TUSB4041IPAPR [TI]

4 端口高速 480Mbps USB 2.0 集线器 | PAP | 64 | -40 to 85;
TUSB4041IPAPR
型号: TUSB4041IPAPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 端口高速 480Mbps USB 2.0 集线器 | PAP | 64 | -40 to 85

文件: 总49页 (文件大小:1666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
TUSB4041I 四端口 USB 2.0 集线器  
1 特性  
兼容 Type C  
无特殊驱动程序要求;可与任一支持 USB 堆叠的  
操作系统无缝工作  
1
四端口 USB 2.0 集线器  
USB 2.0 集线器 特性  
64 引脚耐热增强型薄型四方扁平 (HTQFP) 封装  
(PAP)  
多事务转换器 (MTT) 集线器:四个事务转换器  
每个事务转换器具有四个异步端点缓冲器  
支持 USB 电池充电  
2 应用  
充电下行端口 (CDP) 模式(上行端口已连接)  
专用充电端口 (DCP) 模式(上行端口未连接)  
计算机系统  
扩展坞  
监视器  
机顶盒  
DCP 模式符合中国电信行业标准 YD/T 1591-  
2009  
支持 D+ D– 分压器模式  
支持每端口或成组电源开关以及过流告知输入  
3 说明  
可使用一次性可编程 (OTP) 只读存储器 (ROM)、  
串行 EEPROM I2C SMBus 受控接口进行自  
定义配置:  
TUSB4041I 器件是一款四端口 USB 2.0 集线器。该器  
件可在上行端口上提供 USB 高速或全速连接。该器件  
还可在下行端口上提供 USB 高速、全速或者低速连  
接。当上行端口连接至仅支持高速、全速和低速连接的  
电气环境中时,下行端口上的高速、全速和低速 USB  
连接被启用。当上行端口被连接到一个只支持全速或低  
速连接的电气环境中时,下行端口上的 USB 高速连接  
被禁用。  
VID PID  
可定制的端口  
生产商和产品字串(OTP ROM 不支持)  
序列号(OTP ROM 不支持)  
可使用引脚选择或 EEPROMI2C SMBus 受控  
接口选择应用特性  
器件信息(1)  
提供 128 位通用唯一标识符 (UUID)  
支持通过 USB 2.0 上行端口进行板载和系统内  
OTP EEPROM 编程  
器件型号  
TUSB4041I  
封装  
封装尺寸(标称值)  
HTQFP (64)  
10.00mm x 10.00mm  
单时钟输入,24MHz 晶振或者振荡器  
DM/DP 极性交换  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
Type A  
Port  
USB2  
WebCAM  
Personal  
TUSB4041I  
Computer  
USB 1.1  
Mouse  
TI  
USB 1.1  
Keyboard  
USB 2.0 Connection  
USB 1.x Connection  
USB 2.0 Hub  
USB 2.0 Port  
USB 2.0 Device  
USB 1.1 Device  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEK3  
 
 
 
 
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
8.5 Register Maps......................................................... 16  
Application and Implementation ........................ 29  
9.1 Application Information............................................ 29  
9.2 Typical Application .................................................. 29  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings ............................................................ 8  
7.3 Recommended Operating Conditions....................... 9  
7.4 Thermal Information.................................................. 9  
7.5 3.3-V I/O Electrical Characteristics ........................... 9  
7.6 Power-Up Timing Requirements............................. 10  
7.7 Hub Input Supply Current ....................................... 10  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 15  
9
10 Power Supply Recommendations ..................... 36  
10.1 TUSB4041I Power Supply .................................... 36  
10.2 Downstream Port Power ....................................... 36  
10.3 Ground .................................................................. 36  
11 Layout................................................................... 37  
11.1 Layout Guidelines ................................................. 37  
11.2 Layout Example .................................................... 38  
12 器件和文档支持 ..................................................... 39  
12.1 文档支持................................................................ 39  
12.2 接收文档更新通知 ................................................. 39  
12.3 社区资源................................................................ 39  
12.4 ....................................................................... 39  
12.5 静电放电警告......................................................... 39  
12.6 Glossary................................................................ 39  
13 机械、封装和可订购信息....................................... 40  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (July 2017) to Revision E  
Page  
Changed smbusRst From: Bit 6 To: Bit 1, and cfgActive1 From: Bit 5 To: Bit 0 Table 25 ................................................. 28  
Changes from Revision C (September 2016) to Revision D  
Page  
Deleted paragraph: "Each bit corresponds directly to a downstream port. For example: used0 corresponds to  
downstream port 1, used1 corresponds to downstream port 2, and so on. All combinations are supported with the  
exception of both ports 1 and 3 marked as disabled." from Table 12.................................................................................. 21  
Changes from Revision B (December 2015) to Revision C  
Page  
Added SMBUS Programming current to Hub Input Supply Current .................................................................................... 10  
Added NOTE to the SMBus Slave Operation section ......................................................................................................... 15  
Added text "This device will always report the XORed PID LSB value of 0x42" to the Description of Table 7 .................. 18  
Changes from Revision A (September 2015) to Revision B  
Page  
Changed the configuration of the PWRCTL_POL pin (R17) in the Clock, Reset, and Miscellaneous section.................... 34  
Changes from Original (July 2015) to Revision A  
Page  
Changed pin number for USB_DP_DN1 and USB_DP_DN2 in the Pin Functions table ...................................................... 6  
2
版权 © 2015–2017, Texas Instruments Incorporated  
 
