V62/05613-01XE [TI]

14 位、125MSPS 模数转换器 (ADC) - 增强型产品 | PAP | 64 | -55 to 125;
V62/05613-01XE
型号: V62/05613-01XE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14 位、125MSPS 模数转换器 (ADC) - 增强型产品 | PAP | 64 | -55 to 125

转换器 模数转换器
文件: 总36页 (文件大小:932K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢀꢆ ꢇꢈ ꢉꢊ ꢋꢊ  
ꢌ ꢍꢎ ꢏꢐꢑ ꢂ ꢅꢐ ꢂ ꢒꢄ ꢑꢄ ꢅ ꢎꢏ ꢓꢐ ꢍꢔꢕ ꢖ ꢅꢕ ꢖ  
D
D
D
D
D
D
One Assembly/Test Site  
One Fabrication Site  
FEATURES  
D
D
D
14-Bit Resolution  
125−MSPS Sample Rate  
High Signal−to−Noise Ratio (SNR):  
70.5 dBFS at 100 MHz f (TYP)  
Available in Military (−555C/1255C)  
(1)  
Temperature Range  
Extended Product Life Cycle  
Extended Product−Change Notification  
Product Traceability  
IN  
D
High Spurious−Free Dynamic Range (SFDR):  
82 dBc at 100−MHz f (TYP)  
IN  
D
D
D
D
2.3-V Differential Input Voltage  
PP  
APPLICATIONS  
Internal Voltage Reference  
3.3-V Single-Supply Voltage  
D
D
D
D
Wireless Communication  
Test and Measurement Instrumentation  
Single and Multichannel Digital Receivers  
Analog Power Dissipation: 578 mW  
− Total Power Dissipation: 780 mW  
D
Serial Programming Interface  
Communication Instrumentation  
− Radar, Infrared  
D
TQFP-64 PowerPADE Package  
D
Video and Imaging  
SUPPORTS DEFENSE, AEROSPACE,  
AND MEDICAL APPLICATIONS  
D
Controlled Baseline  
(1)  
Custom temperature ranges available.  
DESCRIPTION  
The ADS5500 is a high-performance, 14-bit 125−MSPS analog-to-digital converter (ADC). To provide a complete  
converter solution, it includes a high-bandwidth linear sample-and-hold stage (S&H) and internal reference. Designed  
for applications demanding the highest speed and highest dynamic performance in a small space, the ADS5500 has  
excellent power consumption of 780 mW at 3.3-V single-supply voltage. This allows an even higher system  
integration density. The provided internal reference simplifies system design requirements. A parallel CMOS-  
compatible output ensures seamless interfacing with common logic.  
The ADS5500 is available in a 64-pin TQFP PowerPAD package and is specified over the full temperature range of  
−55°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
ꢋꢙ ꢚ ꢒꢛ ꢓ ꢜꢝ ꢚꢞ ꢒ ꢌꢜꢌ ꢄꢍ ꢟꢐ ꢖ ꢠꢎ ꢅꢄꢐꢍ ꢄꢡ ꢢꢣ ꢖ ꢖ ꢕꢍꢅ ꢎꢡ ꢐꢟ ꢤꢣꢥ ꢏꢄꢢ ꢎꢅꢄ ꢐꢍ ꢦꢎ ꢅꢕꢧ ꢋꢖ ꢐꢦꢣ ꢢꢅꢡ  
ꢢ ꢐꢍ ꢟꢐꢖ ꢠ ꢅꢐ ꢡ ꢤꢕ ꢢ ꢄ ꢟꢄ ꢢ ꢎ ꢅꢄ ꢐꢍꢡ ꢤ ꢕꢖ ꢅꢨꢕ ꢅꢕ ꢖ ꢠꢡ ꢐꢟ ꢜꢕꢩ ꢎꢡ ꢝꢍꢡ ꢅꢖ ꢣꢠ ꢕꢍꢅ ꢡ ꢡꢅ ꢎꢍꢦ ꢎꢖ ꢦ ꢪ ꢎꢖ ꢖ ꢎ ꢍꢅꢫꢧ  
ꢋꢖ ꢐ ꢦꢣꢢ ꢅ ꢄꢐ ꢍ ꢤꢖ ꢐ ꢢ ꢕ ꢡ ꢡ ꢄꢍ ꢑ ꢦꢐ ꢕ ꢡ ꢍꢐꢅ ꢍꢕ ꢢꢕ ꢡꢡ ꢎꢖ ꢄꢏ ꢫ ꢄꢍꢢ ꢏꢣꢦ ꢕ ꢅꢕ ꢡꢅꢄ ꢍꢑ ꢐꢟ ꢎꢏ ꢏ ꢤꢎ ꢖ ꢎꢠ ꢕꢅꢕ ꢖ ꢡꢧ  
Copyright 2008, Texas Instruments Incorporated  
www.ti.com  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
AV  
DD  
DRV  
DD  
CLK+  
CLK  
CLKOUT  
Timing Circuitry  
-
D0  
V +  
IN  
Digital  
Error  
Correction  
14-Bit  
Pipeline  
ADC Core  
.
.
.
Output  
Control  
S&H  
V
-
IN  
D13  
OVR  
DFS  
Control Logic  
Internal  
Reference  
CM  
Serial Programming Register  
A D S 5500  
DR  
A
GND  
SCLK  
SEN SDATA  
GND  
(1)  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
PACKAGE LEAD  
(2)  
HTQFP-64  
PowerPAD  
ADS5500MPAPEP  
ADS5500MPAPREP  
Tray, 160  
ADS5500−EP  
PAP  
−55°C to 125°C ADS5500M  
Tape and Reel, 1000  
(1)  
(2)  
For the most current product and ordering information, see the Package Option Addendum located at the end of this data sheet.  
Thermal pad size: 3,5 mm x 3,5 mm (min), 4 mm x 4 mm (max).  
2
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
(1)  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
proper handling and installation procedures can cause damage.  
ADS5500-EP  
UNIT  
AV  
to  
,
DD  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because small parametric changes could cause  
the device not to meet its published specifications.  
A
DRV  
GND  
−0.3 to +3.7  
V
to  
DD  
Supply  
Voltage  
DR  
GND  
A
DR  
to  
GND  
0.1  
V
V
V
GND  
RECOMMENDED OPERATING CONDITIONS  
Analog input to A  
Logic input to DR  
−0.15 to +2.5  
GND  
MIN  
TYP  
MAX  
UNIT  
PARAMETER  
−0.3to DRV  
+ 0.3  
DD  
GND  
Supplies  
Analog supply voltage, AV  
3
3
3.3  
3.3  
3.6  
3.6  
V
V
DD  
−0.3to DRV  
+ 0.3  
DD  
Digital data output to DR  
Input current (any input)  
V
GND  
Output driver supply voltage, DRV  
Analog Input  
DD  
30  
mA  
°C  
°C  
°C  
Operating temperature range  
Junction temperature  
−55 to +125  
+142  
Differential input range  
2.3  
V
PP  
Input common-mode voltage,  
1.5  
1.6  
V
(1)  
V
CM  
Storage temperature range  
−65 to +150  
Digital Output  
Maximum output load  
Clock Input  
(1)  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not implied.  
10  
pF  
DLL ON  
DLL OFF  
60  
10  
125  
80  
ADCLK input sample  
rate (sine wave) 1/t  
C
MSPS  
TM  
TQFP−64 PowerPAD  
Thermal Characteristics  
Package  
Clock amplitude, sine wave,  
(2)  
3
V
PP  
differential  
Clock duty cycle  
Open free-air temperature  
(3)  
50%  
SAME  
PACKAGE  
FORM  
PowerPAD NOT  
CONNECTED  
TO PCB  
PowerPAD  
CONNECTED  
TO PCB  
−55  
125  
°C  
PARAMETER  
(1)  
(2)  
(3)  
Input common-mode should be connected to CM.  
See Figure 14 for more information.  
See Figure 13 for more information.  
WITHOUT  
PowerPAD  
THERMAL  
PLAN  
THERMAL  
PLANE  
(2)  
Thermal  
resistance  
,
junction to  
75.83ºC/W  
7.8ºC/W  
42.2ºC/W  
0.38ºC/W  
21.47ºC/W  
0.38ºC/W  
ambient (see  
(1)  
(2)  
and ),  
R
TJA  
Thermal  
resistance,  
junction to  
(1)  
case (see  
(2)  
and ), R  
TJC  
(1)  
(2)  
Specified with the PowerPAD bond pad on the backside of the  
package soldered to a 2-oz Cu plate PCB thermal plane.  
Airflow is at 0 LFM (no airflow)  
3
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
Long-term high−temperature storage and/or extended use at maximum recommended operating conditions may  
result in a reduction of overall device life. See Figure 1 for additional information on thermal derating.  
Electromigration failure mode applies to powered part; Kirkendall voiding failure mode is a function of temperature  
only.  
0.0001  
Estimated Device life  
ElectroMigration Fail Mode  
150 °C (10.5 kHours, 1.2 Years)  
150 °C  
(21 kHours, 2.4 Years)  
125 °C (32 kHours, 3.8 Years)  
0.00001  
0.000001  
0.0000001  
105 °C (87 kHours, >10 Years)  
125 °C (47 kHours, 55.8 Years)  
Estimated Device Life  
Wire Bond Kirkendall  
Voiding Fail Mode  
105 °C (8 MHours, >100 Years)  
1/T − Constant Device Junction Temperature  
J
Figure 1. Time-to-Failure vs Junction Temperature  
4
