TPSM84209RKHT [TI]

4.5V 至 28V 输入、1.2V 至 6V 输出、2.5A 电源模块 | RKH | 9 | -40 to 85;
TPSM84209RKHT
型号: TPSM84209RKHT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 28V 输入、1.2V 至 6V 输出、2.5A 电源模块 | RKH | 9 | -40 to 85

开关 电源电路
文件: 总37页 (文件大小:1406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
TPSM84209 4.5V 28V 输入、1.2V 6V 输出、2.5A 电源模块  
1 特性  
3 说明  
1
完整的集成式电源解决方案可实现  
小尺寸的薄型设计  
TPSM84209 电源模块是一款易于使用的集成式电源,  
该模块由一个带屏蔽式电感的 2.5A 直流/直流转换器和  
无源元件组成,并且采用薄型 QFN 封装。这套整体电  
源解决方案仅使用了四个外部组件,同时仍能够调整关  
键参数以满足特定的设计要求。  
4.5mm × 4mm × 2mm QFN 封装  
宽输出电压范围(1.2V 6V)  
固定开关频率 (750kHz)  
高级 Eco-mode™,用于提高轻负载效率  
可编程欠压锁定 (UVLO)  
TPSM84209 具有较宽的输入电压范围和较小的尺寸封  
装,这使得该器件非常适合用于要求输出电流高达  
2.5A 的电源轨。  
过热热关断保护  
过流保护(间断模式)  
QFN 封装易于焊接到印刷电路板上,并且具有出色的  
功率耗散能力。TPSM84209 极具灵活性且 功能 丰  
富,非常适合为各类器件和系统供电。  
安全预偏置输出启动  
工作 IC 结温范围:-40°C +125°C  
工作环境温度范围:-40°C +85°C  
增强的热性能:29.5°C/W  
器件信息(1)  
符合 EN55011 辐射 EMI 标准  
- 集成屏蔽电感器  
使用 TPSM84209 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
器件型号  
TPSM84209  
封装  
封装尺寸  
QFN (9)  
4.50mm × 4.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
空白  
空白  
空白  
空白  
空白  
空白  
工业和电机控制  
自动测试设备  
医疗和成像设备  
高密度电源系统  
简化应用  
效率与输出电流间的关系  
100  
VOUT  
VIN  
VIN  
VOUT  
90  
80  
70  
60  
RFBT  
TPSM84209  
COUT  
CIN  
EN  
FB  
GND  
RFBB  
Copyright © 2018, Texas Instruments Incorporated  
VOUT = 5.0 V  
VIN = 12 V  
VIN = 24 V  
50  
40  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Eff1  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE31  
 
 
 