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
5 说明 (续)  
TUSB4041I 器件支持每端口或者成组电源开关和过流保护。该器件还支持电池充电 应用。  
单独控制端口电源型集线器会根据 USB 主机请求为每个下行端口开启或关闭电源。另外,当单独控制端口电源型  
集线器感测到过流事件时,仅为受影响的下行端口关闭电源。  
当任一端口需要电源时,成组集线器将开启所有下行端口的电源。只有当所有端口均处于可关闭电源的状态时,才  
会关闭下行端口的电源。另外,当成组集线器感测到过流事件时,将关闭所有下行端口的电源。  
TUSB4041I 器件下行端口可提供 USB 电池充电下行端口 (CDP) 握手 支持, 从而为电池充电应用提供支持。未连  
接上行端口时,该器件还支持专用充电端口 (DCP) 模式。DCP 模式符合 USB 电池充电规范和中国电信行业标准  
YD/T 1591-2009。此外,未连接上行端口时,自动模式能够为 BC 器件以及支持分压器模式充电解决方案的器件提  
供透明支持。  
TUSB4041I 器件能够为包括电池充电支持在内的部分 功能 提供引脚搭接配置,还能够通过 OTP ROMI2C  
EEPROM 或通过 I2C SMBus 从设备接口为 PIDVID 以及自定义端口和物理层配置提供定制支持。使用 I2C  
EEPROM I2C SMBus 受控接口时,还可以提供定制字串支持。  
该器件采用 64 引脚 PAP 封装,工业版的工作温度范围为 -40°C 85°C。  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
PAP Package  
64-Pin HTQFP With PowerPAD™  
Top View  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
USB_DP_DN3  
USB_DM_DN3  
RSVD  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
USB_R1  
VDD33  
XI  
RSVD  
XO  
NC  
V
DD  
RSVD  
RSVD  
RSVD  
RSVD  
USB_DP_DN4  
USB_DM_DN4  
RSVD  
V
DD  
RSVD  
RSVD  
RSVD  
59  
60  
22  
21  
USB_DM_UP  
USB_DP_UP  
VDD33  
V
DD  
RSVD  
RSVD  
61  
62  
20  
19  
V
DD  
63  
64  
18  
17  
GRSTz  
TEST  
V
DD  
PWRCTL4/BATEN4  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
NC = No internal connection  
Pin Functions  
PIN  
I/O(1) TYPE(1)  
DESCRIPTION  
NAME  
NO.  
CLOCK AND RESET SIGNALS  
Global power reset. This reset brings all of the TUSB4041I device internal registers to  
the default state. When the GRSTz pin is asserted, the device is completely  
nonfunctional.  
GRSTz  
XI  
18  
30  
I
I
PU  
Crystal input. This pin is the crystal input for the internal oscillator. The input may  
alternately be driven by the output of an external oscillator. When using a crystal, a 1-  
Mfeedback resistor is required between the XI and XO pins.  
(1) I = Input, O = Output, I/O = Input/output, PU = Internal pullup resistor, PD = Internal pulldown resistor, and PWR = Power signal  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
Pin Functions (continued)  
PIN  
NAME  
I/O(1) TYPE(1)  
DESCRIPTION  
NO.  
Crystal output. This pin is the crystal output for the internal oscillator. If the XI pin is  
driven by an external oscillator, this pin may be left unconnected. When using a  
crystal, a 1-Mfeedback resistor is required between the XI and XO pins.  
XO  
29  
O
USB UPSTREAM SIGNALS  
USB_DM_UP  
USB_DP_UP  
22  
I/O  
I/O  
I
USB high-speed differential transceiver (negative)  
USB high-speed differential transceiver (positive)  
21  
Precision resistor reference. Connect a 9.53-k±1% resistor between the USB_R1  
pin and ground.  
USB_R1  
32  
I
USB upstream port power monitor. The VBUS detection requires a voltage divider.  
The signal USB_VBUS must be connected to VBUS through a 90.9-k±1% resistor  
and to ground through a 10-k±1% resistor from the signal to ground.  
USB_VBUS  
16  
USB DOWNSTREAM SIGNALS  
USB port 1 overcurrent detection. This pin is used to connect the overcurrent output  
of the downstream port power switch for port 1.  
0 = An overcurrent event occurred.  
OVERCUR1z  
14  
15  
12  
11  
4
I
PU  
1 = An overcurrent event has not occurred.  
This pin can be left unconnected if power management is not implemented. If power  
management is enabled, the necessary external circuitry should be determined by the  
power switch.  
USB port 2 overcurrent detection. This pin is used to connect the overcurrent output  
of the downstream port power switch for port 2.  
0 = An overcurrent event occurred.  
OVERCUR2z  
I
I
PU  
PU  
PU  
PD  
PD  
1 = An overcurrent event has not occurred.  
If power management is not implemented, leave this pin unconnected. If power  
management is enabled, the necessary external circuitry should be determined by the  
power switch.  
USB port 3 overcurrent detection. This pin is used to connect the overcurrent output  
of the downstream port power switch for port 3.  
0 = An overcurrent event occurred.  
OVERCUR3z  
1 = An overcurrent event has not occurred.  
This pin can be left unconnected if power management is not implemented. If power  
management is enabled, the necessary external circuitry should be determined by the  
power switch.  
USB port 4 overcurrent detection. This pin is used to connect the overcurrent output  
of the downstream port power switch for port 4.  
0 = An overcurrent event occurred.  
OVERCUR4z  
I
1 = An overcurrent event has not occurred.  
This pin can be left unconnected if power management is not implemented. If power  
management is enabled, the necessary external circuitry should be determined by the  
power switch.  
USB port 1 power-on control for downstream power and battery charging enable. The  
pin is used for control of the downstream power switch for port 1.  
The value of the pin is sampled at the deassertion of reset to determine the value of  
the battery charging support for port 1 as indicated in the Battery Charging Support  
Register:  
PWRCTL1/BATEN1  
PWRCTL2/BATEN2  
I/O  
I/O  
0 = Battery charging not supported  
1 = Battery charging supported  
USB port 2 power-on control for downstream power and battery charging enable. The  
pin is used for control of the downstream power switch for port 2.  
The value of the pin is sampled at the deassertion of reset to determine the value of  
the battery charging support for Port 2 as indicated in the Battery Charging Support  
Register:  
3
0 = Battery charging not supported  
1 = Battery charging supported  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1) TYPE(1)  
DESCRIPTION  
NAME  
NO.  
USB port 3 power-on control for downstream power and battery charging enable. The  
pin is used for control of the downstream power switch for port 3.  
The value of the pin is sampled at the deassertion of reset to determine the value of  
the battery charging support for Port 3 as indicated in the Battery Charging Support  
Register:  
PWRCTL3/BATEN3  
1
I/O  
I/O  
PD  
PD  
0 = Battery charging not supported  
1 = Battery charging supported  
USB port 4 power-on control for downstream power and battery charging enable. The  
pin is used for control of the downstream power switch for port 4.  
The value of the pin is sampled at the deassertion of reset to determine the value of  
the battery charging support for Port 4 as indicated in the Battery Charging Support  
Register:  
PWRCTL4/BATEN4  
64  
0 = Battery charging not supported  
1 = Battery charging supported  
USB_DM_DN1  
USB_DM_DN2  
USB_DM_DN3  
USB_DM_DN4  
USB_DP_DN1  
USB_DP_DN2  
USB_DP_DN3  
USB_DP_DN4  
34  
42  
50  
57  
33  
41  
49  
56  
I/O  
I/O  
USB high-speed differential transceiver (negative)  
USB high-speed differential transceiver (positive)  
I2C AND SMBus SIGNALS  
I2C clock/SMBus clock. The function of this pin depends on the setting of the  
SMBUSz input.  
When SMBUSz = 1, this pin functions as the serial clock interface for an I2C  
EEPROM.  
SCL/SMBCLK  
6
I/O  
I/O  
PD  
PD  
When SMBUSz = 0, this pin functions as the serial clock interface for an SMBus  
host.  
This pin can be left unconnected if external interface not implemented.  
I2C data/SMBus data. The function of this pin depends on the setting of the SMBUSz  
input.  
When SMBUSz = 1, this pin functions as the serial data interface for an I2C  
EEPROM.  
SDA/SMBDAT  
5
When SMBUSz = 0, this pin functions as the serial data interface for an SMBus  
host.  
This pin can be left unconnected if the external interface is not implemented.  
I2C/SMBus mode select. The value of the pin is sampled at the deassertion of reset  
set I2C or SMBus mode as follows:  
1 = I2C mode selected  
0 = SMBus mode selected  
SMBUSz  
7
I/O  
PU  
This pin can be left unconnected if the external interface is not implemented.  
After reset, this signal is driven low by the TUSB4041I. Because of this behavior, TI  
recommends not to tie directly to supply, but instead pull up or pull down using  
external resistor.  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
Pin Functions (continued)  
PIN  
NAME  
I/O(1) TYPE(1)  
DESCRIPTION  
NO.  
TEST AND MISCELLANEOUS SIGNALS  
Automatic charge mode enable/HS suspend status  
The value of the pin is sampled at the deassertion of reset to determine if automatic  
mode is enabled as follows:  
0 = Automatic mode is enabled on ports that are enabled for battery charging when  
the hub is unconnected. Note that CDP is not supported on port 1 when operating  
in automatic mode.  
AUTOENz/  
HS_SUSPEND  
13  
I/O  
PU  
1 = Automatic mode is disabled.  
This value is also used to set the autoEnz bit in the Battery Charging Support  
Register.  
After reset, this signal indicates the high-speed USB Suspend status of the upstream  
port if enabled through the Additional Feature Configuration Register. When enabled,  
a value of 1 indicates the connection is suspended.  
Full power management enable/SMBus address bit 1  
The value of the pin is sampled at the deassertion of reset to set the power switch  
control follows:  
0 = Power switching and overcurrent inputs supported  
1 = Power switching and overcurrent inputs not supported  
Full power management is the ability to control power to the downstream ports of the  
TUSB4041I device using PWRCTL[4:1]/BATEN[4:1].  
FULLPWRMGMTz/  
SMBA1  
8
I/O  
PD  
When SMBus mode is enabled using SMBUSz, this pin sets the value of the SMBus  
slave address bit 1.  
This pin can be left unconnected if full power management and SMBus are not  
implemented.  
After reset, this signal is driven low by the TUSB4041I. Because of this behavior, TI  
recommends not to tie directly to supply, but instead pull up or pull down using an  
external resistor.  
Note: Power switching must be supported for battery charging applications.  
Ganged operation enable/SMBus address bit 2/HS connection status upstream port  
The value of the pin is sampled at the deassertion of reset to set the power switch  
and overcurrent detection mode as follows:  
0 = Individual power control supported when power switching is enabled  
1 = Power control gangs supported when power switching is enabled  
GANGED/SMBA2/  
HS_UP  
When SMBus mode is enabled using SMBUSz, this pin sets the value of the SMBus  
slave address bit 2.  
10  
I/O  
PD  
After reset, this signal indicates the high-speed USB connection status of the  
upstream port if enabled through the Additional Feature Configuration Register. When  
enabled, a value of 1 indicates the upstream port is connected to a high-speed USB  
capable port.  
Note: Individual power control must be enabled for battery charging applications.  
Power control polarity.  
The value of the pin is sampled at the deassertion of reset to set the polarity of  
PWRCTL[4:1].  
PWRCTL_POL  
9
I/O  
I/O  
PU  
0 = PWRCTL polarity is active low  
1 = PWRCTL polarity is active high  
23, 24,  
26, 27,  
35, 36,  
38, 39,  
43, 44,  
46, 47,  
51, 52,  
54, 55,  
58, 59,  
61, 62  
RSVD  
Reserved. For internal use only and leave unconnected on the PCB.  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1) TYPE(1)  
DESCRIPTION  
NAME  
NO.  
TEST  
17  
I
PD  
This pin is reserved for factory test.  
No connection, leave floating  
POWER AND GROUND SIGNALS  
28  
NC  
40  
19  
25  
37  
VDD  
45  
53  
60  
63  
2
PWR  
1.1-V power rail  
20  
31  
48  
VDD33  
PWR  
3.3-V power rail  
Thermal Pad  
Ground. The thermal pad must be connected to ground.  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–65  
MAX  
1.4  
UNIT  
V
VDD steady-state supply voltage  
Supply voltage  
VDD33 steady-state supply voltage  
3.8  
V
USB_VBUS pin  
1.4  
V
Voltage  
XI pins  
2.45  
3.8  
V
All other pins  
V
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed as Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated as Recommended Operating Conditions  
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.99  
3
NOM  
1.1  
MAX  
1.26  
3.6  
UNIT  
V
(1)  
VDD  
1.1-V supply voltage  
VDD33  
3.3-V supply voltage  
3.3  
V
V(USB_VBUS)  
Voltage at USB_VBUS pin  
Operating free-air temperature  
Operating junction temperature  
0
1.155  
85  
V
TA  
TJ  
–40  
–40  
°C  
°C  
105  
(1) A 1.05-V, 1.1-V, or 1.2-V supply may be used as long as minimum and maximum supply conditions are met.  
7.4 Thermal Information  
TUSB4041I  
PAP (HTQFP)  
64 PINS  
26.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
11.5  
10.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
10.3  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 3.3-V I/O Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
High-level input voltage(1)  
OPERATION  
VDD33  
TEST CONDITIONS  
MIN  
2
TYP  
MAX UNIT  
VIH  
VIL  
VDD33  
0.55  
V
JTAG pins only  
0
Low-level input voltage(1)  
VDD33  
V
Other pins  
0
0.8  
VI  
Input voltage  
Output voltage(2)  
0
VDD33  
V
V
VO  
tt  
0
VDD33  
Input transition time (tr and tf)  
Input hysteresis(3)  
0
25  
ns  
V
Vhys  
VOH  
VOL  
IOZ  
0.13 x VDD33  
High-level output voltage  
Low-level output voltage  
High-impedance, output current(2) VDD33  
VDD33  
VDD33  
IOH = –4 mA  
IOL = 4 mA  
2.4  
V
0.4  
V
VI = 0 to VDD33  
±20  
µA  
High-impedance, output current  
IOZ(P) with internal pullup or pulldown  
resistor(4)  
VDD33  
VDD33  
VI = 0 to VDD33  
VI = 0 to VDD33  
±250  
±15  
µA  
µA  
II  
Input current(5)  
(1) Applies to external inputs and bidirectional buffers.  
(2) Applies to external outputs and bidirectional buffers.  
(3) Applies to GRSTz.  
(4) Applies to pins with internal pull-ups and pull-downs.  
(5) Applies to external input buffers.  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.6 Power-Up Timing Requirements  
MIN  
NOM  
MAX UNIT  
(2)  
td1  
VDD33 stable before VDD stable(1)  
See  
ms  
ms  
µs  
td2  
VDD and VDD33 stable before deassertion of GRSTz  
Setup for MISC inputs(3) sampled at the deassertion of GRSTz  
Hold for MISC inputs(3) sampled at the deassertion of GRSTz  
VDD33 supply ramp requirements  
3
0.1  
0.1  
0.2  
0.2  
tsu_io  
thd_io  
µs  
tVDD33_RAMP  
tVDD_RAMP  
100  
100  
ms  
ms  
VDD supply ramp requirements  
(1) An active reset is required if the VDD33 supply is stable before the VDD11 supply. This active Reset shall meet the 3ms power-up delay  
counting from both power supplies being stable to the de-assertion of GRSTz.  
(2) The VDD33 and VDD have no power-on relationship unless GRSTz is only connected to a capacitor to GND. Then VDD must be stable  
minimum of 10 μs before the VDD33.  
(3) MISC pins sampled at de-assertion of GRSTz: FULLPWRMGMTz, GANGED, PWRCTL_POL, SMBUSz, BATEN[4:1], and AUTOENz.  
t
d2  
GRSTz  
VDD33  
t
d1  
VDD  
t
t
hd_io  
su_io  
MISC_IO  
Figure 1. Power-Up Timing Requirements  
7.7 Hub Input Supply Current  
Typical values measured at TA = 25°C  
VDD33  
3.3 V  
VDD  
PARAMETER  
UNIT  
1.1 V  
LOW POWER MODES  
Power on (after reset)  
Upstream disconnect  
Suspend  
2.3  
2.3  
2.5  
28  
28  
33  
mA  
mA  
mA  
ACTIVE MODES (US STATE AND DS STATE)  
2.0 host / 1 HS device  
45  
76  
79  
63  
86  
mA  
mA  
mA  
2.0 host / 4 HS devices  
SMBUS Programming current  
225  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8 Detailed Description  
8.1 Overview  
The TUSB4041I device is a four-port USB 2.0 hub. The device provides USB high-speed and full-speed  
connections on the upstream port and provides USB high-speed, full-speed, or low-speed connections on the  
downstream ports. When the upstream port is connected to an electrical environment that only supports high-  
speed connections. USB high-speed connectivity is enabled on the downstream ports. When the upstream port  
is connected to an electrical environment that only supports full-speed and low-speed connections. USB high-  
speed connectivity is disabled on the downstream ports.  
8.2 Functional Block Diagram  
VDD33  
VDD  
VSS  
VBUS  
Detect  
Power  
Distribution  
USB 2.0 Hub  
XI  
Oscillator  
XO  
Clock  
and  
Reset  
GRSTz  
TEST  
Distribution  
GANGED/SMBA2/HS_UP  
FULLPWRMGMTz/SMBA1  
PWRCTL_POL  
SMBUSz  
AUTOENz/HS_SUSPEND  
SCL/SMBCLK  
OTP  
ROM  
Control  
Registers  
SDA/SMBDAT  
OVERCUR1z  
PWRCTL1/BATEN1  
GPIO  
I2C  
SMBUS  
OVERCUR2z  
PWRCTL2/BATEN2  
OVERCUR3z  
PWRCTL3/BATEN3  
OVERCUR4z  
PWRCTL4/BATEN4  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Battery Charging Features  
The TUSB4041I device provides support for USB battery charging. Battery charging support may be enabled on  
a per port basis through the REG_6h(batEn[3:0]).  
Battery charging support includes both CDP and DCP modes. The DCP mode is compliant with the Chinese  
Telecommunications Industry Standard YD/T 1591-2009.  
In addition to standard DCP mode, the TUSB4041I device provides a mode (AUTOMODE), which automatically  
provides support for DCP devices and devices that support custom charging indication. When in AUTOMODE,  
the port automatically switches between a divider mode and the DCP mode depending on the portable device  
connected. The divided mode places a fixed DC voltage on the ports DP and DM signals, which allows some  
devices to identify the capabilities of the charger. The default divider mode indicates support for up to 10 W. The  
divider mode can be configured to report  
REG_Ah(HiCurAcpModeEn).  
a
legacy current setting (up to  
5
W) through  
The battery charging mode for each port is dependent on the state of Reg_6h(batEn[n]), the status of the VBUS  
input, and the state of REG_Ah(autoModeEnz) upstream port as identified in Table 1.  
Table 1. TUSB4041I Battery Charging Modes  
BC MODE PORT x  
batEn[n]  
VBUS  
autoModeEnz  
(x = n + 1)  
Don’t Care  
Automode(1)(2)  
DCP(3)(4)  
0
Don’t care  
Don’t care  
0
1
<4 V  
>4 V  
1
Don’t care  
CDP(3)  
(1) Auto-mode automatically selects divider-mode or DCP mode.  
(2) Divider mode can be configured for legacy current mode through register settings.  
(3) Attached USB device is USB battery-charging specification revision 1.2 compliant  
(4) Chinese Telecommunications Industry Standard YD/T 1591-2009  
8.3.2 USB Power Management  
The TUSB4041I device can be configured for power-switched applications using either per-port or ganged  
power-enable controls and overcurrent status inputs.  
Power switch support is enabled by REG_5h(fullPwrMgmtz), and the per-port or ganged mode is configured by  
REG_5h(ganged).  
The TUSB4041I device supports both active-high and active-low power-enable controls. The PWRCTL[4:1]  
polarity is configured by REG_Ah(pwrctlPol).  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8.3.3 One-Time Programmable Configuration  
The TUSB4041I device allows device configuration through one-time programmable (OTP) non-volatile memory.  
The programming of the OTP is supported using vendor-defined USB device requests. Contact TI for details  
using the OTP features  
Table 2 lists features that can be configured using the OTP.  
Table 2. OTP Configurable Features  
CONFIGURATION REGISTER  
BIT FIELD  
DESCRIPTION  
OFFSET  
REG_01h  
REG_02h  
REG_03h  
REG_04h  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Vendor ID LSB  
Vendor ID MSB  
Product ID LSB  
Product ID MSB  
Port-removable configuration for downstream ports 1. OTP configuration is  
inverse of rmbl[3:0], that is 1 = not removable, 0 = removable.  
REG_07h  
REG_07h  
REG_07h  
REG_07h  
[0]  
[1]  
[2]  
[3]  
Port-removable configuration for downstream ports 2. OTP configuration is  
inverse of rmbl[3:0], that is 1 = not removable, 0 = removable.  
Port-removable configuration for downstream ports 3. OTP configuration is  
inverse of rmbl[3:0], that is 1 = not removable, 0 = removable.  
Port-removable configuration for downstream ports 4. OTP configuration is  
inverse of rmbl[3:0], that is 1 = not removable, 0 = removable.  
REG_0Ah  
REG_0Ah  
REG_0Bh  
REG_0Bh  
REG_0Bh  
REG_0Bh  
REG_F0h  
[3]  
[4]  
Enable device attach detection  
High-current divider mode enable  
[0]  
USB 2.0 port polarity configuration for downstream ports 1  
USB 2.0 port polarity configuration for downstream ports 2  
USB 2.0 port polarity configuration for downstream ports 3  
USB 2.0 port polarity configuration for downstream ports 4  
USB power switch power-on delay  
[1]  
[2]  
[3]  
[3:1]  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
 
