TUSB1002ARGET [TI]

USB3.2 10Gbps 双通道线性转接驱动器 | RGE | 24 | 0 to 70;
TUSB1002ARGET
型号: TUSB1002ARGET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB3.2 10Gbps 双通道线性转接驱动器 | RGE | 24 | 0 to 70

驱动 接口集成电路 驱动器
文件: 总36页 (文件大小:3060K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
TUSB1002A USB3.2 10Gbps 双通道线性转接驱动器  
1 特性  
3 说明  
1
支持 USB3.2 x1 SuperSpeed (5Gbps) 和  
SuperSpeedPlus (10Gbps)  
TUSB1002A 是业内首款双通道 USB 3.2 x1  
SuperSpeedPlus (SSP) 转接驱动器和信号调节器。该  
器件采用超低功耗架构,由 3.3V 电源供电,具有很低  
的功耗。它支持 USB3.2 低功耗模式,可进一步降低  
空闲状态下的功耗。  
支持 PCI Express Gen3SATA Express SATA  
Gen3。  
超低功耗架构  
活动:<300mW  
TUSB1002A 实现了一款线性均衡器,最高可容许码间  
串扰 (ISI) 引入 16dB 的损耗。当 USB 信号在印刷电  
路板 (PCB) 或电缆上传输时,其完整性会在通道损耗  
和码间串扰的影响下有所降低。线性均衡器可对通道损  
失进行补偿,进而延长通道传输距离,从而使系统符合  
USB 规范。凭借双通道和小型封装,TUSB1002A 可  
USB3.2 路径中灵活放置。  
断开/U2/U3< 1.9mW  
关断:< 700µW  
可调节电压输出摆幅线性范围高达 1200 mVpp  
无主机/设备端要求  
16 种线性均衡设置,高达 16dB10Gbps 时)  
可调节直流均衡增益  
支持热插拔  
TUSB1002A 采用 24 引脚 4mm x 4mm VQFN 封装。  
它还具有商业级 (TUSB1002A) 和工业级  
(TUSB1002AI) 两个版本。  
LVPE502A LVPE512 USB 3.0 转接驱动器引  
脚兼容  
TUSB1002 转接驱动器引脚对引脚兼容  
温度范围:0°C 70°C(商业级)和 –40°C 至  
85°C(工业级)  
器件信息(1)  
器件编号  
TUSB1002A  
TUSB1002AI  
封装  
封装尺寸(标称值)  
±5kV HBM ESD  
3.3V 单电源供电。  
采用 4mm x 4mm VQFN 封装  
VQFN (24)  
4.00mm x 4.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
笔记本和台式机  
电视  
平板电脑  
手机  
有源电缆  
扩展坞  
空白  
简化原理图  
RXP1  
+
RXN1  
-
TXP1  
TXN1  
+
-
+
-
TUSB1002A  
+
USB 3.1  
Host  
TXP2  
TXN2  
RXP2  
RXN2  
+
-
+
-
-
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF63  
 
 
 
