V62/05615-02XE [TI]

增强型产品 Memorystick™ 内部互联扩展器芯片组 | PW | 20 | -40 to 125;
V62/05615-02XE
型号: V62/05615-02XE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

增强型产品 Memorystick™ 内部互联扩展器芯片组 | PW | 20 | -40 to 125

文件: 总21页 (文件大小:484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
Memory Stick™ INTERCONNECT EXTENDER CHIPSET WITH LVDS  
SN65LVDT14 – ONE DRIVER PLUS FOUR RECEIVERS  
SN65LVDT41 – FOUR DRIVERS PLUS ONE RECEIVER  
FEATURES  
APPLICATIONS  
Memory Stick™ Interface Extensions With  
Long Interconnects Between Host and  
Memory Stick  
Controlled Baseline  
– One Assembly/Test Site, One Fabrication  
Site  
Serial Peripheral Interface™ (SPI™) Interface  
Extension to Allow Long Interconnects  
Between Master and Slave  
Enhanced Diminishing Manufacturing  
Sources (DMS) Support  
Enhanced Product-Change Notification  
MultiMediaCard™ (MMC) Interface in SPI  
Mode  
General-Purpose Asymmetric Bidirectional  
Communication  
(1)  
Qualification Pedigree  
Integrated 110-Nominal Receiver Line  
Termination Resistor  
Operate From a Single 3.3-V Supply  
Greater Than 125-Mbps Data Rate  
Flow-Through Pinout  
DESCRIPTION  
The SN65LVDT14 combines one LVDS line driver  
with four terminated LVDS line receivers in one  
package. It is designed to be used at the Memory  
Stick™ end of an LVDS-based Memory Stick  
interface extension.  
LVTTL-Compatible Logic I/Os  
ESD Protection on Bus Pins Exceeds 12 kV  
Meet or Exceed Requirements of  
ANSI/TIA/EIA-644A Standard for LVDS  
The SN65LVDT41 combines four LVDS line drivers  
with a single terminated LVDS line receiver in one  
package. It is designed to be used at the host end of  
an LVDS-based Memory Stick interface extension.  
20-Pin Thin Shrink Small-Outline  
Package (PW) With 26-Mil Terminal Pitch  
(1) Component qualification in accordance with JEDEC and  
industry standards to ensure reliable operation over an  
extended temperature range. This includes, but is not limited  
to, Highly Accelerated Stress Test (HAST) or biased 85/85,  
temperature cycle, autoclave or unbiased HAST,  
brk  
brk  
electromigration, bond intermetallic life, and mold compound  
life. Such qualification testing should not be viewed as  
justifying use of this component beyond specified  
performance and environmental limits.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Serial Peripheral Interface, SPI are trademarks of Motorola.  
MultiMediaCard is a trademark of MultiMediaCard Association.  
Memory Stick is a trademark of Sony.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2005, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
On products compliant to MIL-PRF-38535, all parameters are  
Instruments standard warranty. Production processing does not  
tested unless otherwise noted. On all other products, production  
necessarily include testing of all parameters.  
processing does not necessarily include testing of all parameters.  
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
SN65LVDT41 LOGIC DIAGRAM  
(POSITIVE LOGIC)  
SN65LVDT14 LOGIC DIAGRAM  
(POSITIVE LOGIC)  
1A  
1R  
1B  
1Y  
1D  
1Z  
2A  
2R  
2B  
2Y  
2D  
2Z  
3A  
3R  
3B  
3Y  
3D  
3Z  
4Y  
4A  
4R  
4B  
4D  
4Z  
5Y  
5D  
5Z  
5A  
5R  
5B  
TYPICAL MEMORY STICK INTERFACE EXTENSION  
SN65LVDT41  
SN65LVDT14  
1Y  
1A  
1D  
2D  
3D  
4D  
SCLK  
1R  
1Z  
2Y  
1B  
2A  
SCLK  
SCLK  
Memory  
Stick  
Host  
Memory  
Stick  
BS  
SDIO  
DIR  
BS  
DIR  
SD1  
2R  
3R  
4R  
BS  
2Z  
3Y  
2B  
3A  
SDIO  
Controller  
3Z  
4Y  
3B  
4A  
CBT  
4Z  
5A  
4B  
5Y  
CBT  
SD2  
5R  
5D  
5B  
5Z  
Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
SN65LVDT14,  
SN65LVDT41  
UNIT  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
VCC Supply voltage range(2)  
4
6
V
V
D or R  
Input voltage range  
A, B, Y, or Z  
4
A, B, Y, Z, and GND  
All pins  
±12  
±8  
Human-Body Model(3)  
Electrostatic discharge  
KV  
V
Charged-Device Model(4)  
All pins  
±500  
Continuous total power dissipation  
See Dissipation Rating Table  
Storage temperature range  
–65  
150  
260  
°C  
°C  
Lead temperature 1,6 mm (1/16 in) from case for 10 s  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101  
2
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
Package Dissipation Ratings  
TA < 25°C  
POWER RATING  
OPERATING FACTOR  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
TA = 125°C  
POWER RATING  
PACKAGE  
PW  
774 mW  
6.2 mW/°C  
402 mW  
154 mW  
Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
VCC  
VIH  
VIL  
Supply voltage range  
3
2
3.3  
3.6  
V
V
V
V
High-level input voltage  
Low-level input voltage  
0.8  
0.6  
|VID  
VIC  
TA  
|
Magnitude of differential input voltage  
0.1  
|VID  
|VID  
|
|
2.4 *  
2
2
Common-mode input voltage (see Figure 1)  
Operating free-air temperature  
V
VCC – 0.8  
125  
–40  
°C  
COMMON-MODE INPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
2.5  
Max at V > 3.15 V  
CC  
Max at V = 3 V  
CC  
2
1.5  
1
0.5  
0
Minimum  
0.4  
0
0.1  
0.2  
0.3  
0.5  
0.6  
|V | − Differential Input Voltage − V  
ID  
Figure 1. VIC vs VID and VCC  
3
 