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.3.4 Clock Generation  
The TUSB4041I device accepts a crystal input to drive an internal oscillator or an external clock source. If a clock  
is provided to the XI pin instead of a crystal, the XO pin is left open. Otherwise, if a crystal is used, the  
connection must follow these guidelines. Because the XI and XO pins are coupled to other leads and supplies on  
the PCB, keep traces as short as possible and away from any switching leads. Minimize the capacitance  
between the XI and XO pins by shielding C1 and C2 with the clean ground lines.  
R1  
10 M  
XI  
XO  
24 MHz  
CL1  
CL2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 2. TUSB4041I Clock  
8.3.5 Crystal Requirements  
The crystal must be fundamental mode with load capacitance of 12 to 24 pF and frequency stability rating of  
±100 PPM or better. To ensure proper startup oscillation condition, TI recommends a maximum crystal  
equivalent series resistance (ESR) of 50 Ω. If a crystal source is used, use a parallel load capacitor. The exact  
load capacitance value used depends on the crystal vendor. Refer to application note Selection and Specification  
for Crystals for Texas Instruments USB 2.0 Devices (SLLA122) for details on how to determine the load  
capacitance value.  
8.3.6 Input Clock Requirements  
When using an external clock source such as an oscillator, the reference clock should have a frequency stability  
of ±100 PPM or better and have less than 50-ps absolute peak-to-peak jitter. Tie XI to the 1.8-V clock source,  
and leave XO floating.  
8.3.7 Power-Up and Reset  
The TUSB4041I device does not have specific power-sequencing requirements with respect to the core power  
(VDD) or I/O and analog power (VDD33). The core power (VDD) or I/O power (VDD33) can be powered up for an  
indefinite period of time while the other is not powered up if all of the following constraints are met:  
Observe all maximum ratings and recommended operating conditions.  
Observe all warnings about exposure to maximum rated and recommended conditions, particularly junction  
temperature. These apply to power transitions and normal operation.  
Limit bus contention to 100 hours over the projected lifetime of the device while VDD33 is powered-up.  
Do not exceed the ratings listed in the Absolute Maximum Ratings table for bus contention while VDD33 is  
powered-down.  
A supply bus is powered-up when the voltage is within the recommended operating range. A supply bus is  
powered-down when it is below that range, and either stable or in transition.  
The device requires a minimum reset duration of 3 ms. This reset duration is defined as the time when the power  
supplies are in the recommended operating range to the deassertion of the GRSTz pin. Generate the reset pulse  
using a programmable-delay supervisory device or using an RC circuit.  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8.4 Device Functional Modes  
8.4.1 External Configuration Interface  
The TUSB4041I device supports a serial interface for configuration register access. The device can be  
configured by an attached I2C EEPROM or accessed as a slave by an SMBus-capable host controller. The  
external interface is enabled when both the SCL/SMBCLK and SDA/SMBDAT pins are pulled up to 3.3 V at the  
deassertion of reset. The mode, I2C master or SMBus slave, is determined by the state of SMBUSz pin at reset.  
8.4.2 I2C EEPROM Operation  
The TUSB4041I device supports a single-master, standard mode (100 kb/s) connection to a dedicated I2C  
EEPROM when the I2C interface mode is enabled. In I2C mode, the TUSB4041I device reads the contents of the  
EEPROM at bus address 1010000b using 7-bit addressing starting at address 0.  
If the value of the EEPROM contents at byte 00h equals 55h, the TUSB4041I device loads the configuration  
registers according to the EEPROM map. If the first byte is not 55h, the TUSB4041I device exits the I2C mode  
and continues execution with the default values in the configuration registers. The hub does not connect on the  
upstream port until the configuration is completed. If the hub detected an unprogrammed EEPROM (value other  
than 55h), the hub enters programming mode and a programming endpoint within the hub is enabled.  
NOTE  
The bytes located above offset Ah are optional. The requirement for data in those  
addresses is dependent on the options configured in the Device Configuration Register  
and Device Configuration Register 2.  
For details on I2C operation, refer to the UM10204 I2C-bus Specification and User Manual.  
8.4.3 SMBus Slave Operation  
When the SMBus interface mode is enabled, the TUSB4041I device supports read block and write block  
protocols as a slave-only SMBus device.  
The TUSB4041I device slave address is 1000 1xyz, where:  
x is the state of GANGED/SMBA2/HS_UP pin at reset  
y is the state of FULLPWRMGMTz/SMBA1 pin at reset  
z is the read-write (R/W) bit; 1 = read access, 0 = write access  
If the TUSB4041I device is addressed by a host using an unsupported protocol, the device does not respond.  
The TUSB4041I device waits indefinitely for configuration by the SMBus host and does not connect on the  
upstream port until the SMBus host indicates configuration is complete by clearing the CFG_ACTIVE bit.  
For details on SMBus requirements, refer to the System Management Bus (SMBus) Specification.  
NOTE  
During the SMBUS configuration the hub may draw an extra current, this extra current  
consumption will end as soon as the CFG_ACTIVE bit is cleared. For more information  
refer to Hub Input Supply Current section in this datasheet.  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5 Register Maps  
8.5.1 Configuration Registers  
The internal configuration registers are accessed on byte boundaries. The configuration register values are  
loaded with defaults, but can be overwritten when the TUSB4041I device is in I2C or SMBus mode.  
Table 3. Memory Map  
BYTE ADDRESS  
00h  
CONTENTS  
ROM Signature Register  
EEPROM CONFIGURABLE  
No  
01h  
Vendor ID LSB  
Yes  
02h  
Vendor ID MSB  
Yes  
03h  
Product ID LSB  
Yes  
04h  
Product ID MSB  
Yes  
05h  
Device Configuration Register  
Battery Charging Support Register  
Device Removable Configuration Register  
Port Used Configuration Register  
Reserved  
Yes  
06h  
Yes  
07h  
Yes  
08h  
Yes  
09h  
Yes, program to 00h  
0Ah  
Device Configuration Register 2  
USB 2.0 Port Polarity Control Register  
Reserved  
Yes  
0Bh  
Yes  
0Ch to 0Fh  
10h to 1Fh  
20h to 21h  
22h  
No  
UUID Byte [15:0]  
No  
LangID Byte [1:0]  
Yes, if customStrings is set  
Serial Number String Length  
Manufacturer String Length  
Product String Length  
Reserved  
Yes, if customSerNum is set  
23h  
Yes, if customStrings is set  
24h  
Yes, if customStrings is set  
25h to 2Fh  
30h to 4Fh  
50h to 8Fh  
90h to CFh  
D0 to DFh  
F0h  
No  
Serial Number String Byte [31:0]  
Manufacturer String Byte [63:0]  
Product String Byte [63:0]  
Reserved  
Yes, if customSerNum is set  
Yes, if customStrings is set  
Yes, if customStrings is set  
No  
Yes  
No  
Additional Feature Configuration Register  
Reserved  
F1 to F7h  
F8h  
Device Status and Command Register  
Reserved  
No  
F9 to FFh  
No  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8.5.2 ROM Signature Register  
Offset = 0h  
Figure 3. ROM Signature Register  
7
6
5
4
3
2
1
0
romSignature  
RW-0  
Table 4. ROM Signature Register Field Descriptions  
Bit  
Field  
Type  
Reset Description  
ROM signature register  
The TUSB4041I device uses this register in I2C mode to validate whether the  
attached EEPROM has been programmed. The first byte of the EEPROM is  
compared to the mask 55h and if not a match, the TUSB4041I device aborts the  
EEPROM load and executes with the register defaults.  
7:0  
romSignature  
RW  
0
8.5.3 Vendor ID LSB Register  
Offset = 1h, reset = 51h  
Figure 4. Vendor ID LSB Register  
7
6
5
4
3
2
1
0
vendorIdLsb[7] vendorIdLsb[6] vendorIdLsb[5] vendorIdLsb[4]  
vendorIdLsb[3:1]  
R/RW-0  
vendorIdLsb[0]  
R/RW-1  
R/RW-0  
R/RW-1  
R/RW-0  
R/RW-1  
Table 5. Vendor ID LSB Register Field Descriptions  
Bit  
7
Field  
Type  
R/RW  
R/RW  
R/RW  
R/RW  
R/RW  
R/RW  
Reset  
Description  
vendorIdLsb[7]  
vendorIdLsb[6]  
vendorIdLsb[5]  
vendorIdLsb[4]  
vendorIdLsb[3:1]  
vendorIdLsb[0]  
0
1
0
1
0
1
Vendor ID LSB  
6
Least significant byte of the unique vendor ID assigned by the USB-IF; the  
default value of this register is 51h representing the LSB of the TI Vendor ID  
0451h. The value may be overwritten to indicate a customer vendor ID.  
5
4
This field is R/W unless the OTP ROM VID and OTP ROM PID values are non-  
zero. If both values are non-zero, the value when reading this register will  
reflect the OTP ROM value.  
3:1  
0
8.5.4 Vendor ID MSB Register  
Offset = 2h, reset = 04h  
Figure 5. Vendor ID MSB Register  
7
6
5
4
3
2
1
0
vendorIdMsb[7:3]  
R/RW-0  
vendorIdMsb[2]  
R/RW-1  
vendorIdMsb[1:0]  
R/RW-0  
Table 6. Vendor ID MSB Register Field Descriptions  
Bit  
7:3  
2
Field  
Type  
R/RW  
R/RW  
Reset Description  
vendorIdMsb[7:3]  
vendorIdMsb[2]  
0
Vendor ID MSB  
1
Most significant byte of the unique vendor ID assigned by the USB-IF; the default  
value of this register is 04h representing the MSB of the TI Vendor ID 0451h. The  
value may be overwritten to indicate a customer vendor ID.  
1:0  
vendorIdMsb[1:0]  
R/RW  
0
This field is R/W unless the OTP ROM VID and OTP ROM PID values are non-zero.  
If both values are non-zero, the value when reading this register shall reflect the  
OTP ROM value.  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.5 Product ID LSB Register  
Offset = 3h, reset = 40h  
Figure 6. Product ID LSB Register  
7
6
5
4
3
2
1
0
productIdLsb[7] productIdLsb[6]  
productIdLsb[5:0]  
R/RW-0  
R/RW-0  
R/RW-1  
Table 7. Product ID LSB Register Field Descriptions  
Bit  
7
Field  
Type  
R/RW  
R/RW  
Reset  
Description  
productIdLsb[7]  
productIdLsb[6]  
0
1
Product ID LSB.  
6
The default value of this register is 40h representing the LSB of the product  