 
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics (VIN = 5 V)............................ 7  
6.7 Typical Characteristics (VIN = 12 V).......................... 8  
6.8 Typical Characteristics (VIN = 24 V).......................... 9  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 20  
8
9
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Application .................................................. 21  
Power Supply Recommendations...................... 23  
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Examples................................................... 24  
10.3 EMI........................................................................ 25  
10.4 Package Specifications......................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 器件支持 ............................................................... 27  
11.2 使用 WEBENCH® 工具创建定制设计方............ 27  
11.3 接收文档更新通知 ................................................. 27  
11.4 社区资源................................................................ 27  
11.5 ....................................................................... 27  
11.6 静电放电警告......................................................... 27  
11.7 术语表 ................................................................... 27  
12 机械、封装和可订购信息....................................... 28  
12.1 Tape and Reel Information ................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (June 2018) to Revision C  
Page  
已更改 将“”中的封装列从“B3QFN (43)”更改为“QFN (9)”以更正错.................................................................................... 1  
Changed "RVQ Package" to "RKH Package", "43-pin B3QFN" to "9-Pin QFN" ................................................................... 3  
Changes from Revision A (April 2018) to Revision B  
Page  
Changed Min Storage temperature to -55°C.......................................................................................................................... 4  
Changes from Original (January 2018) to Revision A  
Page  
首次发布生产数据产品说明书 ................................................................................................................................................. 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
5 Pin Configuration and Functions  
RKH Package  
9-Pin QFN  
Top View  
SW  
VOUT  
4
3
SW  
5
6
2
VIN  
FB  
DNC  
1
7
8
9
Pin Functions  
PIN  
(1)  
TYPE  
DESCRIPTION  
NAME  
NO.  
Do Not Connect. Do not connect these pins to GND or to any other voltage. These pins are  
connected to internal circuitry. Each pin must be soldered to an isolated pad.  
DNC  
6, 7  
Enable pin. An open drain/collector device can be used to control the EN function. The module is  
disabled when this pin is pulled low. This pin can also be connected to an external resistor divider  
connected between VIN and GND to adjust the UVLO above the internal default setting. Float this  
pin when not used.  
EN  
9
I
Feedback input. To adjust the output voltage connect this pin to the center point of an external  
resistor divider connected between VOUT and GND.  
FB  
1
8
I
Ground pin. This is the return current path for the device. Connect this pin to the input source  
return, the load return, and to the ground side of the VIN and VOUT bypass capacitors using power  
ground planes on the PCB.  
GND  
G
Switch node. These pins are connected to the input side of the internal output inductor. Do not  
place any external components on these pins or tie them to a pin of another function.  
SW  
4, 5  
2
O
I
Input voltage. Connect this pin to the input source and connect external bypass capacitors between  
this pin and GND, close to the module.  
VIN  
Output voltage. This pin is connected to the internal output inductor. Connect this pin to the output  
load and connect external bypass capacitors between this pin and GND close to the module.  
VOUT  
3
O
(1) G = Ground, I = Input, O = Output  
Copyright © 2018, Texas Instruments Incorporated  
3
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–5  
MAX  
30  
UNIT  
V
VIN  
Input voltage  
EN, FB  
7
V
SW  
30  
V
Output voltage  
SW (20 ns transient)  
30  
V
VOUT  
–0.3  
7
V
Mechanical shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
1500  
20  
G
Mechanical vibration  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
G
(2)  
Operating IC junction temperature, TJ  
–40  
–40  
–55  
125  
85  
°C  
°C  
°C  
(2)  
Operating ambient temperature, TA  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under the  
recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability.  
(2) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the  
internal power IC when the deviceis powered. Operating below the maximum ambient temperature, as shown in the safe operating area  
(SOA) curves in the typical characteristics sections, ensures that the maximum junction temperature of any component inside the  
module is never exceeded.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted)  
MIN  
MAX  
28(2)  
6
UNIT  
V
Input voltage, VIN  
4.5(1)  
1.2  
0
Output voltage, VOUT  
V
EN voltage, VEN  
6
V
Output current, IOUT  
0
2.5(3)  
A
Operating ambient temperature, TA  
Operating IC junction temperature, TJ  
–40  
–40  
85  
°C  
125  
(1) The minimum recommended input voltage is 4.5 V or (VOUT × 1.3), whichever is greater.  