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
Receiver Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX  
100  
UNIT  
mV  
VITH+  
VITH–  
VOH  
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
High-level output voltage  
See Figure 2 and Table 1  
See Figure 2 and Table 1  
IOH = –8 mA  
–100  
2.4  
mV  
V
VOL  
Low-level output voltage  
IOL = 8 mA  
0.4  
±40  
±40  
V
VI = 0 V and VI = 2.4 V,  
Other input open  
II  
Input current (A or B inputs)  
µA  
II(OFF)  
Ci  
Power-off input current (A or B inputs)  
Input capacitance, A or B input to GND  
Termination impedance  
VCC = 0 V, VI = 2.4 V  
VI = A sin 2πft + CV  
VID = 0.4 sin2.5E09 t V  
µA  
pF  
5
Zt  
88  
132  
(1) All typical values are at 25°C and with a 3.3-V supply.  
Driver Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
RL = 100 ,  
See Figure 3 and Figure 5  
MIN TYP(1)  
MAX UNIT  
|VOD  
|
Differential output voltage magnitude  
247  
340  
454  
mV  
Change in differential output voltage magnitude  
between logic states  
RL = 100 ,  
See Figure 3 and Figure 5  
|VOD  
|
–50  
1.125  
–50  
50  
1.375  
50  
mV  
V
VOC(SS)  
Steady-state common-mode output voltage  
See Figure 6  
Change in steady-state common-mode output voltage  
between logic states  
VOC(SS)  
See Figure 6  
mV  
VOC(PP)  
IIH  
Peak-to-peak common-mode output voltage  
High-level input current  
See Figure 6  
50  
mV  
µA  
µA  
VIH = 2 V  
20  
10  
IIL  
Low-level input current  
VIL = 0.8 V  
VOY or VOZ = 0 V  
VOD = 0 V(2)  
±24  
±12  
±1  
IOS  
Short-circuit output current  
Power-off output current  
mA  
IO(OFF)  
VCC = 1.5 V, VO = 2.4 V  
µA  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) This parameter is GBD over industrial temperature range.  
Device Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
SN65LVDT14  
SN65LVDT41  
TEST CONDITIONS  
MIN  
MAX  
25  
UNIT  
Driver RL = 100 , Driver VI = 0.8 V or 2 V,  
Receiver VI = ±0.4 V  
ICC  
Supply current  
mA  
35  
4
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
Receiver Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Propagation delay time, low- to high-level output  
Propagation delay time, high- to low-level output  
Output signal rise time  
TEST CONDITIONS  
MIN  
1
NOM  
2.6  
MAX UNIT  
tPLH  
tPHL  
tr  
4.8  
4.8  
1.4  
1.4  
750  
550  
1
ns  
ns  
ns  
ns  
ps  
ps  
ns  
1
2.6  
0.15  
0.15  
tf  
Output signal fall time  
CL = 10 pF, See Figure 4  
tsk(p)  
tsk(o)  
tsk(pp)  
Pulse skew (|tPHL – tPLH |)  
Output skew(1)  
Part-to-part skew(2)  
150  
100  
(1) tsk(o) is the magnitude of the time difference between the tPLH or tPHL of all the receivers of a single device with all of their inputs  
connected together.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
Driver Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Propagation delay time, low- to high-level output  