ID assigned by TI. The value reported in the USB 2.0 device descriptor is  
the value of this register bit wise XORed with 00000010b. This device will  
always report the XORed PID LSB value of 0x42. The value may be  
overwritten to indicate a customer product ID.  
5:0  
productIdLsb[5:0]  
R/RW  
0
This field is R/W unless the OTP ROM VID and OTP ROM PID values are  
non-zero. If both values are non-zero, the value when reading this register  
will reflect the OTP ROM value.  
8.5.6 Product ID MSB Register  
Offset = 4h, reset = 81h  
Figure 7. Product ID MSB Register  
7
6
5
4
3
2
1
0
productIdMsb[7]  
R/RW-1  
productIdMsb[6:1]  
R/RW-0  
productIdMsb[0]  
R/RW-1  
Table 8. Product ID MSB Register Field Descriptions  
Bit  
7
Field  
Type  
R/RW  
R/RW  
Reset Description  
productIdMsb[7]  
1
Product ID MSB  
6:1  
productIdMsb[6:1]  
0
Most significant byte of the product ID assigned by TI; the default value of this  
register is 81h representing the MSB of the product ID assigned by TI. The  
value may be overwritten to indicate a customer product ID.  
0
productIdMsb[0]  
R/RW  
1
This field is R/W unless the OTP ROM VID and OTP ROM PID values are  
non-zero. If both values are non-zero, the value when reading this register will  
reflect the OTP ROM value.  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8.5.7 Device Configuration Register  
Offset = 5h  
Figure 8. Device Configuration Register  
7
6
5
4
3
2
1
0
customStrings customSernum  
RW-0 RW-0  
RSVD  
RW-0  
RSVD  
R-1  
ganged  
RW-X  
fullPwrMgmtz  
RW-X  
RSVD  
RW-0  
RSVD  
R-0  
Table 9. Device Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset Description  
Custom strings enable  
This bit controls the ability to write to the Manufacturer String Length, Manufacturer  
String, Product String Length, Product String, and Language ID registers  
0 = The Manufacturer String Length, Manufacturer String, Product String  
Length, Product String, and Language ID registers are read only.  
7
customStrings  
RW  
0
1 = The Manufacturer String Length, Manufacturer String, Product String  
Length, Product String, and Language ID registers may be loaded by  
EEPROM or written by SMBus.  
The default value of this bit is 0.  
Custom serial number enable  
This bit controls the ability to write to the serial number registers.  
0 = The Serial Number String Length and Serial Number String registers are  
read only.  
6
customSernum  
RW  
0
1 = Serial Number String Length and Serial Number String registers may be  
loaded by EEPROM or written by SMBus.  
The default value of this bit is 0.  
5
4
RSVD  
RSVD  
RW  
R
0
1
Reserved.  
Reserved. This bit is reserved and returns 1 when read.  
Ganged  
This bit is loaded at the deassertion of reset with the value of the  
GANGED/SMBA2/HS_UP pin.  
0 = Each port is individually power switched and enabled by the  
PWRCTL[4:1]/BATEN[4:1] pins.  
3
ganged  
RW  
X
1 = The power switch control for all ports is ganged and enabled by the  
PWRCTL[4:1]/BATEN1 pin.  
When the TUSB4041I device is in I2C mode, the TUSB4041I device loads this bit  
from the contents of the EEPROM.  
When the TUSB4041I device is in SMBUS mode, the value may be overwritten by  
an SMBus host.  
Full power management  
This bit is loaded at the deassertion of reset with the value of the  
FULLPWRMGMTz/SMBA1 pin.  
0 = Port power switching status reporting is enabled  
1 = Port power switching status reporting is disabled  
2
fullPwrMgmtz  
RW  
X
When the TUSB4041I device is in I2C mode, the TUSB4041I device loads this bit  
from the contents of the EEPROM.  
When the TUSB4041I device is in SMBUS mode, the value may be overwritten by  
an SMBus host.  
Reserved  
1
0
RSVD  
RSVD  
RW  
R
0
0
This field is reserved and should not be altered from the default.  
Reserved  
This field is reserved and returns 0 when read.  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.8 Battery Charging Support Register  
Offset = 6h  
Figure 9. Battery Charging Support Register  
7
6
5
4
3
2
1
0
RSVD  
R-0  
batEn[3:0]  
RW-X  
Table 10. Battery Charging Support Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:4  
RSVD  
R
0
Read only, returns 0 when read.  
Battery Charger Support. The bits in this field indicate whether the downstream port  
implements the charging port features.  
0 = The port is not enabled for battery charging support features  
1 = The port is enabled for battery charging support features  
3:0  
batEn[3:0]  
RW  
X
Each bit corresponds directly to a downstream port, that is batEn0 corresponds to  
downstream port 1, and batEN1 corresponds to downstream port 2.  
The default value for these bits are loaded at the deassertion of reset with the value  
of PWRCTL/BATEN[3:0].  
When in I2C/SMBus mode the bits in this field may be overwritten by EEPROM  
contents or by an SMBus host.  
8.5.9 Device Removable Configuration Register  
Offset = 7h  
Figure 10. Device Removable Configuration Register  
7
6
5
4
3
2
1
0
customRmbl  
RW-0  
RSVD  
R-0  
rmbl[3:0]  
RW-X  
Table 11. Device Removable Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Custom removable  
This bit controls the ability to write to the port removable bits.  
7
customRmbl  
RSVD  
RW  
0
0 = rmbl[3:0] are read only, and the values are loaded from the OTP ROM.  
1 = rmbl[3:0] are R/W and can be loaded by EEPROM or written by SMBus.  
This bit may be written simultaneously with rmbl[3:0].  
Reserved  
6:4  
3:0  
R
0
Read only, returns 0 when read  
Removable  
The bits in this field indicate whether a device attached to downstream ports 4  
through 1 are removable or permanently attached.  
0 = The device attached to the port is not removable.  
1 = The device attached to the port is removable.  
rmbl[3:0]  
RW  
X
Each bit corresponds directly to a downstream port n + 1, For example: rmbl0  
corresponds to downstream port 1, rmbl1 corresponds to downstream port 2, and  
so on.  
This field is read only unless the customRmbl bit is set to 1. Otherwise, the value of  
this field reflects the inverted values of the OTP ROM non_rmb[3:0] field.  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8.5.10 Port Used Configuration Register  
Offset = 8h  
Figure 11. Port Used Configuration Register  
7
6
5
4
3
2
1
0
RSVD  
R-0  
used[3:0]  
RW-1  
Table 12. Port Used Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Read only  
7:4  
RSVD  
R
0
Used  
The bits in this field indicate whether a port is enabled.  
3:0  
used[3:0]  
RW  
1
0 = The port is disabled.  
1 = The port is enabled.  
8.5.11 Device Configuration Register 2  
Offset = Ah  
Figure 12. Device Configuration Register 2  
7
6
5
4
3
2
1
0
RSVD  
customBCfeatu  
res  
pwrctlPol  
HiCurAcpMode  
En  
cpdEN  
RSVD  
autoModeEnz  
RSVD  
R-0  
RW-0  
RW-X  
R/RW-0  
R/RW-0  
RW-0  
RW-X  
R-0  
Table 13. Device Configuration Register 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7
RSVD  
R
0
Read only, returns 0 when read.  
Custom battery charging feature enable  
This bit controls the ability to write to the battery charging feature configuration  
controls.  
0 = The HiCurAcpModeEn and cpdEN bits are read only and the values  
are loaded from the OTP ROM.  
6
customBCfeatures  
RW  
0
1 = The HiCurAcpModeEn and cpdEN, bits are R/W and can be loaded  
by EEPROM or written by SMBus from this register.  
This bit may be written simultaneously with HiCurAcpModeEn and cpdEN.  
Power enable polarity  
This bit is loaded at the deassertion of reset with the value of the  
PWRCTL_POL pin.  
0 = PWRCTL polarity is active low.  
1 = PWRCTL polarity is active high.  
5
pwrctlPol  
RW  
X
When the TUSB4041I device is in I2C mode, the TUSB4041I device loads this  
bit from the contents of the EEPROM.  
When the TUSB4041I device is in SMBUS mode, the value may be  
overwritten by an SMBus host.  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 13. Device Configuration Register 2 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
High-current ACP mode enable  
This bit enables the high-current tablet charging mode when the automatic  
battery charging mode is enabled for downstream ports.  
0 = High-current divider mode disabled. Legacy current divider mode  
enabled.  
4
HiCurAcpModeEn  
R/RW  
0
1 = High-current divider mode enabled  
This bit is read only unless the customBCfeatures bit is set to 1. If  
customBCfeatures is 0, the value of this bit reflects the value of the  
OTP ROM HiCurAcpModeEn bit.  
Enable device attach detection  
This bit enables device attach detection (such as a cell-phone detect) when  
auto mode is enabled.  
0 = Device attach detect is disabled in auto mode.  
1 = Device attach detect is enabled in auto mode.  
3
2
1
cpdEN  
RRW  
RW  
0
0
X
This bit is read only unless the customBCfeatures bit is set to 1. If  
customBCfeatures is 0, the value of this bit reflects the value of the OTP ROM  
cpdEN bit.  
RSVD  
Reserved  
Automatic mode enable(1)  
This bit is loaded at the deassertion of reset with the value of the  
AUTOENz/HS_SUSPEND pin.  
The automatic mode only applies to downstream ports with battery charging  
enabled when the upstream port is not connected. Under these conditions:  
autoModeEnz  
RW  
0 = Automatic mode battery charging features are enabled.  
1 = Automatic mode is disabled; only battery-charging DCP mode is  
supported.  
Reserved  
0
RSVD  
R
0
Read only, returns 0 when read.  
(1) When the upstream port is connected, battery charging 1.2 CDP mode will be supported on all ports that are enabled for battery  
charging support regardless of the value of this bit, with the exception of port 1. CDP on port 1 is not supported when automatic mode is  
enabled.  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8.5.12 USB 2.0 Port Polarity Control Register  
Offset = Bh  
Figure 13. USB 2.0 Port Polarity Control Register  
7
6
5
4
3
2
1
0
customPolarity  
RW-0  
RSVD  
R-0  
p4_usb2pol  
R/RW-0  
p3_usb2pol  
R/RW-0  
p2_usb2pol  
R/RW-0  
p1_usb2pol  
R/RW-0  
p0_usb2pol  
R/RW-0  
Table 14. USB 2.0 Port Polarity Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Custom USB 2.0 polarity  
This bit controls the ability to write the p[4:0]_usb2pol bits.  
