULT bit in the STATUS_IOUT register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set)  
IOUT_OC_FAULT_RESPONSE  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IO_OC_RESP  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-37. IOUT_OC_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
C0h: Latch-off and do not restart. To clear a shutdown event due to a fault event, the  
user must toggle the AVR_EN/BEN pin and/or the ON bit in OPERATION, per the  
settings in ON_OFF_CONFIG, or power cycle the bias power to the V3P3 pin of the  
controller device.  
7:0  
IO_OC_RESP  
RW  
NVM  
FAh: Shutdown and restart. The controller will shutdown the channel on which the  
fault occurred, and attempt to restart 20ms later. This will occur continuously until the  
condition causing the fault has disappeared, or the controller has been disabled.  
7.5.14.4 Per Phase Overcurrent Limit Thresholds  
7-38. OCL  
PARAMETER  
TEST CONDITIONS  
MIN  
12.5  
16.5  
20.5  
24.5  
28.5  
32.5  
36.5  
40.5  
44.5  
48.5  
52.5  
56.5  
60.5  
64.5  
68.5  
72.5  
12  
TYP  
14.5  
18.5  
22.5  
26.5  
30.5  
34.5  
38.5  
42.5  
46.5  
50.5  
54.5  
58.5  
62.5  
66.5  
70.5  
74.5  
14  
MAX  
16.5  
20.5  
24.5  
28.5  
32.5  
36.5  
40.5  
44.5  
48.5  
52.5  
56.5  
60.5  
64.5  
68.5  
72.5  
76.5  
16  
UNIT  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
MFR_SPEC_00<3:0>, (PAGE0) = 0000b  
MFR_SPEC_00<3:0>, (PAGE0) = 0001b  
MFR_SPEC_00<3:0>, (PAGE0) = 0010b  
MFR_SPEC_00<3:0>, (PAGE0) = 0011b  
MFR_SPEC_00<3:0>, (PAGE0) = 0100b  
MFR_SPEC_00<3:0>, (PAGE0) = 0101b  
MFR_SPEC_00<3:0>, (PAGE0) = 0110b  
MFR_SPEC_00<3:0>, (PAGE0) = 0111b  
MFR_SPEC_00<3:0>, (PAGE0) = 1000b  
MFR_SPEC_00<3:0>, (PAGE0) = 1001b  
MFR_SPEC_00<3:0>, (PAGE0) = 1010b  
MFR_SPEC_00<3:0>, (PAGE0) = 1011b  
MFR_SPEC_00<3:0>, (PAGE0) = 1100b  
MFR_SPEC_00<3:0>, (PAGE0) = 1101b  
MFR_SPEC_00<3:0>, (PAGE0) = 1110b  
MFR_SPEC_00<3:0>, (PAGE0) = 1111b  
MFR_SPEC_00<3:0>, (PAGE1) = 0000b  
MFR_SPEC_00<3:0>, (PAGE1) = 0001b  
MFR_SPEC_00<3:0>, (PAGE1) = 0010b  
MFR_SPEC_00<3:0>, (PAGE1) = 0011b  
MFR_SPEC_00<3:0>, (PAGE1) = 0100b  
MFR_SPEC_00<3:0>, (PAGE1) = 0101b  
MFR_SPEC_00<3:0>, (PAGE1) = 0110b  
MFR_SPEC_00<3:0>, (PAGE1) = 0111b  
MFR_SPEC_00<3:0>, (PAGE1) = 1000b  
MFR_SPEC_00<3:0>, (PAGE1) = 1001b  
MFR_SPEC_00<3:0>, (PAGE1) = 1010b  
MFR_SPEC_00<3:0>, (PAGE1) = 1011b  
MFR_SPEC_00<3:0>, (PAGE1) = 1100b  
MFR_SPEC_00<3:0>, (PAGE1) = 1101b  
MFR_SPEC_00<3:0>, (PAGE1) = 1110b  
MFR_SPEC_00<3:0>, (PAGE1) = 1111b  
Phase OCL levels for Channel A  
(ACSPx-VREF), valley current  
limit  
IOCLAx  
16  
18  
20  
20  
22  
24  
24  
26  
28  
28  
30  
32  
32  
34  
36  
36  
38  
40  
Phase OCL levels for Channel B  
(BCSPx-VREF), valley current  
limit  
40  
42  
44  
IOCLBx  
44  
46  
48  
48  
50  
52  
52  
54  
56  
56  
58  
60  
60  
62  
64  
64  
66  
68  
68  
70  
72  
72  
74  
76  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.15 Input Under-Voltage Lockout (UVLO)  
The TPSM831D31 may not start converting power until the power stage input voltage reaches the level specified  
by VIN_ON.  
7.5.15.1 (35h) VIN_ON  
The VIN_ON command sets the value of the input voltage, in Volts, at which the unit should start power  
conversion. This command has two data bytes encoded in linear data format, and must be accessed through  
Read Word/Write Word transactions. The VIN_ON command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command. The supported range  
for VIN_ON is from 4.0 V volts to 11.25 Volts.  
VIN_ON  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
VINON_EXP  
VINON_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VINON_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-39. VIN_ON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
VINON_EXP  
R
11110b  
Linear two's complement exponent, 2. LSB = 0.25 V  
Linear two's complement mantissa. See the table of acceptable values  
below.  
10:0  
VINON_MAN  
RW  
NVM  
7-40. Acceptable Values of VIN_ON  
VIN_ON (hex)  
Turn-On Voltage (V)  
F01Dh  
7.25  
8.25  
F021h  
F025h  
9.25  
F029h  
10.25  
11.25  
F02Dh  
7-41. VIN Undervoltage Fault Limits  
VIN_UV_FAULT_LIMIT (hex)  
Fault Threshold (V)  
F80Fh  
F811h  
F813h  
F815h  
F817h  
7.5  
8.5  
9.5  
10.5  
11.5  
7.5.16 Input Over-Voltage Protection and Response  
The TPSM831D31 provides protection from input transients via the VIN_OV_FAULT_LIMIT and  
VIN_OV_FAULT_RESPONSE commands.  
7.5.16.1 (55h) VIN_OV_FAULT_LIMIT  
The VIN_OV_FAULT_LIMIT command sets the value of the input voltage that causes an input overvoltage fault.  
VIN_OV_FAULT_LIMIT is a linear format command, and must be accessed through Read Word/Write Word  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
transactions. The VIN_OV_FAULT_LIMIT command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
VIN_OV_FAULT_LIMIT  
15  
R
14  
R
13  
R
12  
11  
10  
9
RW  
8
R
R
RW  
RW  
VIN_OVF_EXP  
VIN_OVF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VIN_OVF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-42. VIN_OV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
VIN_OVF_EXP  
R
00000b  
Linear two's complement exponent, 0. LSB = 1 V  
Linear two's complement mantissa. Valid values of the mantissa  
range from 0d to 31d.  
10:0  
VIN_OVF_MAN  
RW  
NVM  
7.5.16.2 (56h) VIN_OV_FAULT_RESPONSE  
The VIN_OV_FAULT_RESPONSE command instructs the device on what action to take in response to an input  
overvoltage fault. The VIN_OV_FAULT_RESPONSE command must be accessed through Read Byte  
transactions. The VIN_OV_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
In response to the VIN_OV_LIMIT being exceeded, the device:  
sets the OTHER bit in the STATUS_BYTE  
sets the INPUT bit in the upper byte of the STATUS_WORD  
sets the VIN_OV_FAULT bit in the STATUS_INPUT register, and  
notifies the host (assert the PMB_ALERT signal, if the corresponding mask bit in SMBALERT_MASK is not  
set)  
VIN_OV_FAULT_RESPONSE  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VI_OVF_RESP  
LEGEND: R/W = Read/Write; R = Read only  
7-43. VIN_OV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
00h: Ignore. The controller will set the appropriate status bits,  
and alert the host, but continue converting power.  
7:0  
VI_OVF_RESP  
R
00h  
7.5.17 Input Undervoltage Protection and Response  
The TPSM831D31 provides protection from input transients via the VIN_UV_FAULT_LIMIT and  
VIN_UV_FAULT_RESPONSE commands.  
7.5.17.1 (59h) VIN_UV_FAULT_LIMIT  
The VIN_UV_FAULT_LIMIT command sets the value of the input voltage that causes an Input Under voltage  
Fault. This fault is masked until the input exceeds the value set by the VIN_ON command for the first time, and  
the unit has been enabled. VIN_UV_FAULT_LIMIT is a linear format command, and must be accessed through  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
Read Word/Write Word transactions. The VIN_UV_FAULT_LIMIT command is shared between Channel A and  
Channel B. All transactions to this command will affect both channels regardless of the PAGE command.  
VIN_UV_FAULT_LIMIT  
15  
14  
13  
RW  
12  
11  
10  
9
RW  
8
RW  
RW  
RW  
RW  
RW  
RW  
VIN_UVF_EXP  
VIN_UVF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VIN_UVF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-44. VIN_UV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
NVM  
NVM  
Description  
15:11  
10:0  
VIN_UVF_EXP  
VIN_UVF_MAN  
RW  
Linear two's complement exponent. See the table of acceptable values below.  
Linear two's complement mantissa. See the table of acceptable values below.  
RW  
7-45. Acceptable Values of VIN_UV_FAULT_LIMIT  
VIN_UV_FAULT_LIMIT (hex)  
VIN UVF Limit (V)  
F80Dh  
F80Fh  
F811h  
F813h  
F815h  
F817h  
6.5  
7.5  
8.5  
9.5  
10.5  
11.5  
7.5.17.2 (5Ah) VIN_UV_FAULT_RESPONSE  
The VIN_UV_FAULT_RESPONSE command instructs the device on what action to take in response to an input  
overvoltage fault. The VIN_UV_FAULT_RESPONSE command must be accessed through Read Byte  
transactions. The VIN_UV_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
In response to the VIN_UV_LIMIT being exceeded, the device:  
sets the OTHER bit in the STATUS_BYTE  
sets the INPUT bit in the upper byte of the STATUS_WORD  
sets the VIN_UV_FAULT bit in the STATUS_INPUT register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set)  
VIN_UV_FAULT_RESPONSE  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VI_UVF_RESP  
LEGEND: R/W = Read/Write; R = Read only  
7-46. VIN_UV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
VI_UVF_RESP  
R
C0h  
C0h: Shutdown and restart when the fault condition is no longer present.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.18 Input Overcurrent Protection and Response  
Input overcurrent protection is configured via the IIN_OC_FAULT_LIMIT, IIN_OC_WARN_LIMIT and  
IIN_OC_FAULT_RESPONSE commands.  
7.5.18.1 (5Bh) IIN_OC_FAULT_LIMIT  
The IIN_OC_FAULT_LIMIT command sets the value of the input current, in amperes, that causes the input over  
current fault condition. IIN_OC_FAULT_LIMIT is a linear format command, and must be accessed through Read  
Word/Write Word transactions. The IIN_OC_FAULT_LIMIT command is shared between Channel A and Channel  
B. All transactions to this command will affect both channels regardless of the PAGE command.  
IIN_OC_FAULT_LIMIT  
15  
R
14  
R
13  
R
12  
11  
10  
9
8
R
R
RW  
RW  
RW  
IIN_OCF_EXP  
IIN_OCF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IIN_OCF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-47. IIN_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IIN_OCF_EXP  
R
11111b  
Linear two's complement format exponent, 1. LSB = 0.5 A.  
Linear two's complement format mantissa. Acceptable values  
range from 0d (0 A) to 127d (63.5 A).  
10:0  
IIN_OCF_MAN  
RW  
See below.  
During operation, the IIN_OC_FAULT_LIMIT may be changed to any valid value, as specified above. The  
IIN_OC_FAULT_LIMIT command has only limited NVM backup. The table below summarizes the values that  