Propagation delay time, high- to low-level output  
Differential output signal rise time  
Differential output signal fall time  
Pulse skew (|tPHL – tPLH|)  
TEST CONDITIONS  
MIN  
0.9  
NOM  
1.7  
MAX UNIT  
tPLH  
tPHL  
tr  
3.9  
3.9  
1.2  
1.2  
750  
400  
1.5  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
0.9  
1.6  
0.26  
0.26  
RL = 100 , CL = 10 pF,  
See Figure 7  
tf  
tsk(p)  
tsk(o)  
tsk(pp)  
150  
80  
Output skew(1)  
Part-to-part skew(2)  
(1) tsk(p) is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
5
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
PARAMETER MEASUREMENT INFORMATION  
A
V
) V  
R
IA  
IB  
V
ID  
2
V
IA  
B
V
O
V
IC  
V
IB  
Figure 2. Receiver Voltage Definitions  
Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages  
RESULTING  
DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING  
COMMON-MODE  
INPUT VOLTAGE  
APPLIED VOLTAGE  
VIA  
1.25 V  
1.15 V  
2.4 V  
2.3 V  
0.1 V  
0 V  
VIB  
1.15 V  
1.25 V  
2.3 V  
2.4 V  
0 V  
VID  
VIC  
100 mV  
–100 mV  
100 mV  
–100 mV  
100 mV  
–100 mV  
600 mV  
–600 mV  
600 mV  
–600 mV  
600 mV  
–600 mV  
1.2 V  
1.2 V  
2.35 V  
2.35 V  
0.05 V  
0.05 V  
1.2 V  
1.2 V  
2.1 V  
2.1 V  
0.3 V  
0.3 V  
0.1 V  
0.9 V  
1.5 V  
1.8 V  
2.4 V  
0 V  
1.5 V  
0.9 V  
2.4 V  
1.8 V  
0.6 V  
0 V  
0.6 V  
I
OY  
Y
Z
I
I
D
V
OD  
V
) V  
OY  
OZ  
I
OZ  
V
OY  
2
V
I
V
OC  
V
OZ  
Figure 3. Driver Voltage and Current Definitions  
6
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
PARAMETER MEASUREMENT INFORMATION  
V
ID  
V
IA  
C
L
V
O
10 pF  
V
IB  
V
V
1.4 V  
1 V  
IA  
IB  
0.4 V  
0 V  
V
ID  
−0.4 V  
t
t
PHL  
PLH  
V
V
O
OH  
80%  
20%  
V
V
/2  
CC  
OL  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse repetition rate  
(PRR) = 1 Mpps, pulse width = 0.5 ± 0.05 µs. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T.  
Figure 4. Receiver Timing Test Circuit and Waveforms  
7
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
PARAMETER MEASUREMENT INFORMATION  
3.75 k  
Y
+
0 V V  
2.4 V  
V
OD  
100 Ω  
test  
Input  
_
Z
3.75 kΩ  
Figure 5. Driver VDO Test Circuit  
49.9 , ±1% (2 Places)  
3 V  
0 V  
Y
Z
D
Input  
V
IA  
2 pF  
V
OC  
V
OC(PP)  
V
OC(SS)  
V
OC  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 µs. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T. The measurement of VOC(PP) is made on test equipment with a –3-dB bandwidth of at least 1 GHz.  
Figure 6. Test Circuit and Definitions for Driver Common-Mode Output Voltage  
Y
100  
±1%  
V
OD  
Input  
Z
C
L
(2 Places)  
2 V  
Input  
1.4 V  
0.8 V  
t
PHL  
t
PLH  
100%  
80%  
V
OD(H)  
Output  
0 V  
V
OD(L)  
20%  
0%  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse repetition rate  
(PRR) = 1 Mpps, pulse width = 0.5 ± 0.05 µs. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T.  
Figure 7. Test Circuit, Timing, and Voltage Definitions for Differential Output Signal  
8
 