0 = The p[4:0]_usb2pol bits are read only, and the values are loaded from the  
OTP ROM.  
7
customPolarity  
RW  
0
1 = The p[4:0]_usb2pol bits are R/W and can be loaded by EEPROM or written  
by SMBus from this register.  
This bit may be written simultaneously with the p[4:0]_usb2pol bits  
Reserved  
6:5  
RSVD  
R
0
0
Read only, returns 0 when read  
Downstream port 4 DM/DP polarity  
This bit controls the polarity of the port.  
0 = USB 2.0 port polarity is as shown in the pinout.  
4
p4_usb2pol  
R/RW  
1 = USB 2.0 port polarity is swapped from that shown in the pinout (that is, DM  
becomes DP, and DP becomes DM).  
This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0, the  
value of this bit reflects the value of the OTP ROM p4_usb2pol bit.  
Downstream port 3 DM/DP polarity  
This bit controls the polarity of the port.  
0 = USB 2.0 port polarity is as shown in the pinout.  
3
2
1
p3_usb2pol  
p2_usb2pol  
p1_usb2pol  
R/RW  
R/RW  
RRW  
0
0
0
1 = USB 2.0 port polarity is swapped from that shown in the pinout (that is, DM  
becomes DP, and DP becomes DM).  
This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0, the  
value of this bit reflects the value of the OTP ROM p3_usb2pol bit.  
Downstream port 2 DM/DP polarity  
This bit controls the polarity of the port.  
0 = USB 2.0 port polarity is as shown in the pinout.  
1 = USB 2.0 port polarity is swapped from that shown in the pinout (that is, DM  
becomes DP, and DP becomes DM).  
This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0, the  
value of this bit reflects the value of the OTP ROM p2_usb2pol bit.  
Downstream port 1 DM/DP polarity  
This bit controls the polarity of the port.  
0 = USB 2.0 port polarity is as shown in the pinout.  
1 = USB 2.0 port polarity is swapped from that shown in the pinout (that is, DM  
becomes DP, and DP becomes DM).  
This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0, the  
value of this bit reflects the value of the OTP ROM p1_usb2pol bit.  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 14. USB 2.0 Port Polarity Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Upstream port DM/DP polarity  
This bit controls the polarity of the port.  
0 = USB 2.0 port polarity is as shown in the pinout.  
0
p0_usb2pol  
R/RW  
0
1 = USB 2.0 port polarity is swapped from that shown in the pinout (that is, DM  
becomes DP, and DP becomes DM).  
This bit is read only unless the customPolarity bit is set to 1. If customPolarity is 0, the  
value of this bit reflects the value of the OTP ROM p0_usb2pol bit.  
8.5.13 UUID Byte N Register  
Offset = 10h-1Fh  
Figure 14. UUID Byte N Register  
7
6
5
4
3
2
1
0
uuidByte[n]  
R-X  
Table 15. UUID Byte N Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
UUID byte N  
The UUID returned in the Container ID descriptor. The value of this register is  
provided by the device and meets the UUID requirements of the Internet  
Engineering Task Force (IETF) RFC 4122 A UUID URN Namespace.  
7:0  
uuidByte[n]  
R
X
8.5.14 Language ID LSB Register  
Offset = 20h, reset = 09h  
Figure 15. Language ID LSB Register  
7
6
5
4
3
2
1
0
langIdLsb[7:4]  
R/RW-0  
langIdLsb[3]  
R/RW-1  
langIdLsb[2:1]  
R/RW-0  
langIdLsb[0]  
R/RW-1  
Table 16. Language ID LSB Register Field Descriptions  
Bit  
7:4  
3
Field  
Type  
R/RW  
R/RW  
R/RW  
Reset  
Description  
langIdLsb[7:4]  
langIdLsb[3]  
0
1
0
Language ID least significant byte  
This register contains the value returned in the LSB of the LANGID code in string  
index 0. The TUSB4041I device only supports one language ID. The default  
value of this register is 09h representing the LSB of the LangID 0409h indicating  
English United States.  
2:1  
langIdLsb[2:1]  
0
langIdLsb[0]  
R/RW  
1
When the customStrings bit is set to 1, this field may be overwritten by the  
contents of an attached EEPROM or by an SMBus host.  
24  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8.5.15 Language ID MSB Register  
Offset = 21h, reset = 04h  
Figure 16. Language ID MSB Register  
7
6
5
4
3
2
1
0
langIdMsb[7:3]  
R/RW-0  
langIdMsb[2]  
R/RW-1  
langIdMsb[1:0]  
R/RW-0  
Table 17. Language ID MSB Register Field Descriptions  
Bit  
7:3  
2
Field  
Type  
R/RW  
R/RW  
Reset  
Description  
langIdMsb[7:3]  
langIdMsb[2]  
0
1
Language ID most significant byte  
This register contains the value returned in the MSB of the LANGID code in  
string index 0. The TUSB4041I device only supports one language ID. The  
default value of this register is 04h representing the MSB of the LangID 0409h  
indicating English United States.  
1:0  
langIdMsb[1:0]  
R/RW  
0
When the customStrings bit is set to 1, this field may be overwritten by the  
contents of an attached EEPROM or by an SMBus host.  
8.5.16 Serial Number String Length Register  
Offset = 22h  
Figure 17. Serial Number String Length Register  
7
6
5
4
3
2
1
0
RSVD  
R-0  
serNumStringL  
en[5]  
serNumStringLen[4:3]  
serNumStringLen[2:0]  
R/RW-0  
R/RW-1  
R/RW-0  
Table 18. Serial Number String Length Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:6  
RSVD  
R
0
Read only, returns 0 when read.  
5
serNumStringLen[5]  
serNumStringLen[4:3]  
R/RW  
R/RW  
0
1
Serial number string length  
4:3  
The string length in bytes for the serial number string. The default value is  
18h indicating that a 24-byte serial number string is supported. The  
maximum string length is 32 bytes.  
When the customSernum bit is set to 1, this field may be overwritten by the  
contents of an attached EEPROM or by an SMBus host.  
2:0  
serNumStringLen[2:0]  
R/RW  
0
When the field is non-zero, a serial number string of serNumbStringLen  
bytes is returned at string index 1 from the data contained in the Serial  
Number String registers.  
Copyright © 2015–2017, Texas Instruments Incorporated  
25  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.17 Manufacturer String Length Register  
Offset = 23h  
Figure 18. Manufacturer String Length Register  
7
6
5
4
3
2
1
0
RSVD  
R-0  
mfgStringLen  
R/RW-0  
Table 19. Manufacturer String Length Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7
RSVD  
R
0
Read only, returns 0 when read  
Manufacturer string length  
The string length in bytes for the manufacturer string. The default value is 0,  
indicating that a manufacturer string is not provided. The maximum string length is 64  
bytes.  
6:0  
mfgStringLen  
R/RW  
0
When the customStrings bit is set to 1, this field may be overwritten by the contents of  
an attached EEPROM or by an SMBus host.  
When the field is non-zero, a manufacturer string of mfgStringLen bytes is returned at  
string index 3 from the data contained in the Manufacturer String registers.  
8.5.18 Product String Length Register  
Offset = 24h  
Figure 19. Product String Length Register  
7
6
5
4
3
2
1
0
RSVD  
R-0  
prodStringLen  
R/RW-0  
Table 20. Product String Length Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7
RSVD  
R
0
Read only, returns 0 when read.  
Product string length  
The string length in bytes for the product string. The default value is 0, indicating  
that a product string is not provided. The maximum string length is 64 bytes.  
6:0  
prodStringLen  
R/RW  
0
When the customStrings bit is set to 1, this field may be overwritten by the contents  
of an attached EEPROM or by an SMBus host.  
When the field is non-zero, a product string of prodStringLen bytes is returned at  
string index 3 from the data contained in the Product String registers.  
26  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
8.5.19 Serial Number String Registers  
Offset = 30h-4Fh  
Figure 20. Serial Number String Registers  
7
6
5
4
3
2
1
0
serialNumber[n]  
R/RW-X  
Table 21. Serial Number String Registers Field Descriptions  
Bit  
Field  
Type  
Reset Description  
Serial Number byte N  
The serial number returned in the Serial Number string descriptor at string index 1.  
The default value of these registers is assigned by TI. When customSernum is 1,  
these registers may be overwritten by EEPROM contents or by an SMBus host.  
7:0  
serialNumber[n]  
R/RW  
X
8.5.20 Manufacturer String Registers  
Offset = 50h-8Fh  
Figure 21. Manufacturer String Registers  
7
6
5
4
3
2
1
0
mfgStringByte[n]  
R/W-0  
Table 22. Manufacturer String Registers Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Manufacturer string byte N  
These registers provide the string values returned for string index 3 when  
mfgStringLen is greater than 0. The number of bytes returned in the string is  
equal to mfgStringLen.  
7:0  
mfgStringByte[n]  
R/W  
0
The programmed data should be in UNICODE UTF-16LE encodings as defined  
by the Unicode Standard, Worldwide Character Encoding, Version 5.0.  
8.5.21 Product String Byte N Register  
Offset = 90h-CFh  
Figure 22. Product String Byte N Register  
7
6
5
4
3
2
1
0
prodStringByte[n]  
R/RW-0  
Table 23. Product String Byte N Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Product string byte N  
These registers provide the string values returned for string index 2 when  
prodStringLen is greater than 0. The number of bytes returned in the string is  
equal to prodStringLen.  
7:0  
prodStringByte[n]  
R/RW  
0
The programmed data should be in UNICODE UTF-16LE encodings as defined by  
the Unicode Standard, Worldwide Character Encoding, Version 5.0.  
Copyright © 2015–2017, Texas Instruments Incorporated  
27  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.22 Additional Feature Configuration Register  
Offset = F0h  
Figure 23. Additional Feature Configuration Register  
7
6
5
4
3
2
1
0
RSVD  
R-0  
stsOutputEn  
R/RW-0  
pwronTime  
R/W-0  
RSVD  
R/W-0  
Table 24. Additional Feature Configuration Register Field Descriptions  
Bit  
7:5  
4
Field  
Type  
Reset  
Description  
Reserved  
RSVD  
RSVD  
R
0
0
Read only, returns 0 when read.  
Reserved.  
R/RW  
Power-on delay time  
When OTP ROM pwronTime field is all 0, this field sets the delay time from the  
removal disable of PWRCTL to the enable of PWRCTL when transitioning battery  
charging modes. For example, when disabling the power on a transition from a  
custom charging mode to dedicated charging port mode. The nominal timing is  