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
ELECTRICAL CHARACTERISTICS  
Typ, min, and max values at T = 25°C, full temperature range is T  
= −55°C to T  
MAX  
= 125°C, sampling rate = 125 MSPS, 50% clock duty  
differential clock (unless otherwise noted)  
A
MIN  
cycle, AV  
= DRV  
= 3.3 V, DLL On, −1−dBFS differential input, and 3-V  
DD  
DD  
PP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
14 Tested  
Bits  
Analog Inputs  
Differential input range  
2.3  
6.6  
4
V
PP  
kΩ  
pF  
Differential input impedance  
Differential input capacitance  
Total analog input common-mode current  
Analog input bandwidth  
See Figure 5  
See Figure 5  
(1)  
4
mA  
MHz  
Source impedance = 50 Ω  
750  
Conversion Characteristics  
Maximum sample rate  
See note (2)  
125  
MSPS  
Data latency  
See timing diagram, See Figure 2  
16.5  
Clock Cycles  
Internal Reference Voltages  
Reference bottom voltage, V  
REFM  
0.97  
2.11  
V
V
Reference top voltage, V  
REFP  
Room temp  
−4%  
−5%  
4%  
5%  
Reference error  
Full temp range  
Common-mode voltage output, V  
CM  
1.55 0.05  
V
Dynamic DC Characteristics and Accuracy  
No missing codes  
Tested  
0.75  
Differential linearity error, DNL  
f
f
= 10 MHz  
= 10 MHz  
−0.9  
−5  
1.1  
5
LSB  
LSB  
IN  
Room temp  
Integral linearity error, INL  
IN  
Full temp range  
−8  
8
Offset error  
1.5  
0.0007  
0.45  
mV  
%/°C  
%FS  
%C  
Offset temperature coefficient  
Gain error  
Gain temperature coefficient  
Dynamic AC Characteristics  
0.01  
Room temp  
70.5  
68  
71.5  
71.5  
71.5  
71.5  
71.2  
71  
f
= 10 MHz  
IN  
Full temp range  
f
IN  
f
IN  
= 30 MHz  
= 55 MHz  
Room temp  
70  
Signal-to-noise ratio (SNR)  
RMS output noise  
dBFS  
LSB  
f
IN  
= 70 MHz  
Full temp range  
66.5  
f
f
f
= 100 MHz  
= 150 MHz  
= 225 MHz  
70.5  
70.1  
69.1  
1.1  
84  
IN  
IN  
IN  
Input tied to common-mode  
Room temp  
82  
76  
f
IN  
= 10 MHz  
Full temp range  
84  
f
IN  
f
IN  
= 30 MHz  
= 55 MHz  
84  
79  
Room temp  
80  
75  
83  
Spurious-free dynamic range (SFDR)  
dBc  
f
IN  
= 70 MHz  
Full temp range  
82  
f
IN  
f
IN  
f
IN  
= 100 MHz  
= 150 MHz  
= 225 MHz  
82  
78  
74  
(1)  
(2)  
2-mA per input  
See Recommended Operating Conditions.  
5
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
ELECTRICAL CHARACTERISTICS(continued)  
Typ, min, and max values at T = 25°C, full temperature range is T  
= −55°C to T  
MAX  
= 125°C, sampling rate = 125 MSPS, 50% clock duty  
differential clock (unless otherwise noted)  
A
MIN  
cycle, AV  
= DRV  
= 3.3 V, DLL On, −1−dBFS differential input, and 3-V  
DD  
DD  
PP  
PARAMETER  
CONDITIONS  
MIN  
82  
TYP  
91  
MAX  
UNIT  
Room temp  
f
IN  
= 10 MHz  
Full temp range  
77  
86  
f
IN  
f
IN  
= 30 MHz  
= 55 MHz  
86  
84  
Room temp  
80  
75  
87  
Second−harmonic (HD2)  
dBc  
f
IN  
= 70 MHz  
Full temp range  
83  
f
IN  
f
IN  
f
IN  
= 100 MHz  
= 150 MHz  
= 225 MHz  
84  
78  
74  
Room temp  
82  
77  
89  
f
IN  
= 10 MHz  
Full temp range  
88  
f
IN  
f
IN  
= 30 MHz  
= 55 MHz  
90  
79  
Room temp  
80  
75  
85  
Third harmonic (HD3)  
dBc  
dBc  
dBc  
f
= 70 MHz  
IN  
Full temp range  
82  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 100 MHz  
= 150 MHz  
= 225 MHz  
82  
80  
76  
= 10 MHz Room temp  
= 70 MHz Room temp  
88  
Worst-harmonic/spur  
(other than HD2 and HD3)  
86  
Room temp  
= 10 MHz  
69  
70  
f
IN  
Full temp range  
66.5  
70  
f
IN  
f
IN  
= 30 MHz  
= 55 MHz  
70  
69.5  
69  
Room temp  
68.5  
65  
Signal-to-noise + distortion (SINAD)  
f
IN  
= 70 MHz  
Full temp range  
69.5  
69  
f
IN  
f
IN  
f
IN  
= 100 MHz  
= 150 MHz  
= 225 MHz  
69  
66.4  
85  
Room temp  
80  
76  
f
IN  
= 10 MHz  
Full temp range  
83  
f
IN  
f
IN  
= 30 MHz  
= 55 MHz  
82  
77  
Room temp  
77.5  
74  
81  
Total harmonic distortion (THD)  
dBc  
f
= 70 MHz  
IN  
Full temp range  
79.5  
79  
f
IN  
f
IN  
f
IN  
= 100 MHz  
= 150 MHz  
= 225 MHz  
75  
71.8  
6
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
ELECTRICAL CHARACTERISTICS(continued)  
Typ, min, and max values at T = 25°C, full temperature range is T  
= −55°C to T  
MAX  
= 125°C, sampling rate = 125 MSPS, 50% clock duty  
differential clock (unless otherwise noted)  
A
MIN  
cycle, AV  
= DRV  
= 3.3 V, DLL On, −1−dBFS differential input, and 3-V  
DD  
DD  
PP  
PARAMETER  
CONDITIONS  
= 70 MHz  
MIN  
TYP  
MAX  
UNIT  
Effective number of bits (ENOB)  
Two-tone intermodulation distortion (IMD)  
Power Supply  
f
IN  
11.3  
Bits  
f = 10.1 MHz, 15.1 MHz  
(−7 dBFS each tone)  
85  
85  
88  
f = 30.1 MHz, 35.1 MHz  
(−7 dBFS each tone)  
dBc  
f = 50.1 MHz, 55.1 MHz  
(−7 dBFS each tone)  
V
= full-scale, f = 5 5 MHz,  
IN  
IN  
AV  
Total supply current, I  
CC  
236  
175  
265  
190  
mA  
mA  
= DRV  
= 3.3V  
DD  
DD  
V
IN  
AV  
= full-scale, f = 5 5 MHz,  
IN  
= 3.3V  
Analog supply current, I  
AVDD  
= DRV  
DD  
DD  
V
= full-scale, f = 55 MHz,  
= DRV  
DD  
IN  
AV  
IN  
= 3.3 V  
Output buffer supply current, I  
61  
75  
mA  
mW  
mW  
mW  
DRVDD  
DD  
Analog only  
578  
780  
181  
627  
875  
250  
Power dissipation  
Standby power  
Total power with 10−pF load on  
digital output to ground  
With clocks running  
DIGITAL CHARACTERISTICS  
Typ, min, and max values at T = 25°C, full temperature range is T  
= −55°C to T  
= 125°C, sampling rate = 125 MSPS, 50% clock duty  
differential clock (unless otherwise noted)  
A
MIN MAX  
cycle, AV  
= DRV  
= 3.3 V, DLL On, −1 dBFS differential input, and 3-V  
DD  
DD  
PP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Inputs  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input current for RESET  
Input capacitance  
2.4  
V
0.8  
10  
10  
V
µA  
µA  
µA  
pF  
−20  
4
(1)  
Digital Outputs  
(2)  
= 10 pF , f = 125 MSPS  
Low-level output voltage  
High-level output voltage  
Output capacitance  
C
LOAD  
C
LOAD  
0.3  
3
V
V
S
(2)  
= 10 pF , f = 125 MSPS  
S
3
pF  
(1)  
(2)  
For optimal performance, all digital output lines (D0:D13), including the output clock, should see a similar load.  
Equivalent capacitance to ground of (load + parasitics of transmission lines)  
7
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TIMING CHARACTERISTCS  
N + 4  
N + 3  
N + 2  
Analog  
Input  
Signal  
Sample  
N
N + 1  
N + 17  
N + 16  
N + 15  
t
PDI  
t
A
Input Clock  
t
SETUP  
Output Clock  
t
HOLD  