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
7.5 U0 Mode.................................................................. 18  
7.6 U1 Mode.................................................................. 18  
7.7 U2/U3 Mode............................................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical USB3.2 Application .................................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 9  
6.7 Switching Characteristics.......................................... 9  
6.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 18  
8
9
8.3 Typical SATA, PCIe and SATA Express  
Application................................................................ 22  
Power Supply Recommendations...................... 25  
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 接收文档更新通知 ................................................. 27  
11.2 社区资源................................................................ 27  
11.3 ....................................................................... 27  
11.4 静电放电警告......................................................... 27  
11.5 术语表 ................................................................... 27  
12 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
Changes from Original (March 2018) to Revision A  
Page  
Changed text From: "Inclusion of these 330nF capacitors and 220k resistors is optional but highly recommended."  
To: "Inclusion of the 330 nF capacitors and 220k resistors is optional." in the Detailed Design Procedure........................ 20  
Added ordered list of implementation options for USB connector to TUSB1002A RX pins ................................................ 20  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
5 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN  
Top View  
VCC  
CH1_EQ1  
CH1_EQ2  
CFG1  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
GND  
CH2_EQ2  
CH2_EQ1  
CFG2  
Thermal  
Pad  
EN  
DCBOOST#  
VCC  
GND  
Not to scale  
Pin Functions  
PIN  
INTERNAL PULLUP  
PULLDOWN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Differential input for SuperSpeed (SS) and SuperSpeedPlus (SSP) positive  
signals for Channel 1  
RX1P  
9
90Differential  
Input  
Differential input for SuperSpeed (SS) and SuperSpeedPlus (SSP) negative  
signals for Channel 1  
RX1N  
RX2P  
RX2N  
TX1P  
TX1N  
TX2P  
TX2N  
8
Differential input for SuperSpeed (SS) and SuperSpeedPlus (SSP) positive  
signals for Channel 2  
19  
20  
22  
23  
12  
11  
90Differential  
Input  
Differential input for SuperSpeed (SS) and SuperSpeedPlus (SSP) negative  
signals for Channel 2.  
Differential output for SuperSpeed (SS) and SuperSpeedPlus (SSP) positive  
signals for Channel 1.  
90Differential  
Output  
Differential output for SuperSpeed (SS) and SuperSpeedPlus (SSP) negative  
signals for Channel 1.  
Differential output for SuperSpeed (SS) and SuperSpeedPlus (SSP) positive  
signals for Channel 2.  
90Differential  
Output  
Differential output for SuperSpeed (SS) and SuperSpeedPlus (SSP) negative  
signals for Channel 2.  
CH1_EQ1. Configuration pin used to control Rx EQ level for RX1P/N. The state  
of this pin is sampled after the rising edge of EN. Refer to 2 for details of  
timing. This pin along with CH1_EQ2 allows for up to 16 equalization settings.  
CH1_EQ1  
CH1_EQ2  
CH2_EQ1  
CH2_EQ2  
EN  
2
3
I (4-level)  
I (4-level)  
I (4-level)  
I (4-level)  
I (2-level)  
CH1_EQ2. Configuration pin used to control Rx EQ level for RX1P/N. The state  
of this pin is sampled after the rising edge of EN. Refer to 2 for details of  
timing. This pin along with CH1_EQ1 allows for up to 16 equalization settings.  
PU (approx 45K)  
PD (approx 95K)  
CH2_EQ1. Configuration pin used to control Rx EQ level for RX2P/N. The state  
of this pin is sampled after the rising edge of EN. Refer to 2 for details of  
timing. This pin along with CH2_EQ2 allows for up to 16 equalization settings.  
16  
17  
5
CH2_EQ2. Configuration pin used to control Rx EQ level for RX2P/N. The state  
of this pin is sampled after the rising edge of EN. Refer to 2 for details of  
timing. This pin along with CH2_EQ1 allows for up to 16 equalization settings.  
EN. Places TUSB1002A into shutdown mode when asserted low. Normal  
operation when pin is asserted high. When in shutdown, TUSB1002A’s receiver  
terminations will be high impedance and tx/rx channels will be disabled.  
PU (approx 400 K)  
Copyright © 2018, Texas Instruments Incorporated  
3
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
INTERNAL PULLUP  
TYPE  
DESCRIPTION  
PULLDOWN  
NAME  
NO.  
CFG1. This pin along with CFG2 will select VOD linearity range and DC gain  
for both channels 1 and 2. The state of this pin is sampled after the rising edge  
of EN. Refer to 2 for details of timing. Refer to 3 for VOD linearity range  
and DC gain options.  
PU (approx 45K)  
PD (approx 95K)  
CFG1  
4
I (4-level)  
CFG2. This pin along with CFG1 will set VOD linearity range and DC gain for  
both channels 1 and 2. The state of this pin is sampled after the rising edge of  
EN. Refer to 2 for details of timing. Refer to 3 for VOD linearity range and  
DC gain options.  
PU (approx 45K)  
PD (approx 95K)  
CFG2  
15  
I (4-level)  
MODE. This pin is for selecting different modes of operation. The state of this  
pin is sampled after the rising edge of EN. Refer to 2 for details of timing.  
0 = Basic Redriver Mode.  
R = PCIe / Test Mode. PCIe Mode and TI Internal use only  
F = USB3.2 x1 Dual Channel Operation enabled (TUSB1002A normal mode).  
1 = USB3.2 x1 Single-channel operation.  
PU (approx 45 K)  
PD (approx 95K)  
MODE  
7
I (4-level)  
RSVD1. Under normal operation, this pin will be driven low by TUSB1002A.  
Recommend leaving this pin unconnected on PCB.  
RSVD1  
24  
O
DCBOOST#. This pin when asserted low will increase the DC Gain level  
defined in3 by +1 dB unless already at +2dB. If DC Gain level defined in3  
is already at +2 dB, then asserting this pin low will not change the DC Gain  
level. This pin can be left unconnected if this function is not needed.  
1 = DC Gain defined by 3.  
DCBOOST#  
14  
I (2-level)  
PU (approx 400 K)  
0 = DC Gain defined by 3 is increased by +1 dB.  
VCC  
GND  
1, 13  
Power  
GND  
3.3 V (±10%) Supply.  
Ground  
6, 10, 18,  
21  
Thermal  
pad  
Thermal pad. Recommend connecting to a solid ground plane.  
4
Copyright © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage  
VCC  
-0.3  
4
V
Range  
Differential voltage for RX1P/N and RX2P/N  
Voltage Range  
Voltage at RX pins  
on I/O pins  
-2.5  
-0.5  
-0.5  
-65  
2.5  
4
V
V
Voltage on Control pins  
4
V
Tstg  
Storage temperature  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±5000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.6  
UNIT  
V
VCC  
Supply voltage  
3
3.3  
VPSN  
Supply noise on VCC pins  
100  
70  
mV  
°C  
TUSB1002A Ambient temperature  
TUSB1002AI Ambient temperature  
TUSB1002A Junction temperature  
TUSB1002AI Junction temperature  
0
-40  
0
TA  
TJ  
85  
°C  
105  
105  
°C  
-40  
°C  
6.4 Thermal Information  
TUSB1002A  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
38.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
41.6  
16.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.0  
ΨJB  
16.4  
RθJC(bot)  
6.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
版权 © 2018, Texas Instruments Incorporated  
5
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
Power under USB3.1  
operation in U0 operating at  
SuperSpeedPlug datarate  
with linear range set to  
1200mV.  
At 10 Gbps; VCC = 3.3 V; EN = 1; Pattern  
= CP9; VOD = 1200mVpp  
PU0_SSP_1200mV  
330  
mW  
Power under USB3.1  
operation in U0 operating at  
SuperSpeedPlug datarate  
with linear range set to  
1000mV.  
At 10 Gbps; VCC = 3.3 V; EN = 1; Pattern  
= CP9; VOD = 1000mVpp  
PU0_SSP_1000mV  
310  
295  
mW  
mW  
Power under USB3.1  
operation in U0 operating at  
SuperSpeedPlug datarate  
with linear range set to  
900mV.  
At 10 Gbps; VCC = 3.3 V; EN = 1; Pattern  
= CP9; VOD = 900mVpp  
PU0_SSP_900mV  
Power in U1 with linear range In U1; VCC = 3.3 V; EN = 1; VOD  
=
PU1  
330  
1.5  
mW  
mW  
set to 1200mV.  