(2) The maximum input voltage varies depending on the output voltage (see Operating Range ).  
(3) The maximum output current that the TPSM84209 can deliver is a function of input voltage, output voltage, and ambient temperature  
(see Output Current Rating ).  
4
Copyright © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
6.4 Thermal Information  
TPSM84209  
THERMAL METRIC(1)  
RKH (QFN)  
9 PINS  
32.7  
UNIT  
RθJA  
ψJT  
Junction-to-ambient thermal resistance(2)  
Junction-to-top characterization parameter(3)  
Junction-to-board characterization parameter(4)  
°C/W  
°C/W  
°C/W  
2.2  
ψJB  
17  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 63 mm × 50 mm, 4-layer PCB with 2 oz.  
copper and natural convection cooling. Additional airflow reduces RθJA  
.
(3) The junction-to-top characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB is  
the temperature of the board 1mm from the device.  
6.5 Electrical Characteristics  
Over –40°C to +85°C ambient temperature, VIN = 12 V, VOUT = 3.3 V, IOUT = 2.5 A, (unless otherwise  
noted); CIN1 = 10 µF, 50 V, 1210 ceramic; CIN2 = 100-µF, 35-V, electrolytic; COUT = 2 × 47-µF, 16-V, 1210 ceramic.  
Minimum and maximum limits are guaranteed through production test or by design. Typical values represent  
the expected value for the given test conditions and may or may not be production tested.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE (VIN  
)
VIN  
Input voltage  
Over IOUT range  
4.5(1)  
3.8  
28(2)  
4.4  
V
V
VIN increasing  
VIN decreasing  
VEN = 0 V  
4.1  
3.6  
2
UVLO  
ISHDN  
VIN undervoltage lockout  
Shutdown supply current  
3.3  
3.9  
V
µA  
OUTPUT VOLTAGE (VOUT  
)
VOUT(ADJ) Output voltage adjust  
Over IOUT range  
1.2  
6
V
VOUT(Ripple) Output voltage ripple  
FEEDBACK  
20-MHz bandwidth  
22  
mV  
Feedback voltage(3)  
TA = 25°C, IOUT = 0.2 A  
0.581  
0.596  
0.5%  
0.2  
0.611  
V
Temperature variation  
–40°C TJ 125°C, IOUT = 0.2 A  
TA = 25°C, 4.5 V VIN 28 V, IOUT = 0.2 A  
Over IOUT range, TA = 25°C  
VFB  
Line regulation  
%
%
Load regulation  
0.5  
CURRENT  
Output current  
IOUT  
Natural convection, TA = 25°C  
0
2.5(4)  
A
A
Overcurrent threshold  
4.8  
PERFORMANCE  
VOUT = 5 V  
86.5%  
82.7%  
79.3%  
91.7%  
89.0%  
86.8%  
90  
VIN = 24 V,  
VOUT = 3.3 V  
IOUT = 1 A  
VOUT = 2.5 V  
ƞ
Efficiency  
VOUT = 5 V  
VIN = 12 V,  
VOUT = 3.3 V  
IOUT = 1 A  
VOUT = 2.5 V  
Over/undershoot  
Recovery Time  
mV  
µs  
25% to 75% load step  
1 A/µs slew rate  
Transient response  
125  
(1) The minimum recommended input voltage is 4.5 V or (VOUT × 1.3), whichever is greater.  
(2) The maximum input voltage varies depending on the output voltage (see Operating Range ).  
(3) The overall output voltage tolerance will be affected by the tolerance of the external RFBT and RFBB resistors.  
(4) The maximum output current that the TPSM84209 can deliver is a function of input voltage, output voltage, and ambient temperature  
(see Output Current Rating ).  
Copyright © 2018, Texas Instruments Incorporated  
5
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over –40°C to +85°C ambient temperature, VIN = 12 V, VOUT = 3.3 V, IOUT = 2.5 A, (unless otherwise  
noted); CIN1 = 10 µF, 50 V, 1210 ceramic; CIN2 = 100-µF, 35-V, electrolytic; COUT = 2 × 47-µF, 16-V, 1210 ceramic.  
Minimum and maximum limits are guaranteed through production test or by design. Typical values represent  
the expected value for the given test conditions and may or may not be production tested.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
SOFT START  
TSS  
Internal soft-start time  
5
SWITCHING FREQUENCY  
FSW  
Switching frequency  
578  
1.1  
750  
923  
kHz  
ENABLE (EN)  
VEN-RISING  
VEN-FALLIN  
Rising  
1.21  
1.19  
0.7  
1.28  
V
V
EN threshold  
Falling  
EN Input current  
VEN = 1 V  
VEN = 1.5 V  
µA  
µA  
IEN  
EN Hysteresis current  
1.55  
THERMAL  
TSHDN  
Shutdown temperature  
Hysteresis  
165  
10  
°C  
°C  
Thermal shutdown  
CAPACITANCE  
Ceramic type  
10(5)  
µF  
µF  
µF  
µF  
CIN  
External input capacitance  
Non-ceramic type  
Ceramic type  
47(5)  
min(6)  
500(7)  
500(7)  
External output  
capacitance  
COUT  
Non-ceramic type  
(5) A minimum of 10 µF ceramic input capacitance is required for proper operation. An additional 47 µF of bulk capacitance is  
recommended for applications with transient load requirements.  
(6) The minimum amount of required output capacitance varies depending on the output voltage (see Output Capacitor Selection ). A  
minimum amount of ceramic capacitance is required. Locate the capacitance close to the device. Adding additional ceramic or non-  
ceramic capacitance close to the load improves the response of the regulator to load transients.  
(7) The maximum output capacitance of 500 µF can be made up of all ceramic type or a combination of both ceramic and non-ceramic  
type.  
6
版权 © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
6.6 Typical Characteristics (VIN = 5 V)  
TA = 25°C, unless otherwise noted.  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
100  
90  
80  
70  
60  
50  
40  
VOUT  
3.3 V  
2.5 V  
1.8 V  
1.2 V  
VOUT  
3.3 V  
2.5 V  
1.8 V  
1.2 V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Output Current (A)  
D001  
D002  
1. Efficiency vs Output Current  
2. Power Dissipation vs Output Current  
50  