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
SN65LVDT41 (Marked as LVDT41)  
SN65LVDT14 (Marked as LVDT14)  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1D  
GND  
2D  
1Y  
1Z  
2Y  
2Z  
3Y  
3Z  
4Y  
4Z  
5A  
5B  
1A  
1B  
2A  
2B  
3A  
3B  
4A  
4B  
5Y  
5Z  
1R  
GND  
2R  
V
CC  
3R  
GND  
4R  
V
CC  
5D  
GND  
V
CC  
3D  
GND  
4D  
V
CC  
5R  
GND  
FUNCTION TABLES  
RECEIVER(1)  
INPUTS  
VID = VA – VB  
ID 100 mV  
–100 mV < VID < 100 mV  
OUTPUT  
R
V
H
?
VID – 100 mV  
L
Open  
H
(1) H = high level, L = low level,  
? = indeterminate  
DRIVER(1)  
OUTPUTS  
INPUT  
D
Y
H
L
Z
L
H
L
H
H
Open  
L
(1) H = high level, L = low level  
9
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
RECEIVER EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
V
CC  
V
CC  
110  
A
B
300 kΩ  
300 kΩ  
5 Ω  
R Output  
A Input  
B Input  
7 V  
7 V  
7 V  
DRIVER EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
V
CC  
V
CC  
50  
D Input  
5 Ω  
Y or Z  
Output  
10 kΩ  
7 V  
300 kΩ  
7 V  
10  
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
TYPICAL CHARACTERISTICS  
Receiver  
HIGH-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
4
3.5  
3
5
4.5  
4
T = 25°C,  
T = 25°C,  
A
A
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
3.5  
3
2.5  
2.5  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
−70 −60  
0
10  
20  
30  
40  
50  
60  
70  
80  
−50  
−40  
−30  
−20  
−10  
0
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OH  
OL  
Figure 8.  
Figure 9.  
LOW-TO-HIGH PROPAGATION DELAY TIME  
LOW-TO-HIGH PROPAGATION DELAY TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
V
= 3 V  
V
= 3 V  
CC  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
V
= 3.6 V  
V
= 3.6 V  
CC  
CC  
2.3  
2.2  
2.3  
2.2  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 10.  
Figure 11.  
11  
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
TYPICAL CHARACTERISTICS  
Driver  
LOW-TO-HIGH PROPAGATION DELAY TIME  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2.1  
2
2.2  
2.1  
V
CC  
= 3 V  
V
CC  
= 3 V  
2
1.9  
1.8  
1.7  
1.6  
1.5  
V
CC  
= 3.3 V  
1.9  
1.8  
1.7  
V
CC  
= 3.6 V  
V
CC  
= 3.6 V  
1.6  
1.5  
V
= 3.3 V  
0
CC  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
25  
50  
75  
100  
Ta − Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 12.  
Figure 13.  
12  
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
APPLICATION INFORMATION  
bbbbrk  
Extending the Memory Stick Interface Using LVDS Signaling  
Over Differential Transmission Cables  
SN65LVDT41  
SN65LVDT14  
1Y  
1A  
1D  
2D  
3D  
4D  
SCLK  
1R  
1Z  
2Y  
1B  
2A  
SCLK  
SCLK  
Memory  
Stick  
Host  
Memory  
Stick  
BS  
SDIO  
DIR  
BS  
DIR  
SD1  
BS  
2R  
3R  
4R  
2Z  
3Y  
2B  
3A  
SDIO  
Controller  
3Z  
4Y  
3B  
4A  
CBT  
4B  
5Y  
4Z  
5A  
SD2  
CBT  
5R  
5D  
5B  
5Z  
Figure 14. System-Level Block Diagram  
LVDS, as specified by the TIA/EIA-644-A standard,  
provides several benefits when compared to  
alternative long-distance signaling technologies: low  
radiated emissions, high noise immunity, low power  
consumption, and inexpensive interconnect cables.  
The Memory Stick signaling interface operates in a  
master-slave architecture, with three active signal  
lines. The host (master) supplies a clock (SCLK) and  
bus-state (BS) signal to control the operation of the  