N
17  
N
16  
N
15  
N
13  
N
3
N
2
N 1  
-
N
-
-
-
-
-
-
Data Out  
(D0D13)  
Data Invalid  
16.5 Clock Cycles  
NOTE: It is recommended that the loading at CLKOUT and all data lines are accurately matched to ensure that the above timing  
matches closely with the specified values.  
Figure 2. Timing Diagram  
(1)  
TIMING CHARACTERISTICS  
Typ, min, and max values at T = 25°C, min and max specified over the full recommended operating temperature range,  
A
AV  
DD  
= DRV  
DD  
= 3.3 V, 3−V  
PP  
differential clock, and C = 10 pF (unless otherwise noted)  
LOAD  
PARAMETER  
Switching Specification  
Aperture delay, t  
DESCRIPTION  
TYP  
UNIT  
Input CLK falling edge to data sampling point  
Uncertainty in sampling instant  
1
ns  
fs  
A
Aperture jitter (uncertainty)  
Data setup time, t  
300  
2.5  
2.1  
(2)  
Data valid to 50% of CLKOUT rising edge  
ns  
ns  
SU  
(2)  
Data hold time, t  
50% of CLKOUT rising edge to data becoming invalid  
h
Input clock to output data valid  
(3)(4),  
Input clock rising edge to Data valid start delay  
2.2  
ns  
start  
t
START  
Input clock to output data valid  
(3)(4),  
Input clock rising edge to Data valid end delay  
6.9  
150  
1.7  
ns  
ps  
ns  
end  
t
END  
Output clock jitter, t  
JIT  
Uncertainty in CLKOUT rising edge, peak−to−peak  
Rise time of CLKOUT measured from 20% to 80% of  
DRVDD  
Output clock rise time, t  
r
Fall time of CLKOUT measured from 80% to 20% of  
DRVDD  
Output clock fall time, t  
1.5  
4.8  
ns  
ns  
f
Input clock to output clock delay, Input clock rising edge, zero crossing, to output clock  
rising edge 50%  
t
PDI  
Data rise time, t  
Data rise time measured from 20% to 80% of DRVDD  
Data fall time measured from 80% to 20% of DRVDD  
3.6  
2.8  
ns  
ns  
r
Data fall time, t  
f
Latency Time for a sample to  
propagate to the ADC outputs  
17.5 clock cycles  
17.5  
Clock Cycles  
(1)  
(2)  
(2)  
(4)  
Timing parameters are ensured by design and characterization and not tested in production.  
Data valid refers to 2 V for LOGIC high and 0.8 V for LOGIC low.  
See the Output Information section for details on using the input clock for data capture.  
These specifications apply when the CLKOUT polarity is set to rising edge (according to Table 3). Add one−half clock period for the valid number  
for a falling−edge CLKOUT polarity.  
8
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
RESET TIMING CHARACTERISTICS  
Typ, min, and max values at T = 25°C, min and max specified over the full recommended operating temperature range,  
A
AV  
DD  
= DRV  
DD  
= 3.3 V, 3−V  
PP  
differential clock (unless otherwise noted)  
PARAMETER  
DESCRIPTION  
TYP  
UNIT  
Switching Specification  
Delay from power−up of AV  
stable  
and DRV to output  
DD  
DD  
Power−up time  
40  
ms  
SERIAL PROGRAMMING INTERFACE CHARACTERISTICS  
The device has a three-wire serial interface. The device  
latches the serial data SDATA on the falling edge of  
serial clock SCLK when SEN is active.  
D
D
D
Data is loaded at every 16th SCLK falling edge  
while SEN is low.  
In case the word length exceeds a multiple of  
16 bits, the excess bits are ignored.  
D
D
Serial shift of bits is enabled when SEN is low.  
SCLK shifts serial data at falling edge.  
Data can be loaded in multiple of 16-bit words within  
a single active SEN pulse.  
Minimum width of data stream for a valid loading is  
16 clocks.  
A3  
A2  
A1  
A0  
D11  
D10  
D9  
D0  
SDATA  
ADDRESS  
DATA  
MSB  
t
Figure 3. DATA Communication Is 2 Byte, MSB First  
SLOADS  
t
SLOADH  
SEN  
t
t
t
SCLK  
WSCLK  
WSCLK  
SCLK  
t
t
OH  
OS  
SDATA  
MSB  
LSB  
MSB  
LSB  
16 x M  
Figure 4. Serial Programming Interface Timing Diagram  
Table 1. Serial Programming Interface Timing Characteristics  
(1)  
MIN  
(1)  
TYP  
(1)  
MAX  
SYMBOL  
PARAMETER  
UNIT  
t
SCLK period  
50  
25%  
8
ns  
SCLK  
t
SCLK duty cycle  
50%  
75%  
WSCLK  
t
SEN to SCLK setup time  
SCLK to SEN hold time  
Data setup time  
ns  
ns  
ns  
ns  
SLOADS  
t
6
SLOADH  
t
8
DS  
t
Data hold time  
6
DH  
(1)  
Min, typ, and max values are characterized, but not production tested.  
9
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
Table 2. Serial Register Table  
A3 A2 A1 A0 D11  
D10  
D9  
D8 D7 D6 D5 D4 D3 D2  
D1  
D0  
DESCRIPTION  
1
1
0
1
0
0
0
0
0
0
0
0
0
0
DLL  
OFF  
0
DLL OFF = 0: Internal DLL is on, recommended for  
60−125 MSPS clock speed  
DLL OFF = 1: Internal DLL is off, recommended for  
10−80 MSPS clock speed  
1
1
1
0
0
TP<1> TP<0>  
0
0
0
0
0
0
0
0
0
0
0
TP<1:0>: Test modes for output data capture  
TP<1> = 0, TP<0> = 0: Normal mode of operation,  
TP<1> = 0  
TP<0> = 1: All output lines are pulled to ’0’, TP<1> = 1  
TP<0> = 0: All output lines are pulled to ’1’, TP<1> = 1  
TP<0> = 1: A continuous stream of ’10’ comes out on  
all output lines  
1
1
1
1
PDN  
0
0
0
0
0
0
0
0
0
PDN = 0: Normal mode of operation,  
PDN = 1: Device is put in power down (low current)  
mode  
10  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
Table 3. DATA FORMAT SELECT (DFS TABLE)  
DFS-PIN VOLTAGE (V  
)
DATA FORMAT  
CLOCK OUTPUT POLARITY  
DFS  
1
6
Straight binary  
Data valid on rising edge  
V
t
  AV  
DD  
1
DFS  
5
12  
Twos complement  
Straight binary  
Data valid on rising edge  
Data valid on falling edge  
Data valid on falling edge  
  AV  
u V  
u
  AV  
DD  
DD  
DD  
DFS  
3
2
3
7
12  
  AV  
u V  
u
  AV  
DD  
DFS  
5
6
Twos complement  
V
u
  AV  
DD  
DFS  
PIN CONFIGURATION  
PAP PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
DR  
GND  
DR  
GND  
SCLK  
SDATA  
SEN  
47 D3  
3
46  
45  
D2  
D1  
4
AV  
DD  
5
44 D0 (LSB)  
43 CLKOUT  
A
GND  
6
AV  
7
42 DR  
GND  
DD  
A D S 5500  
8
41  
40  
39  
A
GND  
OE  
Po w erP A D  
9
AV  
DD  
DFS  
(Connected to Analog Ground)  
10  
CLKP  
AV  
DD  
CLKM 11  
38 A  
GND  
12  
13  
14  
15  
16  
37  
36  
A
AV  
DD  
GND  
A
GND  
A
GND  
A
35 RESET  
GND  
AV  
34 AV  
DD  
DD  
33  
A
GND  
AV  
DD  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
11  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
PIN ASSIGNMENTS  
TERMINAL  
NO.  
OF PINS  
12  
NAME  
NO.  
I/O  
DESCRIPTION  
AV  
5, 7, 9, 15, 22, 24, 26,  
28, 33, 34, 37, 39  
I
Analog power supply  
Analog ground  
DD  
A
GND  
6, 8, 12, 13, 14, 16, 18,  
21, 23, 25, 27, 32, 36, 38  
14  
I
DRV  
49, 58  
2
6
1
1
1
I
I
Output driver power supply  