40  
30  
20  
10  
0
95  
85  
75  
65  
55  
45  
35  
25  
VOUT  
1.2 V  
1.8 V  
2.5 V  
3.3 V  
Airflow  
100LFM  
Nat Conv  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Output Current (A)  
D004  
D003  
VOUT = 2.5 V  
Minimum Required COUT  
4. Safe Operating Area  
3. Voltage Ripple vs Output Current  
95  
85  
75  
65  
55  
45  
Airflow  
35  
100LFM  
Nat Conv  
25  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
D005  
VOUT = 3.3 V  
5. Safe Operating Area  
版权 © 2018, Texas Instruments Incorporated  
7
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
6.7 Typical Characteristics (VIN = 12 V)  
TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Output Current (A)  
D006  
D007  
6. Efficiency vs Output Current  
7. Power Dissipation vs Output Current  
120  
100  
80  
60  
40  
20  
0
95  
85  
75  
65  
55  
45  
35  
25  
VOUT  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
Airflow  
100LFM  
Nat Conv  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Output Current (A)  
D009  
D008  
VOUT = 2.5 V  
Minimum Required COUT  
8. Voltage Ripple vs Output Current  
9. Safe Operating Area  
95  
85  
75  
65  
55  
45  
35  
25  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
Airflow  
100LFM  
Nat Conv  
200LFM  
100LFM  
Nat Conv  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Output Current (A)  
D010  
D011  
VOUT = 3.3 V  
VOUT = 5 V  
10. Safe Operating Area  
11. Safe Operating Area  
8
版权 © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
6.8 Typical Characteristics (VIN = 24 V)  
TA = 25°C, unless otherwise noted.  
100  
90  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
VOUT  
5.0 V  
3.3 V  
80  
70  
60  
VOUT  
5.0 V  
3.3 V  
50  
40  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Output Current (A)  
D012  
D013  
12. Efficiency vs Output Current  
13. Power Dissipation vs Output Current  
180  
95  
85  
75  
65  
55  
45  
35  
25  
VOUT  
3.3 V  
5.0 V  
160  
140  
120  
100  
80  
60  
Airflow  
40  
200LFM  
100LFM  
Nat Conv  
20  
0
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Output Current (A)  
D015  
D014  
VOUT = 3.3 V  
COUT = 2× 47 µF ceramic  
15. Safe Operating Area  
14. Voltage Ripple vs Output Current  
95  
85  
75  
65  
55  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
45  
35  
25  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
D016  
VOUT = 5 V  
16. Safe Operating Area  
版权 © 2018, Texas Instruments Incorporated  
9
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM84209 is a highly integrated 28-V input, 2.5-A, synchronous step-down power module with PWM,  
MOSFETs, inductor, and control circuitry integrated into a low-profile, overmolded, QFN package. This device  
enables small designs by integrating all but the input and output capacitors and voltage-setting resistor divider  
while keeping the ability to adjust key parameters to meet specific design requirements. The TPSM84209  
operates at a 750-kHz fixed switching frequency and features advanced Eco-mode™ pulse-skip operation for  
improved light-load efficiency. The TPSM84209 provides an adjustable output-voltage range of 1.2 V to 6 V using  
a simple external-resistor divider. The TPSM84209 provides accurate voltage regulation for a variety of loads by  
using an internal voltage reference that is 2.5% accurate over temperature. The output-voltage rise time is  
controlled by a fixed 5-ms soft start. Input UVLO is internally set at 4.1 V, but can be adjusted upward using a  
resistor divider on the EN pin of the module. The EN pin can also be pulled low to put the module in standby  
mode to reduce input quiescent current. Thermal shutdown and current limit features protect the device during an  
overload condition. A 9-pin, 4-mm × 4.5-mm B3QFN package that includes exposed bottom pads provides a  
thermally enhanced solution for space-constrained applications.  
7.2 Functional Block Diagram  
Shutdown  
Logic  
VIN  
UVLO  
EN  
FB  
VIN  
Thermal  
Shutdown  
SW  
OCP  
2.2 µH  
+
+
Power  
Stage  
and  
Control  
Logic  
VOUT  
Comp  
VREF  
Soft  
Start  
GND  
Oscillator  
10  
版权 © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
A resistor divider connected to the FB pin (pin 1) programs the output voltage of the TPSM84209. The output  
voltage adjustment range is from 1.2 V to 6 V. 17 shows the feedback resistor connection for setting the  
output voltage. The recommended value of RFBT is 10 kΩ. 1 lists the closest standard E96 value for the RFBB  
resistor for a number of common output voltages. For other output voltages, the value of the required RFFB  
resistor can be calculated using 公式 1.  
6
(k)  
RFBB  
=
(VOUT œ 0.6)  
(1)  
VOUT  
RFBT  
10 k  
FB  
RFBB  
GND  
17. Setting the Output Voltage  
1. Standard RFBB Resistor Values  
VOUT (V)  
RFBB (k)  
10.0  
8.45  
7.50  
6.65  
6.04  
5.36  
4.99  
4.64  
4.22  
4.02  
3.74  
3.48  
3.32  
3.16  
3.01  
2.87  
2.74  
2.61  
2.49  
2.37  
2.32  
2.21  
2.15  
2.05  
2.00  
VOUT (V)  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
RFBB (k)  
1.96  
1.87  
1.82  
1.74  
1.69  
1.65  
1.62  
1.58  
1.54  
1.50  
1.47  
1.43  
1.40  
1.37  
1.33  
1.30  
1.27  
1.24  
1.22  
1.20  
1.18  
1.15  
1.13  
1.10  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
版权 © 2018, Texas Instruments Incorporated  
11  
 