1200mVpp  
VCC = 3.3 V; EN = 1; Both channels in  
U2/U3;  
PU2U3  
Power when in U2/U3 state.  
Power when no USB device  
PDISCONNECT_NONE detected on both TX1P/N and  
TX2P/N.  
VCC = 3.3 V; EN = 1; RX1 and RX2  
termination disabled;  
1.9  
mW  
Power when a single USB  
device detected on either  
TX1P/N or TX2P/N.  
VCC = 3.3 V; EN = 1; Either RX1 or RX2  
termination enabled but not both enabled;  
PDISCONNECT_ONE  
1.9  
0.7  
mW  
mW  
Shutdown power when EN =  
0.  
PSHUTDOWN  
VCC = 3.3 V; EN = 0;  
4-level Inputs (CFG[2:1], MODE, CH1_EQ[2:1], CH2_EQ[2:1])  
Threshold "0" / "R"  
VCC = 3.3 V  
0.55  
1.65  
2.8  
V
V
VTH  
Threshold "R" / "F"  
VCC = 3.3 V  
Threshold "F" / "1"  
VCC = 3.3 V  
V
IIH  
High-level input current  
Low-level input current  
Internal pullup resistance  
Internal pulldown resistance  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
20  
80  
µA  
µA  
kΩ  
kΩ  
IIL  
-160  
-40  
RPU  
45  
95  
RPD  
EN, DCBOOST#  
VIH  
VIL  
IIH  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
VCC = 3.3 V  
1.7  
0
3.6  
0.7  
10  
V
V
VCC = 3.3 V  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
-10  
-15  
µA  
µA  
IIL  
15  
Internal pullup resistance for  
EN and DCBOOST#  
RPU_EN  
400  
kΩ  
USB3.1 Receiver Interface (RX1P/N and RX2P/N)  
Rx Differential return loss at  
RL_100 MHz  
SDD11 100 MHz to 2.5 GHz at 90-ohms  
SDD11 5 GHz at 90-ohms  
-18  
-14  
dB  
dB  
100 MHz to 2.5 GHz  
Rx Differential return loss at 5  
RL_5 GHz  
GHz  
Rx Differential return loss from  
5 to 10 GHz  
RL_10 GHz  
SDD11 5 GHz to 10 GHz at 90-ohms  
-6  
-12  
-50  
16  
dB  
dB  
dB  
dB  
RL_CM  
Rx common mode return loss SCC11 0.5 to 5 GHz at 90-ohms  
Differential crosstalk between  
TX and RX signal pairs  
X-Talk  
EACGAIN_5 GHz  
Max AC Equalization Gain  
50 mVpp CP10 at 5 GHz; VCC = 3.3V;  
6
Copyright © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
200 mVpp VID at 100 MHz; 1200mV  
Linear Range Setting;  
EDC_GAIN0  
EDC_GAIN1  
EDC_GAIN2  
EDC_GAIN-1  
DC Gain at 0 dB setting  
.7  
dB  
200 mVpp VID at 100 MHz; 1200mV  
Linear Range Setting;  
DC Gain at 1 dB setting  
DC Gain at 2 dB setting  
DC Gain at -1 dB setting  
1.6  
2.3  
dB  
dB  
dB  
200 mVpp VID at 100 MHz; 1000mV  
Linear Range Setting;  
200 mVpp VID at 100 MHz; 1200mV  
Linear Range Setting;  
-0.25  
Input differential peak-peak  
voltage swing range  
VDIFF_IN  
1200  
0
mV  
V
VRX-DC-CM  
RRX-DC-CM  
RRX-DC-DIFF  
RX DC common mode voltage  
RX DC common mode  
impedance  
Measured at connector; Present when  
USB Device detected on TXP/N;  
18  
72  
30  
Ω
Measured at connector; Present when  
USB Device detected on TXP/N;  
RX DC differential impedance  
120  
Ω
1. Rx DC CM Impedance with Rx  
DC Input CM Input Impedance terminations not powered. 2. Measured  
V > 0 during RESET or power over the range 0 - 500 mV with respect to  
ZRX-DC-DIFF  
35  
kΩ  
mV  
down.  
GND. 3. Only DC input CM Input  
impedance V > 0 is specified.  
Input differential peak-to-peak At 10 Gbps; No loss input channel and  
signal detect assert level PRBS7 pattern.  
VRX-SIGNAL-DET  
85  
60  
Input differential peak-to-peak At 10 Gbps; No loss input channel and  
VRX-IDLE-DET  
VRX-LFPS-DET  
VRX-CM-AC-P  
mV  
mV  
mV  
signal detect de-assert level  
PRBS7 pattern.  
LFPS detect threshold.  
Below min is squelched  
100  
310  
150  
Peak RX AC common mode  
voltage  
Measured at package pin.  
USB3.1 Transmitter Interface (TX1P/N and TX2P/N)  
Tx Differential return loss at  
RL_TX_100 MHz  
100 MHz  
SDD22 100 MHz - 2.5 GHz at 90-ohms  
SDD22 5 GHz at 90-ohms  
-20  
-16  
dB  
dB  
dB  
Tx Differential return loss at 5  
GHz  
RL_TX_2.5 GHz  
Tx Differential return loss from  
RL_TX_10 GHz  
5 to 10 GHz  
SDD22 5 GHz to 10 GHz at 90-ohms  
-8.5  
RL_TX_CM  
Tx common mode return loss SCC22 0.5 to 5 GHz at 90-ohms  
-6.7  
dB  
VTX-DIFFPP-1200  
Differential peak-to-peak TX  
voltage swing linear dynamic  
range at 100MHz  
1200 mVpp setting; 100MHz; Measured  
at -1dB compression point = 20  
log(VOD/VOD_linear)  
1000  
mV  
Differential peak-to-peak TX  
voltage swing linear dynamic  
range at 5GHz  
1200 mVpp setting; 5GHz; Measured at  
-1dB compression point = 20  
log(VOD/VOD_linear)  
1300  
900  
mV  
mV  
mV  
mV  
Differential peak-to-peak TX  
voltage swing linear dynamic  
range at 100MHz  
1000 mVpp setting; 100MHz; Measured  
at -1dB compression point = 20  
log(VOD/VOD_linear)  
VTX-DIFFPP-1000  
Differential peak-to-peak TX  
voltage swing linear dynamic  
range at 5GHz  
1000 mVpp setting; 5GHz; Measured at  
-1dB compression point = 20  
log(VOD/VOD_linear)  
1150  
800  
Differential peak-to-peak TX  
voltage swing linear dynamic  
range at 100MHz  
900 mVpp setting; 100MHz; Measured at  
-1dB compression point = 20  
log(VOD/VOD_linear)  
VTX-DIFFPP-900  
Differential peak-to-peak TX  
voltage swing linear dynamic  
range at 5GHz  
900 mVpp setting; 5GHz; Measured at  
-1dB compression point = 20  
log(VOD/VOD_linear)  
1000  
mV  
mV  
Amount of voltage change  
allowed during Rx Detection.  
VTX-RCV-DETECT  
Measured at package pins.  
600  
Copyright © 2018, Texas Instruments Incorporated  
7
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
-600  
0
TYP  
MAX  
UNIT  
mV  
V
Max allowed instantaneous commode-  
mode voltage at connector side of AC  
coupling capacitor. This is an absolute  
voltage spec referenced to the receive  
side termination ground.  
Transmitter idle common  
mode voltage change U2/U3  
state.  
VTX-CM-IDLE-DELTA  
600  
2.05  
116  
VTX-DC-CM  
TX DC common mode voltage 1200mVpp linear range setting;  
1.85  
Transmitter AC common  
mode peak-peak voltage in  
VTX-CM-AC-PP-ACTIVE U0. Maximum mismatch from setting matches input channel insertion  
1200mVpp linear setting; CHx_EQ  
mV  
TXP+TXN for both time and  
amplitude.  
loss;  
AC electrical idle differential  
peak-to-peak output voltage  
VTX-IDLE-DIFF-AC-PP  
0
10  
mV  
mV  
VTX-CM-DC-ACTIVE-  
IDLE-DELTA  
Absolute DC common mode  
voltage between U1 and U0  
200  
TX DC common mode  
impedance  
RTX-DC-CM  
RTX-DC-DIFF  
ITX-SHORT  
18  
72  
30  
120  
107  
Ω
Ω
TX DC differential impedance  
Transmitter short-circuit  
current limit.  
mA  
External AC coupling  
capacitor on differential pairs.  
CAC-COUPLING  
75  
265  
nF  
8
版权 © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
6.6 Timing Requirements  
over operating free-air temperature and voltage range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
µs  
td_pg  
Internal power good asserted high when VCC is at 2.5V  
CFG(1) pins setup before internal Reset(2) high  
CFG(1) pins hold after internal Reset(2) high  
5
tCFG_SU  
tCFG_HD  
0
500  
0.1  
µs  
µs  
tVCC_RAMP VCC supply ramp requirement  
50  
ms  
(1) Following pins comprise CFG pins: MODE, CFG[2:1], CH1_EQ[2:1], CH2_EQ[2:1]  
(2) Internal reset is the logical AND of EN pin and internal power good.  
6.7 Switching Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tIDLEEntry  
Delay from U0 to electrical idle  
VCC = 3.0 V; EN = 1;See 1  
150  
ps  
U1 exit time. Break in electrical idle  
to transmission of LFPS.  
tIDLEEntry_U1  
VCC = 3.0 V; EN = 1; See 1  
150  
ps  
tIDLEEntry_U2 U2/U3 exit time; Break in electrical  
VCC = 3.0 V; EN = 1; See 1  
6
µs  
ps  
idle to transmission of LFPS  
U3  
tDIFF_DLY  
Differential propagation delay  
VCC = 3.0 V; EN = 1;  
150  
Time from assertion of EN to device  
active and performing Rx.Detect on  
both ports  
tPWRUP_ACTI  
VE  
VCC = 3.0 V; EN = 1;  
8
ms  
ps  
ps  
UI  
VCC = 3.3 V; EN = 1; 10 Gbps; 20% to  
80% of differential output; 1200 mVpp  
linear range setting; Fast Input rise/fall  
time;  
tTX_RISE_FAL  
L
Transmitter rise/fall time  
27  
.6  
VCC = 3.3 V; EN = 1; 10 Gbps; 20% to  
80% of differential output; 1200 mVpp  
linear range setting; 1000 mVpp VID  
tRF_MISMATC  
H
Transmitter rise/fall mismatch  
VCC = 3.3 V; EN = 1; 10 Gbps; 1200  
mVpp linear range setting; Input channel  
loss of 12 dB; Output channel loss of 1.5  
dB; Optimized EQ;  
Transmitter residual deterministic  
jitter  
tTX_DJ  
0.05  
1. Idle Entry and Exit Latency  
版权 © 2018, Texas Instruments Incorporated  
9
 
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
2. Power-Up Diagram  
10  
版权 © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
6.8 Typical Characteristics  
VCC = 3.3V , 25°C, 200 mVpp VID sine wave, ZO = 100 Ω, RGE package  
20  
15  
10  
5
20  
15  
10  
5
EQ1_DC0_1200 mV  
EQ3_DC0_1200 mV  
EQ5_DC0_1200 mV  
EQ7_DC0_1200 mV  
EQ9_DC0_1200 mV  
EQ11_DC0_1200 mV  
EQ13_DC0_1200 mV  
EQ15_DC0_1200 mV  
EQ2_DC0_1200 mV  
EQ4_DC0_1200 mV  
EQ6_DC0_1200 mV  
EQ8_DC0_1200 mV  
EQ10_DC0_1200 mV  
EQ12_DC0_1200 mV  
EQ14_DC0_1200 mV  
EQ16_DC0_1200 mV  
0
0
-5  
-5  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10 20  
Frequency (GHz)  
Frequency (GHz)  
D003  
D004  
3. 1200 mV DC0 Gain Odd EQ Settings Curves  
4. 1200 mV DC0 Even EQ Settings Curves  
7
5
20  
15  
10  
5
EQ1_DC-1_1200 mV  
EQ1_DC2_1200 mV  
EQ1_DC0_1200 mV  
EQ1_DC1_1200 mV  
EQ1_DC0_1000 mV  
EQ3_DC0_1000 mV  
EQ5_DC0_1000 mV  
EQ7_DC0_1000 mV  
EQ9_DC0_1000 mV  
EQ11_DC0_1000 mV  
EQ13_DC0_1000 mV  
EQ15_DC0_1000 mV  
3
1
-1  
-3  
-5  
0
-5  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10 20  
Frequency (GHz)  
Frequency (GHz)  
D005  
D006  
5. 1200 mV DC Gain Adjustments Curves  
6. 1000 mV DC0 Gain Odd EQ Settings Curves  
20  
15  
10  
5
7
5
EQ2_DC0_1000 mV  
EQ4_DC0_1000 mV  
EQ6_DC0_1000 mV  
EQ8_DC0_1000 mV  
EQ10_DC0_1000 mV  
EQ12_DC0_1000 mV  
EQ14_DC0_1000 mV  
EQ16_DC0_1000 mV  
EQ1_DC0_1000 mV  
EQ1_DC1_1000 mV  
EQ1_DC2_1000 mV  
EQ1_DC-1_1000 mV  
3
1
-1  
-3  
-5  
0
-5  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
D007  
D008  
7. 1000 mV DC0 Gain Even EQ Settings Curves  
8. 1000 mV DC Gain Adjustments Curves  
版权 © 2018, Texas Instruments Incorporated  
11  
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VCC = 3.3V , 25°C, 200 mVpp VID sine wave, ZO = 100 Ω, RGE package  
20  
15  
10  
5
20  
15  
10  
5
EQ1_DC0_900 mV  
EQ3_DC0_900 mV  
EQ5_DC0_900 mV  
EQ7_DC0_900 mV  
EQ9_DC0_900 mV  
EQ11_DC0_900 mV  
EQ13_DC0_900 mV  
EQ15_DC0_900 mV  
EQ2_DC0_900 mV  
EQ4_DC0_900 mV  
EQ6_DC0_900 mV  
EQ8_DC0_900 mV  
EQ10_DC0_900 mV  
EQ12_DC0_900 mV  
EQ14_DC0_900 mV  
EQ16_DC0_900 mV  
0
0
-5  
-5  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10 20  
Frequency (GHz)  
Frequency (GHz)  
D009  
D010  
9. 900 mV DC0 Gain Odd EQ Settings Curves  
10. 900 mV DC0 Gain Even EQ Settings Curves  
7
5
1
EQ1_DC0_900 mV  
EQ1_DC1_900 mV  
-1  
-3  
-5  
-7  
3
-9  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
1
-1  
-3  
-5  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
D011  
D012  
11. 900 mV DC Gain Adjustment Curves  
12. SDD11 Return Loss  
0
-5  
1800  
1600  
1400  
1200  
1000  
800  
-10  
-15  
-20  
-25  
600  
400  
DC0_EQ1_900 mV  
DC0_EQ1_1000 mV  
DC0_EQ1_1200 mV  
200  
0
0.01  
0.1  
1
10 20  
0
200  
400  
600  
800  
1000 1200 14001500  
Frequency (GHz)  
VID (mV)  
D013  
D014  
13. SDD22 Return Loss  
14. 5-GHz Sine Wave VID vs VOD Linearity Range Setting  
12  
版权 © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
VCC = 3.3V , 25°C, 200 mVpp VID sine wave, ZO = 100 Ω, RGE package  
1400  
1200  
1000  
800  
600  
400  
200  
0
DC0_EQ1_900mV  
DC0_EQ1_1000mV  
DC0_EQ1_1200mV  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
VID (V)  
D015  
15. 100-MHz Sine Wave VID vs VOD Linearity Range Setting  
版权 © 2018, Texas Instruments Incorporated  
13  
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TUSB1002A is the industry’s first, dual lane USB 3.2 x1 SuperSpeedPlus redriver. As signals traverse  
through a channel (like FR4 trace) the amplitude of the signal is attenuated. The attenuation varies depending on  
the frequency content of the signal. Depending the length of the channel this attenuation could be large enough  
resulting in signal integrity issues at a USB 3.2 receiver. By placing a TUSB1002A between USB3.2 host and  
device the attenuation effect of the channel can eliminated or minimized. The result is a USB3.2 compatible eye  
at the devices receiver. With up to 16 receiver equalization settings, the TUSB1002A can support many different  
channel loss combinations. The TUSB1002A offers low power consumption on a single 3.3 V supply with its ultra  
low power architecture. It supports the USB3.2 low power modes which further reduces idle power consumption.  
The TUSB1002A settings are configured through pins. In addition to equalization adjustment, the TUSB1002A  
provides knobs for adjusting DC gain and voltage output linearity range.  
7.2 Functional Block Diagram  
GND  
VIterm  
ARXTERM_EN1  
RX1P  
RX1N  
TX1P  
TX1N  
TX  
RX  
ATXEN1  
AIDLE1  
LFPS  
ALFPS1  
Rx  
ARXDET1  
Detect  
ALOSZ1  
LOS  
GND  
VIterm  
ARXTERM_EN2  
RX  
TX2P  
RX2P  
RX2N  
TX  
TX2N  
ATXEN2  
AIDLE2  
LFPS  
ALFPS2  
Rx  
Detect  
ARXDET2  
ALOSZ2  
LOS  
CFG1  
CH1_EQ1  
CH1_EQ2  
CFG2  
CH2_EQ1  
CH2_EQ2  
MODE  
Digital  
FSM  
DCBOOST#  
RSVD1  
EN  
14  
版权 © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
7.3 Feature Description  
7.3.1 4-Level Control Inputs  
The TUSB1002A has (MODE, CFG1, CFG2, CH1_EQ1, CH1_EQ2, CH2_EQ1, and CH2_EQ2) 4-level inputs  
pins that are used to control the equalization gain and the output voltage swing dynamic range. These 4-level  
inputs use a resistor divider to help set the 4 valid levels and provide a wider range of control settings. These  
resistors together with the external resistor connection combine to achieve the desired voltage level.  
1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
Option 1: Tie 1 k5% to GND.  
Option 2: Tie directly to GND.  
0
R
F
Tie 20 k5% to GND.  
Float (leave pin open)  
Option 1: Tie 1 k5% to VCC  
.
1
Option 2: Tie directly to VCC  
.
In order to conserve power, the TUSB1002A disables 4-level input’s internal pull-up/pull-  
down resistors after the state of 4-level pins have been sampled on rising edge of EN. A  
change of state for any four level input pin is not applied to TUSB1002A until after EN pin  
transitions from low to high.  
7.3.2 Linear Equalization  
With a linear equalizer, the TUSB1002A can electrically shorten a particular channel allowing for longer run  