Output driver ground  
DD  
DR  
1, 42, 48, 50, 57, 59  
GND  
INP  
19  
20  
29  
I
Differential analog input (positive)  
Differential analog input (negative)  
INM  
I
REFP  
O
Reference voltage (positive), 0.1-µF capacitor in series with a 1-Ω  
resistor to GND  
REFM  
30  
1
O
Reference voltage (negative), 0.1-µF capacitor in series with a  
1-resistor to GND  
IREF  
31  
1
1
I
O
I
Current set, 56-kresistor to GND, do not connect capacitors  
CM  
17  
Common-mode output voltage  
RESET  
OE  
35  
1
Reset (active high), 200-kresistor to AV  
DD  
41  
1
I
Output enable (active high)  
(1)  
Data format and clock out polarity select  
DFS  
40  
1
I
CLKP  
10  
1
I
Data converter differential input clock (positive)  
Data converter differential input clock (negative)  
Serial interface chip select  
CLKM  
11  
1
I
SEN  
4
1
I
SDATA  
SCLK  
3
1
I
Serial interface data  
2
1
I
Serial interface clock  
D0 (LSB)−D13 (MSB)  
OVR  
44−47, 51−56, 60−63  
14  
1
O
O
O
Parallel data output  
64  
43  
Over-range indicator bit  
CLKOUT  
1
CMOS clock out in sync with data  
:
NOTE PowerPAD is connected to analog ground.  
(1)  
The DFS pin is programmable to four discrete voltage levels: 0, 3/8 AV , 5/8 AV , and AV . The thresholds are centered. More details are  
DD DD DD  
listed in Table 3 on page 11.  
12  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth  
Integral Nonlinearity (INL)  
The analog input frequency at which the spectral power of  
the fundamental frequency (as determined by FFT  
analysis) is reduced by 3 dB  
The deviation of the transfer function from a reference line  
measured in fractions of one LSB using a best straight line  
or best fit determined by a least square curve fit. INL is  
independent from effects of offset, gain, or quantization  
errors.  
Aperture Delay  
The delay in time between the falling edge of the input  
sampling clock and the actual time at which the sampling  
occurs  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
This is the maximum sampling rate where certified  
operation is given.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay  
Minimum Conversion Rate  
Clock Pulse Width/Duty Cycle  
The minimum sampling rate where the ADC still works.  
A perfect differential sine−wave clock results in a 50%  
clock duty cycle on the internal coversion clock. Pulse  
width high is the minimum amount of time that the  
ENCODE pulse should be left in logic 1 state to achieve  
rated performance. Pulse width low is the minimum time  
that the ENCODE pulse should be left in a low state (logic  
0). At a given clock rate, these specifications define an  
acceptable clock duty cycle.  
Nyquist Sampling  
When the sampled frequencies of the analog input signal  
are below fCLOCK/2, it is called Nyquist sampling. The  
Nyquist frequency is fCLOCK/2, which can vary depending  
on the sample rate (fCLOCK).  
Offset Error  
The deviation of output code from mid-code when both  
inputs are tied to common-mode  
Differential Nonlinearity (DNL)  
An ideal ADC exhibits code transitions that are exactly one  
LSB apart. DNL is the deviation of any single LSB  
transition at the digital output from an ideal one LSB step  
at the analog input. If a device claims to have no missing  
codes, it means that all possible codes (for a 14-bit  
converter, 16384 codes) are present over the full operating  
range.  
Propagation Delay  
The delay between the input clock rising edge and the time  
when all data bits are within valid logic levels  
Signal-to-Noise and Distortion (SINAD)  
The RMS value of the sine wave fIN (input sine wave for an  
ADC) to the RMS value of the noise of the converter from  
DC to the Nyquist frequency, including harmonic content.  
It is typically expressed in decibels (dB). SINAD includes  
harmonics, but excludes DC.  
Effective Number of Bits (ENOB)  
The effective number of bits for a sine−wave input at a  
given input frequency can be calculated directly from its  
measured SINAD using the following formula:  
Input(VS )  
SINAD + 20Log  
(10) Noise ) Harmonics  
SINAD * 1.76  
ENOB +  
6.02  
Signal-to-Noise Ratio (Without Harmonics)  
If SINAD is not known, SNR can be used exceptionally to  
calculate ENOB (ENOBSNR).  
SNR is a measure of signal strength relative to background  
noise. The ratio is usually measured in dB. If the incoming  
signal strength in µV is VS, and the noise level (also in µV)  
is VN, the SNR in dB is given by the formula:  
Effective Resolution Bandwidth  
The highest input frequency where the SNR (dB) is  
dropped by 3 dB for a full-scale input amplitude  
VS  
(10) VN  
SNR + 20Log  
Gain Error  
The amount of deviation between the ideal transfer  
function and the measured transfer function (with the offset  
error removed) when a full-scale analog input voltage is  
applied to the ADC, resulting in all ones in the digital code.  
Gain error is usually given in LSB or as a percent of  
full-scale range (%FSR).  
This is the ratio of the RMS signal amplitude, VS (set one  
dB below full-scale), to the RMS value of the sum of all  
other spectral components, VN, excluding harmonics and  
dc.  
13  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
Spurious-Free Dynamic Range (SFDR)  
Total Harmonic Distortion (THD)  
The ratio of the RMS value of the analog input sine wave  
to the RMS value of the peak spur observed in the  
frequency domain. It may be reported in dBc (that is, it  
degrades as signal levels are lowered), or in dBFS (always  
related back to converter full-scale). The peak spurious  
component may or may not be a harmonic.  
The ratio of the RMS signal amplitude of the input sine  
wave to the RMS value of distortion appearing at multiples  
(harmonics) of the input, typically given in dBc  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the RMS value of either input tone (f1, f2) to the  
RMS value of the worst third-order intermodulation  
product (2f1 − f2; 2f2 − f1). It is reported in dBc.  
Temperature Drift  
Temperature drift (for offset error and gain error) specifies  
the maximum change from the initial temperature value to  
the value at TMIN or TMAX  
.
14  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On (unless  
DD  
A
DD  
SPECTRAL PERFORMANCE  
(FFT for 2MHz Input Signal)  
SPECTRAL PERFORMANCE  
(FFT for 15MHz Input Signal)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SFDR = 84.0dBc  
SNR = 71.2dBFS  
THD = 84.0dBc  
SFDR = 84.8dBc  
SNR = 71.5dBFS  
THD = 83.2dBc  
SINAD = 71.0dBFS  
SINAD = 71.2dBFS  
-
-
100  
110  
120  
130  
140  
100  
110  
120  
130  
140  
-
-
-
-
-
-
-
-
0
0
0
10  
20  
30  
40  
50  
50  
50  
60  
60  
60  
0
0
0
10  
20  
30  
40  
50  
50  
50  
60  
60  
60  
Frequency (MHz)  
Frequency (MHz)  
SPECTRAL PERFORMANCE  
(FFT for 60MHz Input Signal)  
SPECTRAL PERFORMANCE  
(FFT for 70MHz Input Signal)  
0
0
-
-
-
-
-
-
-
-
-
-
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
SFDR = 85.1dBc  
SNR = 71.4dBFS  
THD = 83.6dBc  
SFDR = 81.0dBc  
SNR = 71.2dBFS  
THD = 80.2dBc  
-
-
-
-
-
-
-
-
SINAD = 71.1dBFS  
SINAD = 70.7dBFS  
-
-
-
-
-
-
-
-
-
-
10  
20  
30  
40  
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
SPECTRAL PERFORMANCE  
(FFT for 80MHz Input Signal)  
SPECTRAL PERFORMANCE  
(FFT for 100MHz Input Signal)  
0
0
-
-
-
-
-
-
-
-
-
-
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
SFDR = 84.3dBc  
SNR = 71.1dBFS  
THD = 81.6dBc  
SFDR = 84.4dBc  
SNR = 71.2dBFS  
THD = 81.3dBc  
-
-
-
-
-
-
-
-
SINAD = 70.7dBFS  
SINAD = 70.9dBFS  
-
-
-
-
-
-
-
-
-
-
10  
20  
30  
40  
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
15  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On (unless  
DD  
A
DD  
SPECTRAL PERFORMANCE  
(FFT for 150MHz Input Signal)  
SPECTRAL PERFORMANCE  
(FFT for 225MHz Input Signal)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SFDR = 73.0dBc  
SNR = 69.1dBFS  
THD = 70.0dBc  
SFDR = 77.8dBc  
SNR = 70.0dBFS  
THD = 75.3dBc  
SINAD = 69.0dBFS  
SINAD = 66.5dBFS  
-
-
100  
110  
120  
130  
140  
100  
110  
120  
130  
140  
-
-
-
-
-
-
-
-
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
SPECTRAL PERFORMANCE  
(FFT for 300MHz Input Signal)  
TWO−TONE INTERMODULATION  
0
0
-
10  
20  
30  
40  
50  
60  
70  
80  
90  
SFDR = 67.4dBc  
SNR = 68.0dBFS  
THD = 64.7dBc  
-
-
-
-
-
-
-
-
-
-
-
-
20  
40  
60  
80  
SINAD = 63.0dBFS  
-
-
-
-
100  
110  
120  
130  
140  
100  
120  
140  
-
-
-
-
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
TWO−TONE INTERMODULATION  
TWO−TONE INTERMODULATION  
0
0
-
-
-
-
-
-
-
-
20  
40  
60  
80  
20  
40  
60  
80  
-
-
-
-
100  
120  
140  
100  
120  
140  
-
-
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
16  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On (unless  
DD  
A
DD  
DIFFERENTIAL NONLINEARITY (DNL)  
INTEGRAL NONLINEARITY (INL)  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
fS = 125MSPS  
fIN = 10MHz  
-
= 0.5dBFS  
AIN  
Code  
Code  
SPURIOUS−FREE DYNAMIC RANGE vs  
INPUT FREQUENCY  
SIGNAL−TO−NOISE RATIO vs INPUT FREQUENCY  
90  
85  
80  
75  
70  
65  
60  
55  
50  
76  
74  
72  
70  
68  
66  
64  
62  
60  
fS = 125MSPS  
DLL On  
fS = 125MSPS  
DLL On  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Input Frequency (MHz)  
Input Frequency (MHz)  
AC PERFORMANCE vsANALOG SUPPLY VOLTAGE  
AC PERFORMANCE vsANALOG SUPPLY VOLTAGE  
SFDR  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
SFDR  
SNR  
SNR  
fS = 125MSPS  
fIN = 70MHz  
DRVDD = 3.3V  
fS = 125MSPS  
fIN = 150MHz  
DRVDD = 3.3V  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
AVDD (V)  
AVDD (V)  
17  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On (unless  
DD  
A
DD  
AC PERFORMANCE vs DIGITAL SUPPLY VOLTAGE  
SFDR  
AC PERFORMANCE vs DIGITAL SUPPLY VOLTAGE  
SFDR  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
84  
82  
80  
78  
76  
74  
72  
70  
fS = 125MSPS  
fIN = 150MHz  
AVDD = 3.3V  
fS = 125MSPS  
fIN = 70MHz  
AVDD = 3.3V  
SNR  
SNR  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
DRVDD (V)  
DRVDD (V)  
POWER DISSIPATION vs SAMPLE RATE  
POWER DISSIPATION vs SAMPLING FREQUENCY  
800  
750  
700  
650  
600  
550  
500  
850  
800  
750  
700  
650  
600  
550  
500  
AVDD = DRVDD = 3.3V  
fIN = 150MHz  
fIN = 70MHz  
DLL On  
DLL Off  
10 20 30 40 50 60 70 80 90 100 110 120  
Sampling Frequency (MSPS)  
10  
30  
50  
70  
90  
110  
130  
150  
Sample Rate (MSPS)  
SIGNAL−TO−NOISE RATIO AND  
SPURIOUS−FREE DYNAMIC RANGE vs TEMPERATURE  
AC PERFORMANCE vs INPUT AMPLITUDE  
SNR (dBFS)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
85  
80  
75  
70  
65  
60  
SFDR  
SFDR (dBc)  
SNR (dBc)  
SNR  
fS = 125MSPS  
fIN = 70MHz  
DLL On  
fS = 125MSPS  
fIN = 70MHz  
DLL On  
-
10  
20  
-
-
30  
-
-
-
-
-
-
-
-
-
-
20 10  
100 90  
80  
70  
60  
50  
40  
30  
0
-
40  
0
25  
Temperature ( C)  
40  
85  
InputAmplitude (dBFS)  
_
18  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On (unless  
DD  
A
DD  
AC PERFORMANCE vs INPUT AMPLITUDE  
SNR (dBFS)  
AC PERFORMANCE vs INPUT AMPLITUDE  
SNR (dBFS)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR (dBc)  
SFDR (dBc)  
SNR (dBc)  
SNR (dBc)  
fS = 125MSPS  
fS = 125MSPS  
f IN = 220MHz  
DLL On  
-
-
-
-
-
-
10  
20  
10  
20  
30  
fIN = 150MHz  
DLL On  
30  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
100 90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
0
InputAmplitude (dBFS)  
InputAmplitude (dBFS)  
AC PERFORMANCE vs CLOCK AMPLITUDE  
SFDR  
OUTPUT NOISE HISTOGRAM  
90  
85  
80  
75  
70  
65  
60  
55  
50  
40  
35  
30  
25  
20  
15  
10  
5
SNR  
fS = 125MSPS  
fIN = 70MHz  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Differential Clock Amplitude (V)  
Output Code  
WCDMA TONE  
0
20  
40  
60  
80  
fS = 150MSPS  
fIN = 125MHz  
-
-
-
-
-
-
-
100  
120  
140  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
19  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On (unless  
DD  
A
DD  
SIGNAL−TO−NOISE RATIO (SNR) WITH DLL ON  
150  
140  
130  
120  
110  
100  
90  
73  
72  
71  
70  
69  
68  
67  
66  
71  
71  
69  
71  
69  
72  
70  
69  
68  
72  
71  
80  
68  
73  
69  
73  
70  
70  
60  
70  
72  
69  
50  
71  
72  
69  
67  
68  
40  
0
50  
100  
150  
Input Frequency (MHz)  
200  
250  
300  
SIGNAL−TO−NOISE RATIO (SNR) WITH DLL OFF  
80  
70  
60  
50  
40  
30  
20  
10  
71  
70  
69  
72  
70  
68  
66  
64  
62  
60  
73  
72  
73  
69  
68  
70  
71  
67  
72  
73  
68  
69  
67  
73  
66  
64  
70  
71  
65  
71  
66  
69  
67  
63  
72  
50  
68  
62  
0
100  
150  
Input Frequency (MHz)  
200  
250  
300  
20  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On( unless  
DD  
A
DD  
SPURIOUS−FREE DYNAMIC RANGE (SFDR) WITH DLL ON  
150  
140  
130  
120  
110  
100  
90  
83  
77  
71  
68  
80  
77  
80  
85  
80  
75  
70  
65  
83  
83  
74  
77  
86  
83  
86  
71  
80  
68  
86  
74  
77  
80  
83  
89  
70  
83  
86  
80  
60  
89  
71  
86  
68  
83  
50  
74  
77  
40  
0
50  
100  
150  
200  
250  
300  
Input Frequency (MHz)  
SPURIOUS−FREE DYNAMIC RANGE (SFDR) WITH DLL OFF  
80  
70  
60  
50  
40  
30  
20  
10  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
70  
78  
80  
88  
82  
84  
84  
88  
74  
86  
76  
86  
88  
86  
72  
78  
70  
68  
80  
86  
86  
76  
82  
78  
74  
72  
84  
88  
80  
70  
86  
84  
68  
76  
74  
72  
82  
70  
0
50  
100  
150  
Input Frequency (MHz)  
200  
250  
300  
21  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On (unless  
DD  
A
DD  
SECOND HARMONIC (HD2) WITH DLL ON  
150  
86  
95  
98  
83  
77  
68  
86  
83  
80  
140  
130  
120  
110  
100  
90  
86  
95  
90  
85  
80  
75  
70  
65  
71  
89  
89  
92  
92  
86  
86  
89  
74  
92  
77  
80  
89  
89  
83  
86  
86  
86  
95  
71  
92  
92  
89  
80  
77  
74  
98  
89  
86  
83  
92  
89  
83  
80  
68  
74  
71  
95  
77  
98  
70  
86  
89  
98  
60  
92  
95  
83  
95  
98  
92  
68  
50  
89  
74  
92  
71  
86  
80  
77  
95  
40  
0
50  
100  
150  
Input Frequency (MHz)  
200  
250  
300  
SECOND HARMONIC (HD2) WITH DLL OFF  
80  
70  
60  
50  
40  
30  
20  
10  
90  
84  
68  
87  
81  
93  
96  
95  
93  
96  
99  
78  
90  
85  
80  
75  
70  
75  
99  
72  
87  
68  
84 81  
93  
99  
99  
96  
90  
99  
78  
72  
75  
99  
87  
84  
81  
93  
68  
78  
72  
87  
84  
75  
0
50  
100  
150  
Input Frequency (MHz)  
200  
250  
300  
22  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
Typical values are at T = 25°C, AV  
otherwise noted)  
= DRV = 3.3 V, differential input amplitude = −1 dBFS, sampling rate = 125 MSPS, and DLL On (unless  
DD  
A
DD  
THIRD HARMONIC (HD3) WITH DLL ON  
150  
83  
77  
80  
71  
68  
71  
74  
90  
85  
80  
75  
70  
65  
140  
89  
86  
86  
86  
130  
120  
110  
100  
90  
86  
83  
89  
83  
80  
77  
77  
74  
86  
77  
83  
80  
86  
83  
86  
89  
80  
92  
89  
70  
86  
86  
92  
60  
86  
83  
50  
83  
89  
86  
89  
40  
0
50  
100  
150  
Input Frequency (MHz)  
200  
250  
300  
THIRD HARMONIC (HD3) WITH DLL OFF  
80  
90  
87  
87  
90  
84  
78  
81  
90  
87  
70  
60  
50  
40  
30  
20  
10  
84  
78  
85  
80  
75  
70  
84  
72  
75  
78  
84 81  
87  
72  
75  
87  
84  
84  
81  
81  
90  
78  
84  
72  
72  
75  
87  
0
50  
100  
150  
Input Frequency (MHz)  
200  
250  
300  
23  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
APPLICATION INFORMATION  
through the pipeline every half clock cycle. This process  
results in a data latency of 16.5 clock cycles, after which  
the output data is available as a 14-bit parallel word,  
coded in either straight offset binary or binary  
twos−complement format.  
THEORY OF OPERATION  
The ADS5500 is a low-power, 14-bit, 125−MSPS,  
CMOS, switched−capacitor, pipeline ADC that  
operates from a single 3.3-V supply. The conversion  
process is initiated by a falling edge of the external input  
clock. Once the signal is captured by the input S&H, the  
input sample is sequentially converted by a series of  
small resolution stages, with the outputs combined in a  
digital correction logic block. Both the rising and the  
falling clock edges are used to propagate the sample  
INPUT CONFIGURATION  
The analog input for the ADS5500 consists of a  
differential architecture implemented using a switched  
capacitor technique, shown in Figure 5.  
SAMPLE  
W3a  
SAMPLE  
PHASE  
PHASE  
W1a  
L1  
R1a  
C1a  
INP  
CP1  
CP3  
R3  
SAMPLE  
PHASE  
W2  
CACROSS  
SWITCH  
L2  
R1b  
C1b  
VINCM  
1V  
INM  
CP2  
W1b  
CP4  
SAMPLE  
PHASE  
SAMPLE  
PHASE  
W3a  
L1, L2 : 6nh to 10nh effective  
W
W
R1a, R1b : 25 to 35  
C1a, C1b : 2.2pF to 2.6pF  
CP1, CP2 : 2.5pF to 3.5pF  
CP3, CP4, : 1.2pF to 1.8pF  
CACROSS : 0.8pF to 1.2pF  
W
W
R3 : 80 to 120  
Switches:  
W
W
W
W1a, W1b : On Resistance: 25 to 35  
W
W
W2 : On Resistance: 7.5 to 15  
W
3a, W3b : On Resistance: 40 to 60  
1a, W1b, W2, W3a, W3b : Off Resistance: 1e10  
W
W
All switches are on in sample phase.  
Approximately half of every clock period is a sample phase.  
Figure 5. Analog Input Stage  
24  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
This differential input topology produces a high level of  
ac performance for high sampling rates. It also results  
in a high usable input bandwidth, especially important  
for high intermediate frequency (IF) or undersampling  
applications. The ADS5500 requires each of the analog  
inputs (INP, INM) to be externally biased around the  
common-mode level of the internal circuitry (CM, pin  
17). For a full-scale differential input, each of the  
differential lines of the input signal (pins 19 and 20)  
swings symmetrically between CM + 0.575 V and CM  
– 0.575 V. This means that each input is driven with a  
signal of up to CM 0.575 V, so that each input has a  
4mA   fs  
125MSPS  
(1)  
Where: f > 60 MSPS.  
S
This equation designs the output capability and  
impedance of the driving circuit accordingly.  
When it is necessary to buffer or apply a gain to the  
incoming analog signal, it is possible to combine  
single-ended operational amplifiers with an RF  
transformer or to use a differential input/output amplifier  
without a transformer to drive the input of the ADS5500.  
Texas Instruments offers  
a
wide selection of  
single-ended operational amplifiers (including the  
THS3201, THS3202, OPA847, and OPA695) that can  
be selected, depending on the application. An RF gain  
block amplifier, such as the TI THS9001, can also be  
used with an RF transformer for very high input  
frequency applications. The THS4503 is  
recommended differential input/output amplifier.  
Table 4 lists the recommended amplifiers.  
maximum differential signal of 1.15 V  
for a total  
PP  
differential input signal swing of 2.3 V . The maximum  
PP  
swing is determined by the two reference voltages − the  
top reference (REFP, pin 29), and the bottom reference  
(REFM, pin 30).  
a
The ADS5500 obtains optimum performance when the  
analog inputs are driven differentially. The circuit shown  
in Figure 6 shows one possible configuration using an  
RF transformer.  
When using single-ended operational amplifiers (such  
as the THS3201, THS3202, OPA847, or OPA695) to  
provide gain, a three-amplifier circuit is recommended  
with one amplifier driving the primary of an RF  
transformer and one amplifier in each of the legs of the  
secondary driving the two differential inputs of the  
ADS5500. These three amplifier circuits minimize  
even-order harmonics. For high frequency inputs, an  
RF gain block amplifier can be used to drive a  
transformer primary; in this case, the transformer  
secondary connections can drive the input of the  
ADS5500 directly (see Figure 6) or with the addition of  
the filter circuit (see Figure 7).  
R0  
Z0  
W
50  
W
50  
INP  
1:1  
R
50  
AC Signal  
Source  
ADS5500  
INM  
W
CM  
ADT11WT  
W
10  
m
0.1 F  
1nF  
Figure 7 shows how RIN and CIN can be placed to isolate  
the signal source from the switching inputs of the ADC  
and to implement a low-pass RC filter to limit the input  
noise in the ADC. It is recommended that these  
components be included in the ADS5500 circuit layout  
when any of the amplifier circuits discussed previously  
are used. The components allow fine tuning of the  
circuit performance. Any mismatch between the  
differential lines of the ADS5500 input produces a  
degradation in performance at high input frequencies,  
mainly characterized by an increase in the even-order  
harmonics. In this case, special care should be taken to  
keep as much electrical symmetry as possible between  
both inputs.  
Figure 6. Transformer Input to Convert  
Single-Ended Signal to Differential Signal  
The single-ended signal is fed to the primary winding of  
an RF transformer. Since the input signal must be  
biased around the common-mode voltage of the  
internal circuitry, the common-mode voltage (V ) from  
CM  
the ADS5500 is connected to the center tap of the  
secondary winding. To ensure a steady low-noise V  
reference, best performance is obtained when the CM  
(pin 17) output is filtered to ground with 0.1−µF and  
0.01-µF low-inductance capacitors.  
CM  
Output V  
(pin 17) is designed to directly drive the  
CM  
Another possible configuration for lower-frequency  
signals is the use of differential input/output amplifiers  
that can simplify the driver circuit for applications  
requiring dc coupling of the input. Flexible in their  
configurations (see Figure 8), such amplifiers can be  
used for single-ended-to-differential conversion signal  
amplification.  
ADC input. When providing a custom CM level, be  
aware that the input structure of the ADC sinks a  
common-mode current in the order of 4 mA (2 mA per  
input). Equation 1 describes the dependency of the  
common-mode current and the sampling frequency:  
25  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
Table 4. Recommended Amplifiers to Drive Input of ADS5500  
INPUT SIGNAL FREQUENCY  
DC to 20 MHz  
RECOMMENDED AMPLIFIER  
TYPE OF AMPLIFIER  
Differential in/out amplifier  
Operational amplifier  
Operational amplifier  
Operational amplifier  
Operational amplifier  
RF gain block  
USE WITH TRANSFORMER?  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
THS4503  
OPA847  
OPA695  
THS3201  
THS3202  
THS9001  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
DC to 50 MHz  
10 MHz to 120 MHz  
Over 100 MHz  
(1)  
Potential EP devices  
-
+5V 5V  
RS  
RIN  
W
100  
m
0.1 F  
VIN  
1:1  
INP  
OPA695  
R1  
RT  
100  
CIN  
ADS5500  
CM  
1000pF  
RIN  
W
INM  
W
400  
AV = 8V/V  
(18dB)  
R2  
57.5  
W
10  
W
m
0.1 F  
Figure 7. Converting Single-Ended Input Signal to Differential Signal Using an RF Transformer  
RS  
RG  
RF  
+5V  
RT  
+3.3V  
m
m
0.1 F  
10 F  
RIN  
RIN  
INP  
ADS5500  
14Bit/125MSPS  
VOCM  
INM  
m
1 F  
THS4503  
CM  
m
m
0.1 F  
10 F  
W
10  
-
5V  
RG  
RF  
m
0.1 F  
Figure 8. Using THS4503 With ADS5500  
the same time works without any problem. If this  
sequence is not followed, the device may stay in  
power-down mode.  
POWER−SUPPLY SEQUENCE  
The ADS5500 requires a power-up sequence where the  
DRV  
supply must be at least 0.4 V by the time the  
DD  
AV  
supply reaches 3 V. Powering up both supplies at  
DD  
26  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
POWER DOWN  
CLOCK INPUT  
The device enters power down in one of two ways −  
either by reducing the clock speed to between dc and  
1 MHz, or by setting a bit through the serial  
programming interface. Using the reduced clock speed,  
the power down may be initiated for clock frequencies  
below 10 MHz. For clock frequencies between 1 MHz  
and 10 MHz, this can vary from device to device, but will  
power down for clock speeds below 1 MHz.  
The ADS5500 clock input can be driven with either a  
differential clock signal or a single-ended clock input,  
with little or no difference in performance between both  
configurations. The common-mode voltage of the clock  
inputs is set internally to CM (pin 17) using internal 5-kΩ  
resistors that connect CLKP (pin 10) and CLKM (pin 11)  
to CM (pin 17) (see Figure 10).  
CM  
CM  
The device can be powered down by programming the  
internal register (see Serial Programming Interface  
section). The outputs become 3-stated and only the  
internal reference is powered up to shorten the  
power-up time. The power-down mode reduces power  
dissipation to a minimum of 180 mW.  
W
5k  
W
5k  
CLKP  
CLKM  
REFERENCE CIRCUIT  
The ADS5500 has built-in internal reference  
generation, requiring no external circuitry on the printed  
circuit board (PCB). For optimum performance, it is best  
to connect both REFP and REFM to ground with a 1−µF  
decoupling capacitor in series with a 1-resistor (see  
Figure 9). In addition, an external 56.2-kresistor  
should be connected from IREF (pin 31) to AGND to set  
the proper current for the operation of the ADC (see  
Figure 9). No capacitor should be connected between  
pin 31 and ground; only the 56.2-kresistor should be  
used.  
6pF  
3pF  
3pF  
Figure 10. Clock Inputs  
When driven with a single-ended CMOS clock input, it  
is best to connect CLKM (pin 11) to ground with a  
0.01-µF capacitor, while CLKP is ac coupled with a  
0.01-µF capacitor to the clock source (see Figure 11).  
m
0.01 F  
Square Wave  
or Sine Wave  
W
1
1
CLKP  
ADS5500  
CLKM  
REFP  
REFM  
29  
30  
(3VPP  
)
m
1 F  
W
m
1 F  
m
0.01 F  
31 IREF  
W
56k  
Figure 11. AC-Coupled Single-Ended Clock Input  
The ADS5500 clock input can also be driven  
differentially, reducing susceptibility to common-mode  
noise. In this case, it is best to connect both clock inputs  
to the differential input clock signal with 0.01-µF  
capacitors (see Figure 12).  
Figure 9. REFP, REFM, and IREF Connections for  
Optimum Performance  
m
0.01 F  
CLKP  
ADS5500  
CLKM  
Differential Square Wave  
or Sine Wave  
(3VPP  
)
m
0.01 F  
Figure 12. AC-Coupled Differential Clock Input  
27  
ꢌꢒ ꢊꢇ ꢇ ꢗ ꢗꢈ ꢘꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
For high input frequency sampling, it is recommended  
to use a clock source with very low jitter. Additionally,  
the internal ADC core uses both edges of the clock for  
the conversion process. This means that, ideally, a 50%  
duty cycle should be provided. Figure 13 shows the  
performance variation of the ADC versus clock duty  
cycle.  
amplitudes without exceeding the supply rails and  
absolute maximum ratings of the ADC clock input.  
Figure 14 shows the performance variation of the  
device versus input clock amplitude. For detailed  
clocking schemes based on transformer or PECL-level  
clocks, see the ADS5500EVM user’s guide  
(SLWU010), available for download from www.ti.com.  
90  
AC PERFORMANCE vs CLOCK AMPLITUDE  
90  
fS = 125MSPS  
fIN = 20MHz  
SFDR  
SFDR  
85  
80  
75  
70  
65  
60  
85  
80  
75  
SNR  
SNR  
70  
65  
60  
fS = 125MSPS  
fIN = 70MHz  
55  
50  
30  
35  
40  
45  
50  
55  
60  
65  
70  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Clock Duty Cycle (%)  
Differential Clock Amplitude (V)  
Figure 13. AC Performance vs Clock Duty Cycle  
Figure 14. AC Performance vs Clock Amplitude  
INTERNAL DLL  
Bandpass filtering of the source can help produce a  
50% duty cycle clock and reduce the effect of jitter.  
When using a sinusoidal clock, the clock jitter further  
improves as the amplitude is increased. In that sense,  
using a differential clock allows for the use of larger  
In order to obtain the fastest sampling rates achievable  
with the ADS5500, the device uses an internal digital  
phase lock loop (DLL). Nevertheless, the limited  
frequency range of operation of DLL degrades the  
performance at clock frequencies below 60 MSPS. In  
order to operate the device below 60 MSPS, the internal  
DLL must be shut off using the DLL OFF mode  
described in the Serial Interface Programming section.  
The Typical Performance Curves show the  
performance obtained in both modes of operation − DLL  
ON (default) and DLL OFF. In either of the two modes,  
the device enters power-down mode if no clock or a  
slow clock is provided. The limit of the clock frequency  
where the device functions properly is ensured to be  
over 10 MHz.  
28  
ꢌꢒꢊ ꢇꢇ ꢗꢗ ꢈꢘ ꢋ  
www.ti.com  
SGLS286C − JUNE 2005 – REVISED SEPTEMBER 2008  
OUTPUT INFORMATION  
SERIAL PROGRAMMING INTERFACE  
The ADC provides 14 data outputs (D13 to D0, with D13  
being the MSB and D0 the LSB), a data-ready signal  
(CLKOUT, pin 43), and an out-of-range indicator (OVR,  
pin 64) that equals 1 when the output reaches the  
full-scale limits.  
The ADS5500 has internal registers for the  
programming of some of the modes described in the  
previous sections. The registers should be reset after  
power up by applying a 2−µs (minimum) high pulse on  
RESET (pin 35); this also resets the entire ADC and  
sets the data outputs to low. This pin has a 200-kΩ  
Two different output formats (straight offset binary or  
twos complement) and two different output clock  
polarities (latching output data on rising or falling edge  
of the output clock) can be selected by setting DFS  
(pin 40) to one of four different voltages. Table 3 details  
the four modes. In addition, output enable control (OE,  
pin 41, active high) is provided to 3-state the outputs.  
internal pullup resistor to AV . The programming is  
DD  
done through a three-wire interface. The timing diagram  
and serial register setting in the Serial Programing  
Interface section describe the programming of this  
register.  
Table 2 shows the different modes and the bit values to  
be written on the register to enable them.  
The output circuitry of the ADS5500 has being designed  
to minimize the noise produced by the transients of the  
data switching, and in particular its coupling to the ADC  
analog circuitry. Output D4 (pin 51) senses the load  
capacitance and adjusts the drive capability of all the  
output pins of the ADC to maintain the same output slew  
rate described in the timing diagram of Figure 2, as long  
as all outputs (including CLKOUT) have a similar load  
as the one at D4 (pin 51). This circuit also reduces the  
sensitivity of the output timing versus supply voltage or  
temperature. External series resistors with the output  
are not necessary.  
Note that some of these modes may modify the  
standard operation of the device and possibly vary the  
performance, with respect to the typical data shown in  
this data sheet.  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
ADS5500MPAPEP  
ADS5500MPAPREP  
V62/05613-01XE  
V62/05613-02XE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
HTQFP  
PAP  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
HTQFP  
HTQFP  
HTQFP  
PAP  
PAP  
PAP  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ADS5500-EP :  
Catalog: ADS5500  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS5500MPAPREP  
HTQFP  
PAP  
64  
1000  
330.0  
24.4  
13.0  
13.0  
1.5  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PAP 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
ADS5500MPAPREP  
1000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

V62/05613-02XE

14 位、125MSPS 模数转换器 (ADC) - 增强型产品 | PAP | 64 | -55 to 125
TI

V62/05614-01XE

HIGH-SPEED DIFFERENTIAL RECEIVER
TI

V62/05615-01XE

增强型产品 Memorystick™ 内部互联扩展器芯片组 | PW | 20 | -40 to 125
TI

V62/05615-02XE

增强型产品 Memorystick™ 内部互联扩展器芯片组 | PW | 20 | -40 to 125
TI

V62/05616-01XE

HIGH-SPEED PWM CONTROLLER
TI

V62/05616-02XE

HIGH-SPEED PWM CONTROLLER
TI

V62/05617-01XE

WIDE-INPUT SYNCHRONOUS BUCK CONTROLLER
TI

V62/05618-01XE

DIGITAL TEMPERATURE SENSOR WITH I2C INTERFACE
TI

V62/05619-01XE

14-Bit 400-MSPS Digital-to-Analog Converter
TI

V62/05619-02XE

14-Bit 400-MSPS Digital-to-Analog Converter
TI

V62/05620-03XE

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)
TI

V62/05620-05XE

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)
TI