 
 
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
7.3.2 Input Capacitor Selection  
The TPSM84209 requires a ceramic input capacitor with a minimum effective capacitance of 10 μF. Use only  
high-quality ceramic type X5R or X7R capacitors with sufficient voltage rating. An additional 47 µF of non-  
ceramic capacitance is recommended for applications with transient load requirements. The voltage rating of  
input capacitors must be greater than the maximum input voltage. To compensate for the derating of ceramic  
capacitors, TI recommends a voltage rating of twice the maximum input voltage. At worst case, when operating  
at 50% duty cycle and maximum load, the combined ripple current rating of the input capacitors must be at least  
1.25 Arms. 2 includes a preferred list of capacitors by vendor.  
2. Recommended Input Capacitors(1)  
CAPACITOR CHARACTERISTICS  
(2)  
(3)  
VENDOR  
SERIES  
PART NUMBER  
CAPACITANCE  
(µF)  
ESR  
WORKING VOLTAGE (V)  
(m)  
TDK  
X5R  
X7R  
X7R  
ZA  
C3225X5R1H106K  
50  
50  
63  
50  
63  
10  
10  
3
Murata  
GRM32ER71H106K  
GRM32ER71J106K  
EEHZA1H101P  
2
Murata  
10  
2
Panasonic  
Panasonic  
100  
56  
28  
30  
ZA  
EEHZA1J560P  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Specified capacitance values  
(3) Maximum ESR at 100 kHz, 25°C.  
7.3.3 Undervoltage Lockout (UVLO)  
The TPSM84209 device has an internal UVLO circuit which prevents the device from operating until the VIN  
voltage exceeds the UVLO rising threshold, (4.1 V (typical)). The device is disabled when the VIN pin voltage  
falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 500 mV.  
Applications may require a higher UVLO threshold to prevent early turnon, for sequencing requirements or to  
prevent input current draw at lower input voltages. An external resistor divider can be added to the EN pin to  
adjust the UVLO threshold higher. The external resistor divider can be configured as shown in 18. 3 lists  
standard values for RUVLO1 and RUVLO2 to adjust the UVLO voltage higher.  
VIN  
RUVLO1  
EN  
RUVLO2  
GND  
18. Adjustable UVLO  
3. Standard Resistor Values for Adjusting UVLO  
VIN UVLO (V)  
RUVLO1 (kΩ)  
RUVLO2 (kΩ)  
4.5  
10  
15  
18  
20  
68.1  
25.5  
68.1  
9.53  
68.1  
6.04  
68.1  
4.99  
68.1  
4.42  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
7.3.4 Output Capacitor Selection  
The minimum amount of required output capacitance for the TPSM84209 varies depending on the output voltage  
and whether or not a feed-forward capacitor, CFF, is used (see Feed-Forward Capacitor for more information on  
CFF). 4 lists the minimum output capacitance for several output voltage ranges when not using CFF. The  
required output capacitance must be comprised of all ceramic capacitors or a combination of ceramic and  
polymer-type capacitors. The effects of temperature and capacitor voltage rating must be considered when  
selecting capacitors to meet the minimum required capacitance.  
When adding additional output capacitance, ceramic capacitors or a combination of ceramic and polymer-type  
capacitors can be used. The required capacitance above the minimum is determined by actual transient  
deviation requirements. See 5 for a preferred list of output capacitors by vendor.  
4. Minimum Required Output Capacitance  
VOUT RANGE (V)  
Minimum Required COUT  
MIN  
1.2  
1.5  
2.5  
5
MAX  
< 1.5  
< 2.5  
< 5  
188 µF (4 x 47 µF ceramic)(1)  
141 µF (3 x 47 µF ceramic)(1)  
94 µF (2 x 47 µF ceramic)  
47 µF (1 x 47 µF ceramic)  
6
(1) The minimum required output capacitance can also be made up of 1 x 47 µF ceramic + 1 x 100 µF polymer-type capacitor.  
5. Recommended Output Capacitors(1)  
CAPACITOR CHARACTERISTICS  
CAPACITANCE(2)  
(µF)  
ESR(3)  
(m)  
VENDOR  
SERIES  
PART NUMBER  
WORKING  
VOLTAGE (V)  
TDK  
X5R  
X5R  
C3225X5R1C106K  
16  
16  
10  
10  
2
2
Murata  
TDK  
GRM32ER61C106K  
C3225X5R1C226M  
GRM32ER61C226K  
C3225X5R1A476M  
GRM32ER61C476K  
C3225X5R0J107M  
GRM32ER60J107M  
GRM32ER61A107M  
C1210C107M4PAC7800  
6TPE100MI  
X5R  
16  
22  
2
Murata  
TDK  
X5R  
16  
22  
2
X5R  
10  
47  
2
Murata  
TDK  
X5R  
16  
47  
3
X5R  
6.3  
6.3  
10  
100  
100  
100  
100  
100  
220  
220  
2
Murata  
Murata  
Kemet  
X5R  
2
X5R  
2
X5R  
16  
2
Panasonic  
Panasonic  
Panasonic  
POSCAP  
POSCAP  
POSCAP  
6.3  
6.3  
6.3  
18  
9
6TPF220M9L  
6TPE220ML  
12  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status,  
and manufacturing process requirements for any capacitors identified in this table.  
(2) Specified capacitance values.  
(3) Maximum ESR at 100 kHz, 25°C.  
版权 © 2018, Texas Instruments Incorporated  
13  
 
 
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
7.3.5 Feed-Forward Capacitor  
The TPSM84209 is internally compensated to be stable over the operating range of the device. However,  
depending on the output voltage and amount of output capacitance, an additional feed-forward capacitor, CFF,  
may be added for optimum performance. Adding additional output capacitance above the minimum reduces the  
output voltage ripple of the device. However, adding additional output capacitance also reduces the cross-over  
frequency of the device, slowing the response to load transients. Adding a feed-forward capacitor when adding  
more output capacitance helps to restore cross-over frequency of the device, restoring the transient response.  
The external feed-forward capacitor must be placed in parallel with the top resistor divider, RFBT. The placement  
of CFF is shown in 19. 6 lists the required CFF values for different amounts of output capacitance. For  
output voltages < 2.5 V, it is not recommended to add a CFF capacitor.  
VOUT  
RFBT  
CFF  
10 k  
FB  
RFBB  
GND  
19. Feed-Forward Capacitor  
6. CFF Values(1)  
VOUT RANGE (V)  
Amount of COUT  
MIN  
2.5  
3.3  
5
MAX  
< 3.3  
< 5  
47 µF (1 x 47 µF)  
Not applicable  
Not applicable  
CFF = 100 pF  
94 µF (2 x 47 µF)  
141 µF (3 x 47 µF)  
CFF = 220 pF  
188 µF (4 x 47 µF)  
CFF = 330 pF  
CFF = 100 pF  
CFF = 100 pF  
CFF = 330 pF  
CFF = 330 pF  
CFF = 330 pF  
6
CFF = 330 pF  
CFF = 330 pF  
(1) The CFF values listed in this table apply when RFBT = 10 kΩ. To calculate the value of CFF when using another RFBT value, multiply the  
CFF value listed in the table by 10 kΩ / RFBT  
.
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
7.3.6 Operating Range  
The TPSM84209 operates over a wide input voltage and output voltage range; however, not all output voltages  
can operate over the entire input voltage range. The maximum and minimum input voltage limits are shown in 图  
20. The TPSM84209 can be operated between the Maximum and Minimum VIN limit lines.  
Operating above the Maximum VIN line may cause the device to skip pulses in order to maintain the regulated  
output voltage.  
32  
Maximum VIN  
Minimum VIN  
28  
24  
20  
16  
12  
8
4
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Output Voltage (V)  
D017  
20. Input Voltage vs Output Voltage  
7.3.7 Output Current Rating  
The maximum output current that the TPSM84209 can deliver is a function of input voltage, output voltage, and  
ambient temperature. The TPSM84209 is capable of delivering up to 2.5 A of output current; however refer to 图  
21 and 22 for maximum current ratings based on operating conditions of the specific application.  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
VOUT  
6 V  
5 V  
3.3 V  
2.5 V  
1.8 V  
1.2 V  
VOUT  
6 V  
5 V  
3.3 V  
2.5 V  
1.8 V  
1.2 V  
4
4
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
Output Current (A)  
D018  
D019  
21. Output Current Derating TA = 25°C  
22. Output Current Derating TA = 85°C  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
7.3.8 Enable (EN)  
The EN pin provides electrical ON and OFF control of the device. When the EN pin voltage exceeds the  
threshold voltage, the device begins operation. If the EN pin voltage is pulled below the threshold voltage, the  
regulator stops switching and enters the low-quiescent current state.  
The EN pin has an internal pullup-current source, which allows the user to float the EN pin to enable the device.  
If an application requires control of the EN pin, use open-drain or open-collector output logic to interface with the  
pin.  
23 shows the typical application of the enable function. Turning Q1 on applies a low voltage to the enable  
control pin and disables the output of the supply, shown in 24. If Q1 is turned off, the supply executes a soft-  
start power-up sequence, as shown in 25.  
EN  
Q1  
EN  
Control  
GND  
23. Typical Enable Control  
25. Enable Turnon  
24. Enable Turnoff  
7.3.9 Internal Soft Start  
The TPSM84209 device uses the internal soft-start function. The internal soft-start time is set to 5 ms typically.  
7.3.10 Safe Start-Up Into Prebiased Outputs  
The device has been designed to prevent the low-side MOSFET from discharging a prebiased output. During  
monotonic prebiased start-up, both high-side and low-side MOSFETs are not allowed to be turned on until the  
internal soft-start voltage is higher than FB pin voltage.  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
7.3.11 Light Load Efficiency / Eco-Mode  
The TPSM84209 device is designed to operate in high-efficiency, pulse-skipping mode under light load  
conditions. As the load current on the output is decreased, a point is reached where the energy delivered by a  
single switching pulse is more than the load can absorb. This causes the output voltage to rise slightly. This rise  
in output voltage is sensed by the feedback loop, and the device responds by skipping one or more switching  
cycles until the output voltages falls back to the setpoint. At very light loads or no load, many switching cycles  
are skipped. The observed effect during this pulse-skipping mode of operation is an increase in the peak-to-peak  
ripple voltage and a decrease in the ripple frequency. The load current where pulse skipping begins is a function  
of the input voltage and output voltage. 26 is a plot of the pulse-skipping threshold current as a function of  
input voltage for a number of popular output voltages.  
1.6  
VOUT  
1.2 V  
1.8 V  
2.5 V  
3.3 V  
5 V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
4
8
12  
16  
20  
24  
28  
Input Voltage (V)  
SKIP  
26. Pulse-Skipping Threshold  
7.3.12 Voltage Dropout  
Voltage dropout is the difference between the input voltage and output voltage that is required to maintain output  
voltage regulation while providing the rated output current.  
To ensure the TPSM84209 maintains output voltage regulation over the recommended operating range, the  
minimum recommended input voltage is 4.5 V or (VOUT × 1.3), whichever is greater. However, the TPSM84209  
does produce an output voltage when operated below the recommended input voltage range. 27 shows the  
typical dropout voltage curves for 5-V output at TA = 25°C. (Note: As ambient temperature increases, dropout  
voltage and frequency foldback occur at higher input voltage.)  
版权 © 2018, Texas Instruments Incorporated  
17  
 
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
5.2  
5
4.8  
4.6  
4.4  
4.2  
4
Iout  
0.5 A  
1.0 A  
1.5 A  
2.0 A  
2.5 A  
3.8  
3.6  
4.2  
4.4  
4.6  
4.8  
5
5.2  
5.4  
5.6  
5.8  
Input Voltage (V)  
Drop  
27. Voltage Dropout  
7.3.13 Overcurrent Protection  
For protection against load faults, the TPSM84209 incorporates output overcurrent protection. Applying a load  
that exceeds the overcurrent threshold of the regulator causes the output to shut down. Following shutdown, the  
module periodically attempts to recover by initiating a soft-start power-up as shown in 28. This is described as  
a hiccup mode of operation, where the module continues in a cycle of successive shutdown and power up until  
the load fault is removed. During this period, the average current flowing into the fault is significantly reduced  
which reduces power dissipation. Once the fault is removed, the module automatically recovers and returns to  
normal operation as shown in 29.  
29. Removal of Overcurrent  
28. Overcurrent Limiting  
18  
版权 © 2018, Texas Instruments Incorporated  
 
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
7.3.14 Output Overvoltage Protection (OVP)  
The TPSM84209 incorporates an overvoltage transient protection (OVTP) circuit to minimize output voltage  
overshoot when recovering from output fault conditions or strong unload transients. The OVTP circuit includes an  
overvoltage comparator to compare the FB pin voltage and internal thresholds. When the FB pin voltage goes  
above 108% × Vref, the high-side MOSFET is forced off. When the FB pin voltage falls below 104% × Vref, the  
high-side MOSFET is enabled again.  
7.3.15 Thermal Performance  
The typical thermal performance of the TPSM84209 is shown in 30. The thermal image shows the typical  
temperature rise of TPSM84209 is 27.2°C above ambient when operated at VIN = 12 V, VOUT = 3.3 V, IOUT = 2 A,  
with no airflow (LFM = 0).  
TA = 25°C  
30. Thermal Image  
7.3.16 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
165°C (typ). The device reinitiates the power-up sequence when the junction temperature drops below  
155°C (typ).  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Active Mode  
When VIN is above the UVLO threshold and the EN pin voltage is above the EN high threshold, the TPSM84209  
operates in the active mode. Normal continuous conduction mode (CCM) occurs when inductor peak current is  
above 0 A. In CCM, the TPSM84209 operates at a fixed frequency.  
7.4.2 Eco-Mode Operation  
The TPSM84209 device is designed to operate in high-efficiency, pulse-skipping mode under light load  
conditions. Pulse skipping initiates when the high-side FET current is less than 500 mA typically. During pulse  
skipping, the low-side FET turns off when the switch current falls to 0 A. The switching node (SW pin) waveform  
takes on the characteristics of discontinuous conduction mode (DCM) operation and the apparent switching  
frequency decreases. As the output current decreases, the perceived time between switching pulses increases.  
7.4.3 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the TPSM84209. When the EN pin voltage is below the  
EN threshold, the device is in shutdown mode. In shutdown mode the standby current is 2 μA, typically. The  
TPSM84209 also employs UVLO protection. If VIN is below the UVLO level, the output of the regulator turns off.  
20  
版权 © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPSM84209 is a synchronous, step-down DC/DC power module. It is used to convert a higher DC voltage to  
a lower DC voltage with a maximum output current of 2.5 A. The following design procedure can be used to  
select components for the TPSM84209. Alternately, the WEBENCH® software may be used to generate  
complete designs. When generating a design, the WEBENCH software utilizes an iterative design procedure and  
accesses comprehensive databases of components. See www.ti.com/webench for more details.  
8.2 Typical Application  
The TPSM84209 requires only a few external components to convert from a wide input-voltage-supply range to a  
wide range of output voltages. 31 shows a basic TPSM84209 schematic with only the minimum required  
components.  
VIN = 24V  
VOUT = 5 V  
VOUT  
VIN  
TPSM84209  
10 kO  
10 µF  
50 V  
47 µF  
10 V  
47 µF  
10 V  
EN  
FB  
1.37 kO  
GND  
31. TPSM84209 Typical Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 7 and the following design procedures.  
7. Design Example Parameters  
DESIGN PARAMETER  
Input voltage VIN  
VALUE  
24 V typical  
5 V  
Output voltage VOUT  
Output current rating  
2 A  
版权 © 2018, Texas Instruments Incorporated  
21  
 
 
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM84209 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Setpoint  
The output voltage of the TPSM84209 device is externally adjustable using a resistor divider (RFBT and RFBB  
)
between VOUT, FB, and GND. With a fixed value of 10 kΩ for RFBT, select the value of RFBB from 1 or  
calculate using 公式 2:  
6
(k)  
RFBB  
=
(VOUT œ 0.6)  
(2)  
For a output voltage of 5 V, the formula yields a value of 1.36 kΩ. Choose the closest available value of 1.37 kΩ  
for RFBB  
.
8.2.2.3 Input Capacitors  
For this design, a 10-μF, X7R dielectric ceramic capacitor rated for 50 V is used for the input decoupling  
capacitor.  
8.2.2.4 Output Capacitors  
The minimum required output capacitance for a 5-V output is two 47-μF ceramic capacitors. For this design, two  
47-μF, X5R dielectric ceramic capacitors rated for 16 V is used for the output capacitance.  
8.2.2.5 Enable Control  
The EN pin provides electrical ON/OFF control of the device. If an application requires control of the EN pin, use  
open-drain or open-collector output logic to interface with the pin. For this design, a small-signal, low-leakage  
MOSFET (BSS138) was used.  
22  
版权 © 2018, Texas Instruments Incorporated  
 
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
8.2.3 Application Waveforms  
VIN = 24 V  
VOUT = 5 V  
IOUT = 2 A  
32. Start-Up Waveforms  
33. Output Ripple and PH Node Waveforms  
9 Power Supply Recommendations  
The TPSM84209 is designed to operate from an input-voltage-supply range between 4.5 V and 28 V. This input  
supply must be well regulated and able to withstand maximum input current and maintain a stable voltage. The  
resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the TPSM84209 supply voltage that can cause a false UVLO fault triggering and system reset.  
If the input supply is located more than a few inches from the TPSM84209 additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. Typically, a 47-µF or 100-μF electrolytic capacitor is  
sufficient.  
版权 © 2018, Texas Instruments Incorporated  
23  
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
10 Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. See the following guidelines to design a PCB with the best power conversion performance, thermal  
performance, and minimized generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 34 and 35,  
shows a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and GND) to minimize conduction loss and thermal  
stress.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Place the output voltage feedback resistors, RFBT and RFBB, as close as possible to their respective pins.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Examples  
34. Typical Top-Layer Layout  
35. Typical GND Layer  
24  
版权 © 2018, Texas Instruments Incorporated  
 
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
10.3 EMI  
The TPSM84209 is compliant with EN55011 radiated emissions. 36, 37, and 38 show typical examples  
of radiated emissions plots for the TPSM84209. The graphs include the plots of the antenna in the horizontal and  
vertical positions.  
10.3.1 EMI Plots  
EMI plots were measured using the standard TPSM84209EVM with no input filter.  
36. Radiated Emissions 12-V Input, 5-V Output, 2.5-A Load (EN55011 Class B)  
37. Radiated Emissions 24-V Input, 5-V Output, 1-A Load (EN55011 Class B)  
版权 © 2018, Texas Instruments Incorporated  
25  
 
 
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
EMI (接下页)  
38. Radiated Emissions 24-V Input, 5-V Output, 2-A Load (EN55011 Class A)  
10.4 Package Specifications  
8. Package Specifications Table  
TPSM84209  
VALUE  
UNIT  
Weight  
107  
mg  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
123  
MHrs  
26  
版权 © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 使用 WEBENCH® 工具创建定制设计方案  
请单击此处,借助 WEBENCH® Power Designer 并使用 TPSM84209 器件创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018, Texas Instruments Incorporated  
27  
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
PACKAGE OUTLINE  
RKH0009A  
QFN - 2.1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
2.1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X (0.8)  
2X 1.125 0.05  
8X (0.3)  
SYMM  
(0.2) TYP  
(0.175) TYP  
6X 0.65  
2X  
2.25 0.05  
3
4
2X EXPOSED  
THERMAL PAD  
2X ( 0.25)  
PKG  
0.000  
2X 0.05  
0.45  
0.35  
3X  
2X (0.625)  
0.1  
0.05  
C A B  
2X 1.05  
2X 1.9  
1
6
0.35  
0.25  
9
7
4X  
0.9  
3X  
0.6  
0.4  
0.7  
0.1  
0.05  
C A B  
4X  
2X 0.85  
4223793/B 09/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
版权 © 2018, Texas Instruments Incorporated  
29  
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RKH0009A  
QFN - 2.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.96)  
SYMM  
9
7
4X (0.7)  
(2.23)  
4X (0.3)  
1
2X (2.1)  
(1.95)  
2X (1.9)  
6
2X ( 0.35)  
KEEP OUT AREA  
3X (0.4)  
(1.23)  
2X (1.05)  
2X (0.625)  
(4.6)  
(0.23)  
3X (1)  
8X (0.3)  
2X (0.05)  
0.000  
PKG  
(0.275)  
(R0.05) TYP  
(0.77)  
(0.52)  
2X (2.25)  
3
(0.925)  
4
(1.33)  
6X  
(0.65)  
(1.575)  
(1.77)  
(0.375) TYP  
0.05 MIN  
TYP  
SOLDER MASK  
OPENING  
TYP  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:20X  
4223793/B 09/2017  
NOTES: (continued)  
4. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
30  
版权 © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
EXAMPLE STENCIL DESIGN  
RKH0009A  
QFN - 2.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
METAL UNDER SOLDER MASK  
TYP  
(R0.05) TYP  
9
7
4X (0.7)  
2X (2.1)  
1
6
(1.95)  
4X (0.3)  
2X (1.9)  
3X (0.4)  
2X (1.05)  
3X (1)  
SOLDER MASK EDGE  
TYP  
EXPOSED  
METAL  
TYP  
3
4
2X (0.05)  
0.000  
PKG  
2X (0.115)  
6X  
(0.61)  
6X)  
(0.65  
2X (0.925)  
2X (1.735)  
8X (0.3)  
8X (0.375)  
SYMM  
6X (0.92)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 3 & 4: 71%  
SCALE:25X  
4223793/B 09/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2018, Texas Instruments Incorporated  
31  
TPSM84209  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
12.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
QFN-  
FCMOD  
TPSM84209RKHT  
RKH  
9
3000  
330.0  
12.4  
4.3  
4.8  
2.25  
8.0  
12.0  
Q1  
32  
版权 © 2018, Texas Instruments Incorporated  
TPSM84209  
www.ti.com.cn  
ZHCSHG7C JANUARY 2018REVISED JULY 2018  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
QFN-FCMOD  
Package Drawing Pins  
RKH  
SPQ  
Length (mm) Width (mm)  
383.0 353.0  
Height (mm)  
TPSM84209RKHT  
9
3000  
58.0  
版权 © 2018, Texas Instruments Incorporated  
33  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM84209RKHR  
TPSM84209RKHT  
ACTIVE QFN-FCMOD  
ACTIVE QFN-FCMOD  
RKH  
RKH  
9
9
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
TPSM84209  
TPSM84209  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
Addendum-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPSM84212

1.5A、28V 输入、12V 输出 TO-220 电源模块
TI

TPSM84212EAB

1.5A、28V 输入、12V 输出 TO-220 电源模块 | EAB | 3 | -40 to 125
TI

TPSM843A26

4-V to 18-V input, advanced current mode, 16-A synchronous SWIFT™ step-down power module
TI

TPSM843B22

4-V to 18-V input, advanced current mode, 20-A synchronous SWIFT™ step-down converter
TI

TPSM84424

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、4A 电源模块
TI

TPSM84424MOLR

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、4A 电源模块 | MOL | 24 | -40 to 105
TI

TPSM84624

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、6A 电源模块
TI

TPSM84624MOLR

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、6A 电源模块 | MOL | 24 | -40 to 105
TI

TPSM846C23

4.5V 至 15V 输入、0.35V 至 2.0V 输出、35A PMBus 电源模块
TI

TPSM846C23MOLR

4.5V 至 15V 输入、0.35V 至 2.0V 输出、35A PMBus 电源模块 | MOL | 59 | -40 to 105
TI

TPSM846C24

4.5V 至 15V 输入、0.35V 至 2.0V 输出、35A 电源模块
TI

TPSM846C24MOLR

4.5V 至 15V 输入、0.35V 至 2.0V 输出、35A 电源模块 | MOL | 59 | -40 to 105
TI