lengths.  
X in trace  
USB  
Type A  
USB Host  
Y in trace  
X in trace  
USB  
Type A  
TUSB1002A  
USB Host  
16. Linear Equalizer  
With a TUSB1002A, a longer trace can be made to have similar insertion loss as a shorter trace. For example, a  
long trace of X + Y inches can be made to have similar loss characteristics of a shorter trace of X inches.  
The receiver equalization level for each channel is determined by the state of the CHx_EQ1 and CHx_EQ2 pins,  
where x = 1 or 2.  
版权 © 2018, Texas Instruments Incorporated  
15  
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
2. EQ Configuration Options for 1200mV Linearity 0 dB DC Gain Setting  
EQ SETTING #  
CHx_EQ2 PIN LEVEL  
CHx_EQ1 PIN LEVEL  
EQ GAIN at 2.5GHz / 5 GHz (dB)  
1.0 / 3.6  
1
2
0
0
0
R
F
1
2.1 / 5.5  
3
0
3.0 / 6.8  
4
0
4.0 / 8.1  
5
R
R
R
R
F
F
F
F
1
0
4.6 / 9.0  
6
R
F
1
5.5 / 10.0  
7
6.2 / 10.8  
8
6.9 / 11.6  
9
0
7.3 / 11.9  
10  
11  
12  
13  
14  
15  
16  
R
F
1
7.9 / 12.6  
8.4 / 13.1  
9.0 / 13.7  
0
9.4 / 14.1  
1
R
F
1
9.9 / 14.6  
1
10.3 / 14.9  
10.7 / 15.3  
1
7.3.3 Adjustable VOD Linear Range and DC Gain  
The CFG1 and CFG2 pins can be used to adjust the TUSB1002A output voltage swing linear range and receiver  
equalization DC gain. 3 details the available options.  
For best performance, the TUSB1002A should be operated within its defined VOD linearity range. The gain of  
the incoming VID should be kept to less than or equal to the TUSB1002A VOD linear range setting. The can be  
determined by 公式 1:  
VID at 5 GHz = VOD x (10 -(Gv/20)  
)
where  
Gv = TUSB1002A Gain and VOD = TUSB1002A VOD linearity setting.  
(1)  
For example, for a VOD linearity range setting of 1200 mV, the maximum incoming VID signal at 5 GHz with a  
CHx_EQ[1:0] setting of 2 (5.5 dB) is 1200 x (10 -(5.5/20)) = 637 mVpp. The TUSB1002A can be operated outside  
its VOD linear range but jitter will be higher.  
3. VOD Linear Range and DC Gain  
CH1 VOD LINEAR  
RANGE (mVpp)  
CH2 VOD LINEAR  
RANGE (mVpp)  
SETTING #  
CFG1 PIN LEVEL  
CFG2 PIN LEVEL  
CH1 DC GAIN (dB) CH2 DC GAIN (dB)  
1
2
0
0
0
R
F
1
+1  
0
0
+1  
0
900  
900  
900  
900  
3
0
0
900  
900  
4
0
+1  
0
+1  
0
900  
900  
5
R
R
R
R
F
F
F
F
1
0
1000  
1000  
1000  
1000  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1000  
1000  
1000  
1000  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
6
R
F
1
+1  
0
0
7
-1  
+2  
-1  
+2  
0
8
+2  
-1  
+2  
0
9
0
10  
11  
12  
13  
14  
15  
16  
R
F
1
+1  
+2  
0
+1  
0
0
1
R
F
1
+2  
+1  
0
1
0
1
+1  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
7.3.4 USB3.2 Dual Channel Operation (MODE = “F”)  
TheTUSB1002A in dual-channel operation waits for far-end terminations on both channels 1 and 2 before  
transitioning to fully active state (U0 mode). This mode of operation, defined as MODE pin = ‘F’, is the most  
common configuration for USB3.2 Source (DFP) and Sink (UFP) applications.  
In a USB3.2 x2 application, two TUSB1002A redrivers are used: One on the config lane and the other on the  
non-config lane. The TUSB1002A on the non-config lane must be placed in basic redriver mode (MODE pin =  
"0"). The TUSB1002A on the config lane should be placed in USB3.2 dual channel operation (MODE pin = "F").  
The expectation is the USB power delivery (PD) controller will hold both TUSB1002A in shutdown mode until a  
connection can be established. Upon establishing a connection, the USB PD controller will place each  
TUSB1002A into the appropriate mode.  
7.3.5 USB3.2 Single Channel Operation (MODE = “1”)  
In some applications, like Type-C USB3.2 active cables, only one of the two channels may be active. For this  
application, setting MODE pin = ‘1’, enables single-channel operation. In this mode of operation, the TUSB1002A  
attempts far-end termination on both channels 1 and 2. The channel which has a far-end termination detected is  
enabled while the remaining channel is disabled. If far-end termination is detected on both channels, then  
TUSB1002A behaves in dual channel operation (both channels enabled).  
7.3.6 PCIe/SATA/SATA Express Redriver Operation (MODE = “R”; CFG1 = "0"; CFG2 = "0" )  
The TUSB1002A can be used as a PCI Express (PCIe) Gen3, SATA Gen3, or SATA Express redriver. When  
TUSB1002A's MODE pin = “R”, CFG1 pin = "0", and CFG2 pin = "0", the TUSB1002A enables both channels  
(upstream and downstream) receiver and transmitter paths upon detecting far-end termination on both TX1 and  
TX2. Both upstream and downstream paths remain enabled until EN pin is de-asserted low. All USB3.2 power  
management functionality is disabled in this mode. In this mode, the TUSB1002A is transparent to PCIe link  
power management (L0s, L1) and SATA interface power states. Once far-end termination is detected on both  
TX1 and TX2, the TUSB1002A power is at P(U0_SSP_1200mV) regardless of the PCIe or SATA power state. To save  
power during system S3/S4/S5 states it is suggested to de-assert the EN pin to conserve power.  
In this mode the linearity range will be fixed at 1200mVpp and DC gain to 0dB.  
7.3.7 Basic Redriver Operation (MODE = “0”)  
The TUSB1002A can be used as a basic redriver for non-USB3.2 x1 applications. When the TUSB1002A MODE  
pin = “0”, the TUSB1002A enables both channels receiver and transmitter paths. The channel receiver and  
transmitter termination are both enabled. All USB3.2 power management functionality is disabled.  
版权 © 2018, Texas Instruments Incorporated  
17  
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The Shutdown mode is entered when EN pin is low and VCC is active and stable. This mode is the lowest power  
state of the TUSB1002A. While in this mode, the TUSB1002A receiver terminations is disabled.  
7.4.2 Disconnect Mode  
Next to Shutdown Mode, the Disconnect mode is the lowest power state of the TUSB1002A. The TUSB1002A  
enters this mode when exiting Shutdown mode. In this state, the TUSB1002A periodically checks for far-end  
receiver termination on both SSTX1 and SSTX2. Upon detection of the far-end receiver’s termination on both  
ports, the TUSB1002A transitions to a fully active mode called U0 mode.  
7.5 U0 Mode  
The U0 mode is the highest power state of the TUSB1002A. Anytime high-speed traffic (SuperSpeed or  
SuperSpeedPlus) is being received, the TUSB1002A remains in this mode. The TUSB1002A only exits this  
mode if electrical idle is detected on both SSRX1 and SSRX2. While in this mode, the TUSB1002A hs speed  
receivers and transmitters are powered and active.  
7.6 U1 Mode  
The U1 mode is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB1002A  
receiver termination remains enabled and the TXP/N DC common mode is maintained.  
7.7 U2/U3 Mode  
Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB1002A  
periodically performs far-end receiver detection. Anytime the far-end receiver termination is not detected on  
either CH1 or CH2, the TUSB1002A leaves the U2/U3 mode and transition to the Disconnect mode. It also  
monitors the SSRX1 and SSRX2 for a valid LFPS. Upon detection of a valid LFPS, the TUSB1002A immediately  
transitions to the U0 mode.  
18  
版权 © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TUSB1002A is a linear redriver designed specifically to compensation for ISI jitter caused by attenuation  
through a passive medium like traces and cables. Because the TUSB1002A has two independent channels, it  
can be optimized to correct ISI in both the upstream and downstream direction through 16 different equalization  
choices. Placing the TUSB1002A between a USB3.2 Host/device controller and a USB3.2 receptacle can correct  
signal integrity issues resulting in a more robust system.  
8.2 Typical USB3.2 Application  
Downstream  
B
A
C
D
FR4 Trace  
of Length Y  
FR4 Trace  
of Length X  
C
C
C
C
RXP1  
TXP1  
TXN1  
+
-
+
-
+
RXN1  
-
TUSB1002A  
+
USB 3.1  
Host  
C
C
C
C
TXP2  
TXN2  
RXP2  
RXN2  
+
-
+
-
-
Upstream  
17. TUSB1002A in USB3.2 x1 Host Application  
8.2.1 Design Requirements  
For this design example, use the parameters shown in 4.  
4. Design Parameters  
PARAMETER  
VALUE  
VCC supply (3 V to 3.6 V)  
3.3 V  
Mode of Operation (Dual or Half Channel)  
TX1, TX2, RX1 A/C coupling Capacitor (75 nF to 265 nF)  
Optional RX2 A/C coupling Capacitor (297 nF to 363 nF)  
MODE = F (Floating) for USB3.2 Dual Channel  
100 nF  
330 nF ±10%  
Optional RX2 pull-down resistors on USB receptacle side of AC  
capacitor (200K to 242K ohms)  
220 kΩ  
A to B FR4 Length (inches)  
A to B FR4 Trace Width (mils)  
C to D FR4 length (inches)  
8
4
2
C to D FR4 Trace Width (mils)  
DC Gain (-2, -1, 0, +1, +2)  
4
0 dB (CFG[2:1] pins floating)  
1200 mV (CFG[2:1] pins floating)  
Linear Range (900 mV, 1000 mV, or 1200 mV)  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The TUSB1002A differential receivers and transmitters have internal BIAS and termination. For this reason, the  
TUSB1002A must be connected to the USB3.2 host and receptacle through external A/C coupling capacitors. In  
this example, as depicted in 4, 100 nF capacitors are placed on TX2P and TX2N, RX1P and RX1N, and TX1P  
and TX1N. 330 nF A/C coupling capacitors along with 220 kΩ resistors are placed on the RX2P and RX2N.  
Inclusion of the 330 nF capacitors and 220k resistors is optional. The ordered list below details the three  
implementation options for the RX2p/n path.  
Three implementation options for USB connector to TUSB1002A's RX pins:  
1. DC couple TUSB1002A's RX pins to USB connector. No 330 nF capacitors and no 220 kΩ pull-down  
resistors.  
2. 330 nF capacitors with 220 kΩ resistors as depicted in 18. The purpose of 220 kΩ resistors is to  
discharge the capacitor within 250ms after a USB device is removed from the USB connector.  
3. The stub from the 220 kΩ resistor pad may create impedance discontinuities causing negative impact to  
performance. Assuming leakage current from external components is enough to discharge capacitor, 330 nF  
capacitor without the 220 kΩ resistor is a valid option.  
CH2_EQ2  
CH2_EQ1  
USB_VBUS  
CFG2  
J1  
Optional  
VCC_3P3V  
1
VBUS  
2
DM  
HOST_DM  
HOST_DP  
3
U1  
DP  
GND  
4
5
C12  
C13  
TX2P  
RX2P  
C1  
C2  
19  
20  
21  
12  
11  
SSRXN  
HOST_RXP  
HOST_RXN  
330nF  
330nF  
100nF  
100nF  
CONNECT TO  
USB3.1 HOST  
RX2N  
GND  
6
7
8
9
TX2N  
GND  
SSRXP  
GND  
10  
9
C3  
C5  
C4  
C6  
TUSB1002A  
24-PIN RGE  
HOST_TXP  
HOST_TXN  
SSTXN  
SSTXP  
22  
23  
TX1P  
TX1N  
RX1P  
RX1N  
100nF  
100nF  
100nF  
100nF  
8
10  
11  
SHIELD0  
SHIELD1  
24  
25  
MODE  
7
RSVD1  
GND  
R16  
220k  
R15  
220k  
VCC_3P3V  
VCC_3P3V  
1
2
3
4
5
6
USB3_TYPEA_CONNECTER  
R2  
DNI  
C7  
100nF  
VCC_3P3V  
C8  
0.001uF  
R1  
1M  
Optional  
C10  
C11  
C9  
10uF  
100nF  
100nF  
CFG1  
CH1_EQ2  
CH1_EQ1  
Copyright © 2018, Texas Instruments Incorporated  
18. Host Implementation Schematic  
The USB3.2 Dual channel operation is used in this example. Mode pin should be left floating (unconnected)  
when using this mode.  
The TUSB1002A compensates for channel loss in both the upstream (D to C) and downstream direction (A to B).  
This is done by configuring the CH1_EQ[2:1] and CH2_EQ[2:1] pins to the equalization setting that matches as  
close possible to the channel insertion loss. In this particular example, CH1_EQ[2:1] is for path A to B which is  
the channel between USB3.2 host and the TUSB1002A, and CH2_EQ[2:1] is for path C to D which is the  
channel between TUSB1002A and the USB3.2 receptacle.  
The TUSB1002A supports 5 levels of DC gain that are selected by the CFG[2:1] pins. Typically, the DC gain  
should be set to 0 dB but may need to be adjusted to correct any one of the following conditions:  
1. Input VID too high resulting in VOD being greater than USB 3.2 defined swing. For this case, a negative DC  
gain should be used.  
2. Input VID too low resulting in VOD being less than USB 3.2 defined swing. For this case, a positive DC gain  
should be used.  
3. Low frequency discontinuities in the channel resulting in DC component of the signal clipping the vertical eye  
mask. For this case, a positive DC gain should be used.  
20  
版权 © 2018, Texas Instruments Incorporated  
 
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
It is assumed in this example the incoming VID is at the nominal defined USB3.2 range and the channel is linear  
across frequency. The CFG1 and CFG2 pins can both be left floating if these assumptions are true.  
In this particular example, the channel A-B has a trace length of 8 inches with a 4 mil trace width. This particular  
channel has about 0.83 dB per inch of insertion loss at 5 GHz. This equates to approximately 6.7 dB of loss for  
the entire 8 inches of trace. An additional 1.5 dB of loss is added due to package of the USB3.2 Host,  
TUSB1002A, and the A/C coupling capacitor. This brings the entire channel loss at 5 GHz to 6.7 dB + 1.5 dB =  
8.2 dB. A typical USB 3.1 host/device will have around 3 dB of transmitter de-emphasis. Transmitter de-  
emphasis pre-compensates for the loss of the output channel. With 3 dB of de-emphasis, the total equalization  
required by the TUSB1002A is in the 5.2 dB (8.2 dB - 3 dB) range. The channel A-B for this example is  
connected to TUSB1002A's RX1P/N input and therefore CH1_EQ[2:1] pins are used for adjusting TUSB1002A  
RX1P/N equalization settings. The CH1_EQ[2:1] pins should be set such that TUSB1002A equalization is  
between 5dB and 8dB.  
The channel C-D has a trace length of 2 inches with a 4mil trace width. Assuming 0.83 dB per inch of insertion  
loss, the 2 inch trace will equate to about 1.66 dB of loss at 5 GHz. An additional 2dB of loss needs to be added  
due to package, A/C coupling capacitor, and the USB 3.1 receptacle. The total loss is around 3.66 dB. Because  
channel C-D includes a USB 3.1 receptacle, the actual total loss could be much greater than 3.66dB due to the  
fact that devices plugged into the receptacle will also have loss. The device plugged into receptacle will have  
either a short or long channel. USB3.2 standard defines total loss limit of 23dB that is distributed as 8.5 dB for  
Host, 8.5dB for device, and 6.0dB for cable. With variable channel of devices plugged into the USB3.2  
receptacle, configuring TUSB1002A's RX2P/N equalization settings is not as straight forward as Channel A-B.  
Engineer can not set TUSB1002A CH2_EQ[2:1] pins to the largest equalization setting to accommodate the  
largest allowed USB3.2 device/cable loss of 14.5 dB. Doing so will result in TUSB1002A operating outside its  
linear range when a device with short channel is plugged into the receptacle. For this reason, it is recommended  
to configure TUSB1002A CH2_EQ[2:1] pins to equalize a shorter device channel. This will result in requiring  
USB3.2 host to compensate for remaining channel loss for the worse case USB3.2 channel of 14.5 dB. The  
definition of a short device channel is not specified in USB 3.2 specification. Therefore, an engineer must make  
their own loss estimate of what constitutes a short device channel. For particular example, we will assume the  
short channel is around 2 to 3 dB. The device's channel loss will need to be added to estimated Channel C-D  
loss minus the typical 3db of de-emphasis. This means CH2_EQ[2:1] pins should be configured to handle a loss  
of 3 to 5 db.  
8.2.3 Application Curves  
Freq = 5 GHz  
dB(SDD21) = –6.666  
19. Insertion Loss for 8inch 4 mil FR4 Trace  
版权 © 2018, Texas Instruments Incorporated  
21  
 
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.3 Typical SATA, PCIe and SATA Express Application  
Downstream  
A
B
C
D
FR4 trace  
FR4 trace  
of length X  
of length Y  
RXP2  
TXP2  
+
-
+
-
+
-
+
-
TXN2  
RXN2  
SATA/PCIe/  
SATA Express  
Host  
SATA/PCIe/  
SATA Express  
Device  
TUSB1002A  
RXP1  
RXN1  
TXP1  
TXN1  
+
-
+
-
+
-
+
-
Upstream  
20. SATA/PCIe/SATA Express Typical Application  
8.3.1 Design Requirements  
5. Design Parameters  
PARAMETER  
VALUE  
3.3 V  
Yes  
VCC supply (3 V to 3.6 V)  
PCIe Support Required (Yes/No)  
SATA Express Support Required (Yes/No)  
Yes  
Yes, then ferrite beads (FB1 and FB2) and 49.9-ohm required.  
No, then ferrite bead (FB1 and FB2) and 49.9-ohm not required.  
SATA Support Required (Yes/No)  
TX1, TX2, RX2 A/C coupling Capacitor (176 nF to 265 nF)  
RX1 A/C coupling Capacitor (297 nF to 363 nF)  
A to B FR4 Length (inches)  
220 nF ±10%  
Optional. But if implemented suggest 330 nF ±10%  
8
4
2
4
A to B FR4 Trace Width (mils)  
C to D FR4 length (inches)  
C to D FR4 Trace Width (mils)  
Not configurable when MODE = "R", CFG1 = "0", and CFG2 = "0".  
Will always default to 0 dB  
DC Gain (-2, -1, 0, +1, +2)  
Not configurable when MODE = "R", CFG1 = "0", and CFG2 = "0".  
Will always default to 1200mV  
Linear Range (900 mV, 1000 mV, or 1200 mV)  
8.3.2 Detailed Design Procedure  
The MODE pin = "R", CFG1 = "0", and CFG2 = "0" will place the TUSB1002A into PCIe mode. In this mode, the  
TUSB1002A will have its DC gain fixed at 0dB and its linearity range fixed at 1200mV. The TUSB1002A will  
perform far-end receiver termination detection and enable both upstream and downstream paths when far-end  
termination is detected on both TX1 and TX2.  
The AC coupling capacitor range defined for a SATA device is a lot smaller than the AC-coupling capacitor range  
defined for SATA Express and PCI Express (PCIe) as indicated by 21. The AC-coupling capacitor range  
defined for SATA Express and PCI Express is within the same range as the AC-coupling capacitor range defined  
by USB 3.1. The TUSB1002A will be able to detect PCIe and SATA Express device's receiver termination. But  
the SATA 12nF (max) AC-coupling capacitor prevents TUSB1002A from detecting the SATA device receiver  
termination. To correct this problem, a ferrite bead along with 49.9 ohm resistor must be placed between CTX2  
and miniCard/mSATA socket. These components can be isolated from the high-speed channel when PCIe or  
SATA Express is active by using an NFET as shown in 22. The NFET should be enabled whenever a SATA  
22  
版权 © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
device is present. The ferrite bead chosen must present at least 600 ohms impedance at 100MHz so as to not  
impact high-speed signalling. It is recommended to use Murata BLM03AG601SN1 or BLM03HD601SN1D or a  
ferrite bead with similar characteristics from a different vendor. For applications which only require support for  
PCIe and SATA Express and do not need to support SATA, the ferrite beads and 49.9 ohm resistors are not  
needed.  
12nF (max)  
176nF t 265nF  
+
-
+
-
+
-
SATA  
Express  
Device  
SATA  
Device  
PCIe  
Device  
+
-
+
-
+
-
75nF t 265nF  
21. AC-Coupling capacitor Implementation for SATA, SATA Express, and PCIe Devices  
The TUSB1002A power is at P(U0_SSP_1200mV) when both its upstream and downstream paths are enabled. In  
order to save system power in system S3/S4/S5 states, it is suggested to control the TUSB1002A EN pin.  
Anytime the system enters a low power state (S3, S4, or S5), it is suggested to de-assert the EN pin. While EN  
pin is de-asserted, the TUSB1002A will consume P(SHUTDOWN). Assertion of this pin is necessary anytime the  
system exits a lower power state.  
The TUSB1002A compensates for channel loss in both the upstream (C to D) and downstream direction (A to B).  
This is done by configuring the CH1_EQ[2:1] and CH2_EQ[2:1] pins to the equalization setting that matches as  
close possible to the channel insertion loss. In this particular example, CH2_EQ[2:1] is for path A to B which is  
the channel between PCIe/SATA/SATA Express host and the TUSB1002A, and CH1_EQ[2:1] is for path C to D  
which is the channel between TUSB1002A and the miniCard/mSATA socket.  
In this particular example, the channel A-B has a trace length of 8 inches with a 4 mil trace width. This particular  
channel has about 0.83 dB per inch of insertion loss at 5 GHz. This equates to approximately 6.7 dB of loss for  
the entire 8 inches of trace as depicted in 19. An additional 1.5 dB of loss is added due to package of the  
PCIe/SATA/SATA Express Host, TUSB1002A, and the A/C coupling capacitor. This brings the entire channel  
loss at 5 GHz to 6.7 dB + 1.5 dB = 8.2 dB. The channel A-B for this example is connected to TUSB1002A  
RX2P/N input and therefore CH2_EQ[2:1] pins are used for adjusting TUSB1002A RX2P/N equalization settings.  
The CH2_EQ[2:1] pins should be set such that TUSB1002A equalization is between 5dB and 8dB. A value closer  
to 5 dB maybe best if Host has transmitter de-emphasis.  
A similar method should be used for the upstream path (C to D). In this particular example, C to D has a trace  
length of 2 inches with a 4-mil trace width. This equates to approximately 1.5 dB at 5 GHz. The SATA/SATA  
Express/PCIe device will have its own channel loss. This loss can be added to the C to D channel loss. For this  
example, we will assume a value of 5dB is acceptable to compensate for C to D channel loss as well as loss  
associated with the SATA/SATA Express/PCIe device. The CH1_EQ[2:1] pins should be set such that  
TUSB1002A equalization is 5dB.  
版权 © 2018, Texas Instruments Incorporated  
23  
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
VCC (3.3V)  
VCC (3.3V)  
REQ2A  
100nF  
10 µF  
100nF  
REQ2B  
VCC (3.3V)  
REQ2C  
SATA_EN  
REQ2D  
10YQ  
49.9Q  
49.9Q  
FB2  
FB1  
CRX2  
CTX2  
TX2P  
TX2N  
GND  
RX1P  
RX1N  
MODE  
RX2P  
RX2N  
GND  
TX1P  
TX1N  
RSVD1  
+
-
SATA/PCIe/  
SATA Express  
TUSB1002A  
Host  
+
-
CRX1  
CTX1  
20YQ  
VCC (3.3V)  
0-Q  
GPIO (S3/S3/S5 indicator)  
REQ1A  
REQ1B  
VCC (3.3V)  
REQ1C  
REQ1D  
22. Example SATA/PCIe/SATA Express Schematic  
24  
版权 © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
8.3.3 Application Curves  
23. PCIe Gen1 TX Eye Diagram  
24. PCIe Gen 3 TX Eye Diagram  
9 Power Supply Recommendations  
The TUSB1002A has two VCC supply pins. It is recommended to place a 100 nF de-coupling capacitor near each  
of the VCC pins. It is also recommended to have at least one bulk capacitor of at least 10 µF on the VCC plane  
near the TUSB1002A.  
10 Layout  
10.1 Layout Guidelines  
RXP/N and TXP/N pairs should be routed with controlled 90-Ω differential impedance (±15%).  
Keep away from other high speed signals.  
In USB3 applications maintaining polarity thru the TUSB1002A is not necessary. Therefore it is recommended  
to connect polarity in such a way that produces the best routing.  
Intra-pair routing should be kept to within 2 mils.  
Intra-pair length matching should be near the location of mismatch.  
Inter-pair length matching is not necessary.  
Each pair should be separated at least by 3 times the signal trace width.  
The use of bends in differential traces should be kept to a minimum. When bends are used, the number of left  
and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
minimizes any length mismatch causes by the bends; ad therefore, minimize the impact bends have on EMI.  
Route all differential pairs on the same of layer.  
The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
When using thru-hole USB connectors, it is recommend to route differential pairs on bottom layer in order to  
minimize the stub created by the thru-hole connector.  
Adding Test points causes impedance discontinuity; and therefore, negatively impact signal performance. If  
test points are used, they should be placed in series and symmetrically. They must not be placed in a manner  
that causes a stub on the differential pair.  
版权 © 2018, Texas Instruments Incorporated  
25  
TUSB1002A  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
10.2 Layout Example  
Example 4 layer PCB Stackup  
Top Layer 1 (Signal)  
Inner Layer 2 (GND)  
Inner Layer 3 (VCC)  
Bottom Layer 4 (Signal)  
Place near TUSB1002A  
Via to layer 2 (GND)  
Via to layer 3 (VCC)  
Place near TUSB1002A  
or USB 3.1 receptacle  
18  
13  
19  
12  
24  
7
Place near TUSB1002A  
or USB 3.1 receptacle  
1
6
Place near TUSB1002A.  
25. Example Layout  
26  
版权 © 2018, Texas Instruments Incorporated  
TUSB1002A  
www.ti.com.cn  
ZHCSHW9A MARCH 2018REVISED NOVEMBER 2018  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB1002AIRGER  
TUSB1002AIRGET  
TUSB1002ARGER  
TUSB1002ARGET  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
24  
24  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 70  
TUSB  
1002A  
ACTIVE  
ACTIVE  
ACTIVE  
RGE  
NIPDAU  
NIPDAU  
NIPDAU  
TUSB  
1002A  
RGE  
TUSB  
1002A  
RGE  
0 to 70  
TUSB  
1002A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Nov-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB1002AIRGER  
TUSB1002AIRGET  
TUSB1002ARGER  
TUSB1002ARGET  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Nov-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB1002AIRGER  
TUSB1002AIRGET  
TUSB1002ARGER  
TUSB1002ARGET  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TUSB1002IRGET

USB3.1 10Gbps Dual Channel Linear Redriver 24-VQFN -40 to 85
TI

TUSB1002IRMQR

USB3.1 10Gbps Dual Channel Linear Redriver 24-WQFN -40 to 85
TI

TUSB1002IRMQT

USB3.1 10Gbps Dual Channel Linear Redriver 24-WQFN -40 to 85
TI

TUSB1002RGER

USB3.1 10Gbps 双通道线性转接驱动器 | RGE | 24 | 0 to 70
TI

TUSB1002RGET

USB3.1 10Gbps 双通道线性转接驱动器 | RGE | 24 | 0 to 70
TI

TUSB1002RMQR

USB3.1 10Gbps Dual Channel Linear Redriver 24-WQFN 0 to 70
TI

TUSB1004

10 Gbps USB 3.2 4 通道自适应线性转接驱动器
TI

TUSB1004IRNQR

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1004IRNQT

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1004RNQR

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1004RNQT

10 Gbps USB 3.2 4 通道自适应线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1042I

10Gbps USB Type-C 2:1 线性转接驱动器开关
TI