defined as follows:  
3:1  
0
pwronTime  
RSVD  
RW  
0
TPWRON_EN = (pwronTime + 1) x 200 ms  
This field may be overwritten by EEPROM contents or by an SMBus host.  
Reserved  
(1)  
RW  
0
8.5.23 Device Status and Command Register  
Offset = F8h  
Figure 24. Device Status and Command Register  
7
6
5
4
3
2
1
0
RSVD  
R-0  
smbusRst  
W1S-0  
cfgActive  
W1C-0  
Table 25. Device Status and Command Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:2  
RSVD  
R
0
Read only, returns 0 when read  
SMBus interface reset  
This bit loads the registers back to their GRSTz values.  
1
0
smbusRst  
cfgActive  
W1S  
W1C  
0
0
This bit is set by writing a 1 and is cleared by hardware on completion of the reset. A  
write of 0 has no effect.  
Configuration active  
This bit indicates that configuration of the TUSB4041I device is currently active. The  
bit is set by hardware when the device enters the I2C or SMBus mode. The  
TUSB4041I device does not connect on the upstream port while this bit is 1.  
When in the SMBus mode, this bit must be cleared by the SMBus host to exit the  
configuration mode and allow the upstream port to connect.  
The bit is cleared by a writing 1. A write of 0 has no effect.  
28  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TUSB4041I device is a four-port USB 2.0 hub. The provides USB high-speed and full-speed connections on  
the upstream port and provides USB high-speed, full-speed, or low-speed connections on the downstream port.  
The TUSB4041I device can be used in any application that requires additional USB-compliant ports. For  
example, a specific notebook may only have two downstream USB ports. By using the TUSB4041I device, the  
notebook can increase the downstream port count to five.  
9.2 Typical Application  
A common application for the TUSB4041I device is as a self-powered standalone USB-hub product. The product  
is powered by an external 5-V DC power adapter. In this application, using a USB cable, the upstream port of the  
TUSB4041I device is plugged into a USB host controller. The downstream ports of the TUSB4041I device are  
exposed to users for connecting USB hard drives, cameras, flash drives, and so forth.  
USB  
Type B  
Connector  
DC  
Power  
US Port  
TUSB4041I  
USB  
USB  
Power Switch  
Power Switch  
DS Port 1  
DS Port 2  
DS Port 3  
DS Port 4  
USB Type A  
Connector  
USB Type A  
Connector  
USB Type A  
Connector  
USB Type A  
Connector  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. Discrete USB Hub Product  
Copyright © 2015–2017, Texas Instruments Incorporated  
29  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 26.  
Table 26. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VDD supply  
1.1 V  
VDD33 supply  
3.3 V  
Upstream port USB support (HS, FS)  
HS, FS  
Downstream port 1 USB support (HS, FS, LS)  
Downstream port 2 USB support (HS, FS, LS)  
Downstream port 3 USB support (HS, FS, LS)  
Downstream port 4 USB support (HS, FS, LS)  
Number of removable downstream ports  
Number of non-removable downstream ports  
Full power management of downstream ports  
Individual control of downstream port power switch  
Power switch enable polarity  
HS, FS, LS  
HS, FS, LS  
HS, FS, LS  
HS, FS, LS  
4
0
Yes (FULLPWRMGMTZ = 0)  
Yes (GANGED = 0)  
Active high (PWRCTL_POL = 1)  
Battery charge support for downstream port 1  
Battery charge support for downstream port 2  
Battery charge support for downstream port 3  
Battery charge support for downstream port 4  
I2C EEPROM support  
Yes  
Yes  
Yes  
Yes  
No  
24-MHz clock source  
Crystal  
9.2.2 Detailed Design Procedure  
9.2.2.1 Upstream Port Implementation  
R1  
90.9 KΩ  
U1A  
10  
8
GANGED/SMBA2/HS_UP  
0402  
1%  
R2  
C1  
10 µF  
10 KΩ 1%  
0402  
1%  
FULLPWRMGMTZ/SMBA1  
16  
Type B USB-Shield  
USB_VBUS  
R3  
R4  
+5V  
6
1
2
3
4
VBUS  
4.7 KΩ  
4.7 KΩ  
DM  
DP  
USB_DM_UP  
USB_DP_UP  
22  
USB_DM_UP  
21  
USB_DP_UP  
GND  
5
TUSB4041I_PAP  
J1  
C2  
0.1 µF  
C3  
0.001 µF  
R5  
1 MΩ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. Upstream Port Implementation  
The upstream of the TUSB4041I device is connected to a USB2 Type B connector. This particular example has  
GANGED pin and FULLPWRMGMTZ pin pulled low, which results in individual power support each downstream  
port. The VBUS signal from the USB2 Type B connector is feed through a voltage divider. The purpose of the  
voltage divider is to make sure the level meets USB_VBUS input requirements  
30  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
9.2.2.2 Downstream Port 1 Implementation  
BOARD_3P3V  
FB1  
R6  
POPULATE  
FOR BC SUPPORT  
DN1_VBUS  
VBUS_DS1  
4.7K  
DN1_VBUS  
220 @ 100MHZ C4  
0.1uF  
J2  
1
U1B  
VBUS  
34  
USB_DM_DN1  
USB_DP_DN1  
2
USB_DM_DN1  
USB_DP_DN1  
DM  
33  
3
DP  
4
GND  
5
SHIELD1  
4
PWRCTRL1_BATEN1  
OVERCUR1Z  
PWRCTL1/BATEN1  
OVERCUR1Z  
6
SHIELD2  
14  
USB2_TYPEA  
R7  
1M  
C5  
0.001uF  
C6  
0.1uF  
TUSB4041I_PAP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. Downstream Port 1 Implementation  
The downstream port 1 of the TUSB4041I device is connected to a USB2 type A connector. With BATEN1 pin  
pulled up, battery charge support is enabled for Port 1. If battery charge support is not needed, then uninstall the  
pullup resistor on BATEN1.  
9.2.2.3 Downstream Port 2 Implementation  
BOARD_3P3V  
FB2  
DN2_VBUS  
VBUS_DS2  
R8  
DN2_VBUS  
POPULATE  
FOR BC SUPPORT  
4.7 KΩ  
220 at 100 MHz  
C7  
0.1 µF  
J3  
1
2
3
4
5
6
U1C  
VBUS  
42  
USB_DM_DN2  
USB_DP_DN2  
USB_DM_DN2  
DM  
41  
USB_DP_DN2  
DP  
GND  
SHIELD1  
SHIELD2  
3
PWRCTRL2_BATEN2  
OVERCUR2Z  
PWRCTL2/BATEN2  
OVERCUR2Z  
15  
R9  
C9  
0.001 µF  
USB2_TYPEA  
C8  
0.1 µF  
1 MΩ  
TUSB4041I_PAP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. Downstream Port 2 Implementation  
The downstream port 2 of the TUSB4041I device is connected to a USB2 type A connector. With BATEN2 pin  
pulled up, battery charge support is enabled for port 2. If battery charge support is not needed, then uninstall the  
pullup resistor on BATEN2.  
Copyright © 2015–2017, Texas Instruments Incorporated  
31  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.2.2.4 Downstream Port 3 Implementation  
BOARD_3P3V  
FB3  
VBUS_DS3  
R10  
DN3_VBUS  
POPULATE  
FOR BC SUPPORT  
4.7 KΩ  
220 at 100 MHz  
C10  
0.1 µF  
J4  
1
2
3
4
5
6
U1D  
VBUS  
50  
USB_DM_DN3  
USB_DP_DN3  
USB_DM_DN3  
DM  
49  
USB_DP_DN3  
DP  
GND  
SHIELD1  
SHIELD2  
1
PWRCTRL3_BATEN3  
OVERCUR3Z  
PWRCTL3/BATEN3  
OVERCUR3Z  
12  
R11  
C11  
0.001 µF  
USB2_TYPEA  
C12  
0.1 µF  
1 MΩ  
TUSB4041I_PAP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 29. Downstream Port 3 Implementation  
The downstream port3 of the TUSB4041I device is connected to a USB2 type A connector. With BATEN3 pin  
pulled up, battery charge support is enabled for port 3. If battery charge support is not needed, then uninstall the  
pullup resistor on BATEN3.  
9.2.2.5 Downstream Port 4 Implementation  
BOARD_3P3V  
FB4  
VBUS_DS4  
R12  
DN4_VBUS  
POPULATE  
FOR BC SUPPORT  
4.7 KΩ  
220 at 100 MHZ  
C13  
0.1 µF  
J5  
1
2
3
4
5
6
U1E  
VBUS  
57  
USB_DM_DN4  
USB_DP_DN4  
USB_DM_DN4  
DM  
56  
USB_DP_DN4  
DP  
GND  
SHIELD1  
SHIELD2  
64  
PWRCTRL4_BATEN4  
OVERCUR4Z  
PWRCTL4/BATEN4  
OVERCUR4Z  
11  
R13  
C15  
0.001 µF  
USB2_TYPEA  
C14  
0.1 µF  
1 MΩ  
TUSB4041I_PAP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. Downstream Port 4 Implementation  
The downstream port 4 of the TUSB4041I device is connected to a USB2 Type A connector. With BATEN4 pin  
pulled up, Battery Charge support is enabled for Port 4. If Battery Charge support is not needed, then uninstall  
the pullup resistor on BATEN4.  
32  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
9.2.2.6 VBUS Power Switch Implementation  
BOARD_3P3V  
BOARD_3P3V  
BOARD_5V  
R19  
10K  
0402  
5%  
R20  
10K  
0402  
5%  
C42  
0.1uF  
U2  
2
9
DN1_VBUS  
DN2_VBUS  
ILIM1  
DN1_VBUS  
OVERCUR1Z  
DN2_VBUS  
OVERCUR2Z  
IN  
IN  
OUT1  
3
4
5
10  
8
FAULT1Z  
OUT2  
PWRCTRL1_BATEN1  
PWRCTRL2_BATEN2  
PWRCTRL1_BATEN1  
PWRCTRL2_BATEN2  
EN1  
EN2  
6
FAULT2Z  
ILIM  
1
11  
GND  
PAD  
7
C43  
C45  
0.1uF  
+
C44  
150uF  
0.1uF  
+
C46  
150uF  
TPS2561  
R21  
25.5K  
0402  
5%  
Limiting DS Port VBUS current to 2.2A per port.  
BOARD_3P3V  
BOARD_3P3V  
BOARD_5V  
R22  
10K  
0402  
5%  
R23  
10K  
0402  
5%  
C47  
0.1uF  
U3  
2
9
DN3_VBUS  
DN4_VBUS  
ILIM2  
DN3_VBUS  
IN  
IN  
OUT1  
FAULT1Z  
OUT2  
3
4
5
10  
8
OVERCUR3Z  
DN4_VBUS  
PWRCTRL3_BATEN3  
PWRCTRL4_BATEN4  
EN1  
EN2  
6
OVERCUR4Z  
FAULT2Z  
ILIM  
1
11  
GND  
PAD  
7
C48  
0.1uF  
C50  
+
C49  
150uF  
0.1uF  
+
C51  
150uF  
TPS2561  
R24  
25.5K  
0402  
5%  
Limiting DS Port VBUS current to 2.2A per port.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 31. VBUS Power Switch Implementation  
This particular example uses TI's TPS2561 dual-channel precision adjustable current-limited power switch. For  
details on this power switch or other power switches available from TI, refer to www.ti.com.  
Copyright © 2015–2017, Texas Instruments Incorporated  
33  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.2.2.7 Clock, Reset, and Miscellaneous  
The PWRCTL_POL is left unconnected which results in active-high power enable (PWRCTL1, PWRCTL2,  
PWRCTL3, and PWRCTL4) for a USB VBUS power switch. The 1-µF capacitor on the GRSTN pin can only be  
used if the VDD11 supply is stable before the VDD33 supply. Depending on the supply ramp of the two supplies,  
the user may need to adjust the capacitor.  
U1F  
5
C29  
SDA/SMBDAT  
SCL/SMBDAT  
SMBUSZ  
18  
GRSTZ  
6
1 µF  
7
30  
13  
9
XI  
AUTOENZ/HS_SUSPEND  
PWRCTL_POL  
TEST  
R14  
1M  
17  
32  
29  
Y1  
XO  
USB_R1  
R15  
R16  
4.7 KΩ  
R18  
9.53 KΩ  
0402  
1%  
TUSB4041I_PAP  
4.7 KΩ  
24 MHz  
C30  
C31  
18 pF  
18 pF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 32. Clock, Reset, and Miscellaneous  
9.2.2.8 TUSB4041I Power Implementation  
BOARD_1P1V  
VDD11  
FB5  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
10 µF  
220 at 100 MHz  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
U1G  
23  
RSVD  
24  
RSVD  
26  
RSVD  
27  
RSVD  
35  
RSVD  
36  
RSVD  
38  
RSVD  
39  
RSVD  
43  
RSVD  
44  
RSVD  
RSVD  
46  
47  
51  
52  
54  
55  
58  
59  
61  
62  
2
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
VDD33  
VDD33  
VDD33  
VDD33  
20  
31  
48  
VDD33  
BOARD_3P3V  
FB6  
C24  
C25  
C26  
C27  
C28  
10 µF  
220 at 100 MHz  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
28  
40  
NC  
NC  
TUSB4041I_PAP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. TUSB4041I Power Implementation  
34  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
9.2.3 Application Curves  
Figure 34. High-Speed Upstream Port  
Figure 35. High-Speed Downstream Port 1  
Figure 36. High-Speed Downstream Port 2  
Figure 37. High-Speed Downstream Port 3  
Figure 38. High-Speed Downstream Port 4  
Copyright © 2015–2017, Texas Instruments Incorporated  
35  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 TUSB4041I Power Supply  
The user should implement VDD as a single power plane, as well as VDD33  
.
The VDD pins of the TUSB4041I supply 1.1-V (nominal) power to the core of the TUSB4041I device. This  
power rail can be isolated from all other power rails by a ferrite bead to reduce noise.  
The DC resistance of the ferrite bead on the core power rail can affect the voltage provided to the device  
because of the high current draw on the power rail. The user may need to adjust the output of the core  
voltage regulator to account for this, or select a ferrite bead with low DC resistance (less than 0.05 Ω).  
The VDD33 pins of the TUSB4041I device supply 3.3-V power rail to the I/O of the TUSB4041I device. This  
power rail can be isolated from all other power rails by a ferrite bead to reduce noise.  
All power rails require a 10-µF capacitor or 1-µF capacitors for stability and noise immunity. These bulk  
capacitors can be placed anywhere on the power rail. Place the smaller decoupling capacitors as close to the  
TUSB4041I power pins as possible with an optimal grouping of two capacitors of differing values per pin.  
10.2 Downstream Port Power  
A source capable of supplying 5 V and up to 500 mA per port must supply the downstream port power,  
VBUS. The TUSB4041I signals can control the downstream port power switches. Leaving the downstream  
port power as always enabled is also possible.  
The VBUS of each downstream port requires a large-bulk low-ESR capacitor of 22 µF or larger to limit in-rush  
current.  
TI recommends the ferrite beads on the VBUS pins of the downstream USB port connections for both ESD  
and EMI reasons. A 0.1-µF capacitor on the USB connector side of the ferrite provides a low-impedance path  
to ground for fast rise time ESD current that might have coupled onto the VBUS trace from the cable.  
10.3 Ground  
TI recommends to use only one board ground plane in the design which provides the best image plane for signal  
traces running above the plane. Connect the thermal pad of the TUSB4041I and any of the voltage regulators to  
this plane with vias. An earth or chassis ground is implemented only near the USB port connectors on a different  
plane for EMI and ESD purposes.  
36  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
11 Layout  
11.1 Layout Guidelines  
Use the layout guidelines listed in this section for proper PCB layout design.  
11.1.1 Placement  
Place a 9.53-kΩ ±1% resistor connected to pin USB_R1 as close as possible to the TUSB4041I device.  
Place a 0.1-µF capacitor as close as possible on each VDD and VDD33 power pin.  
The ESD and EMI protection devices (if used) should also be placed as close as possible to the USB  
connector.  
If a crystal is used, it must be placed as close as possible to the XI and XO pins of the TUSB4041I device.  
Place voltage regulators as far away as possible from the TUSB4041I device, the crystal, and the differential  
pairs.  
In general, the user should place the large bulk capacitors associated with each power rail as close as  
possible to the voltage regulators.  
11.1.2 Package Specific  
The TUSB4041I device package has a 0.5-mm pin pitch.  
The TUSB4041I device package has a 4.64-mm × 4.64-mm thermal pad. This thermal pad must be  
connected to ground through a system of vias.  
Solder mask all vias under device, except for those connected to the thermal pad, to avoid any potential  
issues with thermal pad layouts.  
11.1.3 Differential Pairs  
This section describes the layout recommendations for all the TUSB4041I device differential pairs: USB_DP_XX,  
USB_DM_XX.  
The differential pairs must be designed with a differential impedance of 90 Ω ± 10%.  
To minimize crosstalk, TI recommends to keep high-speed signals away from each other. Each pair should  
be separated by at least 5 times the signal trace width. Separating with ground as depicted in the layout  
example also helps minimize crosstalk.  
Route all differential pairs on the same layer adjacent to a solid ground plane.  
Do not route differential pairs over any plane split.  
Adding test points causes impedance discontinuity and therefore negatively impacts signal performance. If  
test points are used, place them in series and symmetrically. Do not place them in a manner that causes stub  
on the differential pair.  
Avoid 90° turns in trace. Keep the use of bends in differential traces to a minimum. When bends are used, the  
number of left and right bends should be as equal as possible and the angle of the bend should be 135°.  
This guideline minimizes any length mismatch caused by the bends and therefore minimize the impact bends  
have on EMI.  
Minimize the trace lengths of the differential pair traces. Eight inches is the maximum recommended trace  
length for USB 2.0 differential pair signals. Longer trace lengths require very careful routing to assure proper  
signal integrity.  
Match the etch lengths of the differential pair traces (that is DP and DM). The USB 2.0 differential pairs  
should not exceed 50 mils relative trace length difference.  
Minimize the use of vias in the differential pair paths as much as possible. If this is not practical, make sure  
that the same via type and placement are used for both signals in a pair. Place any vias used as close as  
possible to the TUSB4041I device.  
To ease routing of the USB 2.0 DP and DM pair, the polarity of these pins can be swapped. If this is done,  
set the appropriate Px_usb2pol register, where x = 0, 1, 2, 3, or 4.  
Do not place power fuses across the differential pair traces.  
Copyright © 2015–2017, Texas Instruments Incorporated  
37  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
11.2 Layout Example  
TI USB2 HUB  
USB2 DP/DM  
USB2 TYPE B  
Connector  
Figure 39. Example Routing of Upstream Port  
USB2 DP/DM  
TI USB2 HUB  
USB2 TYPE A  
Connector  
Figure 40. Example Routing of Downstream Port  
38  
版权 © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
《德州仪器 (TI) USB 2.0 器件晶振的选择和规范》SLLA122  
TPS2561 双通道精密可调节限流电源开关》SLVS930  
TUSB4041PAP 评估模块》SLLU227  
12.2 接收文档更新通知  
要接收文档更新通知,请转至 ti.com 上您的器件的产品文件夹。请在右上角单击通知我 按钮进行注册,即可收到  
产品信息更改每周摘要(如有)。有关更改的详细信息,请查看任意已修订文档的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2015–2017, Texas Instruments Incorporated  
39  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
40  
版权 © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
PACKAGE OUTLINE  
PAP0064M  
PowerPAD TM - 1.2 mm max height  
SCALE 1.500  
PPLLAASSTTICICQQUUAADDFFLLAATTPPAACCKK  
10.2  
9.8  
PIN 1 ID  
B
64  
49  
A
48  
1
12.2  
TYP  
11.8  
10.2  
9.8  
16  
33  
17  
32  
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A  
B
SEE DETAIL A  
1.2 MAX  
C
SEATING PLANE  
0.08  
0.09-0.20  
TYP  
0
MIN  
(0.15) TYP  
NOTE 4  
0.25  
GAGE PLANE  
(1)  
4.44  
3.64  
0.15  
0.05  
0 -7  
0.75  
0.45  
D
E
T
A
I
L
C
A
DETAIL A  
TYPICAL  
EXPOSED  
THERMAL PAD  
(0.15) TYP  
NOTE 4  
4221602/A 07/2014  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026, variation ACD.  
4. Strap features may not be present,  
www.ti.com  
版权 © 2015–2017, Texas Instruments Incorporated  
41  
TUSB4041I  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
PAP0064M  
PowerPAD TM - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
8) NOTE 7  
4.44)  
(
SOLDER MASK  
OPENING  
SYMM  
SOLDER MASK  
49  
64  
DEFINED PAD  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(0.5)  
TYP  
(11.4)  
60X (0.5)  
(1)  
TYP  
16  
33  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
32  
(1) TYP  
17  
SEE DETAIL  
(0.5) TYP  
(11.4)  
LAND PATTERN EXAMPLE  
SCALE:6X  
0.05 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
4221602/A 07/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slm002) and SLMA004 (www.ti.com/lit/slma004).  
8. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
42  
版权 © 2015–2017, Texas Instruments Incorporated  
TUSB4041I  
www.ti.com.cn  
ZHCSDY6E JULY 2015REVISED SEPTEMBER 2017  
EXAMPLE STENCIL DESIGN  
PAP0064M  
PowerPAD TM - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
4.44)  
BASED ON  
0.127 THICK STENCIL  
SEE TABLE FOR  
DIFFERENT OPENINGS  
SYMM  
FOR OTHER STENCIL  
THICKNESSES  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
16  
33  
METAL COVERED  
BY SOLDER MASK  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
5 X 5  
4.44 X 4.44 (SHOWN)  
4.06 X 4.06  
0.127  
0.152  
0.178  
3.75 X 3.75  
4221602/A 07/2014  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
版权 © 2015–2017, Texas Instruments Incorporated  
43  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB4041IPAP  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
PAP  
PAP  
64  
64  
160  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
TUSB4041I  
TUSB4041I  
TUSB4041IPAPR  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB4041IPAPR  
HTQFP  
PAP  
64  
1000  
330.0  
24.4  
13.0  
13.0  
1.5  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PAP 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 55.0  
TUSB4041IPAPR  
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
TUSB4041IPAP  
PAP  
HTQFP  
64  
160  
8 X 20  
150  
322.6 135.9 7620 15.2  
13.1  
13  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TUSB4041IPAPRQ1

汽车类 4 端口高速 480Mbps USB 2.0 集线器 | PAP | 64 | -40 to 85
TI

TUSB422

USB PD TCPCi 端口控制器
TI

TUSB422IYFPR

USB PD TCPCi 端口控制器 | YFP | 9 | -40 to 85
TI

TUSB422IYFPT

USB PD TCPCi 端口控制器 | YFP | 9 | -40 to 85
TI

TUSB501

USB 3.0 5Gbps 单通道转接驱动器
TI

TUSB501-Q1

汽车类 USB 3.0 5Gbps 单通道转接驱动器
TI

TUSB501DRFR

USB 3.0 5Gbps 单通道转接驱动器 | DRF | 8 | -40 to 85
TI

TUSB501TDRFRQ1

汽车类 USB 3.0 5Gbps 单通道转接驱动器 | DRF | 8 | -40 to 105
TI

TUSB5052

USB to 2-Serial + 1-Parallel Controller With Configurable Optional Hub
TI

TUSB5052B

USB to 2-Serial + 1-Parallel Controller With Configurable Optional Hub
TI

TUSB5052PZ

UNIVERSAL SERIAL BUS CONTROLLER, PQFP100, TQFP-100
ROCHESTER

TUSB5052PZ

5-port Hub with Integrated Bridge to Two Serial Ports 100-LQFP
TI