IIN_OC_FAULT_LIMIT may be restored to following a reset, or RESTORE_DEFAULT_ALL operation.  
7-48. IIN_OC_FAULT_LIMIT reset values  
IIN_OC_FAULT_LIMIT during  
NVM store operation  
IIN_OC_FAULT_LIMIT following  
Reset/Restore Operation  
Hex Value  
F810h  
F820h  
8 A  
8 A  
16 A  
24 A  
32 A  
40 A  
48 A  
56 A  
63.5 A  
63.5 A  
16 A  
F830h  
24 A  
F840h  
32 A  
40 A  
F850h  
F860h  
48 A  
F870h  
56 A  
F87Fh  
63.5 A  
Any other valid data  
Any other valid data  
7.5.18.2 (5Dh) IIN_OC_WARN_LIMIT  
The IIN_OC_WARN_LIMIT command sets the value of the input current, in amperes, that causes the input  
overcurrent warning condition. The IIN_OC_WARN_LIMIT command must be accessed through Read Word/  
Write Word transactions. The IIN_OC_WARN_LIMIT command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
Upon triggering the over-current warning, the device:  
sets the OTHER bit in the STATUS_BYTE  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
sets the INPUT bit in the STATUS_WORD  
sets the IIN_Over-current Warning bit in the STATUS_INPUT register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set)  
IIN_OC_WARN_LIMIT  
15  
R
14  
R
13  
R
12  
11  
10  
R
9
8
R
R
R
R
IIN_OCW_EXP  
IIN_OCW_MAN  
7
6
5
4
3
2
1
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IIN_OCW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-49. IIN_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IIN_OCW_EXP  
R
11111b  
Linear two's complement format exponent, 1. LSB = 0.5 A.  
Linear two's complement format mantissa. Acceptable values  
range from 0d (0 A) to 127d (63.5 A).  
10:0  
IIN_OCW_MAN  
RW  
See below.  
During operation, the IIN_OC_FAULT_LIMIT may be changed to any valid value, as specified above. The  
IIN_OC_FAULT_LIMIT command has only limited NVM backup. The table below summarizes the values that  
IIN_OC_FAULT_LIMIT may be restored to following a reset, or RESTORE_DEFAULT_ALL operation.  
7-50. IIN_OC_WARN_LIMIT reset values  
IIN_OC_WARN_LIMIT during  
NVM store operation  
IIN_OC_WARN_LIMIT following  
Reset/Restore Operation  
Hex Value  
F810h  
F820h  
8 A  
8 A  
16 A  
24 A  
32 A  
40 A  
48 A  
56 A  
63.5 A  
63.5 A  
16 A  
F830h  
24 A  
F840h  
32 A  
40 A  
F850h  
F860h  
48 A  
F870h  
56 A  
F87Fh  
63.5 A  
Any other valid data  
Any other valid data  
7.5.18.3 (5Ch) IIN_OC_FAULT_RESPONSE  
The IIN_OC_FAULT_RESPONSE command instructs the device on what action to take in response to an input  
over-current fault. IIN_OC_FAULT_RESPONSE command must be accessed through Read Byte transactions.  
The IIN_OC_FAULT_RESPONSE command is shared between Channel A and Channel B. All transactions to  
this command will affect both channels regardless of the PAGE command.  
Upon triggering the input over-current fault, the device is latched off, and:  
sets the OTHER bit in the STATUS_BYTE  
sets the INPUT bit in the STATUS_WORD  
sets the IIN_OC_FAULT bit in the STATUS_INPUT register, and  
notifies the host (asserts PMB_ALERT and VR_FAULT, if the corresponding mask bit in SMBALERT_MASK  
is not set)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
IIN_OC_FAULT_RESPONSE  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
IIN_OC_RESP  
LEGEND: R/W = Read/Write; R = Read only  
7-51. IIN_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
C0h: Latch-off and do not restart. To clear a shutdown event due  
to a fault event, the user must toggle the AVR_EN/BEN pin  
and/or the ON bit in OPERATION, per the settings in  
ON_OFF_CONFIG, or power cycle the bias power to the V3P3  
pin of the controller device.  
7:0  
IIN_OC_RESP  
R
C0h  
7.5.19 Overtemperature Protection and Response  
Overtemperature protection is configured via the OT_FAULT_LIMIT, OT_WARN_LIMIT and  
OT_FAULT_RESPONSE commands.  
7.5.19.1 (4Fh) OT_FAULT_LIMIT  
The OT_FAULT_LIMIT command sets the value of the temperature limit, in degrees Celsius, that causes an  
overtemperature fault condition when the sensed temperature from the external sensor exceeds this limit. The  
default value is selected inMFR_SPECIFIC_13, using the OTF_DFLT bit. Refer to the device Technical  
Reference Manual for more information. OT_FAULT_LIMIT is a linear format command, and must be accessed  
through Read Word/Write Word transactions. OT_FAULT_LIMIT is a paged register. In order to access  
OT_FAULT_LIMIT command for channel A, PAGE must be set to 00h. In order to access OT_FAULT_LIMIT  
register for channel B, PAGE must be set to 01h. For simultaneous access of channels A and B, the PAGE  
command must be set to FFh.  
OT_FAULT_LIMIT  
15  
R
14  
R
13  
R
12  
11  
10  
9
8
R
R
RW  
RW  
RW  
OTF_EXP  
OTF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-52. OT_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
OTF_EXP  
R
00000b  
Linear two's complement exponent, 0. LSB = 1 °C  
Linear two's complement mantissa. The default  
OT_FAULT_LIMIT is set by the OTF_DFLT bit in  
MFR_SPECIFIC_13.  
10:0  
OTF_MAN  
RW  
NVM  
7.5.19.2 (51h) OT_WARN_LIMIT  
The OT_WARN_LIMIT command sets the over-temperature warning event indicator for unit at the desired  
temperature, in degrees Celsius. OT_WARN_LIMIT is a linear format command, and must be accessed through  
Read Word/Write Word transactions. OT_WARN_LIMIT is a paged register. In order to access  
OT_WARN_LIMIT command for channel A, PAGE must be set to 00h. In order to access OT_WARN_LIMIT  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
register for channel B, PAGE must be set to 01h. For simultaneous access of channels A and B, the PAGE  
command must be set to FFh.  
In response to the OT_WARN_LIMIT being exceeded, the device:  
sets the TEMPERATURE bit in the STATUS_BYTE  
sets the Over-temperature Warning bit in the STATUS_TEMPERATURE register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set)  
OT_WARN_LIMIT  
15  
R
14  
R
13  
R
12  
11  
10  
9
8
R
R
RW  
RW  
RW  
OTW_EXP  
OTW_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-53. OT_WARN_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
OTF_EXP  
R
00000b  
Linear two's complement exponent, 0. LSB = 1 °C  
Linear two's complement mantissa. Default = 105 °C  
10:0  
OTF_MAN  
RW  
105d  
7.5.19.3 (50h) OT_FAULT_RESPONSE  
The OT_FAULT_RESPONSE instructs the device on what action to take in response to an output over-  
temperature fault. The OT_FAULT_RESPONSE command must be accessed through Read Byte/Write Byte  
transactions. The OT_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
Upon triggering the over-temperature fault, the device is latched off, and:  
sets the TEMPERATURE bit in the STATUS_BYTE  
sets the OT_FAULT bit in the STATUS_TEMPERATURE register, and  
notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set).  
OT_FAULT_RESPONSE  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTF_RESP  
LEGEND: R/W = Read/Write; R = Read only  
7-54. OT_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
80h: Latch-off and do not restart. To clear a shutdown event due to a fault  
event, the user must toggle the AVR_EN/BEN pin and/or the ON bit in  
OPERATION, per the settings in ON_OFF_CONFIG, or power cycle the  
bias power to the V3P3 pin of the controller device.  
7:0  
OTF_RESP  
RW  
NVM  
C0h: Shutdown and restart when the fault condition is no longer present.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.20 Dynamic Phase Shedding (DPS)  
The dynamic phase shedding (DPS) feature allows the TPSM831D31 to dynamically select the number of  
operational phases for each channel, based on the total output current. This increases the total converter  
efficiency by reducing unnecessary switching losses when the output current is low enough to be supported by a  
fewer number of phases, than are available in hardware. The MFR_SPECIFIC_14 and MFR_SPECIFIC_15  
commands may be used to configure dynamic phase shedding behavior and thresholds.  
The DPS_EN bit in MFR_SPECIFIC_14 may be used to enable or disable dynamic phase shedding. Un-setting  
(writing to 0b) this bit forces each channel to use the maximum number of available phases, regardless of the  
output current. DPS is disabled as the factory default.  
The phase add/drop thresholds, at which phases are added or dropped are configured based on the peak  
efficiency point per phase. For a given switching frequency/duty cycle, the efficiency of an individual power stage  
has a "peak" point, at which switching losses become less significant and conduction losses begin to dominate.  
For a multiphase converter, the optimum efficiency is achieved when all of the power stages operate as close as  
possible to their peak efficiency point. For example, consider a 4-phase design, with power stages that have a  
peak efficiency point of 12 A per phase. When the total output current is 25 A, if all four phases were active,  
each phase would be supplying 6.25 A, and hence would be operating far away from their peak efficiency point.  
With only two phases active, however, each phase supplies 12.5A, meaning that each power stage is operating  
close to its peak efficiency point, therefore the total converter efficiency is higher overall.  
In order to maintain regulation during severe load transient events, phases may be added immediately whenever  
the total peak current reaches phase addition thresholds. To prevent chattering, phases are dropped when the  
total average current falls below phase drop thresholds, after a delay of 85 µs typically. Phases are always  
added/dropped, in numerical order. For example, phase 3 is added after phase 2, and dropped after phase 4.  
The DPS_COURSE_TH bits in MFR_SPECIFIC_15 select the peak efficiency point per phase. Refer to the  
power stage datasheet to determine the peak efficiency point per phase.  
Phase adding thresholds are configured based on the peak efficiency point per phase. Each phase transition has  
a configurable threshold of 6 A to 12 A above the peak efficiency point. For example, the threshold at which the  
converter transitions from 2 phases to 3 phases is determined by the DPS_2TO3_FINE_ADD bits in  
MFR_SPECIFIC_15. When 8 A is selected, the total peak current which causes the third phase to be added is 2  
× IEFF(PEAK) + 8 A. See the register descriptions below for more detailed information.  
Likewise, phase drop thresholds are configured based on the peak efficiency point per phase. Each phase  
transition has a configurable threshold of 2A below A to 4 A above the peak efficiency point. For example, the  
threshold at which the converter transitions from 3 phases to 2 phases is determined by the  
DPS_3TO2_FINE_DROP bits in MFR_SPECIFIC_14. When 0 A is selected, the total average current which  
causes the third phase to be dropped is 2 × IEFF(PEAK). See the register descriptions below for more detailed  
information.  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-55. Dynamic Phase Add and Drop  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 2 A; (MFR_SPECIFIC_15<4:3> = 00b);  
21  
23  
25  
A
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 4 A; (MFR_SPECIFIC_15<4:3> = 01b);  
23  
25  
27  
23  
25  
27  
29  
25  
27  
29  
31  
27  
29  
31  
33  
25  
27  
29  
25  
27  
29  
31  
27  
29  
31  
33  
29  
31  
33  
35  
27  
29  
31  
27  
29  
31  
33  
29  
31  
33  
35  
31  
33  
35  
37  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 6 A; (MFR_SPECIFIC_15<4:3> = 10b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 8 A; (MFR_SPECIFIC_15<4:3> = 11b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 2 A; (MFR_SPECIFIC_15<4:3> = 00b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 4 A; (MFR_SPECIFIC_15<4:3> = 01b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 6 A; (MFR_SPECIFIC_15<4:3> = 10b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 8 A; (MFR_SPECIFIC_15<4:3> = 11b);  
Dynamic phase  
adding threshold, 1 to  
2 Phases (peak  
current)  
V
RIPPLE 18 A (estimation)  
VDPSTHA1  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 2 A; (MFR_SPECIFIC_15<4:3> = 00b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 4 A; (MFR_SPECIFIC_15<4:3> = 01b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 6 A; (MFR_SPECIFIC_15<4:3> = 10b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 8 A; (MFR_SPECIFIC_15<4:3> = 11b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 2 A; (MFR_SPECIFIC_15<4:3> = 00b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 4 A; (MFR_SPECIFIC_15<4:3> = 01b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 6 A; (MFR_SPECIFIC_15<4:3> = 10b);  
V
RIPPLE 18 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 8 A; (MFR_SPECIFIC_15<4:3> = 11b);  
V
RIPPLE 18 A (estimation)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-55. Dynamic Phase Add and Drop (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -6 A; (MFR_SPECIFIC_15<14:13> =  
00b)  
4
6
8
10  
12  
14  
10  
12  
14  
16  
12  
14  
16  
18  
14  
16  
18  
20  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -4 A; (MFR_SPECIFIC_15<14:13> =  
01b)  
6
8
8
10  
12  
8
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -2 A; (MFR_SPECIFIC_15<14:13> =  
10b)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 0 A; (MFR_SPECIFIC_15<14:13> =  
11b)  
10  
6
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -6 A; (MFR_SPECIFIC_15<14:13> =  
00b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -4 A; (MFR_SPECIFIC_15<14:13> =  
01b)  
8
10  
12  
14  
10  
12  
14  
16  
12  
14  
16  
18  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -2 A; (MFR_SPECIFIC_15<14:13> =  
10b)  
10  
12  
8
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 0 A; (MFR_SPECIFIC_15<14:13> =  
11b)  
Dynamic phase  
shedding threshold, 2  
to 1 phase (average  
current)  
VDPSTHS1  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -6 A; (MFR_SPECIFIC_15<14:13> =  
00b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -4 A; (MFR_SPECIFIC_15<14:13> =  
01b)  
10  
12  
14  
10  
12  
14  
16  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -2 A; (MFR_SPECIFIC_15<14:13> =  
10b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 0 A; (MFR_SPECIFIC_15<14:13> =  
11b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -6 A; (MFR_SPECIFIC_15<14:13> =  
00b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -4 A; (MFR_SPECIFIC_15<14:13> =  
01b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -2 A; (MFR_SPECIFIC_15<14:13> =  
10b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 0 A; (MFR_SPECIFIC_15<14:13> =  
11b)  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-55. Dynamic Phase Add and Drop (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 4 A; (MFR_SPECIFIC_15<6:5> = 00b);  
VRIPPLE = 14 A (estimation)  
32.5  
35  
37.5  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 6 A; (MFR_SPECIFIC_15<6:5> = 01b);  
VRIPPLE = 14 A (estimation)  
34.5  
36.5  
38.5  
36.5  
38.5  
40.5  
42.5  
40.5  
42.5  
44.5  
46.5  
44.5  
46.5  
48.5  
50.5  
37  
39  
41  
39  
41  
43  
45  
43  
45  
47  
49  
47  
49  
51  
53  
39.5  
41.5  
43.5  
41.5  
43.5  
45.5  
47.5  
45.5  
47.5  
49.5  
51.5  
49.5  
51.5  
53.5  
55.5  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 8 A; (MFR_SPECIFIC_15<6:5> = 10b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 10 A; (MFR_SPECIFIC_15<6:5> =  
11b); VRIPPLE = 14 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 4 A; (MFR_SPECIFIC_15<6:5> = 00b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 6 A; (MFR_SPECIFIC_15<6:5> = 01b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 8 A; (MFR_SPECIFIC_15<6:5> = 10b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 10 A; (MFR_SPECIFIC_15<6:5> =  
11b); VRIPPLE = 14 A (estimation)  
Dynamic phase  
adding threshold, 2 to  
3 phases (peak  
current)  
VDPSTHA2  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 4 A; (MFR_SPECIFIC_15<6:5> = 00b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 6 A; (MFR_SPECIFIC_15<6:5> = 01b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 8 A; (MFR_SPECIFIC_15<6:5> = 10b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 10 A; (MFR_SPECIFIC_15<6:5> =  
11b); VRIPPLE = 14 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 4 A; (MFR_SPECIFIC_15<6:5> = 00b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 6 A; (MFR_SPECIFIC_15<6:5> = 01b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 8 A; (MFR_SPECIFIC_15<6:5> = 10b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 10 A; (MFR_SPECIFIC_15<6:5> = 11b);  
VRIPPLE = 14 A (estimation)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-55. Dynamic Phase Add and Drop (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -4 A; (MFR_SPECIFIC_14<9:8> = 00b)  
17.5  
20  
22.5  
24.5  
26.5  
28.5  
26.5  
28.5  
30.5  
32.5  
30.5  
32.5  
34.5  
36.5  
34.5  
36.5  
38.5  
40.5  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -2 A; (MFR_SPECIFIC_14<9:8> = 01b)  
19.5  
21.5  
23.5  
21.5  
23.5  
25.5  
27.5  
25.5  
27.5  
29.5  
31.5  
29.5  
31.5  
33.5  
35.5  
22  
24  
26  
24  
26  
28  
30  
28  
30  
32  
34  
32  
34  
36  
38  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 0 A; (MFR_SPECIFIC_14<9:8> = 10b)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 2 A; (MFR_SPECIFIC_14<9:8> = 11b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -4 A; (MFR_SPECIFIC_14<9:8> = 00b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -2 A; (MFR_SPECIFIC_14<9:8> = 01b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 0 A; (MFR_SPECIFIC_14<9:8> = 10b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 2 A; (MFR_SPECIFIC_14<9:8> = 11b)  
Dynamic phase  
shedding threshold, 3  
to 2 phases (average  
current)  
VDPSTHS2  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -4 A; (MFR_SPECIFIC_14<9:8> = 00b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -2 A; (MFR_SPECIFIC_14<9:8> = 01b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 0 A; (MFR_SPECIFIC_14<9:8> = 10b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 2 A; (MFR_SPECIFIC_14<9:8> = 11b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -4 A; (MFR_SPECIFIC_14<9:8> = 00b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -2 A; (MFR_SPECIFIC_14<9:8> = 01b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 0 A; (MFR_SPECIFIC_14<9:8> = 10b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 2 A; (MFR_SPECIFIC_14<9:8> = 11b)  
7.5.20.1 (DEh) MFR_SPECIFIC_14  
The MFR_SPECIFIC_14 command is used to configure dynamic phase shedding, and compensation ramp  
amplitude, and dynamic ramp amplitude during USR, and different power states. The MFR_SPECIFIC_14  
command must be accessed through Write Word/Read Word transactions.  
MFR_SPECIFIC_14 is a paged register. In order to access MFR_SPECIFIC_14 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_14 register for channel B, PAGE must be set to 01h.  
MFR_SPECIFIC_14  
15  
RW  
n/a  
14  
RW  
n/a  
13  
RW  
n/a  
12  
RW  
n/a  
11  
RW  
n/a  
10  
RW  
n/a  
9
8
RW  
RW  
DPS_3TO2_FINE_DROP  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DYN_RAMP_2 DYN_RAMP_1  
PH PH  
DPS_EN  
DYN_RAMP_USR  
RAMP  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-56. MFR_SPECIFIC_14 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:10  
n/a  
RW  
NVM  
n/a  
Dynamic phase drop threshold, fine adjustment, 3 phases to 2  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases drop when average phase current reaches  
the stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH in MFR_SPECIFIC_15.  
9:8  
DPS_3TO2_FINE_DROP  
RW  
NVM  
00b: Threshold = 2 × IEFF(PEAK) 2 A  
01b: Threshold = 2 × IEFF(PEAK)  
10b: Threshold = 2 × IEFF(PEAK) + 2 A  
11b: Threshold = 2 × IEFF(PEAK) + 4 A  
Enable or Disable Dynamic Phase Shedding  
0b: Disable dynamic phase shedding  
1b: Enable dynamic phase shedding  
7
6:5  
4
DPS_EN  
RW  
RW  
RW  
NVM  
NVM  
NVM  
Dynamic ramp amplitude setting during USR operation. Only  
applies to USR Level 1.  
00b: Equal to the settings in the RAMP bits  
01b: 40 mV  
DYN_RAMP_USR  
DYN_RAMP_2PH  
10b: 80 mV  
11b: 120 mV  
Dynamic ramp amplitude setting during 2 phase operation.  
0b: Equal to the settings in the RAMP bits  
1b: 120 mV  
Dynamic ramp amplitude setting during 1 phase operation.  
0b: Equal to the settings in the RAMP bits  
1b: 80 mV  
3
DYN_RAMP_1PH  
RAMP  
RW  
RW  
NVM  
NVM  
2:0  
Ramp amplitude settings. See 7-57.  
7-57. Ramp Amplitude Settings  
RAMP (binary)  
Ramp Amplitude Setting (mV)  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
40  
80  
120  
160  
200  
240  
280  
320  
7.5.20.2 (DFh) MFR_SPECIFIC_15  
The MFR_SPECIFIC_15 command is used to configure dynamic phase shedding. The MFR_SPECIFIC_15  
command must be accessed through Write Word/Read Word transactions.  
MFR_SPECIFIC_15 is a paged register. In order to access MFR_SPECIFIC_15 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_15 register for channel B, PAGE must be set to 01h.  
MFR_SPECIFIC_15  
15  
RW  
14  
13  
12  
RW  
n/a  
11  
RW  
n/a  
10  
RW  
n/a  
9
8
RW  
RW  
RW  
n/a  
RW  
n/a  
DPS_DCM  
DPS_2TO1_FINE_DROP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
MFR_SPECIFIC_15 (continued)  
7
6
5
4
3
2
1
0
RW  
n/a  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DPS_2TO3_FINE_ADD  
DPS_1TO2_FINE_ADD  
2TO1_PH_EN  
DPS_COURSE_TH  
LEGEND: R/W = Read/Write; R = Read only  
7-58. MFR_SPECIFIC_15 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enable DCM mode during 1 phase operation, when higher order  
phases are dropped due to dynamic phase shedding.  
0b: Disable DCM operation during 1 phase operation  
1b: Enable DCM operation during 1 phase operation  
15  
DPS_DCM  
RW  
NVM  
Dynamic phase drop threshold, fine adjustment, 2 phases to  
1phase. Set as an offset from peak efficiency point per phase in  
Amperes. Phases drop when average phase current reaches  
the stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below.  
14:13  
12:7  
6:5  
DPS_2TO1_FINE_DROP  
RW  
RW  
RW  
NVM  
NVM  
NVM  
00b: Threshold = 1× IEFF(PEAK) 2 A  
01b: Threshold = 1 × IEFF(PEAK)  
10b: Threshold = 1 × IEFF(PEAK) + 2 A  
11b: Threshold = 1 × IEFF(PEAK) + 4 A  
n/a  
n/a  
Dynamic phase add threshold, fine adjustment, 2 phases to 3  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases add when peak phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below  
DPS_2TO3_FINE_ADD  
00b: Threshold = 2 × IEFF(PEAK) + 6A  
01b: Threshold = 2 × IEFF(PEAK) + 8 A  
10b: Threshold = 2 × IEFF(PEAK) + 10 A  
11b: Threshold = 2 × IEFF(PEAK) + 12 A  
Dynamic phase add threshold, fine adjustment, 1 phase to 2  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases add when peak phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below  
5:4  
DPS_1TO2_FINE_ADD  
RW  
NVM  
00b: Threshold = 1 × IEFF(PEAK) + 6A  
01b: Threshold = 1 × IEFF(PEAK) + 8 A  
10b: Threshold = 1 × IEFF(PEAK) + 10 A  
11b: Threshold = 1 × IEFF(PEAK) + 12 A  
Enable phase dropping from 2 phases to 1 phase operation.  
0b: Disable phase shedding to 1 phase  
3
2TO1_PH_EN  
RW  
RW  
NVM  
NVM  
1b: Enable phase shedding to 1 phase  
Sets the peak efficiency point per phase. This is used to  
determine phase add/drop thresholds.  
00b: IEFF(PEAK) = 12 A  
2:0  
DPS_COURSE_TH  
01b: IEFF(PEAK) = 14 A  
10b: IEFF(PEAK) = 16 A  
11b: IEFF(PEAK) = 18 A  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.21 NVM Programming  
The USER_DATA_00 - USER_DATA_12 commands are provided to streamline NVM programming. These 6-  
byte block commands are mapped internally to all of the user-configurable parameters the TPSM831D31  
supports. The MFR_SERIAL command also provides a checksum, to streamline verification of desired  
programming values.  
The generalized procedure for programming the TPSM831D31 is summarized below.  
Configure User-Programmable Parameters  
1. First, configure all of the user-accessible parameters via the standard PMBus, and Manufacturer Specific  
commands. TI provides the Fusion Digital Power Designer graphical interface software to streamline this  
step. The user can also refer to the Technical Reference Manual for a full set of register maps for these  
commands.  
2. Once the device is configured as desired, issue the STORE_DEFAULT_ALL command to commit these  
values to NVM, and update the checksum value. Wait approximately 100 ms after issuing  
STORE_DEFAULT_ALL before communicating with the device again.  
3. Write PAGE to 00h  
4. Read-back and Record the value of IC_DEVICE_ID and IC_DEVICE_REV commands  
5. Read-back and Record the value of the USER_DATA_00 through USER_DATA_12 commands  
6. Read-back and Record the value of the MFR_SERIAL command  
7. Read-back and Record the value of VOUT_MAX  
8. Write PAGE to 01h  
9. Read-back and Record the value of VOUT_MAX  
Program and Verify NVM (repeat for each device)  
1. Power the device by supplying +3.3V to the V3P3 pin. Power conversion should be disabled for NVM  
programming.  
2. Read-back and verify that IC_DEVICE_ID and IC_DEVICE_REV values match those recorded previously.  
This ensures that user-parameters being programmed correspond to the same device/revision as previously  
configured.  
3. Write PAGE to 00h.  
4. Write the USER_DATA_00 through USER_DATA_12 commands, with the values recorded previously.  
5. Write VOUT_MAX (Page 0) with the value recorded previously.  
6. Write PAGE to 01h  
7. Write VOUT_MAX (Page 1) with the value recorded previously.  
8. Issue STORE_DEFAULT_ALL. Wait appx 100 ms after issuing STORE_DEFAULT_ALL before  
communicating with the device again.  
9. Read-back the MFR_SERIAL command, and compare the value to that recorded previously. If the new  
MFR_SERIAL matches the value recorded previously, NVM programming was successful.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.22 NVM Security  
The MFR_SPECIFIC_42 command can be optionally used to set a password for NVM programming. To prevent  
a hacker from simply sending the password command with all possible passwords, the TPSM831D31 goes into  
a special extra-secure state when an incorrect password is received. In this state, all passwords are rejected,  
even the valid one. The device must be power cycled to clear this state so that another password attempt may  
be made. When NVM security is enabled, the TPSM831D31 will not accept writes to any command other than  
PAGE and PHASE, which are necessary for reading certain parameters.  
Enabling NVM Security  
1. Set the NVM password. Write MFR_SPECIFIC_42 to a value other than FFFFh.  
2. Issue STORE_DEFAULT_ALL  
3. Wait 100ms for the NVM store to complete  
4. Power cycle V3P3. NVM Security will be enabled at the next power-up.  
Disabling NVM Security  
To disable NVM security, use the following procedure:  
1. Write the password to MFR_SPECIFIC_42 to disable NVM security. Once the correct password has been  
given, NVM security will be disabled, and the device will once again accept write transactions to  
configuration registers.  
NVM security will be re-enabled at the next power-on, unless MFR_SPECIFIC_42 is set to FFFFh (NVM  
Security Disabled), and an NVM store operation (issue STORE_DEFAULT_ALL and wait 100 ms) is performed.  
Determining Whether NVM Security is Active  
Reads to the MFR_SPECIFIC_42 command returns one of three values:  
0000h = NVM Security is Disabled  
0001h = NVM Security is Enabled  
0002h = MFR_SPECIFIC_42 is locked due to incorrect password entry  
7.5.22.1 (FAh) MFR_SPECIFIC_42  
MFR_SPECIFIC_42 is used for NVM Security. The MFR_SPECIFIC_42 command must be accessed through  
Read Word/Write Word transactions.  
MFR_SPECIFIC_42 is a shared register. Write transactions to this register will apply to both channels, and read  
transactions to this register returns the same data regardless of the current PAGE.  
MFR_SPECIFIC_42  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
NVM_SECURITY_KEY  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
NVM_SECURITY_KEY  
LEGEND: R/W = Read/Write; R = Read only  
7-59. MFR_SPECIFIC_42 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
NVM_SECURITY_KEY  
RW  
NVM  
16 bit code for NVM security key.  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7.5.23 Black Box Recording  
The TPSM831D31 provides a "black box" feature to aid in system-level debugging. According to the PMBus  
specification, status bits are latched whenever the condition causing them occurs, regardless of whether or not  
other status bits are already set. This, however, makes it difficult for the system designer to understand which  
fault condition occurred first, in the case that one fault condition causes others to trigger. The  
MFR_SPECIFIC_08 command provides a "snapshot" of the first faults to occur chronologically, for each channel,  
which may be stored to NVM, for future debugging. Only the most catastrophic fault conditions are logged, such  
as the over-voltage fault, over-current fault, and power stage failure. The black box command may also be reset,  
or cleared by writing 00h to the register, and storing to NVM if the NVM value must also be cleared.  
Resetting the Black Box Record  
Resetting the record allows the user to determine which faults occur first, after the register is cleared. To clear  
the record, write 00h to MFR_SPECIFIC_08, and issue STORE_DEFAULT_ALL.  
Triggering Black Box Recording  
Black box recording is always active, whether or not the TPSM831D31 is converting power. Note however many  
of the critical faults summarized in MFR_SPECIFIC_08 are only possible to trigger during power conversion.  
Whenever any of the following catastrophic faults occur, the MFR_SPECIFIC_08 register will be updated  
according to the register description below, but only if the black box record has been cleared since the last  
catastrophic faults occurred. Faults logged include:  
Overvoltage Fault (Device was Converting Power)  
Overvoltage Fault (Device was not Converting Power)  
Input Overcurrent Fault  
Output Overcurrent Fault  
Power Stage Fault  
Input Over-Power Fault  
Retrieving the Black Box Record  
Reading the MFR_SPECIFIC_08 returns the current value of the Black Box record. If the register reads 00h, no  
catastrophic faults have occurred since the record was last cleared. If any value other than 00h is stored in the  
register, then de-code the value according to the register description below. In order to read-back the black box  
record following a power-down, the STORE_DEFAULT_ALL command must be issued, to store the contents of  
the black box record to NVM.  
7.5.23.1 (D8h) MFR_SPECIFIC_08  
The MFR_SPECIFIC_08 command is used to identify catastrophic faults which occur first, and store this  
information to NVM. See the product datasheet for more information. The MFR_SPECIFIC_08 command must  
be accessed through Write Byte/Read Byte transactions. MFR_SPECIFIC_08 is a shared register. Transactions  
to this register do not require specific PAGE settings. However, note that channels A and B have independent bit  
fields within the command.  
MFR_SPECIFIC_08  
7
R
0
6
R
0
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
CF_CHA  
CF_CHB  
LEGEND: R/W = Read/Write; R = Read only  
7-60. MFR_SPECIFIC_08 Register Field Descriptions  
Bit  
7:6  
5:3  
2:0  
Field  
Type  
Reset  
Description  
Not used  
CF_CHA  
CF_CHB  
R
0
Not used and set to 0.  
RW  
RW  
NVM  
NVM  
Catastrophic fault record for channel A.  
Catastrophic fault record for channel B.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
Whenever a catastrophic fault occurs, the first event detected will trigger the MFR_SPECIFIC_08 command to  
update according to the tables below. This recording happens independently for channel A and channel B. If the  
PMBus host issues a STORE_DEFAULT_ALL, this information will be committed to NVM, and may be retrieved  
at a later time. In order to clear the record for either channel, the PMBus host must write the corresponding bits  
(CF_CHA for channel A, CF_CHB for channel B) to 000b, and issue STORE_DEFAULT_ALL.  
Attempts to write any non-zero value to this command will be treated as invalid data - data will be ignored, the  
appropriate flags in STATUS_CML, and STATUS_WORD, will be set, and the PMB_ALERT pin will be asserted  
to notify the host of the invalid transaction.  
7-61. Catastrophic Fault Recording Interpretation  
CF_CHA / CF_CHB (binary)  
Interpretation  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
No fault occurred  
OVF occurred, power conversion was disabled  
OVF occurred, power conversion was enabled  
IIN Overcurrent fault occurred  
IOUT Overcurrent fault occurred  
Overtemperature fault occurred  
Power stage fault occurred  
Input overpower warning occurred  
7.5.24 Board Identification and Inventory Tracking  
The TPSM831D31 provides several bytes of arbitrarily programmable NVM-backed memory to allow for  
inventory management and board identification. By default, these values reflect information about the date/  
revision of the TPSM831D31 device being used itself. This provides a convenient and easy to use method of  
tracking boards, revisions and manufacturing dates. The following commands are provided for this purpose:  
MFR_ID - 16 bits of NVM for end-users to track the power module supplier name  
MFR_MODEL - 16 bits of NVM for tracking the manufacturer model number  
MFR_REVISION - 16 bits of NVM for tracking power module revision code  
MFR_DATE - 16 bits of NVM for tracking power module manufacturing date code  
7.5.25 Status Reporting  
The TPSM831D31 provides several registers containing status information. The flags in these registers are  
latched whenever their corresponding condition occurs, and are not cleared until either the CLEAR_FAULTS  
command is issued, or the host writes a value of 1b to that bit location. Register maps for the all of the supported  
status registers are shown in the following sections.  
7.5.25.1 (78h) STATUS_BYTE  
The STATUS_BYTE command returns one byte of information with a summary of the most critical faults, such as  
over-voltage, overcurrent, over-temperature, etc.  
The STATUS_BYTE command must be accessed through Read Byte transactions. STATUS_BYTE is a paged  
register. In order to access STATUS_WORD command for channel A, PAGE must be set to 00h. In order to  
access STATUS_WORD register for channel B, PAGE must be set to 01h. If PAGE is set FFh, the device return  
value will reflect the status of Channel A.  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-4. STATUS_BYTE  
7
0
6
R
5
R
4
3
2
R
1
R
0
R
R
R
BUSY  
OFF  
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
CML  
OTHER  
7-62. STATUS_BYTE Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
BUSY  
OFF  
R
0
Not supported and always set to 0.  
6
R
Current  
Status  
This bit is asserted if the unit is not providing power to the  
output, regardless of the reason, including simply not being  
enabled.  
0: Raw status indicating the IC is providing power to VOUT.  
1: Raw status indicating the IC is not providing power to VOUT.  
5
4
3
2
1
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
R
R
R
R
R
Current  
Status  
Output Over-Voltage Fault Condition  
0: Latched flag indicating no VOUT OV fault has occurred.  
1: Latched flag indicating a VOUT OV fault occurred  
Current  
Status  
Output Over-Current Fault Condition  
0: Latched flag indicating no IOUT OC fault has occurred.  
1: Latched flag indicating an IOUT OC fault has occurred.  
Current  
Status  
Input Under-Voltage Fault Condition  
0: Latched flag indicating VIN is above the UVLO threshold.  
1: Latched flag indicating VIN is below the UVLO threshold.  
Current  
Status  
Over-Temperature Fault/Warning  
0: Latched flag indicating no OT fault or warning has occurred.  
1: Latched flag indicating an OT fault or warning has occurred.  
CML  
Current  
Status  
Communications, Memory or Logic Fault  
0: Latched flag indicating no communication, memory, or logic  
fault has occurred.  
1: Latched flag indicating a communication, memory, or logic  
fault has occurred.  
0
OTHER  
R
Current  
Status  
Other Fault (None of the Above)  
This bit is used to flag faults not covered with the other bit faults.  
In this case, UVF or OCW faults are examples of other faults not  
covered by the bits [7:1] in this register.  
0: No fault has occurred  
1: A fault or warning not listed in bits [7:1] has occurred.  
Per the description in the PMBus 1.3 specification, part II, TPSM831D31 does support clearing of status bits by  
writing to STATUS registers. However, the bits in the STATUS_BYTE are summary bits only and reflect the  
status of corresponding bits in STATUS_VOUT and STATUS_IOUT. To clear these bits individually, the user  
must clear them by writing to the corresponding STATUS_X register. For example: the output overcurrent fault  
sets the IOUT_OC bit in STATUS_BYTE, and the IOUT_OC_FLT bit in STATUS_IOUT. Writing a 1 to the  
IOUT_OC_FLT bit in STATUS_IOUT clears the fault in both STATUS_BYTE and STATUS_IOUT. Writes to  
STATUS_BYTE itself will be treated as invalid transactions.  
7.5.25.2 (79h) STATUS_WORD  
The STATUS_WORD command returns two bytes of information with a summary of critical faults, such as over-  
voltage, overcurrent, and over-temperature.  
The STATUS_WORD command must be accessed through Read Word transactions. STATUS_WORD is a  
paged register. In order to access STATUS_WORD command for channel A, PAGE must be set to 00h. In order  
to access STATUS_WORD register for channel B, PAGE must be set to 01h. If PAGE is set FFh, the device  
return value will reflect the status of Channel A.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-5. STATUS_WORD  
15  
R
14  
R
13  
R
12  
11  
10  
R
9
R
8
R
R
R
VOUT  
IOUT  
INPUT  
MFR  
PGOOD  
FANS  
OTHER  
UNKNOWN  
7
R
6
R
5
R
4
R
3
R
2
R
1
R
0
R
BUSY  
OFF  
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
CML  
OTHER  
7-63. STATUS_WORD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
VOUT  
R
Current  
Status  
Output Voltage Fault/Warning. Refer to STATUS_VOUT for  
more information.  
0: Latched flag indicating no VOUT fault or warning has  
occurred.  
1: Latched flag indicating a VOUT fault or warning has occurred.  
14  
13  
IOUT  
R
R
Current  
Status  
Output Current Fault/Warning. Refer to STATUS_IOUT for more  
information.  
0: Latched flag indicating no IOUT fault or warning has occurred.  
1: Latched flag indicating an IOUT fault or warning has occurred.  
INPUT  
Current  
Status  
Input Voltage/Current Fault/Warning. Refer to STATUS_INPUT  
for more information.  
0: Latched flag indicating no VIN or IIN fault or warning has  
occurred.  
1: Latched flag indicating a VIN or IIN fault or warning has  
occurred.  
12  
11  
MFR  
R
R
Current  
Status  
MFR_SPECIFIC Fault. Refer to STATUS_MFR for more  
information.  
0: Latched flag indicating no MFR_SPECIFIC fault has occurred.  
1: Latched flag indicating a MFR_SPECIFIC fault has occurred.  
PGOOD  
Current  
Status  
Power Good Status. Note: Per the PMBus specification, the  
PGOOD bit is not latched, always reflecting the current status of  
the AVR_RDY/BVR_RDY pin.  
0: Raw status indicating AVR_RDY/BVR_RDY pin is at logic  
high.  
1: Raw status indicating AVR_RDY/BVR_RDY pin is at logic low.  
10  
9
FANS  
R
R
R
R
R
0
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
OTHER  
8
UNKNOWN  
BUSY  
7
6
OFF  
Current  
Status  
This bit is asserted if the unit is not providing power to the  
output, regardless of the reason, including simply not being  
enabled.  
0: Raw status indicating the IC is providing power to VOUT.  
1: Raw status indicating the IC is not providing power to VOUT.  
5
4
3
2
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
R
R
R
R
Current  
Status  
Output Over-Voltage Fault Condition  
0: Latched flag indicating no VOUT OV fault has occurred.  
1: Latched flag indicating a VOUT OV fault occurred  
Current  
Status  
Output Over-Current Fault Condition  
0: Latched flag indicating no IOUT OC fault has occurred.  
1: Latched flag indicating an IOUT OC fault has occurred.  
Current  
Status  
Input Under-Voltage Fault Condition  
0: Latched flag indicating VIN is above the UVLO threshold.  
1: Latched flag indicating VIN is below the UVLO threshold.  
Current  
Status  
Over-Temperature Fault/Warning  
0: Latched flag indicating no OT fault or warning has occurred.  
1: Latched flag indicating an OT fault or warning has occurred.  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-63. STATUS_WORD Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
CML  
R
Current  
Status  
Communications, Memory or Logic Fault  
0: Latched flag indicating no communication, memory, or logic  
fault has occurred.  
1: Latched flag indicating a communication, memory, or logic  
fault has occurred.  
0
OTHER  
R
Current  
Status  
Other Fault (None of the Above)  
This bit is used to flag faults not covered with the other bit faults.  
In this case, UVF or OCW faults are examples of other faults not  
covered by the bits [7:1] in this register.  
0: No fault has occurred  
1: A fault or warning not listed in bits [7:1] has occurred.  
Per the description in the PMBus 1.3 specification, part II, TPSM831D31 does support clearing of status bits by  
writing to STATUS registers. However, the bits in the STATUS_WORD are summary bits only and reflect the  
status of corresponding bits in STATUS_VOUT and STATUS_IOUT. To clear these bits individually, the user  
must clear them by writing to the corresponding STATUS_X register. For example: the output overcurrent fault  
sets the IOUT_OC bit in STATUS_WORD, and the IOUT_OC_FLT bit in STATUS_IOUT. Writing a 1 to the  
IOUT_OC_FLT bit in STATUS_IOUT clears the fault in both STATUS_WORD and STATUS_IOUT. Writes to  
STATUS_WORD will be treated as invalid transactions.  
7.5.25.3 (7Ah) STATUS_VOUT  
The STATUS_VOUT command returns one byte of information relating to the status of the converter's output  
voltage related faults.  
The STATUS_VOUT command must be accessed through Read Byte/Write Byte transactions. STATUS_VOUT  
is a paged register. In order to access STATUS_VOUT command for channel A, PAGE must be set to 00h. In  
order to access STATUS_VOUT register for channel B, PAGE must be set to 01h. If PAGE is set FFh, the device  
return value will reflect the status of Channel A.  
7-6. STATUS_VOUT  
7
6
5
4
3
2
0
1
0
RW  
0
0
RW  
RW  
0
0
VOUT_OVF  
VOUT_OVW  
VOUT_UVW  
VOUT_UVF  
VOUT_MIN_MA  
X
TON_MAX  
TOFF_MAX  
VOUT_TRACK  
7-64. STATUS_VOUT Register Field Descriptions  
Bit  
Field  
VOUT_OVF  
Type  
Reset  
Description  
7
RW  
Current  
Status  
Output Over-Voltage Fault  
0: Latched flag indicating no VOUT OV fault has occurred.  
1: Latched flag indicating a VOUT OV fault has occurred.  
6
5
4
VOUT_OVW  
VOUT_UVW  
VOUT_UVF  
R
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
R
RW  
Current  
Status  
Output Under-Voltage Fault  
0: Latched flag indicating no VOUT UV fault has occurred.  
1: Latched flag indicating a VOUT UV fault has occurred.  
3
VOUT_MIN_MAX  
RW  
Current  
Status  
Output Voltage Max/Min Exceeded Warning  
0: Latched flag indicating no VOUT_MAX/VOUT_MIN warning  
has occurred.  
1: Latched flag indicating that an attempt has been made to set  
the output voltage to a value higher than allowed by the  
VOUT_MAX/VOUT_MIN command.  
2
1
0
TON_MAX  
R
R
R
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
TOFF_MAX  
VOUT_TRACK  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
Per the description in the PMBus 1.3 specification, part II, TPSM831D31 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
7.5.25.4 (7Bh) STATUS_IOUT  
The STATUS_IOUT command returns one byte of information relating to the status of the converter's output  
current related faults.  
The STATUS_IOUT command must be accessed through Read Byte/Write Byte transactions. STATUS_IOUT is  
a paged register. In order to access STATUS_IOUT command for channel A, PAGE must be set to 00h. In order  
to access STATUS_IOUT register for channel B, PAGE must be set to 01h. If PAGE is set FFh, the device return  
value will reflect the status of Channel A.  
7-7. STATUS_IOUT  
7
6
5
4
3
2
1
0
RW  
0
RW  
0
RW  
0
0
0
IOUT_OCF  
IOUT_OCUVF  
IOUT_OCW  
IOUT_UCF  
CUR_SHAREF  
POW_LIMIT  
POUT_OPF  
POUT_OPW  
7-65. STATUS_IOUT Register Field Descriptions  
Bit  
Field  
IOUT_OCF  
Type  
Reset  
Description  
7
RW  
Current  
Status  
Output Over-Current Fault  
0: Latched flag indicating no IOUT OC fault has occurred.  
1: Latched flag indicating a IOUT OC fault has occurred .  
6
5
IOUT_OCUVF  
IOUT_OCW  
R
0
Not supported and always set to 0.  
RW  
Current  
Status  
0: Latched flag indicating no IOUT OC warning has occurred  
1: Latched flag indicating a IOUT OC warning has occurred  
4
3
IOUT_UCF  
R
0
Not supported and always set to 0.  
CUR_SHAREF  
RW  
Current  
Status  
0: Latched flag indicating no current sharing fault has occurred  
1: Latched flag indicating a current sharing fault has occurred  
2
1
0
POW_LIMIT  
POUT_OPF  
POUT_OPW  
R
R
R
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
Per the description in the PMBus 1.3 specification, part II, TPSM831D31 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
7.5.25.5 (7Ch) STATUS_INPUT  
The STATUS_INPUT command returns one byte of information relating to the status of the converter's input  
voltage and current related faults.  
The STATUS_INPUT command must be accessed through Read Byte/Write Byte transactions. The  
STATUS_INPUT command is shared between Channel A and Channel B. All transactions to this command will  
affect both channels regardless of the PAGE command.  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-8. STATUS_INPUT Register  
7
6
0
5
0
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
VIN_OVF  
VIN_OVW  
VIN_UVW  
VIN_UVF  
LOW_VIN  
IIN_OCF  
IIN_OCW  
PIN_OPW  
7-66. STATUS_INPUT Register Field Descriptions  
Bit  
Field  
VIN_OVF  
Type  
Reset  
Description  
7
R
Current  
Status  
Input Over-Voltage Fault  
0: Latched flag indicating no VIN OV fault has occurred.  
1: Latched flag indicating a VIN OV fault has occurred.  
6
5
4
VIN_OVW  
VIN_UVW  
VIN_UVF  
R
R
R
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Current  
Status  
Input Under-Voltage Fault  
0: Latched flag indicating no VIN UV fault has occurred.  
1: Latched flag indicating a VIN UV fault has occurred.  
3
2
1
0
LOW_VIN  
IIN_OCF  
IIN_OCW  
PIN_OPW  
R
R
R
R
Current  
Status  
Unit Off for insufficient input voltage  
0: Latched flag indicating no LOW_VIN fault has occurred.  
1: Latched flag indicating a LOW_VIN fault has occurred  
Current  
Status  
Input Over-Current Fault  
0: Latched flag indicating no IIN OC fault has occurred.  
1: Latched flag indicating a IIN OC fault has occurred.  
Current  
Status  
Input Over-Current Warning  
0: Latched flag indicating no IIN OC warning has occurred.  
1: Latched flag indicating a IIN OC warning has occurred.  
Current  
Status  
Input Over-Power Warning  
0: Latched flag indicating no input over-power warning has  
occurred.  
1: Latched flag indicating a input over-power warning has  
occurred.  
Per the description in the PMBus 1.3 specification, part II, TPSM831D31 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
7.5.25.6 (7Dh) STATUS_TEMPERATURE  
The STATUS_TEMPERATURE command returns one byte of information relating to the status of the converter's  
temperature related faults.  
The STATUS_TEMPERATURE command must be accessed through Read Byte/Write Byte transactions.  
STATUS_TEMPERATURE is a paged register. In order to access STATUS_TEMPERATURE command for  
channel A, PAGE must be set to 00h. In order to access STATUS_TEMPERATURE register for channel B,  
PAGE must be set to 01h. If PAGE is set FFh, the device return value will reflect the status of Channel A.  
7-9. STATUS_TEMPERATURE Register  
7
6
5
4
3
2
1
0
0
0
RW  
OTF  
RW  
OTW  
0
0
0
0
UTW  
UTF  
Reserved  
7-67. STATUS_TEMPERATURE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OTF  
RW  
Current  
Status  
Over-Temperature Fault  
0: (Default) A temperature fault has not occurred.  
1: A temperature fault has occurred.  
6
OTW  
RW  
Current  
Status  
Over-Temperature Warning  
0: (Default) A temperature warning has not occurred.  
1: A temperature warning has occurred.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
7-67. STATUS_TEMPERATURE Register Field Descriptions (continued)  
Bit  
5
Field  
Type  
Reset  
Description  
UTW  
R
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Always set to 0.  
4
UTF  
R
0
3-0  
Reserved  
R
0000  
Per the description in the PMBus 1.3 specification, part II, TPSM831D31 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
7.5.25.7 (7Eh) STATUS_CML  
The STATUS_CML command returns one byte with contents regarding communication, logic, or memory  
conditions.  
The STATUS_CML command must be accessed through Read Byte/Write Byte transactions. The STATUS_CML  
command is shared between Channel A and Channel B. All transactions to this command affects both channels  
regardless of the PAGE command.  
7-10. STATUS_CML Register  
7
6
5
4
3
2
0
1
0
RW  
RW  
RW  
RW  
MEM  
0
RW  
0
IV_CMD  
IV_DATA  
PEC_FAIL  
PRO_FAULT  
Reserved  
COM_FAIL  
CML_OTHER  
7-68. STATUS_CML Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
IV_CMD  
RW  
Current  
Status  
Invalid or Unsupported Command Received  
0: Latched flag indicating no invalid or unsupported command  
has been received.  
1: Latched flag indicating an invalid or unsupported command  
has been received.  
6
5
IV_DATA  
RW  
RW  
Current  
Status  
Invalid or Unsupported Data Received  
0: Latched flag indicating no invalid or unsupported data has  
been received.  
1: Latched flag indicating an invalid or unsupported data has  
been received.  
PEC_FAIL  
Current  
Status  
Packet Error Check Failed  
0: Latched flag indicating no packet error check has failed  
1: Latched flag indicating a packet error check has failed  
4
3
Reserved  
MEM  
R
0
Always set to 0.  
RW  
Current  
Status  
Memory/NVM Error  
0: Latched flag indicating no memory error has occurred  
1: Latched flag indicating a memory error has occurred  
2
1
Reserved  
R
0
Always set to 0.  
COM_FAIL  
RW  
Current  
Status  
Other Communication Faults  
0: Latched flag indicating no communication fault other than the  
ones listed in this table has occurred.  
1: Latched flag indicating a communication fault other than the  
ones listed in this table has occurred.  
0
CML_OTHER  
R
0
Not supported and always set to 0.  
Per the description in the PMBus 1.3 specification, part II, TPSM831D31 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any bit in this register attempts to clear it as a fault condition.  
7.5.25.8 (80h) STATUS_MFR_SPECIFIC  
The STATUS_MFR_SPECIFIC command returns one byte containing manufacturer-defined faults or warnings.  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
The STATUS_MFR_SPECIFIC command must be accessed through Read Byte/Write Byte transactions.  
STATUS_MFR_SPECIFIC is a paged register. In order to access STATUS_MFR_SPECIFIC command for  
channel A, PAGE must be set to 00h. In order to access STATUS_MFR_SPECIFIC register for channel B, PAGE  
must be set to 01h. If PAGE is set FFh, the device return value reflects the status of Channel A.  
7-11. STATUS_MFR_SPECIFIC Register  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
0
RW  
FLT_PS  
VSNS_OPEN MAX_PH_WAR  
N
TSNS_LOW RST_VID (Page  
0)  
Reserved  
PHFLT  
7-69. STATUS_MFR_SPECIFIC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MFR_FAULT_PS  
RW  
Current  
Status  
Power Stage Fault  
0b: Latched flag indicating no fault from TI power stage has  
occurred.  
1b: Latched flag indicating a fault from TI power stage has  
occurred.  
6
5
VSNS_OPEN  
RW  
RW  
Current  
Status  
VSNS pin open  
0b: Latched flag indicating VSNS pin was not open at power-up.  
1b: Latched flag indicating VSNS pin was open at power-up.  
MAX_PH_WARN  
Current  
Status  
Maximum Phase Warning  
If the selected operational phase number is larger than the  
maximum available phase number specified by the hardware,  
then MAX_PH_WARN is set, and the operational phase number  
is changed to the maximum available phase number.  
0b: Latched flag indicating no maximum phase warning has  
occurred.  
1b: Latched flag indicating a maximum phase warning has  
occurred.  
4
3
TSNS_LOW  
RW  
RW  
Current  
Status  
0b: Latched flag indicating that TSEN < 150 mV before soft-  
start.  
1b: Latched flag indicating that TSEN 150 mV before soft-  
start.  
RST_VID (Page 0)  
Current  
Status  
RST_VID (Page 0 only)  
0b: A VID reset operation has NOT occurred  
1b: A VID reset operation has occurred  
2:1  
0
Reserved  
PHFLT  
R
00b  
Always set to 0.  
RW  
Current  
Status  
Phase current share fault. The PHFLT bit is set if any phase has  
current imbalance warnings occurring repetitively for 7 detection  
cycles (~500 µs continuously). Phases with current imbalance  
warnings may be read back via MFR_SPECIFIC_03.  
0b: No repetitive current share fault has occurred  
1b: Repetitive current share fault has occurred  
Per the description in the PMBus 1.3 specification, part II, TPSM831D31 supports clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register attempts to clear it as a fault  
condition.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 元件规格TI 不担保其准确性和完整性。TI 的客户负责确定元件是否  
适合其用途以及验证和测试其设计实现以确认系统功能。  
8.1 Application Information  
The TPSM831D31 device has a very simple design procedure. All programmable parameters can be configured  
by PMBus and stored in NVM as the new default values to minimize external component count. This design  
describes a typical 3-phase, 0.85-V, 120-A application and 1-phase 1.2-V, 40-A application.  
8.2 Typical Application  
The TPSM831D31 is a highly integrated, dual-output power module that supports PMBus commands. Use the  
following design procedure to select key component values and set the appropriate behavioral options through  
the PMBus.  
8-1. Typical Dual Output Schematic (Dual Outputs: VOUTA = 0.85V, 120A and VOUTB = 1.2V, 40A)  
8.2.1 Design Requirements  
8-1. Typical Application Specifications  
VOUTA  
VOUTB  
Input voltage range  
Output voltage  
10.8 V 13.2 V  
0.85 V  
120 A  
60 A  
1.2 V  
40 A  
20 A  
Output current  
Output current step  
8.2.2 Detailed Design Procedure  
For this design, the default settings inside the module are optimal for the application. The amount of input and  
output capacitors have been selected for operation up to full load for each output and for exceptional transient  
performance.  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.2.2.1 Input Capacitors  
For optimal performance, TI recommends 500 μF of ceramic capactiance and approximately 1000 μF of high-  
quality, polymer-aluminum bulk capacitance. Because the device requires ceramic capacitors to provide high-  
frequency noise filtering and ripple reduction, place them directly at the VIN pins of the device. The polymer-  
aluminum bulk capacitors supply current during load transients and provide a stable input voltage rail.  
This application uses 528 µF (24 × 22 µF, 25 V, 1210 case size) of ceramic capacitance, as well as 940 µF (2 ×  
470 µF, 25 V) of polymer-aluminum capacitance. The ceramic capacitors are placed near each VIN pin and its  
coresponding GND pin.  
8.2.2.2 Output Capacitors  
TI recommends 1200 μF of ceramic output capacitance for VOUTA, as well as 5500 µF of additional polymer-  
type capacitance. The recommended amount of output capacitance for VOUTB is 400 µF of ceramic  
capactiance, as well as 1800 µF of additional polymer-type capacitance. The ceramic capacitance helps to  
reduce ripple while the polymer-type supplies current to reduce voltage deviations during a load transient.  
This application uses 1200 µF (12 × 100 µF, 6.3 V, 1210 case size) of ceramic capacitance, as well as 7520 µF  
(16 × 470 µF, 6.3 V) of polymer-aluminum capacitance.  
8.2.2.3 Switching Frequency  
The allowable switching frequency range of the TPSM831D31 is 350 kHz to 700 kHz. To balance performance of  
efficiency, line and load regulation, as well as transient response, the default switching frequency for both  
outputs has been factory set to fSW (VOUTA) = 400 kHz and fSW (VOUTB) = 450 kHz. For this application, the  
default switching frequencies are unchanged.  
8.2.2.4 Set PMBus Address  
To communicate with other system controllers with PMBus interfaces, the PMBus address must be set. The  
PMBus address is set by the voltage on the ADDR pin and is selected with a resistor from the ADDR pin to  
GND. For this application the PMBus address of 105d is set by placing a 10 kΩ resistor between the ADDR pin  
and GND. See 7-5 for other address selections.  
8.2.2.5 PMBus GUI Default Values  
For this design, 8-2 lists the default values that are preset into the PMBus GUI. For information on changing  
the default PMBus settings, refer to this NVM Programming application note.  
8-2. PMBus GUI Default Values  
VOUTA  
VOUTB  
AC_gain  
AC_LL  
1×  
0.5×  
0.5 mΩ  
Compensation  
INT_Time  
2 µs  
10 µs  
INTGAIN  
2×  
Switching Frequency  
Protection  
FREQUENCY_SWITCH  
IOUT_OC_FAULT_LIMIT  
OT_FAULT_LIMIT  
VIN_OV_FAULT_LIMIT  
400 kHz  
180 A  
450 kHz  
60 A  
135°C  
17 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
8.2.3 Application Performance Plots  
The plots and waveforms below show typical performance of the TPSM831D31.  
100  
97  
94  
91  
88  
85  
82  
79  
76  
73  
70  
100  
97  
94  
91  
88  
85  
82  
79  
76  
73  
70  
VOUT  
0.85 V  
VOUT  
1.2 V  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (A)  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
8-2. VOUTA Efficiency  
8-3. VOUTB Efficiency  
16  
14  
12  
10  
8
8
7
6
5
4
3
2
1
0
VOUT  
0.85 V  
VOUT  
1.2 V  
6
4
2
0
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (A)  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
8-4. VOUTA Power Dissipation  
8-5. VOUTB Power Dissipation  
0.855  
0.854  
0.853  
0.852  
0.851  
0.85  
1.206  
1.205  
1.204  
1.203  
1.202  
1.201  
1.2  
0.849  
0.848  
0.847  
0.846  
1.199  
1.198  
1.197  
1.196  
VOUT  
VOUT  
1.2 V  
0.85 V  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (A)  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
8-6. VOUTA Load Regulation  
8-7. VOUTB Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
8-8. VOUTA EN Turn ON  
8-9. VOUTA EN Turn OFF  
8-10. VOUTB EN Turn ON  
8-11. VOUTB EN Turn OFF  
VOUTA  
30-A load step  
VOUTA  
60-A load step  
10 A/μsec  
100 A/μsec  
8-12. Transient Response  
8-13. Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
VOUTB  
20-A load step  
100 A/μsec  
8-14. Transient Response  
VIN = 12 V  
CHA = 0.85 V  
CHB = 0.85 V  
fsw = 400 kHz  
fsw = 450 kHz  
IOUT = 120 A  
IOUT = 40 A  
8-15. Radiated EMI  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
VIN = 12 V  
CHA = 1.2 V  
CHB = 1.2 V  
fsw = 400 kHz  
fsw = 450 kHz  
IOUT = 120 A  
IOUT = 40 A  
8-16. Radiated EMI  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPSM831D31 device is designed to operate from an input voltage supply between 8 V and 14 V. This  
supply must be well regulated. These devices are not designed for split-rail operation. Proper bypassing of input  
supplies and internal regulators is also critical for noise performance, as is PCB layout and grounding scheme.  
10 Layout  
10.1 Layout Guidelines  
Use the recommended land pattern, including the via pattern, for the module footprint.  
Place the input bypass capacitors as close as possible to the VIN and GND pins.  
Use large copper areas for power planes (VIN, VOUTA, VOUTB, and GND) to minimize conduction loss and  
thermal stress.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Examples  
10-1. Top Layer (Top View)  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
 
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
10-2. Bottom Layer (Top View)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
PMBus, D-CAP+, and TI E2Eare trademarks of Texas Instruments.  
Broadcom® is a registered trademark of Broadcom Limited .  
Cavium® is a registered trademark of Cavium, Inc..  
Marvell® is a registered trademark of Marvell.  
NXP® is a registered trademark of NXP Semiconductors.  
Intel® is a registered trademark of Intel Corporation.  
Xilinx® is a registered trademark of Xilinx Inc..  
所有商标均为其各自所有者的财产。  
11.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
80  
Submit Document Feedback  
 
 
 
 
 
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
 
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
TPSM831D31  
ZHCSIO9A AUGUST 2018 REVISED JUNE 2021  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPSM831D31MOA  
TPSM831D31MOA  
ACTIVE  
ACTIVE  
QFM  
QFM  
MOA  
MOA  
32  
28  
1
TBD  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
Samples  
Samples  
24  
RoHS Exempt  
& Green  
Call TI  
Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSM84203

1.5A、28V 输入、3.3V 输出 TO-220 电源模块
TI

TPSM84203EAB

1.5A、28V 输入、3.3V 输出 TO-220 电源模块 | EAB | 3 | -40 to 125
TI

TPSM84205

1.5A、28V 输入、5V 输出 TO-220 电源模块
TI

TPSM84205EAB

1.5A、28V 输入、5V 输出 TO-220 电源模块 | EAB | 3 | -40 to 125
TI

TPSM84209

4.5V 至 28V 输入、1.2V 至 6V 输出、2.5A 电源模块
TI

TPSM84209RKHR

4.5V 至 28V 输入、1.2V 至 6V 输出、2.5A 电源模块 | RKH | 9 | -40 to 85
TI

TPSM84209RKHT

4.5V 至 28V 输入、1.2V 至 6V 输出、2.5A 电源模块 | RKH | 9 | -40 to 85
TI

TPSM84212

1.5A、28V 输入、12V 输出 TO-220 电源模块
TI

TPSM84212EAB

1.5A、28V 输入、12V 输出 TO-220 电源模块 | EAB | 3 | -40 to 125
TI

TPSM843A26

4-V to 18-V input, advanced current mode, 16-A synchronous SWIFT™ step-down power module
TI

TPSM843B22

4-V to 18-V input, advanced current mode, 20-A synchronous SWIFT™ step-down converter
TI

TPSM84424

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、4A 电源模块
TI