system. The SCLK and BS signals are unidirectional  
(simplex) from the host to the Memory Stick. The  
serial data input/output (SDIO) signal is a bidirectional  
(half-duplex) signal used to communicate both control  
and data information between the host and the  
Memory Stick. The direction of data control is  
managed by the host through a combination of BS  
line states and control information delivered to the  
Memory Stick.  
This device pair provides the necessary LVDS drivers  
and receivers specifically targeted at implementing a  
Memory Stick interconnect extension. It utilizes  
simplex links for the SCLK and BS signals and two  
simplex links for the SDIO data. The half-duplex  
SDIO data is split into two simplex streams under  
control of the host processor by means of the  
direction (DIR) signal. The DIR signal also is carried  
from the host to the Memory Stick on a simplex LVDS  
link.  
The basic Memory Stick interface is capable of  
operating only over short distances due to the  
single-ended nature of the digital I/O signals. Such a  
configuration is entirely suitable for compact and  
portable devices where there is little if any separation  
between the host and the Memory Stick. In  
applications where a greater distance is needed  
between the host controller and the Memory Stick, it  
is necessary to utilize a different signaling method,  
such as low-voltage differential signaling, or LVDS.  
The switching of the SDIO signal-flow direction in the  
single-ended interfaces is managed by electronic  
switch devices, identified by the CBT symbol in  
Figure 7. A suggested CBT device for this application  
is the TI SN74CBTLV1G125. These devices are  
available in space-saving SOT-23 or SC-70  
packages.  
13  
SN65LVDT14-EP, SN65LVDT41-EP  
www.ti.com  
SCES633JUNE 2005  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°ā8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
14  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65LVDT14QPWREP TSSOP  
SN65LVDT41QPWREP TSSOP  
PW  
PW  
20  
20  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.95  
6.95  
7.1  
7.1  
1.6  
1.6  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65LVDT14QPWREP  
SN65LVDT41QPWREP  
TSSOP  
TSSOP  
PW  
PW  
20  
20  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

V62/05616-01XE

HIGH-SPEED PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05616-02XE

HIGH-SPEED PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05617-01XE

WIDE-INPUT SYNCHRONOUS BUCK CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05618-01XE

DIGITAL TEMPERATURE SENSOR WITH I2C INTERFACE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05619-01XE

14-Bit 400-MSPS Digital-to-Analog Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05619-02XE

14-Bit 400-MSPS Digital-to-Analog Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05620-03XE

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05620-05XE

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05621-01XE

SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05622-01XE

3 V TO 6 V INPUT, 6 A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/05623-01XE

增强型产品 2 通道、2 输入、1.65V 至 5.5V 与非门 | DCT | 8 | -55 to 115

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/06601-01XE

增强型产品轨分离器精密虚拟接地 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI