V62/10604-01XE [TI]

All-Format Oversampled Component Video/PC Graphics D/A System With Three 11-Bit DACs, CGMS Data Insertion; 所有格式的过采样分量视频/ PC图形D / A系统, 3个11位DAC , CGMS数据插入
V62/10604-01XE
型号: V62/10604-01XE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

All-Format Oversampled Component Video/PC Graphics D/A System With Three 11-Bit DACs, CGMS Data Insertion
所有格式的过采样分量视频/ PC图形D / A系统, 3个11位DAC , CGMS数据插入

PC
文件: 总104页 (文件大小:1136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS8200-EP  
All-Format Oversampled Component Video/PC Graphics  
D/A System With Three 11-Bit DACs, CGMS Data Insertion  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: SLES253  
December 2009  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
Contents  
1
2
Introduction ........................................................................................................................ 9  
Features ...................................................................................................................... 9  
Overview .......................................................................................................................... 10  
1.1  
2.1  
2.2  
2.3  
Description ................................................................................................................. 10  
Ordering Information ...................................................................................................... 10  
DEVICE INFORMATION ................................................................................................. 11  
3
THS8200 Functional Overview ............................................................................................. 14  
Data Manager (DMAN) ................................................................................................... 15  
3.1  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
3.1.6  
3.1.7  
3.1.8  
3.1.9  
Interpolating Finite Impulse Responses Filter (IFIR) ....................................................... 15  
Color-Space Conversion (CSC) .............................................................................. 15  
Clip/Shift/Multiplier (CSM) ..................................................................................... 15  
Digital Multiplexer (DIGMUX) ................................................................................. 15  
Display Timing Generator (DTG) ............................................................................. 16  
Clock Generator (CGEN) ...................................................................................... 16  
Clock Driver (CDRV) ........................................................................................... 16  
I2C Host Interface (I2CSLAVE) ............................................................................... 16  
Test Block (TST) ................................................................................................ 16  
3.1.10 D/A Converters (DAC) ......................................................................................... 17  
Detailed Functional Description .......................................................................................... 18  
4
4.1  
4.2  
4.3  
Data Manager (DMAN) ................................................................................................... 18  
Input Interface Formats ................................................................................................... 19  
Clock Generator (CGEN)/Clock Driver (CDRV) ....................................................................... 22  
4.4  
4.5  
Color Space Conversion (CSC) ......................................................................................... 24  
Clip/Scale/Multiplier (CSM) ............................................................................................... 26  
4.5.1  
4.5.2  
4.5.3  
Clipping .......................................................................................................... 27  
Shifting ........................................................................................................... 27  
Multiplying ....................................................................................................... 28  
4.6  
4.7  
Interpolating Finite Impulse Response Filter (IFIR) ................................................................... 29  
Display Timing Generator (DTG) ........................................................................................ 33  
4.7.1  
Overview of Functionality ...................................................................................... 33  
Functional Description ......................................................................................... 34  
4.7.2  
4.7.2.1 Predefined DTG Video Formats (Presets) ...................................................... 35  
4.7.2.2 Internal Synchronization .......................................................................... 35  
4.7.2.3 Output Synchronization: Composite Sync ...................................................... 36  
4.7.2.4 Output Synchronization: Hsync/Vsync Outputs ................................................ 37  
DTG Line Type Overview ...................................................................................... 37  
4.7.3  
4.7.3.1 HDTV Mode ......................................................................................... 37  
4.7.3.2 Active Video ........................................................................................ 40  
4.7.3.3 FULL NTSP (Full Normal Tri-Level Sync Pulse) ............................................... 40  
4.7.3.4  
NTSP NTSP (Normal Tri-Level Sync Pulse/Normal Tri-Level Sync Pulse) ................ 41  
BTSP BTSP (Broad Pulse and Tri-Level Sync Pulse/Broad Pulse and Tri-Level Sync  
Pulse) ................................................................................................ 41  
4.7.3.5  
4.7.3.6  
4.7.3.7  
NTSP BTSP (Normal Tri-Level Sync Pulse/ Broad Pulse and Tri-Level Sync Pulse) .... 42  
BTSP NTSP (Broad Pulse and Tri-Level Sync Pulse/Normal Tri-Level Sync Pulse) ..... 42  
4.7.3.8 Full BTSP (Full Broad Pulse and Tri-Level Sync Pulse) ...................................... 43  
2
Contents  
Copyright © 2009, Texas Instruments Incorporated  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7.3.9 SDTV Mode ......................................................................................... 45  
4.7.3.10 NEQ_NEQ (Negative Equalization Pulse/Negative Equalization Pulse) .................... 47  
4.7.3.11 FULL_BSP (Full Broad Sync Pulse) ............................................................. 47  
4.7.3.12 BSP_BSP (Broad Sync Pulse/Broad Sync Pulse) ............................................. 48  
4.7.3.13 FULL_NSP (Full Normal Sync Pulse) ........................................................... 48  
4.7.3.14 NEQ_BSP (Negative Equalization Pulse/Broad Sync Pulse) ................................ 49  
4.7.3.15 BSP_NEQ (Broad Sync Pulse/Negative Equalization Pulse) ................................ 49  
4.7.3.16 FULL_NEQ (Full Negative Equalization Pulse) ................................................ 50  
4.7.3.17 NSP_ACTIVE (Normal Sync Pulse/Active Video) ............................................. 50  
4.7.3.18 ACTIVE_NEQ (Active Video/Negative Equalization Pulse) .................................. 51  
4.7.3.19 ACTIVE VIDEO ..................................................................................... 51  
D/A Conversion ............................................................................................................ 53  
4.8  
4.8.1  
4.8.2  
4.8.3  
4.8.4  
4.8.5  
4.8.6  
RGB Output Without Sync Signal Insertion/General-Purpose Application DAC ....................... 54  
SMPTE-Compatible RGB Output With Sync Signal Inserted on G (Green) Channel ................. 55  
SMPTE-Compatible Analog-Level Output With Sync Inserted on All RGB Channels ................. 56  
SMPTE-Compatible YPbPr Output With Sync Signal Inserted on Y Channel Only ................... 57  
SMPTE-Compatible YPbPr Output With Sync Signal Inserted on All Channels ....................... 58  
Summary of Supported Video Formats ...................................................................... 59  
4.9  
Test Functions ............................................................................................................. 59  
4.10 Power Down ................................................................................................................ 59  
4.11 CGMS Insertion ............................................................................................................ 59  
4.12 I2C Interface ................................................................................................................ 60  
5
I2C Register Map ................................................................................................................ 62  
5.1  
Register Descriptions ..................................................................................................... 66  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.1.8  
5.1.9  
System Control (Sub-Addresses 0x020x03) .............................................................. 66  
Color Space Conversion Control (Sub-Addresses 0x040x19) .......................................... 68  
Test Control (Sub-Addresses 0x1A0x1B) .................................................................. 70  
Data Path Control (Sub-Address 0x1C) ..................................................................... 71  
Display Timing Generator Control, Part 1 (Sub-Addresses 0x1D0x3C) ............................... 72  
DAC Control (Sub-Addresses 0x3D0x40) ................................................................. 75  
Clip/Scale/Multiplier Control (Sub-Addresses 0x410x4F) ................................................ 76  
Display Timing Generator Control, Part 2 (Sub-Addresses 0x500x82) ................................ 79  
CGMS Control (Sub-Addresses 0x830x85) ............................................................... 82  
5.2  
THS8200 Preset Mode Line Type Definitions ......................................................................... 82  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
SMPTE_274P (1080P) ......................................................................................... 82  
274M Interlaced (1080I) ....................................................................................... 83  
296M Progressive (720P) ..................................................................................... 83  
SDTV 525 Interlaced Mode ................................................................................... 83  
SDTV 525 Progressive Mode ................................................................................. 84  
SDTV 625 Interlaced Mode ................................................................................... 84  
6
7
Application Information ...................................................................................................... 85  
6.1  
6.2  
6.3  
Video vs Computer Graphics Application .............................................................................. 85  
DVI to Analog YPbPr/RGB Application ................................................................................. 85  
Master vs Slave Timing Modes .......................................................................................... 86  
Electrical Characteristics .................................................................................................... 88  
Absolute Maximum Ratings .............................................................................................. 88  
7.1  
Copyright © 2009, Texas Instruments Incorporated  
Contents  
3
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
7.2  
Recommended Operating Conditions .................................................................................. 88  
7.3  
7.4  
ELECTRICAL CHARACTERISTICS .................................................................................... 89  
Power Requirements ...................................................................................................... 91  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
Power for 700-mV DAC Output Compliance + 350-mV Bias at AVDD = 3.3 V,  
DVDD = 1.8 V, VDD_IO = 3.3 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels .................. 91  
Power for 700-mV DAC Output Compliance + 350-mV Bias at AVDD = 3.3 V,  
DVDD = 1.8 V, VDD_IO = 1.8 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels .................. 91  
Power for 1.25-V Output Compliance Without Bias at AVDD = 3.3 V,  
DVDD = 1.8 V, VDD_IO = 3.3 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels .................. 92  
Power for 1.25-V Output Compliance Without Bias at AVDD = 3.3 V,  
DVDD = 1.8 V, VDD_IO = 1.8 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels .................. 94  
7.5  
7.6  
Nonlinearity ................................................................................................................. 94  
7.5.1  
7.5.2  
7.5.3  
Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV Without Bias ............. 94  
Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV + 350-mV Bias .......... 95  
Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 1.25 V Without Bias ............... 96  
Analog Output Bandwidth (sinx/x corrected) at fS = 205 MSPS ..................................................... 97  
Output Compliance vs Full-Scale Adjustment Resistor Value ....................................................... 97  
7.7  
7.8  
Vertical Sync of the HDTV 1080I Format Preset in First and Second Field, and Horizontal Line  
Waveform Detail ........................................................................................................... 98  
4
Contents  
Copyright © 2009, Texas Instruments Incorporated  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
List of Figures  
3-1  
Functional Block Diagram ....................................................................................................... 14  
24-/30-Bit RGB or YCbCr Data Format ....................................................................................... 19  
20-/16-Bit YCbCr 4:2:2 Data Format (16-Bit Operation Shown) ........................................................... 20  
16-Bit RGB 4:4:4 Data Format ................................................................................................. 21  
15-Bit RGB 4:4:4 Data Format ................................................................................................. 22  
Effect of Clipping on Analog Output ........................................................................................... 27  
Effect of Shifting on Clipped Analog Output .................................................................................. 28  
Effect of Scaling the Analog Video Output.................................................................................... 29  
PB and PR Filter Requirements Based on SMPTE 296M/274M............................................................ 30  
Y and RGB Filter Requirements Based on SMPTE 296M/274M .......................................................... 31  
Y and RGB Filter Requirements Based on ITU-R.BT601................................................................... 31  
Cb and Cr Filter Requirements Based on ITU-R.BT601 .................................................................... 31  
THS8200 DTG VS/HS Output Generation.................................................................................... 36  
Tri-Level Line-Synchronizing Signal Waveform .............................................................................. 39  
THS8200 VBI Line Types in HDTV Mode..................................................................................... 40  
HDTV Line Type ACTIVE_VIDEO ............................................................................................. 40  
HDTV Line Type FULL_NSTP.................................................................................................. 41  
HDTV Line Type NTSP_NTSP ................................................................................................. 41  
HDTV Line Type BTSP_BTSP ................................................................................................. 42  
HDTV Line Type NTSP_BTSP ................................................................................................. 42  
HDTV Line Type BTSP_NTSP ................................................................................................. 43  
HDTV Line Type FULL_BTSP.................................................................................................. 43  
Field/Frame Synchronizing Signal Waveform (1080I and 1080P Formats) .............................................. 44  
Horizontal Synchronization Signal Waveform ................................................................................ 46  
THS8200 VBI Line Types in SDTV Mode..................................................................................... 47  
SDTV Line Type NEQ_NEQ.................................................................................................... 47  
SDTV Line Type FULL_BSP.................................................................................................... 48  
SDTV Line Type BSP_BSP..................................................................................................... 48  
SDTV Line Type FULL_NSP ................................................................................................... 49  
SDTV Line Type NEQ_BSP .................................................................................................... 49  
SDTV Line Type BSP_NEQ .................................................................................................... 50  
SDTV Line Type FULL_NEQ ................................................................................................... 50  
SDTV Line Type NSP_ACTIVE ................................................................................................ 50  
SDTV Line Type ACTIVE_NEQ ................................................................................................ 51  
SDTV Line Type ACTIVE_VIDEO ............................................................................................. 51  
Field/Frame Synchronizing Signal Waveform (525I Format) ............................................................... 52  
RGB Without Sync Insertion or Composite Video Output................................................................... 54  
Ramping Output With Different Full-Scale Ranges .......................................................................... 55  
G-Channel Output Waveform................................................................................................... 56  
R- and B-Channel Output Waveform .......................................................................................... 56  
R-, G-, and B-Channel Output Waveform..................................................................................... 57  
Y-Channel Output Waveform ................................................................................................... 57  
Analog Output of Cr and Cb Channels Without Sync Insertion ............................................................ 58  
Analog Output of Cr and Cb Channels With Sync Insertion................................................................ 58  
Typical Video Application........................................................................................................ 85  
Computer Graphics Application ................................................................................................ 85  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
4-24  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
4-33  
4-34  
4-35  
4-36  
4-37  
4-38  
4-39  
4-40  
4-41  
4-42  
4-43  
4-44  
4-45  
4-46  
6-1  
6-2  
Copyright © 2009, Texas Instruments Incorporated  
List of Figures  
5
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
6-3  
6-4  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
7-11  
7-12  
Slave Operation Mode of THS8200............................................................................................ 86  
Master Operation Mode of THS8200 .......................................................................................... 87  
POWER vs FREQUENCY ...................................................................................................... 91  
POWER vs FREQUENCY ...................................................................................................... 92  
POWER vs FREQUENCY ...................................................................................................... 93  
POWER vs FREQUENCY ...................................................................................................... 94  
INTEGRAL NONLINEARITY vs CODE ....................................................................................... 95  
DIFFERENTIAL NONLINEARITY vs CODE.................................................................................. 95  
INTEGRAL NONLINEARITY vs CODE ....................................................................................... 95  
DIFFERENTIAL NONLINEARITY vs CODE.................................................................................. 96  
INTEGRAL NONLINEARITY vs CODE ....................................................................................... 96  
DIFFERENTIAL NONLINEARITY vs CODE.................................................................................. 97  
AMPLITUDE vs OUTPUT FREQUENCY ..................................................................................... 97  
OUTPUT VOLTAGE vs FULL-SCALE RESISTANCE ...................................................................... 97  
6
List of Figures  
Copyright © 2009, Texas Instruments Incorporated  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
List of Tables  
2-1  
4-1  
TERMINAL FUNCTIONS ....................................................................................................... 12  
Supported Input Formats........................................................................................................ 18  
Copyright © 2009, Texas Instruments Incorporated  
List of Tables  
7
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
8
List of Tables  
Copyright © 2009, Texas Instruments Incorporated  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
All-Format Oversampled Component Video/PC Graphics D/A System With Three 11-Bit  
DACs, CGMS Data Insertion  
Check for Samples: THS8200-EP  
1
Introduction  
1.1 Features  
12  
• Three 11-Bit 205-MSPS D/A Converters With  
Integrated Bi-Level/Tri-Level Sync Insertion  
• Support for All ATSC Video Formats (Including  
1080P) and PC Graphics Formats (Up to UXGA  
at 75 Hz)  
• Fully Programmable Hsync/Vsync Outputs  
• Vertical Blanking Interval (VBI) Override or  
Data Pass-Thru for VBI Data Transparency  
• Programmable CGMS Data Generation and  
Insertion  
INPUT  
OUTPUT  
• Flexible 10/15/16/20/24/30-Bit Digital Video  
Input Interface With Support for YCbCr or RGB  
Data, Either 4:4:4 or 4:2:2 Sampled  
• Video Synchronization Via Hsync, Vsync  
Dedicated Inputs or Via Extraction of  
Embedded SAV/EAV Codes According to  
ITU-R.BT601 (SDTV) or  
• Digital  
– ITU-R BT.656 Digital Video Output Port  
• Analog  
– Analog Component Output from  
Software-Switchable 700-mV/1.3-V Compliant  
Output DACs at 37.5-Ω load  
– Programmable Video/Sync Ratio (7:3 or 10:4)  
– Programmable Video Pedestal  
SMPTE274M/SMPTE296M (HDTV)  
• Glueless Interface to TI DVI 1.0 (With HDCP)  
Receivers. Can Receive Video-Over-DVI  
Formats According to the EIA-861 Specification  
and Convert to YPbPr/RGB Component  
Formats With Separate Syncs or Embedded  
Composite Sync  
GENERAL  
• Built-In Video Color Bar Test Pattern Generator  
• Fast Mode I2C Control Interface  
• Configurable Master or Slave Timing Mode  
– Configuration Modes Allow the Device to Act  
as a Master Timing Source for Requesting  
Data from, e.g., the Video Frame Buffer.  
Alternatively, the Device Can Slave to an  
External Timing Master (Master Mode Only  
Available for PC Graphics Output Modes).  
VIDEO PROCESSING  
• Programmable Clip/Shift/Multiply Function for  
Operation With Full-Range or ITU-R.BT601  
Video Range Input Data  
• Programmable Digital Fine-Gain Controller on  
Each Analog Output Channel, for Accurate  
Channel Matching and Programmable  
White-Balance Control  
• DAC and Chip Powerdown Modes  
• Low-Power 1.8-/3.3-V Operation  
• 80-pin PowerPAD™ Plastic Quad Flatpack  
Package with Efficient Heat Dissipation and  
Small Physical Size  
APPLICATIONS  
• DVD Players  
• Digital-TV/Interactive-TV/Internet Set-Top  
Boxes  
• Built-In 4:2:2 to 4:4:4 Video Interpolation Filter  
• Built-In 2× Oversampling SDTV/HDTV  
Interpolation Filter for Improved Video  
Frequency Characteristic  
• Fully Programmable Digital Color Space  
Conversion Circuit  
• Fully Programmable Display Timing Generator  
to Supply All SDTV and HDTV Composite Sync  
Ttiming Formats, Progressive and Interlaced  
• Personal Video Recorders  
• HDTV Display or Projection Systems  
• Digital Video Systems  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
2
Overview  
2.1 Description  
THS8200 is a complete video back-end D/A solution for DVD players, personal video recorders and  
set-top boxes, or any system requiring the conversion of digital component video signals into the analog  
domain.  
THS8200 can accept a variety of digital input formats, in both 4:4:4 and 4:2:2 formats, over a 3×10-bit,  
2×10-bit or 1×10-bit interface. The device synchronizes to incoming video data either through dedicated  
Hsync/Vsync inputs or through extraction of the sync information from embedded sync (SAV/EAV) codes  
inside the video stream. Alternatively, when configured for generating PC graphics output, THS8200 also  
provides a master timing mode in which it requests video data from an external (memory) source.  
THS8200 contains a display timing generator that is completely programmable for all standard and  
nonstandard video formats up to the maximum supported pixel clock of 205 MSPS. Therefore, the device  
supports all component video and PC graphics (VESA) formats. A fully-programmable 3×3 matrixing  
operation is included for color space conversion. All video formats, up to the HDTV 1080I and 720P  
formats, can also be internally 2× oversampled. Oversampling relaxes the need for sharp external analog  
reconstruction filters behind the DAC and improves the video frequency characteristic.  
The output compliance range can be set via external adjustment resistors and there is a choice of two  
settings, in order to accommodate without hardware changes both component video/PC graphics  
(700 mV) and composite video (1.3 V) outputs. An internal programmable clip/shift/multiply function on the  
video data assures standards-compliant video output ranges for either full 10-bit or reduced ITU-R.BT601  
style video input. In order to avoid nonlinearities after scaling of the video range, the DACs are internally  
of 11-bit resolution. Furthermore, a bi- or tri-level sync with programmable amplitude (in order to support  
both 700/300-mV and 714/286-mV video/sync ratios) can be inserted either on the green/luma channel  
only or on all three output channels. This sync insertion is generated from additional current sources in the  
DACs such that the full DAC resolution remains available for the video range. This preserves 100% of the  
DAC’s 11-bit dynamic range for video data.  
THS8200 optionally supports the pass-through of ancillary data embedded in the input video stream or  
can insert ancillary data into the 525P analog component output according to the CGMS data  
specification.  
2.2 Ordering Information  
TA  
PACKAGE  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
–40°C to 85°C  
PFP  
THS8200IPFPEP  
THS8200IEP  
10  
Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
2.3 DEVICE INFORMATION  
PFP PACKAGE  
(TOP VIEW)  
60 59 58 57 56 55 54 53 52 5150 49 48 47 464544 43 4241  
HS_OUT  
VS_OUT  
SDA  
RCr2  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RCr3  
RCr4  
RCr5  
RCr6  
RCr7  
RCr8  
RCr9  
DVDD  
DVSS  
BCb0  
BCb1  
BCb2  
BCb3  
BCb4  
BCb5  
BCb6  
BCb7  
BCb8  
BCb9  
SCL  
DO9  
DO8  
DO7  
DO6  
DO5  
VDD_IO  
D1CLKO  
GND_IO  
DO4  
DO3  
DO2  
DO1  
DO0  
DVSS  
DVDD  
N.C.  
1
2
3
4
5
6
7 8 9 10 11 12 13 14 15 16 17 18 19 20  
Copyright © 2009, Texas Instruments Incorporated  
Overview  
11  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
Table 2-1. TERMINAL FUNCTIONS  
TERMINAL  
I/O(1)  
DESCRIPTION  
NAME  
ABPb  
ARPr  
NO.  
15  
O
O
Analog output of DAC2. See AGY.  
Analog output of DAC3. See AGY.  
17  
Analog output of DAC1. With the proper setting of FSADJ<n>, this output is capable of  
driving 1.3-V full scale into a 37.5-Ω load.  
AG Y  
13  
O
AVDD  
AVSS  
11, 14, 18  
12, 16  
PWR  
PWR  
Analog power supply, nominal 3.3 V  
Analog ground  
10-bit video data input port. All 10 bits or the 8 MSB of this port can be connected to the  
video data source. In 30-bit mode, the B data of RGB, or the Cb data of YCbCr, should be  
connected to this port. In 10-bit input mode, this port is unused. In 20-bit input mode, this  
port is used for CbCr input data.  
BCb[9:0]  
CLKIN  
21 - 30  
I
I
Main clock input. Video input data on the GY[9:0]/BCb[9:0]/RCr[9:0] ports should be  
synchronized to CLKIN. Depending on the input data format, CLKIN is supplied to THS8200  
at 1x or 2x the pixel clock frequency.  
3
Compensation pin for the internal reference amplifier. A 0.1-μF capacitor should be  
connected between COMP1 and analog power supply AVDD.  
COMP1  
COMP2  
D1CLKO  
10  
9
P
P
O
Compensation pin for the internal reference amplifier. A 0.1-μF capacitor should be  
connected between COMP2 and analog power supply AVDD.  
Video ITU-R.BT656-compliant clock output. This clock output is off by default and should be  
activated via an I2C register setting.  
71  
ITU-R.BT656 compliant video data output port. Only available when ITU-R.BT656 input  
format is used. Can be used to connect to external PAL/NTSC video encoder. This port is off  
by default and should be activated via an I2C register setting.  
DO[9:5]  
DO[4:0]  
65 - 69  
73 - 77  
O
DVDD  
DVSS  
32, 59, 79  
31, 58, 78  
PWR  
PWR  
Digital core power, nominal 1.8 V  
Digital core ground  
Field identification signal for interlaced video formats. In slave timing mode, this is an input  
from the video data source. In master timing mode this signal is unused, as only  
progressive-scan VESA formats are supported in master mode.  
FID  
47  
I
Full scale adjustment control 1. A resistor should be connected between FSADJ1 and analog  
ground AGND to control the full-scale output current of the DAC output channels. Via the  
data_fsadj I2C programming register, the user can select between two full-scale ranges,  
determined by FSADJ1 or FSADJ2.  
FSADJ1  
7
P
For 700-mV video output (1 Vpp including sync), the nominal value is 2.99 kΩ ; for 1.0-Vpp  
video output (1.3 Vpp including sync) output the nominal value is 2.08 kΩ.  
FSADJ2  
GND_DLL  
GND_IO  
8
2
P
Full scale adjustment control 2. See FSADJ1.  
Ground of clock doubler. Should be connected to analog ground.  
I/O ring ground  
PWR  
PWR  
20, 45, 72  
10-bit video data input port. All 10 bits or the 8 MSB of this port can be connected to the  
video data source. The G data of RGB or the Y data of YCbCr should be connected to this  
port. Port used in 10-bit mode for CbYCrY video input data; in 20-bit input mode for Y data.  
GY[9:0]  
48 - 57  
I
Horizontal source synchronization. In slave timing mode, this is an input from the video data  
source. In master timing mode, this is an output to the video data source with programmable  
timing and polarity, serving as a horizontal data qualification signal to the video source.  
HS_IN  
43  
61  
I/O  
O
Horizontal sync output (to display). Irrespective of slave/master timing mode configuration,  
this is always an output with timing generated by the DTG.  
HS_OUT  
12CA  
5
1, 80  
6
I
I
I2C device address LSB selection  
N.C.  
Manufacturing test input. Must be tied to GND for normal operation.  
Substrate ground. Should be connected to analog ground.  
PBKG (VSS)  
PWR  
10-bit video data input port. All 10-bits or the 8 MSB of this port can be connected to the  
video data source. In 30-bit mode, the R data of RGB or the Cr data of YCbCr should be  
connected to this port. In the 10- /20-bit input mode, this port is unused. For some input  
formats this port is unused.  
RCr[9:0]  
RESETB  
33 - 42  
60  
I
I
Software reset pin (active low). The minimum reset duration is 200 ns.  
(1) I = input, O = output, B = bidirectional, PWR = power or ground, P = passive  
12 Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Serial clock line of I2C bus interface. Open-collector. Maximum specified clock speed is  
400 kHz (fast I2C).  
SCL  
64  
B
SDA  
63  
4
B
Serial data line of I2C bus interface. Open-collector.  
Power supply of clock doubler, nominal 1.8 V  
I/O ring power, 1.8 V or 3.3 V nominal  
VDD_DLL  
VDD_IO  
PWR  
PWR  
19, 46, 70  
Vertical source synchronization. In slave timing mode, this is an input from the video data  
source. In master timing mode, this is an output to the video data source with programmable  
timing and polarity, serving as a vertical data qualification signal to the video source.  
VS_IN  
44  
62  
I/O  
O
Vertical sync output (to display). Irrespective of slave/master timing mode configuration, this  
is always an output with timing generated by the DTG.  
VS_OUT  
Copyright © 2009, Texas Instruments Incorporated  
Overview  
13  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
3
THS8200 Functional Overview  
digbypass  
dg_bias  
ifir  
ifir  
ifir  
Color  
Space  
Clip  
Scale  
gy_in  
dly  
ifir  
ifir  
dg  
db  
dr  
Convertor  
Multiplier  
bcb_in  
rcr_in  
hs_in  
vs_in  
db_bias  
4:2:2 to 4:4:4  
ifir12_bypass  
ifir35_bypass  
dr_bias  
sav  
eav  
Display  
Timing  
Generator  
dtg_data  
Three Channel DACs  
dr_bias  
scl_in  
scl_out  
scl_en  
databus_in  
dg_bias  
db_bias  
databus_out  
address  
I2C  
addr_en  
hs_out  
vs_out  
Slave  
sda_in  
cscouts  
sda_out  
sda_en  
ready  
csmouts  
do[9:0]  
dlclko  
digbypass  
ifirouts  
tstmode  
arst_func_n  
clkin  
clk_h  
dmanouts  
2X  
clkin  
cdrv  
cgen  
clk_f  
clk_fx2  
Clock Generator  
Offset Binary Signals  
Figure 3-1. Functional Block Diagram  
14  
THS8200 Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
3.1 Data Manager (DMAN)  
The data manager is the block that transforms the selected input video data format present on the chip  
input bus(es) to an internal 10-bit three-channel representation. Supported input formats include 10-/8-bit  
ITU-R.BT656 with embedded sync codes, 15-/16- or 24-/30-bit RGB with external sync, 20-/16-bit  
SMPTE274M/296M with embedded sync codes, as well as 20-/16-bit YCbCr 4:2:2 with external sync. The  
user can optionally include a 4:2:2 to 4:4:4 interpolation on the color data path. When a format with  
embedded sync is selected, DMAN also extracts H(Hsync), V(Vsync), F(FieldID) identifiers from the  
ITU-R.BT656 (SDTV) or SMPTE274M/296M (HDTV) data stream for internal synchronization of the DTG.  
Alternatively, the device synchronizes to HS_IN, VS_IN, FID inputs.  
3.1.1 Interpolating Finite Impulse Responses Filter (IFIR)  
The interpolating FIR is used to upsample the input data by 2×. In the THS82000 there are five IFIRs. The  
first two are used only when the input data is in 4:2:2 format for conversion to a 4:4:4 internal  
representation on both color difference channels. The last three IFIRs are used to upsample the internal  
data to the DACs on all three channels in case 2× video interpolation is enabled. By 2× oversampling the  
video data, the requirements for the analog reconstruction filter at the DAC outputs are relaxed so it can  
be built with fewer components, thereby also improving the overall video frequency characteristic (less  
group delay variation). All of the IFIRs can be bypassed or switched in by programming the appropriate  
I2C registers. The coefficients of all IFIRs are fixed.  
3.1.2 Color-Space Conversion (CSC)  
The color-space converter block is used to convert input video data in one type of color space to output  
video data in another color space (e.g., RGB to YCbCr, or vice versa). This block contains a 3×3 matrix  
multiplier/adder and a 3×1 adder. All multiplier and adder coefficients can be programmed via the I2C  
interface to support any linear matrixing+offset operation on the video data.  
3.1.3 Clip/Shift/Multiplier (CSM)  
The clip-shift-multiply block optionally clips the input code range at a programmed low/high code, shifts the  
input video data downwards, and multiplies the input by a programmable coefficient in the range 01.999.  
This allows for operation with a reduced input code range such as prescribed in the ITU-R.BT601  
recommendation. Each channel can be independently programmed to accommodate different digital  
ranges for each of the three input channels. For example, for standard video signals the Y channel has a  
digital input range of 64940, whereas the two other channels have an input range of 64960. All three  
channels must have a DAC output range of 0700 mV, so normally the analog voltage corresponding to 1  
LSB would have to change to account for the different digital inputs. This might cause matching errors.  
Therefore in the THS8200 the DAC LSB does not change; rather LSB conversion is done by scaling the  
digital inputs to the DAC’s full input range. Furthermore, the CSM output is 11 bits wide and is sent to the  
11-bit DACs. The extra bit of resolution resolves nonlinearities introduced by the scaling process. The  
clipping function can be switched off to allow for super-white/super-black excursions.  
3.1.4 Digital Multiplexer (DIGMUX)  
This multiplexer in front of the DACs can select between video signals at 1× or 2× the pixel clock rate. It is  
also used to switch in blanking/sync level data generated by the display timing generator (DTG) block and  
test pattern data (e.g., color bars, I2C-controlled DAC levels) or to perform data insertion (CGMS) during  
vertical blanking.  
Copyright © 2009, Texas Instruments Incorporated  
THS8200 Functional Overview  
15  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
3.1.5 Display Timing Generator (DTG)  
The display timing generator is responsible for the generation of the correct frame format including all  
sync, equalization and serration pulses. In master timing mode, the DTG is synchronized to external  
synchronization inputs, either from the dedicated device terminals HS_IN, VS_IN, and FID or is  
synchronized to the identifiers extracted from the input data stream, as selected by the DMAN mode. In  
master timing mode, the DTG generates the required field/frame format based on the externally applied  
pixel clock input.  
When active data is not being passed to the DACs, i.e., during the horizontal/vertical blanking intervals,  
the DTG generates the correct digital words for blank, sync levels and other level excursions, such as pre-  
and post-serration pulses and equalization pulses.  
Horizontal timings, as well as amplitudes of negative and positive sync, HDTV broad pulses and SDTV  
pre- and post-equalization and serration pulses, are all I2C-programmable to accommodate, e.g., the  
generation of both EIA.770-1 (10:4 video/sync ratio) and EIA.770-2 (7:3 video/sync ratio) compliant analog  
component video outputs, and to support nonstandard video timing formats.  
In addition or as an alternative to the composite sync inserted on green/luma channel or all analog  
outputs, output video timing can be carried via dedicated Hsync/Vsync output signals as well. The  
position, duration and polarity of Hsync and Vsync outputs are fully programmable in order to support, for  
example, the centering of the active video window within the picture frame.  
The DTG also controls the data multiplexer in the DIGMUX block. DIGMUX can be programmed to pass  
device input data only on active video lines (inserting DTG-generated blanking level during blanking  
intervals). Alternatively, the DTG can pass device input data also during some VBI lines (ancillary data in  
the input stream is passed transparently on some VBI lines). Finally, the device can also generate its own  
ancillary data and insert it into the analog outputs according to the CGMS data format for the 525P video  
format.  
3.1.6 Clock Generator (CGEN)  
The clock generator is an analog delay-locked loop (DLL) based circuit and provides a 2× clock from the  
CLKIN input. The 2× clock is used by the CDRV block for 2× video interpolation. Some video formats also  
require a 1/2 rate clock used for 4:2:2 to 4:4:4 conversion.  
3.1.7 Clock Driver (CDRV)  
The clock drive block generates all on-chip clocks. Its inputs are control signals from the digital logic, the  
original CLKIN, and the 2× clock from CGEN. Outputs include a half-rate clock, full-rate clock, and a 2×  
full-rate clock. The clocks are used for both optional on-chip interpolation processes: 4:2:2 to 4:4:4  
interpolation and 1× to 2× video oversampling.  
3.1.8 I2C Host Interface (I2CSLAVE)  
The I2C interface controls and programs the internal I2C registers. The THS8200 I2C interface  
implementation supports the fast I2C specification (SCL: 400 kHz) and allows the writing and reading of  
registers. An auto-increment addressing feature simplifies block register programming. The I2C interface  
works without a clock present on CLKIN.  
3.1.9 Test Block (TST)  
The test block controls all the test functions of the THS8200. In addition to manufacturing test modes, this  
block contains several user test modes including a DAC internal ramp generator and a 75% SMPTE video  
color bar generator.  
16  
THS8200 Functional Overview  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
3.1.10 D/A Converters (DAC)  
THS8200 contains three DACs operating at up to 205 MSPS and with an internal resolution of 11 bits.  
Each DAC contains an integrated video sync inserter. The sync(s) is (are) inserted by means of additional  
current source circuits either on the green/luma (Y) channel only or on all the DAC output channels, in  
order to be compliant with both consumer (EIA, sync-on-G/Y) as well as professional (SMPTE,  
sync-on-all) standards.  
The DAC speed supports all ATSC formats, including 1080P, as well as all PC graphics (VESA) formats  
up to UXGA at 75 Hz (202.5 MSPS).  
Copyright © 2009, Texas Instruments Incorporated  
THS8200 Functional Overview  
17  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
4
Detailed Functional Description  
4.1 Data Manager (DMAN)  
Table 4-1. Supported Input Formats  
INPUT INTERFACE  
TIMING CONTROL  
EMBEDDED DEDICATED  
SYNCHRONIZATION  
30 BIT  
20 BIT  
10 BIT(1) 16 BIT 15 BIT  
MASTER  
SLAVE  
TIMING  
TIMING  
[PRESET]  
HDTV-SMPTE296M  
progressive (720P)  
X (4:4:4) X (4:2:2)  
X (4:4:4) X (4:2:2)  
X (4:4:4) X (4:2:2)  
X
X
X
[PRESET]  
HDTV-SMPTE274M  
progressive (1080P)  
X
X
X
X
X
[PRESET]  
HDTV-SMPTE274M  
progressive (1080I)  
[GENERIC] HDTV  
X (4:4:4) X (4:2:2)  
X (4:4:4) X (4:2:2)  
X
X
X
X
X
[PRESET]  
SDTV-ITU.1358 (525P)  
X(2)  
X(4)  
X(3)  
[PRESET]  
SDTV-ITU-R.BT470  
(525I)  
X (4:4:4) X (4:2:2)  
X
X(3)  
X
X
[PRESET]  
SDTV-ITU-R.BT470  
(625i)  
X (4:4:4) X (4:2:2)  
X (4:4:4) X (4:2:2)  
X(4)  
X
X
X(3)  
[GENERIC] SDTV  
[PRESET] VESA  
X
X
X
X
(5)  
X
X(5)  
X(5)  
X
(1) When the device is configured to receive data over a 10-bit interface, the ITU-R.BT656 output bus on the THS8200 can be enabled via  
an I2C register bit to send the received data to an external device. In other DMAN modes, this output should remain off (data_tristate656  
register).  
(2) SMPTE293M-compliant  
(3) Dedicated timing not supported with 10-bit interface.  
(4) ITU-R.BT656-compliant  
(5) Because PC graphics data is normally only 8 bits wide, only 3×8 bits (8 MSBs of each bus) are used. Color space converter bypass is  
required for modes with pixel clock > 150 MSPS.  
Table 4-1 summarizes all supported video mode configurations.  
Each video mode is characterized by three attributes:  
Input Interface: Data is accepted over 10-, 20- or 30-bit interface (or 8- ,16-, 24-bit interface for 8-bit  
data when using 8 MSBs of each input data bus and connecting 2 LSBs to ground). This selection is  
controlled by the dman_cntl register.  
Timing control: Video timing is either embedded in the data stream or supplied via dedicated timing  
signals. In the latter case additional Hsync (HS_IN), Vsync (VS_IN) and FieldID (FID) input signals are  
required to synchronize the video data source and THS8200 in the case of slave timing mode. This  
selection is controlled by the dtg2_embedded_timing register.  
Synchronization: Video timing either is supplied to the device (slave) or the THS8200 requests video  
data from the source (master). This selection is controlled by the chip_ms register.  
NOTE  
Device operation with combinations of settings for the dman_cntl, dtg2_embedded_timing  
and chip_ms registers that result in operating modes not marked in Table 4-1 is not  
assured. See detailed register map description for actual register settings.  
18  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
 
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
Furthermore, Table 4-1 shows for which modes presets are defined. When in a preset video mode, the  
line-type/breakpoint-pairs that define the frame format (see Display Timing Generator, Section 4.7) are  
preprogrammed. Therefore the user does not need to define the table with line type/breakpoint settings,  
nor does the field and frame size need to be programmed. However, when in preset mode, the horizontal  
parameters (all dtg1_spec_x registers for the line types used by the preset setting, and dtg1_total_pixels  
registers) still need to be programmed. Presets are available for most popular DTV video formats.  
Alternatively, generic modes for SDTV, HDTV or VESA can be selected, which allow full programmability  
of the field/frame sizes and DTG parameters.  
Note from the table that:  
If embedded timing is used, the device is always in slave mode, because the data stream supplied to  
THS8200 contains the video timing information.  
Master operation is only supported for PC graphics (VESA) formats.  
In HDTV modes with embedded timing, data is supplied to the device over a 20-bit interface, as  
defined in SMPTE274/296M.  
In SDTV modes with embedded timing, data is supplied to the device over a 10-bit interface. When the  
video format is interlaced, this interface is known as ITU-R.BT656 (525I, 625I). When the video format  
is progressive, only 525P is supported with embedded timing. The 625P interface can be supported  
with dedicated timing, using the SDTV generic mode.  
In generic modes with dedicated timing, both 20 bits (4:2:2) and 30 bits (4:4:4) are supported.  
In PC graphics modes (VESA generic), input data is either over the 30-bit interface or over the  
16-/15-bit interface and always has dedicated timing. Note that the 16-bit interface is not equivalent to  
a 2×8-bit version of the 20-bit interface; see Section 4.2, Input Interface Formats, for details.  
4.2 Input Interface Formats  
The following figures define the input video format for each input mode, as selected by the  
data_dman_cntl register setting. Video data is always clocked in at the rising edge of CLKIN.  
NOTE  
For 8-bit operation with 10-bit input buses, connect only the 8 MSBs of each input bus  
used, and tie the 2 LSBs to ground.  
30-bit YCbCr/RGB 4:4:4  
CLKIN  
GY[9:0]/[9:2]  
BCb[9:0]/[9:2]  
RCr[9:0]/[9:2]  
G0/Y0  
G1/Y1  
G2/Y2  
G3/Y3  
G4/Y4  
G5/Y5  
G6/Y6  
G7/Y7  
B0/Cb0 B1/Cb1 B2/Cb2 B3/Cb3 B4/Cb4 B5/Cb5 B6/Cb6 B7/Cb7  
R0/Cr0 R1/Cr1 R2/Cr2 R3/Cr3 R4/Cr4 R5/Cr5 R6/Cr6 R7/Cr7  
Figure 4-1. 24-/30-Bit RGB or YCbCr Data Format  
20-bit YCbCr 4:2:2  
CLKIN is equal to the 1× pixel clock. The pixel clock equals the rate of the Y input and is 2× the rate of  
the 2 other channels in this input format where Cb and Cr are multiplexed onto the same input bus.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
19  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
CLKIN  
GY[9]  
GY[8]  
GY[7]  
GY[6]  
GY[5]  
GY[4]  
Y7(0)  
Y6(0)  
Y5(0)  
Y4(0)  
Y3(0)  
Y2(0)  
Y1(0)  
Y1(0)  
Y7(1)  
Y6(1)  
Y5(1)  
Y4(1)  
Y3(1)  
Y2(1)  
Y1(1)  
Y1(1)  
Y7(2)  
Y6(2)  
Y5(2)  
Y4(2)  
Y3(2)  
Y2(2)  
Y1(2)  
Y1(2)  
Y7(3)  
Y6(3)  
Y5(3)  
Y4(3)  
Y3(3)  
Y2(3)  
Y1(3)  
Y1(3)  
Y7(0)  
Y6(0)  
Y5(0)  
Y4(0)  
Y3(0)  
Y2(0)  
Y1(0)  
Y1(0)  
Y7(1)  
Y6(1)  
Y5(1)  
Y4(1)  
Y3(1)  
Y2(1)  
Y1(1)  
Y1(1)  
Y7(2)  
Y6(2)  
Y5(2)  
Y4(2)  
Y3(2)  
Y2(2)  
Y1(2)  
Y7(3)  
Y6(3)  
Y5(3)  
Y4(3)  
Y3(3)  
Y2(3)  
Y1(3)  
Y1(3)  
TO CH1  
GY[3]  
GY[2]  
Y1(2)  
BCb[9]  
BCb[8]  
BCb[7]  
BCb[6]  
BCb[5]  
BCb[4]  
Cb7(0) Cr7(0) Cb7(2) Cr7(2)  
Cb6(0) Cr6(0) Cb6(2) Cr6(2)  
Cb5(0) Cr5(0) Cb5(2) Cr5(2)  
Cb4(0) Cr4(0) Cb4(2) Cr4(2)  
Cb3(0) Cr3(0) Cb3(2) Cr3(2)  
Cb2(0) Cr2(0) Cb2(2) Cr2(2)  
Cb1(0) Cr1(0) Cb1(2) Cr1(2)  
Cb0(0) Cr0(0) Cb0(2) Cr0(2)  
Cb7(0)  
Cb6(0)  
Cb5(0)  
Cb4(0)  
Cb3(0)  
Cb2(0)  
Cb1(0)  
Cb0(0)  
Cb7'(1)  
Cb6'(1)  
Cb5'(1)  
Cb4'(1)  
Cb3'(1)  
Cb7(2)  
Cb6(2)  
Cb5(2)  
Cb4(2)  
Cb3(2)  
Cb7'(3)  
Cb6'(3)  
Cb5'(3)  
Cb4'(3)  
Cb3'(3)  
TO CH2  
Cb2'(1)  
Cb1'(1)  
Cb0'(1)  
Cb2(2)  
Cb2'(3)  
Cb1'(3)  
Cb0'(3)  
BCb[3]  
BCb[2]  
Cb1(2)  
Cb0(2)  
RCr[9]  
RCr[8]  
RCr[7]  
RCr[6]  
RCr[5]  
RCr[4]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Cr7(0)  
Cr6(0)  
Cr5(0)  
Cr4(0)  
Cr3(0)  
Cr2(0)  
Cr7'(1)  
Cr6'(1)  
Cr7(2)  
Cr6(2)  
Cr5(2)  
Cr4(2)  
Cr3(2)  
Cr2(2)  
Cr7'(3)  
Cr6'(3)  
Cr5'(3)  
Cr4'(3)  
Cr3'(3)  
Cr2'(3)  
Cr1'(3)  
Cr0'(3)  
Cr5'(1)  
Cr4'(1)  
Cr3'(1)  
Cr2'(1)  
Cr1'(0)  
TO CH3  
RCr[3]  
RCr[2]  
Cr1(0)  
Cr0(0)  
Cr1(2)  
Cr0(2)  
Cr0'(1)  
Figure 4-2. 20-/16-Bit YCbCr 4:2:2 Data Format (16-Bit Operation Shown)  
When dedicated timing is used in this mode, there is a fixed relationship between the first active period  
of HS_IN (i.e., the first CLKIN rising edge seeing HS_IN active) and a Cb color component assumed  
present during that clock period on the bus receiving CbCr samples. When embedded timing is used in  
this mode, the SAV/EAV structure also unambiguously defines the CbCr sequence, according to  
SMPTE274M/296M for HDTV.  
NOTE  
The figure shows the case when only 8 bits of each 10-bit input bus are used.  
10-bit YCbCr 4:2:2 (ITU mode)  
CLKIN is equal to 2× the pixel clock since all components are multiplexed on a single 10-bit bus with a  
4-multiple sequence: CbYCrY. Therefore the pixel clock (i.e., the Y input rate) is 1/2 of CLKIN and the  
Cb and Cr rate are 1/4 of CLKIN.  
When dedicated timing is used in this mode, there is a fixed relationship between the first active period  
20  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
of HS_IN (i.e. the first CLKIN rising edge seeing HS active) and a Cb color component assumed  
present during that clock period on the input bus. When embedded timing is used in this mode, the  
SAV/EAV structure also unambiguously defines the CbCr sequence, according to ITU-R.BT656 (for  
625I and 525I) and SMPTE293M (for 525P).  
16-bit RGB 4:4:4  
CLKIN  
GY[9]  
GY[8]  
GY[7]  
GY[6]  
GY[5]  
GY[4]  
R7(0)  
R6(0)  
R7(1)  
R6(1)  
R5(1)  
R4(1)  
R3(1)  
G7(1)  
R7(2)  
R6(2)  
R5(2)  
R4(2)  
R3(2)  
G7(2)  
G6(2)  
G5(2)  
R7(3)  
R6(3)  
R5(3)  
R4(3)  
R3(3)  
G7(3)  
G6(3)  
G5(3)  
G7(0)  
G6(0)  
G7(1)  
G6(1)  
G5(1)  
G4(1)  
G3(1)  
G2(1)  
0
G7(2)  
G6(2)  
G5(2)  
G4(2)  
G3(2)  
G2(2)  
0
G7(3)  
G6(3)  
G5(3)  
G4(3)  
G3(3)  
G2(3)  
0
R5(0)  
R4(0)  
R3(0)  
G7(0)  
G6(0)  
G5(0)  
G5(0)  
G4(0)  
G3(0)  
G2(0)  
0
TO CH1  
TO CH2  
TO CH3  
GY[3]  
GY[2]  
G6(1)  
G5(1)  
0
0
0
0
BCb[9]  
BCb[8]  
BCb[7]  
BCb[6]  
BCb[5]  
BCb[4]  
G4(0)  
G3(0)  
G2(0)  
B7(0)  
B6(0)  
B5(0)  
B4(0)  
B3(0)  
G4(1)  
G3(1)  
G2(1)  
B7(1)  
B6(1)  
B5(1)  
B4(1)  
B3(1)  
G4(2)  
G3(2)  
G2(2)  
B7(2)  
B6(2)  
B5(2)  
B4(2)  
B3(2)  
G4(3)  
G3(3)  
G2(3)  
B7(3)  
B6(3)  
B5(3)  
B4(3)  
B3(3)  
B7(0)  
B6(0)  
B7(1)  
B6(1)  
B5(1)  
B4(1)  
B3(1)  
0
B7(2)  
B6(2)  
B5(2)  
B4(2)  
B3(2)  
0
B7(3)  
B6(3)  
B5(3)  
B4(3)  
B3(3)  
0
B5(0)  
B4(0)  
B3(0)  
0
BCb[3]  
BCb[2]  
0
0
0
0
0
0
0
0
RCr[9]  
RCr[8]  
RCr[7]  
RCr[6]  
RCr[5]  
RCr[4]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R7(0)  
R6(0)  
R7(1)  
R6(1)  
R5(1)  
R4(1)  
R3(1)  
0
R7(2)  
R6(2)  
R5(2)  
R4(2)  
R3(2)  
0
R7(3)  
R6(3)  
R5(3)  
R4(3)  
R3(3)  
0
R5(0)  
R4(0)  
R3(0)  
0
RCr[3]  
RCr[2]  
0
0
0
0
0
0
0
0
Figure 4-3. 16-Bit RGB 4:4:4 Data Format  
CLKIN is equal to 1× the pixel clock. This format is only supported in VESA mode and can be used for  
PC graphics applications that do not require full 8-bit resolution on each color component.  
15-bit RGB 4:4:4  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
21  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
CLKIN  
GY[9]  
GY[8]  
GY[7]  
GY[6]  
GY[5]  
GY[4]  
X
X
X
X
G7(0)  
G6(0)  
G7(1)  
G6(1)  
G5(1)  
G4(1)  
G3(1)  
0
G7(2)  
G6(2)  
G5(2)  
G4(2)  
G3(2)  
0
G7(3)  
G6(3)  
G5(3)  
G4(3)  
G3(3)  
0
R7(0)  
R6(0)  
R7(1)  
R7(3)  
R7(2)  
R6(2)  
R5(2)  
R4(2)  
R3(2)  
G7(2)  
G6(2)  
R6(1)  
R5(1)  
R4(1)  
R3(1)  
G7(1)  
R6(3)  
R5(3)  
R4(3)  
R3(3)  
G7(3)  
G6(3)  
G5(0)  
G4(0)  
G3(0)  
0
R5(0)  
R4(0)  
R3(0)  
G7(0)  
G6(0)  
TO CH1  
GY[3]  
GY[2]  
0
0
0
0
G6(1)  
0
0
0
0
BCb[9]  
BCb[8]  
BCb[7]  
BCb[6]  
BCb[5]  
BCb[4]  
G5(0)  
G4(0)  
G3(0)  
B7(0)  
B6(0)  
B5(0)  
B4(0)  
B3(0)  
G5(1)  
G4(1)  
G3(1)  
G5(2)  
G4(2)  
G5(3)  
G4(3)  
G3(3)  
B7(0)  
B6(0)  
B7(1)  
B6(1)  
B5(1)  
B4(1)  
B3(1)  
0
B7(2)  
B6(2)  
B5(2)  
B4(2)  
B3(2)  
0
B7(3)  
B6(3)  
B5(3)  
B4(3)  
B3(3)  
0
G3(2)  
B7(2)  
B6(2)  
B5(2)  
B4(2)  
B3(2)  
B5(0)  
B4(0)  
B3(0)  
0
B7(1)  
B6(1)  
B5(1)  
B4(1)  
B3(1)  
B7(3)  
B6(3)  
B5(3)  
B4(3)  
B3(3)  
TO CH2  
BCb[3]  
BCb[2]  
0
0
0
0
0
0
0
0
RCr[9]  
RCr[8]  
RCr[7]  
RCr[6]  
RCr[5]  
RCr[4]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R7(0)  
R6(0)  
R7(1)  
R6(1)  
R5(1)  
R4(1)  
R3(1)  
0
R7(2)  
R6(2)  
R5(2)  
R4(2)  
R3(2)  
0
R7(3)  
R6(3)  
R5(3)  
R4(3)  
R3(3)  
0
R5(0)  
R4(0)  
R3(0)  
0
TO CH3  
RCr[3]  
RCr[2]  
0
0
0
0
0
0
0
0
Figure 4-4. 15-Bit RGB 4:4:4 Data Format  
CLKIN is equal to 1× the pixel clock. This format is only supported in VESA mode and can be used for  
PC graphics applications that do not require full 8-bit resolution on each color component.  
4.3 Clock Generator (CGEN)/Clock Driver (CDRV)  
The clock generator/clock driver blocks generate all on-chip clocks for 4:2:2 to 4:4:4 and 2× video  
oversampling. The DMAN setting controls whether the input data is 4:2:2 or 4:4:4 sampled, and whether a  
30-, 20- or 10-bit interface is used. This selection affects the clock input frequency assumed to be present  
on CLKIN.  
30-bit 4:4:4: 1× pixel clock. 4:2:2 to 4:4:4 interpolation should be bypassed. Optional 2× oversampling  
is available for formats with pixel clock up to 80 MHz.  
22  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
20-bit 4:2:2: 1× pixel clock. 4:2:2 to 4:4:4 interpolation should be switched in, and is available for  
formats with pixel clock up to 150 MHz. Optional 2× oversampling available for formats with pixel clock  
up to 80 MHz.  
10-bit 4:2:2 (ITU): 1/2× pixel clock. 4:2:2 to 4:4:4 interpolation should be switched in, and is available  
for formats with pixel clock up to 150 MHz. Optional 2× oversampling is available for formats with pixel  
clock up to 80 MHz.  
The internal DLL (delay-locked loop) generates the higher clock frequencies. The user should program the  
input frequency range selection register, dll_freq_sel, according to the frequency present on CLK_IN when  
using either or both interpolation/oversampling stages.  
The 4:2:2 to 4:4:4 stage is switched in or bypassed, depending on the setting of data_ifir12_bypass  
register (interpolation only on chroma channels). This feature should only be used with YCbCr 4:2:2 input.  
The THS8200 can perform color space conversion to RGB depending on the CSC setting. The  
dtg2_rgbmode_on register should be set corresponding to the color space representation of the DAC  
output.  
The 2× oversampling stage is switched in or bypassed, depending on the setting of data_ifir35_bypass  
register.  
The user should not enable the 2× oversampling stage when the CLK_IN frequency exceeds 80 MHz, as  
is the case for the higher PC graphics formats and 1080P HDTV. In this case the DLL should be bypassed  
using the vesa_clk register to disable the 2× frequency generation. As explained in the detailed register  
map description for this register, it is still possible to support 20-bit 4:2:2 input in this mode (e.g., for  
1080P).  
A second bypass mode operation exists for the DLL, enabled by the dll_bypass register. When this  
bypass mode is active, the CLKIN input is assumed to be 2× pixel frequency. This mode is meant only for  
test purposes as it does not correspond to any mode in the supported input formats table.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
23  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
4.4 Color Space Conversion (CSC)  
THS8200 contains a fully-programmable 3×3 multiply/add and 3×1 adder block that can be switched in for  
all video formats up to a pixel clock frequency of 150 MHz. Color space conversion is thus available for all  
DTV modes, including 1080P and VESA modes up to SXGA at 75 Hz (135 MSPS). The operation is done  
after optional 4:2:2 to 4:4:4 conversion, and thus on the 1× pixel clock video data prior to optional 2× video  
oversampling. The CSC block can be switched in or bypassed depending on the setting of register  
csc_bypass.  
Each of the nine floating point multiplier coefficients of the 3×3 multiply/add is represented as the  
combination of a 6-bit signed binary integer part, and a 10-bit fractional part. The integer part is a signed  
magnitude representation with the MSB as the sign bit. The fractional part is a magnitude representation;  
see the following example.  
The register nomenclature is: csc_<r,g,b> <i,f>c<1,2,3> where:  
<r,g,b> identifies which input channel is multiplied by this coefficient (r = red/Cr, g = green/Y,  
b = blue/Cb input).  
<i,f> identifies the integer (i) or fractional (f) part of the coefficient.  
<1,2,3> identifies the output channel from the color space converter: 1 = Yd/Gd, 2 = Cb/Bd, 3 = Cr/Rd.  
For the offset values, a value of 1/4 of the desired digital offset needs to be programmed in the individual  
offset register, so a typical offset of 512 (offset over 1/2 of the video range) requires programming a value  
of 128 decimal into the offset<1,2,3> registers, where again <1,2,3> defines the output channel affected,  
with similar convention as shown previously.  
Saturation logic can be switched in to avoid over- and underflow on the result after color space conversion  
using the csc_uof_cntl register.  
We next show an example of how to program the CSC. This also explains the numeric data formats.  
CSC configuration example: HDTV RGB to HDTV YCbCr  
The formulas for RGB to YCbCr conversion are:  
Yd = 0.2126*Rd + 0.7152*Gd + 0.0722*Bd  
Cb = 0.1172*Rd – 0.3942*Gd + 0.5114*Bd + 512  
Cr = 0.5114*Rd – 0.4646*Gd – 0.0468*Bd + 512  
To program the red coefficient of channel 1 (Y) with the value of 0.2126 the following must be done:  
1. Realize that this is a positive value so the sign bit of the integer part is 0 (bit 5 of csc_ric1 = 0).  
2. Note that there is no integer portion of the coefficient (bit 4bit 0 = 00000).  
3. The binary representation of the fractional part can be constructed directly from the binary equivalent  
of the fractional part multiplied by 1024 (0.2126 × 1024 = 217.7), rounded to the nearest integer (218)  
and represented as a binary 10-bit number (00 1101 1010).  
Using the above method all the registers for the CSC blocks can be programmed with the correct value for  
RGB to YCbCr conversion. Below is a complete list of register values for the above conversion.  
0.2126 csc_ric1 = 00 0000  
0.7152 csc_gic1 = 00 0000  
0.0722 csc_bic1 = 00 0000  
csc_rfc1 = 00 1101 1010  
csc_gfc1 = 10 1101 1100  
csc_bfc1 = 00 0100 1010  
0.1172 csc_ric2 = 10 0000  
0.3942 csc_gic2 = 10 0000  
0.5114 csc_bic2 = 00 0000  
csc_rfc2 = 00 0111 1000  
csc_gfc2 = 01 1001 0100  
csc_bfc2 = 10 0000 1100  
0.5114 csc_ric3 = 00 0000  
0.4646 csc_gic3 = 10 0000  
0.0468 csc_bic3 = 10 0000  
csc_rfc3 = 10 0000 1100  
csc_gfc3 = 01 1101 1100  
csc_bfc3 = 00 0011 0000  
24  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
For the offsets necessary in the second and third equation the csc_offset<n> registers need to be  
programmed. We need to add 512 to the Cb and Cr channels. The value to be programmed is 1/4 of this  
offset in a signed magnitude representation, thus 128 or csc_offset2 = csc_offset3 = 00 1000 0000.  
Packing these individual registers into the I2C register map, the programmed values are:  
SUBADDRESS  
0x04  
REGISTER NAME  
csc_r11  
VALUE  
0000 0000  
1101 1010  
1000 0000  
0111 1000  
0000 0010  
0000 1100  
0000 0010  
1101 1100  
1000 0001  
1001 0100  
1000 0001  
1101 1100  
0000 0000  
0100 1010  
0000 0010  
0000 1100  
1000 0000  
0011 0000  
0000 0000  
0000 1000  
0000 0010  
0000 0000  
0x05  
csc_r12  
0x06  
csc_r21  
0x07  
csc_r22  
0x08  
csc_r31  
0x09  
csc_r32  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
csc_g11  
csc_g12  
csc_g21  
csc_g22  
csc_g31  
csc_g32  
csc_b11  
csc_b12  
csc_b21  
csc_b22  
csc_b31  
csc_b32  
csc_offs1  
csc_offs12  
csc_offs23  
csc_offs3  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
CSC configuration example: HDTV YCbCr to HDTV RGB  
Gd = –0.4577*Cr + Yd – 0.1831*Cb +328 (= 0.6408*128*4)  
Bd = 0*Cr + Yd + 1.8142* Cb – 929 (= 1.8142*128*4)  
Rd = 1.5396* Cr +Yd +0*Cb – 788 (= 1.5396*128*4)  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
25  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
In a similar manner, it can be calculated that the programming array is in this case:  
SUBADDRESS  
0x04  
REGISTER NAME  
csc_r11  
VALUE  
1000 0001  
1101 0101  
0000 0000  
0000 0000  
0000 0110  
0010 1001  
0000 0100  
0000 0000  
0000 0100  
1000 0000  
0000 0100  
0000 0000  
1000 0000  
1011 1011  
0000 0111  
0100 0010  
0000 0000  
0000 0000  
0001 0100  
1010 1110  
1000 1011  
0001 0100  
0x05  
csc_r12  
0x06  
csc_r21  
0x07  
csc_r22  
0x08  
csc_r31  
0x09  
csc_r32  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
csc_g11  
csc_g12  
csc_g21  
csc_g22  
csc_g31  
csc_g32  
csc_b11  
csc_b12  
csc_b21  
csc_b22  
csc_b31  
csc_b32  
csc_offs1  
csc_offs12  
csc_offs23  
csc_offs3  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
4.5 Clip/Scale/Multiplier (CSM)  
There are limits on the code range of the video data if sampled according to ITU or SMPTE standards. In  
other words, the full 10-bit range [0:1023] is not used to represent video pixels. For example, typically 64  
decimal is the lowest code allowed to represent a video signal and corresponds to the blanking level.  
Similarly for Y, typically the maximum code is 940 decimal. Excursions outside this range can be the result  
of digital video processing.  
THS8200 can handle such instantaneous excursions in either of two ways: by limiting the input codes to  
programmable max/min values, or by allowing such excursions to occur.  
Depending on which approach is chosen, the user can scale up the video data in the CSM to make sure  
the full-scale dynamic range of the DAC is used for optimal performance when using limiting. Alternatively,  
the instantaneous excursions outside the code range can be output by the DAC in the analog output  
signal (allowing super-white/black in analog output) when this clipping is disabled.  
The CSM block allows the user to specify the behavior of THS8200 with such reduced-swing input video  
codes. It consists of the following:  
1. An optional clipping of the input video data at a high and low limit, where the limits are individually  
programmable per channel.  
2. A downward shift of the input video data, where the shift amount is individually programmable per  
channel.  
3. A multiply (magnitude scaling) function of the video data, where the multiplier coefficient is individually  
programmable per channel.  
26  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.5.1 Clipping  
Clipping (limiting) of the video input data can be turned on or off on a per-channel basis, and selectively at  
the high and/or low end, by programming the csm_<gy,rcr,bcb>_<high,low>_clip_on registers. The  
high/low clipping values can be programmed on  
csm_clip_<gy,rcr,bcb>_<high,low>.  
a
per-channel basis using registers  
Figure 4-5 shows a typical situation to clip ITU-R.BT601 sampled video signals.  
Ramping Analog Output With Clipping Effect on Top and Bottom  
817.3 mV  
751.1 mV  
Output After  
Clipping  
Output Before  
Clipping  
51.1 mV  
0
64  
940  
255  
511  
767  
1023  
Input Digital Codes  
Figure 4-5. Effect of Clipping on Analog Output  
4.5.2 Shifting  
Next the video data can be shifted over a programmable amount downward. The number of codes over  
which to shift the input video data is set per channel by programming csm_shift_<gy,rcr,bcb>. Shifting of  
the input video data can be done downwards over 0..255 codes inside the CSM.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
27  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
 
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
Ramping Analog Output With Clipping Effect on Top and Bottom  
817.3 mV  
751.1 mV  
700.0 mV  
Output After  
Clipping  
Output After  
Clipping and  
Shifting  
51.1 mV  
0
64  
876 940  
255  
511  
767  
1023  
Input Digital Codes  
Figure 4-6. Effect of Shifting on Clipped Analog Output  
Figure 4-5 and Figure 4-6 also show the analog output from the DAC if the full-scale video range over the  
[64..940] input would correspond to the normal 700-mV range for component video. This full-scale range  
is set by the selected FSADJ full-scale setting (register data_fsadj).  
4.5.3 Multiplying  
When the 10-bit range is not fully used for video, we can scale the input video data to use the full 10-bit  
dynamic range of the DACs. Care should be taken not to over/underflow the available range after scaling.  
This multiplying control serves two purposes:  
Use of the full 10-bit DAC range for inputs of reduced range.  
Individual fine gain control per channel to compensate for gain errors and provide white balance  
control.  
28  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
 
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
Ramping Analog Output With 1:1.1 AC Range Fine Scaling  
817.3 mV  
770.0 mV  
700.0 mV  
Range After  
Scaling Up 1:1.1  
DC Shifted  
Original AC Range  
0
876  
1023  
964  
255  
511  
767  
Input Digital Codes  
Figure 4-7. Effect of Scaling the Analog Video Output  
Figure 4-7 illustrates a shifted analog ramping output. The multiplication factor could be calculated to scale  
this output range to the full 10-bit range of the DAC. Note that this scaling can be programmed individually  
per channel using registers csm_mult_<gy,rcr,bcb>. The range of the multiplication is 0..1.999, coded as a  
binary weighted 11-bit value, thus: csm_mult_<gy,rcr,bcb> = (Desired scale ( 0 to 1.999) / 1.999) × 2047.  
Note that this approach allows to scale input code ranges that are different on each channel to an identical  
full-scale DAC output compliance, as is required for ITU-R.BT601 sampled signals where Y video data is  
represented in the range [64..940] and both Cb,Cr color difference channels are coded within the range  
[64..960]. All three channels need to generate a 700-mV nominal analog output compliance. Using a  
combination of FSADJ—adjusting the full-scale current of all DAC channels simultaneously in the analog  
domain—and digital CSM control, different trade-offs can be made for DAC output amplitude control,  
including channel matching.  
As discussed in Display Timing Generator (Section 4.7), the user also controls the DAC output levels  
during blanking, negative and positive sync, pre- and post-equalization, and serration pulses. Using a  
combination of CSM and DTG programming, it is therefore possible to accommodate many video  
standards, including those that require a video blank-to-black level setup, as well as differing video/sync  
ratios (e.g., 10:4 or 7:3).  
Finally, using the selectable full-scale adjustment from the FSADJ1 or FSADJ2 terminals, it is possible to  
switch between two analog output compliance settings with no hardware changes.  
Physically, the CSM output is represented internally as an 11-bit value to improve the DAC linearity at the  
10-bit level after scaling. Each DAC internally is of 11-bit resolution.  
4.6 Interpolating Finite Impulse Response Filter (IFIR)  
For relaxing the requirements of the reconstruction filter behind the DAC in the analog domain, and in  
order to take advantage of the high-speed capability of the DACs in THS8200, a 2× digital up-sampling  
and interpolation filter module is integrated.  
Figure 4-8 through Figure 4-11 show the YRGB and CbCr filtering requirements for HDTV  
(SMPTE274M/296M standards) and SDTV (ITU-R.BT601 standard), respectively.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
29  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
 
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
1+ d  
1
1- d  
-6 dB  
-40 dB  
-50 dB  
0.20 fs 0.25 fs 0.30 fs  
0.37 fs  
Frequency  
NOTE: δ = 0.05 dB. fs=74.25 MSPS for 1080I and 720P HDTV formats.  
Figure 4-8. PB and PR Filter Requirements Based on SMPTE 296M/274M  
1+ d  
1
1- d  
-12 dB  
40 dB  
50 dB  
0.40 fs 0.50 fs 0.60 fs  
0.73 fs  
Frequency  
NOTE: δ = 0.05 dB. fs=74.25 MSPS for 1080I and 720P HDTV formats.  
Figure 4-9. Y and RGB Filter Requirements Based on SMPTE 296M/274M  
30  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
1+  
d
1
1- d  
-12 dB  
-40 dB  
5.75  
6.75  
8.0  
Frequency (MHz)  
NOTE: δ = 0.05 dB  
Figure 4-10. Y and RGB Filter Requirements Based on ITU-R.BT601  
1+ d  
1
1-  
d
-6 dB  
-40 dB  
2.75  
3.375  
4.0  
Frequency (MHz)  
NOTE: δ = 0.05 dB  
Figure 4-11. Cb and Cr Filter Requirements Based on ITU-R.BT601  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
31  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
Figure 4-12 through Figure 4-14 illustrate the frequency and phase responses of the interpolating filters.  
The actual response using the finite-word length coefficients present in THS8200 is shown. The same  
filter characteristic is used for SDTV/HDTV modes and for both 4:2:2 to 4:4:4 interpolation (2 filters, one  
on each of Cb and Cr channels, switched in when a 4:2:2 input mode is selected on DMAN to interpolate  
chrominance from 1/2 to 1× pixel clock rate) as well as for 2× video oversampling (3 filters, one on each  
DAC channel, switched in when 2× interpolation is activated).  
xxx  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0.01  
0.008  
0.006  
0.004  
0.002  
0
0.002  
0.004  
0.006  
0.008  
0.01  
0 00  
.
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
0 0  
.
0 5  
.
0
5
0
5
3 0  
.
3 5  
.
1.  
1.  
2.  
2.  
f - Frequency - Rad  
f - Frequency - Rad  
Figure 4-12. IFIR Frequency Response  
Figure 4-13. IFIR Pass-Band Frequency Response  
4
3
2
1
0
1
2
3
4
.
0 0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
f - Frequency - Rad  
Figure 4-14. IFIR Phase Response  
Each of the two interpolation stages can be switched in or bypassed:  
Register data_ifir12_bypass controls the 4:2:2 to 4:4:4 filter bank (these filters should be set active  
when a 4:2:2 input mode is selected on DMAN).  
Register data_ifir35_bypass controls the 1× to 2× interpolation stage and can be set active for optional  
2× interpolation when an input format with pixel clock < 80 MSPS is present.  
32  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
 
 
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7 Display Timing Generator (DTG)  
4.7.1 Overview of Functionality  
THS8200 can generate dedicated Hsync/Vsync/FieldID video synchronization outputs, as well as a  
composite sync inserted on either the G/Y or all analog output channels. Both types of output  
synchronization can be available simultaneously and programmed independently. Synchronization  
patterns are fully programmable to accommodate all standard VESA (PC graphics) and ATSC (DTV)  
formats as well as nonstandard formats.  
For the purpose of output video timing generation, the device is configured in HDTV, SDTV or VESA  
mode (dtg1_mode register). Depending on the selected DTG mode, a number of line types are available  
to generate the full video frame format. The timing and position of horizontal and vertical syncs, the  
position of horizontal and vertical blanking intervals, and the structure, position and width of equalization  
pulses, pre- and post-serration pulses within the vertical blanking interval are user-programmable.  
The DTG determines:  
the frame format/field format (number of pixels/line, number of lines/field1, number of lines/field2,  
number of fields/frame = 1 for progressive or 2 for interlaced formats) and its synchronization to the  
input data source.  
Registers: dtg1_total_pixels, dtg1_linecnt, dtg1_frame_size, dtg1_field_size  
in slave mode, whether HS_IN, VS_IN, FID (dedicated sync inputs) are used for input video  
synchronization or video timing is extracted from embedded SAV/EAV codes, as well as the relative  
position of the video frame with respect to these synchronization signals.  
Registers: dtg2_embedded_timing, dtg2_hs_in_dly, dtg2_vs_in_dly  
the I/O direction of the HS_IN and VS_IN input signals (master vs slave mode), and the polarity of the  
HS_IN, VS_IN, and FID signals.  
Registers: dtg2_hs_pol, dtg2_vs_pol, dtg2_fid_pol  
the position and width of the HS_OUT, VS_OUT output signals, and their polarity.  
Registers: dtg2_hlength, dtg2_hdly, dtg2_vlength1, dtg2_vdly1, dtg2_vlength2, dtg2_vdly2,  
dtg2_vsout_pol, dtg2_hsout_pol  
field reversal within DTG.  
Register: dtg1_field_flip  
the active video window: width and position of horizontal blanking interval, width and position of vertical  
blanking interval.  
Registers: dtg2_bp<n>, dtg2_linetype<n> and the dtg1_spec_x registers, see DTG Line Type  
Overview (Section 4.7.3).  
the composite sync format: horizontal line timing includes serration, interlaced sync and broad pulses  
on each line in vertical blanking interval, width of vertical sync.  
Registers: dtg1_mode, dtg1_spec_<a,b,c,d,d1,e,g,h,i,k,k1>  
the behavior of the composite sync insertion: inserted on G/Y-channel only, or inserted on all channels,  
or no composite sync insertion; the amplitudes of the inserted negative and positive sync, the  
amplitudes of all serration pulses and broad pulses during the vertical blanking interval.  
Registers: dtg1_<y,cbcr>_sync_high, dtg1_<y,cbcr>_sync_low  
the DAC output amplitude during blanking and whether video data is passed or not during the active  
video portion of lines within the vertical blanking interval that contain no vertical sync, serration, or  
broad pulses.  
Registers: dtg1_<y,cbcr>_blank, dtg1_pass_through  
the width of each color bar of the color bar test pattern.  
Registers: dtg1_vesa_cbar_size  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
33  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
4.7.2 Functional Description  
The user should program the DTG with the correct parameters for the current video format. The DTG  
contains a line and a pixel counter, and a state machine to determine which userdefined line waveform to  
output for each line on the analog outputs. The pixel counter counts horizontally up to the total number of  
pixels per line, programmed in ‘dtg1_total_pixels’. The line counter counts up to ‘dtg1_field_size’ lines in  
the first field, and continues its count up to ‘dtg1_frame_size’ lines in the total frame (field1+field2).  
The current field is derived from the even/odd field ID signal, which is sampled at the start of the Vsync  
period. The source for the internal FID signal can be either the signal to the FID terminal, or can be  
internally derived from relative Hsync/Vsync alignment on the corresponding terminals, as selected by  
‘dtg2_fid_de_cntl’ and the current DTG mode (VESA vs. SDTV/HDTV). See register map description of  
‘dtg2_fid_de_cntl’ for more details. Derivation of FID from Hsync/Vsync input alignment is done according  
to the EIA861 specification. There is a tolerance implemented on Hsync/Vsync transition misalignment.  
When the active edge of the Vsync transition occurs within ±63 clock cycles from the active edge of  
Hsync, both signals are interpreted as aligned, which signals field 1. Because of this timing window, the  
internal FieldID signal is generated later than the start of Vsync period. Since the signal is internally  
sampled at the start of the Vsync period to determine the current field, the field interpretation is opposite.  
Use the ‘field_flip’ register to correct this through field reversal.  
If the video format is progressive, only field1 exists and no FID signal is needed. However the DTG will  
only startup when a field 1 condition is detected i.e when FID is detected low at the start of the Vsync  
period. Thus in the case of a progressive video format, and when using the device with external FID input,  
the user must make sure to keep the FID terminal low.  
It is also needed for proper DTG synchronization that the programmed Hsync and Vsync input polarities  
are correct. Since Hsync, Vsync polarities change for different VESA PC formats, the device has builtin  
support to detect the incoming sync polarities. This is done by comparing the width of Hsync high  
(‘misc_ppl’) to the total line length (‘dtg2_pixel_cnt’) to derive the Hsync duty cycle and thus its polarity.  
Upon this detection, the user can program the detected incoming polarity for DTG input synchronization  
(‘dtg2_hs_pol’) – it is not set automatically by the device. The procedure is similar for Vsync polarity  
detection, using registers ‘misc_lpf’, ‘dtg2_line_cnt’ and ‘dtg2_vs_pol’.  
The DTG synchronization can be separated into three functions:  
Internal synchronization: How the DTG is synchronized with respect to the internal horizontal and  
vertical counters.  
Source synchronization: How the horizontal and vertical counters are synchronized to the  
HS_IN/VS_IN/FID or SAV/EAV signals.  
Output synchronization: how the output timings HS_OUT, VS_OUT, and the composite sync output  
are synchronized to the DTG and the horizontal and vertical counters.  
The DTG is based on a state machine that can generate a set of line types which can override the values  
on the DAC inputs. The DTG output is multiplexed into the data path by the DIGMUX. The selected video  
format preset setting, or the programmed (line type, breakpoint) table in case a generic mode is selected  
in dtg1_mode, determines which line type is generated for a particular line, and where this DTG output is  
used to override the normal DAC inputs. Internally, a fixed preconfigured number of line types exists from  
which the user can select.  
Also, for each set of line types (we will see next there are two different sets of line types possible) the user  
can program the horizontal duration of each predefined excursion (negative sync, positive sync, back  
porch, front porch, broad pulse, interlaced sync, etc.) and also the amplitude (e.g., negative sync  
amplitude, positive sync amplitude, blank amplitude).  
The setting of dtg1_mode determines:  
Internal synchronization: The 0H reference (horizontal reset of the DTG) is different between SDTV  
and HDTV.  
34  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
Output synchronization: The available set of output synchronization line types depends on these  
modes. The user can choose from a number of predefined line types for each mode. In each mode,  
the user is able to program the timings along the line. However some timings are hard coded by the  
selected DTG_mode (e.g., rise/fall times for sync are different; see DTG Line Type Overview, Section  
4.7.3) and not all line types can be selected in each DTG mode (e.g., HDTV allows tri-level sync, while  
SDTV only allows generation of bi-level negative syncs).  
4.7.2.1 Predefined DTG Video Formats (Presets)  
While the DTG has the flexibility to generate a wide array of video output formats and their  
synchronization signals, the most common video formats have predefined settings for the field and frame  
sizes and for (line type, breakpoint) settings.  
When selecting a video format preset, the horizontal timings of the line types still need to be programmed.  
The preset only fixes the (line type, breakpoint) table.  
4.7.2.2 Internal Synchronization  
The pixel and line counters of the DTG are reset by internal signals. In slave mode (THS8200 slaves to  
external video input source) these signals are derived from either the embedded SAV/EAV codes or the  
dedicated Hsync/Vsync/FID inputs. In master mode, these counters are in free-run and the HS_IN/VS_IN  
signals are generated by the THS8200 based on the programmed field/frame parameters. Master mode is  
only available for progressive-scan VESA modes. FID is not generated in master mode.  
The user can delay, in both horizontal and vertical directions, the 0-reference of the DTG by programming  
the input delay registers. Physically, the horizontal and vertical DTG startup values are altered. The effect  
is that, when a vertical or horizontal sync is received, either from dedicated inputs or from embedded  
SAV/EAV codes, the output frame starts at position (x,y). This ensures that, for example, the output video  
frame can be centered on the display.  
Based on the 0-reference of the DTG, the line types are generated and the DIGMUX will select between  
the video input and the DTG output for each line type. All horizontal timings of the different line types are  
programmable, including the portion of the video line seen as active video. A complete overview of all  
available line types in either SDTV or HDTV mode is presented in Section 4.7.3.  
Additionally, Hsync/Vsync outputs can be generated, synchronized to the THS8200 DAC outputs. These  
outputs are programmable in width, position and polarity, based on the horizontal/vertical pixel counters,  
and thus independently of the DTG reference. This ensures that independent synchronization is possible  
between the composite sync output inserted into the DAC output(s) and the dedicated Hsync/Vsync  
outputs. Because of their programmability, these output signals could be used for other purposes as well;  
e.g., Vsync could be programmed as a signal active during the VBI.  
Figure 4-15 shows how the internal pixel and line counters are synchronized to internal HS and VS signals  
in slave mode. HS and VS are internal signals derived from either HS_IN, VS_IN, or from embedded  
SAV/EAV codes in the input video data. Since the 0-reference of the DTG is determined by these  
counters, the dtg2_vs_in_dly and dtg2_hs_in_dly register settings influence both HS_OUT, VS_OUT and  
composite sync output timing. The dtg2_vdly<1,2> and dtg2_hdly settings, on the other hand, only affect  
HS_OUT and VS_OUT, because they are downstream of the pixel counter. Likewise, dtg2_hlength and  
dtg2_vlength<1,2> only affect these dedicated sync output signals.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
35  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
dtg2_hs_in_dly  
=
RESET  
Counter  
>
HS (Input)  
RESET  
Pixel  
Counter  
>
=
RESET  
Counter  
dtg2_hdly  
>
<
HS_Out  
dtg2_vs_in_dly  
dtg2_hlength  
=
RESET  
Counter  
>
VS (Input)  
RESET  
Line  
Counter  
>
=
dtg2_vdly  
or  
dtg2_vdly2  
RESET  
Counter  
>
<
VS_Out  
dtg2_vlength  
or  
dtg2_vlength2  
Figure 4-15. THS8200 DTG VS/HS Output Generation  
Note that both independent sets of delay registers allow accommodation of different input timing  
references in slave mode. When the device is configured in master mode, the delay registers can  
compensate for different external (frame memory) synchronization requirements.  
4.7.2.3 Output Synchronization: Composite Sync  
The composite sync is generated from a programmed sequence of (line type, breakpoint) combinations,  
either user-programmed (in generic mode) or preset (in preset mode). The line type determines the  
waveform shape at the output of the DAC(s) with programmable amplitudes and timings.  
On each line, at the horizontal reference point of the DTG, the DTG decides where to start/stop the  
DTG-generated data and where to pass input video data. For example, during an active video line,  
ancillary data can be embedded in the digital stream outside the active video portion of the line, that we  
might want to convert to analog. Alternatively, during a nonactive video line, where normally the  
predefined line type would be inserted, ancillary data might need to be passed during the active video  
portion of the line.  
The amplitudes of positive, negative sync excursions and of the negative serration, pre- and  
post-equalization and broad pulses are independently programmable between G/Y and BPb, RPr  
channels. Therefore sync insertion can be programmed on only the G/Y output or on all DAC outputs.  
In order to limit the number of selection bits to select the line type, and because of the fact that we can  
define a set of line types that is mutually exclusive for SDTV and HDTV video modes, there are two DTG  
video modes: SDTV and HDTV. There is a third DTG mode (VESA) which does not use the line  
type/breakpoint state machine and only generates Hsync/Vsync outputs.  
36  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7.2.4 Output Synchronization: Hsync/Vsync Outputs  
These are the HS_OUT and VS_OUT signals, of which the width, position and polarity are programmable  
in all DTG modes.  
4.7.3 DTG Line Type Overview  
4.7.3.1 HDTV Mode  
When an HDTV mode is selected in dtg1_mode (preset or generic), a tri-level sync is inserted on the  
analog output at the start of every video line. The amplitudes during negative and positive excursions are  
programmable, as well as the horizontal timing parameters (width, position) of both excursions.  
The transition time for negative-to-blank and blank-to-positive excursions during VBI is fixed to 2T,  
generating a tri-level sync negative-to-positive excursion of 4T. The line type is programmed in registers  
dtg2_linetype<n> and is output by the DTG from the vertical field/frame position corresponding to the line  
number programmed in register dtg2_breakpoint<n>, until the line number listed in the next breakpoint  
register is reached. An example for 1080I is shown in Figure 4-25.  
The DTG overrides the input video data except where specified below for the specific line types.  
The horizontal timings shown in Figure 4-16 and Figure 4-17 correspond to the dtg1_spec_<x> registers.  
Note that the f spec is fixed.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
37  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
f
f
f
S /2  
p
V/2  
V/2  
S
p
S /2  
p
S
m
/2  
S
S
m
/2  
m
a
c
b
d
e
O
Line Sync Timing References  
H
90%  
10%  
f
1
f
2
f
Figure 4-16. Tri-Level Line-Synchronizing Signal Waveform  
38  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
Blank Level (FULL_NTSP)  
1 Line  
O
H
O
H
f
f
Broad Pulse (FULL_BTSP)  
d
h1  
k
1 Line  
O
H
O
H
Interlaced Sync (NTSP_NTSP)  
f
f
f
a
c
g
g
h
h
1 Line  
O
H
O
H
nd  
Interlaced Sync and Broad Pulse in 2 Half (NTSP_BTSP)  
f
f
f
f
f
a
c
g
d
k
1 Line  
O
H
O
H
Broad Pulses and Interlaced Sync (BTSP_BTSP)  
f
f
f
f
f
f
f
a
c
d
h
g
k
d
k
1 Line  
O
H
O
H
st  
Broad Pulse in 1 Half With Interlaced Sync (BTSP_NTSP)  
f
f
f
f
f
a
c
d
h
g
k
g
1 Line  
In addition: Active video linetype (ACTIVE_VIDEO)  
O
H
O
H
Figure 4-17. THS8200 VBI Line Types in HDTV Mode  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
39  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
4.7.3.2 Active Video  
2
5
1
3
4
6
7
9
8
STATE  
DURATION  
Fixed at 2T  
dtg1_spec_c-4  
Fixed at 4T  
1
2
3
4
5
6
7
8
9
dtg1_spec_e dtg1_spec_c-2  
dtg1_total_pixels dtg1_spec_e dtg1_spec_b  
dtg1_spec_b dtg1_spec_a-2  
Fixed at 4T  
dtg1_spec_a-4  
Fixed at 2T  
Figure 4-18. HDTV Line Type ACTIVE_VIDEO  
4.7.3.3 FULL NTSP (Full Normal Tri-Level Sync Pulse)  
Device input data is passed during state #5 if dtg1_pass_through is on.  
2
1
3
4
5
6
7
9
8
STATE  
DURATION  
Fixed at 2T  
dtg1_spec_c-4  
Fixed at 4T  
1
2
3
4
5
6
7
8
9
dtg1_spec_e dtg1_spec_c-2  
dtg1_total_pixels dtg1_spec_e dtg1_spec_b  
dtg1_spec_b dtg1_spec_a-2  
Fixed at 4T  
dtg1_spec_a-4  
Fixed at 2T  
Figure 4-19. HDTV Line Type FULL_NSTP  
40  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7.3.4 NTSP NTSP (Normal Tri-Level Sync Pulse/Normal Tri-Level Sync Pulse)  
2
13  
1
3
12  
14  
4
5
6
7
8
15  
16  
17  
18  
19  
11  
9
22  
20  
10  
21  
STATE  
1/12  
2/13  
3/14  
4/15  
5/16  
6/17  
7/18  
8/19  
9/20  
10/21  
11/22  
DURATION  
Fixed at 2T  
dtg1_spec_c-4  
Fixed at 4T  
dtg1_spec_d_lsb dtg1_spec_c-4  
Fixed at 4T  
dtg1_total_pixels/2 dtg1_spec_k dtg1_spec_d-4  
Fixed at 4T  
dtg1_spec_k—dtg1_spec_a-12  
Fixed at 4T  
dtg1_spec_a-4  
Fixed at 2T  
Figure 4-20. HDTV Line Type NTSP_NTSP  
4.7.3.5 BTSP BTSP (Broad Pulse and Tri-Level Sync Pulse/Broad Pulse and Tri-Level Sync Pulse)  
2
13  
1
3
12  
14  
4
8
15  
19  
20  
5
7
11  
6
9
16  
18  
22  
17  
10  
21  
STATE  
1/12  
2/13  
3/14  
4/15  
5/16  
6/17  
7/18  
8/19  
9/20  
10/21  
11/22  
DURATION  
Fixed at 2T  
dtg1_spec_c-4  
Fixed at 4T  
dtg1_spec_d_lsb dtg1_spec_c-4  
Fixed at 4T  
dtg1_total_pixels/2 dtg1_spec_k dtg1_spec_d-4  
Fixed at 4T  
dtg1_spec_k dtg1_spec_a-12  
Fixed at 4T  
dtg1_spec_a-4  
Fixed at 2T  
Figure 4-21. HDTV Line Type BTSP_BTSP  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
41  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
4.7.3.6 NTSP BTSP (Normal Tri-Level Sync Pulse/ Broad Pulse and Tri-Level Sync Pulse)  
2
13  
1
3
12  
14  
4
5
6
7
8
15  
19  
20  
11  
9
16  
18  
22  
17  
10  
21  
STATE  
1/12  
2/13  
3/14  
4/15  
5/16  
6/17  
7/18  
8/19  
9/20  
10/21  
11/22  
DURATION  
Fixed at 2T  
dtg1_spec_c-4  
Fixed at 4T  
dtg1_spec_d dtg1_spec_c-4  
Fixed at 4T  
dtg1_total_pixels/2 dtg1_spec_k dtg1_spec_d-4  
Fixed at 4T  
dtg1_spec_k dtg1_spec_a-12  
Fixed at 4T  
dtg1_spec_a-4  
Fixed at 2T  
Figure 4-22. HDTV Line Type NTSP_BTSP  
4.7.3.7 BTSP NTSP (Broad Pulse and Tri-Level Sync Pulse/Normal Tri-Level Sync Pulse)  
2
13  
1
3
12  
14  
4
8
15  
16  
17  
18  
19  
20  
5
7
11  
6
9
22  
10  
21  
STATE  
1/12  
2/13  
3/14  
4/15  
5/16  
6/17  
7/18  
8/19  
9/20  
10/21  
11/22  
DURATION  
Fixed at 2T  
dtg1_spec_c-4  
Fixed at 4T  
dtg1_spec_d dtg1_spec_c-4  
Fixed at 4T  
dtg1_total_pixels/2 dtg1_spec_k dtg1_spec_d-4  
Fixed at 4T  
dtg1_spec_k dtg1_spec_a-12  
Fixed at 4T  
dtg1_spec_a-4  
Fixed at 2T  
Figure 4-23. HDTV Line Type BTSP_NTSP  
42  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7.3.8 Full BTSP (Full Broad Pulse and Tri-Level Sync Pulse)  
2
1
3
4
8
5
7
9
11  
6
10  
STATE  
1/12  
2/13  
3/14  
4/15  
5/16  
6/17  
7/18  
8/19  
9/20  
10/21  
11/22  
DURATION  
Fixed at 2T  
dtg1_spec_c-4  
Fixed at 4T  
dtg1_spec_d dtg1_spec_c-4  
Fixed at 4T  
dtg1_total_pixels/2 dtg1_spec_k dtg1_spec_d-4  
Fixed at 4T  
dtg1_spec_k dtg1_spec_a-12  
Fixed at 4T  
dtg1_spec_a-4  
Fixed at 2T  
Figure 4-24. HDTV Line Type FULL_BTSP  
Example: 1080I/P  
THS8200 is put into 1080I mode by programming dtg1_mode = 0001. Figure 4-25 shows the required  
output format of both fields for 1080I and 1080P.  
When in 1080I preset mode, the (line type, breakpoint) table and frame and field size registers are filled  
out as follows internally:  
Breakpoints  
Line Type  
6
BTSP_BTSP  
NTSP_NTSP  
FULL_NTSP  
ACTIVE_VIDEO  
FULL_NTSP  
NTSP_BTSP  
BTSP_BTSP  
BTSP_NTSP  
FULL_NTSP  
ACTIVE_VIDEO  
FULL_NTSP  
7
21  
561  
563  
564  
568  
569  
584  
1124  
1126  
frame_size = 10001100101; 1125d  
field_size = 01000110011; 563d  
From line 1 to 5, line type BTSP_BTSP is generated. When the line counter reaches line 6, the DTG  
switches to line type NTSP_NTSP, etc. Note that the dtg1_spec_<x> registers need to be filled out with  
the correct values to set the horizontal line timings.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
43  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
Figure 4-25. Field/Frame Synchronizing Signal Waveform (1080I and 1080P Formats)  
44  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7.3.9 SDTV Mode  
In SDTV mode, the start of a video line is signaled by the leading edge of a negative-going bi-level sync.  
f
f
90% of Amplitude  
50% of Amplitude  
10% of Amplitude  
f
V
f
90% of Amplitude  
S
m
50% of Amplitude  
10% of Amplitude  
b
a
d
Figure 4-26. Horizontal Synchronization Signal Waveform  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
45  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
1 Line  
NEQ_NEQ  
FULL_BSP  
BSP_BSP  
FULL_NSP  
NEQ_BSP  
BSP_NEQ  
FULL_NEQ  
Active Video  
NSP_ACTIVE  
Active Video  
ACTIVE_NEQ  
Active Video  
ACTIVE_VIDEO  
k
c
a
c
k1  
d
d1  
h
h
g
i
NOTE: All Rise/Fall times are equal to f = 2T  
Figure 4-27. THS8200 VBI Line Types in SDTV Mode  
46  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7.3.10 NEQ_NEQ (Negative Equalization Pulse/Negative Equalization Pulse)  
4
9
5
6
10  
3
8
1
2
7
STATE  
DURATION  
Fixed at 1T  
dtg1_spec_c  
Fixed at 2T  
1
2
3
4
5
6
7
8
9
10  
dtg1_spec_g dtg1_spec_c-4  
Fixed at 1T  
Fixed at 1T  
dtg1_spec_c  
Fixed at 2T  
dtg1_spec_g dtg1_spec_c-4  
Fixed at 1T  
Figure 4-28. SDTV Line Type NEQ_NEQ  
4.7.3.11 FULL_BSP (Full Broad Sync Pulse)  
4
5
3
1
2
STATE  
DURATION  
Fixed at 1T  
dtg1_spec_i  
Fixed at 2T  
1
2
3
4
5
dtg1_total_pixels dtg1_spec_i-4  
Fixed at 1T  
Figure 4-29. SDTV Line Type FULL_BSP  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
47  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
4.7.3.12 BSP_BSP (Broad Sync Pulse/Broad Sync Pulse)  
4
9
10  
5
3
8
1
6
2
7
STATE  
DURATION  
Fixed at 1T  
dtg1_spec_h  
Fixed at 2T  
1
2
3
4
5
6
7
8
9
10  
dtg1_spec_g dtg1_spec_h-4  
Fixed at 1T  
Fixed at 1T  
dtg1_spec_h  
Fixed at 2T  
dtg1_spec_g dtg1_spec_h-4  
Fixed at 1T  
Figure 4-30. SDTV Line Type BSP_BSP  
4.7.3.13 FULL_NSP (Full Normal Sync Pulse)  
Device input data is passed during states number 4 and number 5 if dtg1_pass_through is on.  
4
5
6
3
1
2
dtg1_spec_g  
dtg1_spec_g  
STATE  
DURATION  
1
2
3
4
5
6
Fixed at 1T  
dtg1_spec_a  
Fixed at 2T  
dtg1_spec_g dtg1_spec_a-4  
dtg1_spec_g  
Fixed at 1T  
Figure 4-31. SDTV Line Type FULL_NSP  
48  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7.3.14 NEQ_BSP (Negative Equalization Pulse/Broad Sync Pulse)  
4
9
5
10  
3
8
1
6
2
7
STATE  
DURATION  
1
2
3
4
5
6
7
8
9
10  
Fixed at 1T  
dtg1_spec_c  
Fixed at 2T  
dtg1_spec_g dtg1_spec_c-4  
Fixed at 1T  
Fixed at 1T  
dtg1_spec_h  
Fixed at 2T  
dtg1_spec_g dtg1_spec_h-4  
Fixed at 1T  
Figure 4-32. SDTV Line Type NEQ_BSP  
4.7.3.15 BSP_NEQ (Broad Sync Pulse/Negative Equalization Pulse)  
4
9
5
10  
8
3
1
6
2
7
STATE  
DURATION  
Fixed at 1T  
dtg1_spec_h  
Fixed at 2T  
1
2
3
4
5
6
7
8
9
10  
dtg1_spec_g dtg1_spec_h-4  
Fixed at 1T  
Fixed at 1T  
dtg1_spec_c  
Fixed at 2T  
dtg1_spec_g dtg1_spec_c-4  
Fixed at 1T  
Figure 4-33. SDTV Line Type BSP_NEQ  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
49  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
4.7.3.16 FULL_NEQ (Full Negative Equalization Pulse)  
4
5
6
3
1
2
dtg1_spec_g  
dtg1_spec_g  
STATE  
DURATION  
1
2
3
4
5
6
Fixed at 1T  
dtg1_spec_c  
Fixed at 2T  
dtg1_spec_g dtg1_spec_c-4  
dtg1_spec_g  
Fixed at 1T  
Figure 4-34. SDTV Line Type FULL_NEQ  
4.7.3.17 NSP_ACTIVE (Normal Sync Pulse/Active Video)  
Video data is always passed during state number 5.  
5
4
6
7
3
1
2
STATE  
DURATION  
Fixed at 1T  
dtg1_spec_a  
Fixed at 2T  
1
2
3
4
5
6
7
dtg1_spec_g dtg1_spec_a+ dtg1_spec_d1-3  
dtg1_spec_g dtg1_spec_d1 dtg1_spec_k  
dtg1_spec_k1  
Fixed at 1T  
Figure 4-35. SDTV Line Type NSP_ACTIVE  
50  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.7.3.18 ACTIVE_NEQ (Active Video/Negative Equalization Pulse)  
Video data is always passed during state number 5.  
5
4
6
11  
7
8
12  
3
10  
1
2
9
STATE  
DURATION  
1
Fixed at 1T  
2
dtg1_spec_a  
3
Fixed at 2T  
4
dtg1_spec_d dtg1_spec_a-3  
5
dtg1_spec_g dtg1_spec_d dtg1_spec_k1  
dtg1_spec_k-1  
6
7
Fixed at 1T  
8
Fixed at 1T  
9
dtg1_spec_c  
10  
11  
12  
Fixed at 2T  
dtg1_spec_g dtg1_spec_c-4  
Fixed at 1T  
Figure 4-36. SDTV Line Type ACTIVE_NEQ  
4.7.3.19 ACTIVE VIDEO  
Video data is always passed during state number 5.  
5
4
6
7
3
1
2
STATE  
DURATION  
1
2
3
4
5
6
7
Fixed at 1T  
dtg1_spec_a  
Fixed at 2T  
dtg1_spec_d dtg1_spec_a-3  
dtg1_total_pixels dtg1_spec_d dtg1_spec_k  
dtg1_spec_k-1  
Fixed at 1T  
Figure 4-37. SDTV Line Type ACTIVE_VIDEO  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
51  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
Example:525I  
j
l
m
n
O
E1  
Second Field  
First Field  
Signal at the Beginning of Each First Field  
j
l
m
n
O
E2  
First Field  
Second Field  
NOTE: l = m = n = 3  
j = 20  
Figure 4-38. Field/Frame Synchronizing Signal Waveform (525I Format)  
52  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
When the 525I preset is selected, the following line type sequence is active:  
Breakpoints  
Line Type  
4
NEQ_NEQ  
BSP_BSP  
7
10  
NEQ_NEQ  
FULL_NSP  
ACTIVE_VIDEO  
ACTIVE_NEQ  
NEQ_NEQ  
NEQ_BSP  
20  
263  
264  
266  
267  
269  
BSP_BSP  
270  
BSP_NEQ  
272  
NEQ_NEQ  
FULL_NEQ  
FULL_NSP  
NSP_ACTIVE  
ACTIVE_VIDEO  
273  
282  
283  
526  
frame_size = 1000001101; 525d  
field_size = 00100000111; 263d  
It can be seen this corresponds to the frame format shown, with 263 lines in digital field1 and 262 lines in  
digital field2.  
4.8 D/A Conversion  
THS8200 contains 3 DACs with an internal resolution of 11 bits, and maximum speed of 205 MSPS. This  
allows operation with all (H)DTV formats including 1080P, and PC graphics formats up to UXGA at 75 Hz.  
The DAC output compliance can be selected between two full-scale ranges using the data_fsadj register.  
DIGMUX selects DTG output data during nonvideo line types, except when dtg1_passthrough is active: in  
this case video input data still is passed during the active video portion of certain line types, as identified in  
Section 4.7.3 on the DTG line types.  
THS8200 supports output in either RGB or YPbPr color spaces. When using RGB output, the  
dtg2_rgb_mode_on register needs to be set. In this case an offset is added to all DAC output channels in  
order to provide headroom for the negative sync. Nominally the blanking level is at 350 mV, and the  
700 mV swing extends upwards. Therefore peak white corresponds to 1.05 V. When YPbPr mode is  
selected on this register, the offset is only added to the Y channel output; Pb and Pr outputs now have a  
video range from 0 to 700 mV with 0 V corresponding to internal DAC input code 0 (note that due to the  
CSM block this could correspond to another device input code). The Cb and Cr chroma difference  
channels are thus assumed to be offset binary encoded, not 2s complement.  
Finally, the DTG mode determines whether the DIGMUX switches in output data from the DTG. For  
example, in VESA mode the DACs are always driven by the video input bus. When the DTG overrides the  
video input bus in SDTV or HDTV modes, the actual amplitude levels output by the DACs during this time  
are user-programmable via the dtg1_<y,cbcr>_blank , dtg1_<y, cbcr>_sync_low, and dtg1_<y, cbcr>_high  
registers.  
We next outline some of the analog component video output formats that can be generated from  
THS8200.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
53  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
4.8.1 RGB Output Without Sync Signal Insertion/General-Purpose Application DAC  
In this mode, no sync signal is inserted on any of the analog outputs. HS_OUT and VS_OUT signals are  
generated for output video synchronization. This mode is commonly used in computer graphics video  
output.  
Two levels of full-scale output can be selected by software. For video applications, the nominal voltage  
levels are 0.7 V and 1.305 V.  
For component video applications, the nominal voltage level is 0.7 V; 1.305 V is used in NTSC/PAL  
composite video display. For composite video applications, the digital video stream must be encoded in an  
external digital NTSC/PAL encoder. The THS8200 only converts the digital composite signal to analog  
composite video.Figure 4-39 illustrates analog outputs without sync insertion.  
When the THS8200 is programmed in this mode, it can also be used as a general-purpose DAC due to  
the linear response to the DAC input codes. Optionally, the CSM block can be bypassed to avoid any  
processing on the device input codes.  
0.700 V/1.305 V  
1023  
0.000 V/0.000 V  
0
Figure 4-39. RGB Without Sync Insertion or Composite Video Output  
54  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
 
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
Figure 4-40 shows the linear DAC I/O relationship for either of the two nominal full-scale settings.  
Ramping Output With Different Full-Scale Ranges  
1.305 V  
0.700 V  
0
255  
511  
767  
1023  
Input Digital Codes  
Figure 4-40. Ramping Output With Different Full-Scale Ranges  
4.8.2 SMPTE-Compatible RGB Output With Sync Signal Inserted on G (Green) Channel  
In this mode, a tri-level (HDTV modes)/bi-level (SDTV modes) sync signal is inserted into the G channel.  
The nominal analog output voltage range, which is from the sync tip to the peak of active video, is from  
0.0 V to 1.050 V. During the active video period, the peak-to-peak ac value (dynamic range) is 700 mV  
(from 350 mV to 1050 mV). The blank levels on all three channels correspond to the bottom code 64 and  
are at 350 mV. Figure 4-41 and Figure 4-42 illustrate the analog video output signals, both the output from  
the G channel with a tri-level or a bi-level sync pulse inserted, as well as the outputs from R and B  
channels. No sync signal is inserted during the sync period on R and B channels.  
Alternatively, sync can be inserted on all three channels on THS8200 by appropriately programming the  
sync amplitude levels. On those channels where no sync is inserted, the blank levels are maintained at a  
350-mV dc level.  
The range of active video codes on the R, G, and B channels is from 64 to 940. By definition, code 64  
corresponds to blank-level output, and code 940 corresponds to peak analog output. Input codes outside  
this region can either be clipped by THS8200 or can be passed, depending on the CSM setting. When  
passed, the user should make sure not to overdrive the DAC outputs outside the DAC output compliance  
range if instantaneously high output codes would occur.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
55  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
 
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
G Channel Output Waveform  
E’  
G
1050 mV  
940  
650 mV  
350 mV  
64  
350 mV DC Level Added  
During Active Video Period  
Blank Level  
50 mV  
0 mV  
Active Video Period  
Figure 4-41. G-Channel Output Waveform  
R and B Channel Output Waveform  
E’ E’  
R
B
1050 mV  
940  
350 mV  
0 mV  
64  
350 mV DC Level Added  
During Active Video Period  
Blank Level  
Active Video Period  
Figure 4-42. R- and B-Channel Output Waveform  
4.8.3 SMPTE-Compatible Analog-Level Output With Sync Inserted on All RGB Channels  
This is another SMPTE-compatible RGB output. This mode is very similar to the mode described in  
Section 4.8.2, except the sync signals are inserted on all three channels. Now all three channels have the  
same analog output format, during both the active video period and the sync period.  
56  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
R, G, and B Channel Output Waveform  
E’ , E’ , E’  
R
G
B
1050 mV  
940  
650 mV  
350 mV  
64  
350 mV DC Level Added  
During Active Video Period  
Blank Level  
50 mV  
0 mV  
Active Video Period  
Figure 4-43. R-, G-, and B-Channel Output Waveform  
4.8.4 SMPTE-Compatible YPbPr Output With Sync Signal Inserted on Y Channel Only  
In this mode, the output color space is YCrCb. The sync signal is inserted on the Y channel only.  
Y Channel Output Waveform  
E’  
Y
1050 mV  
940  
650 mV  
350 mV  
64  
350 mV DC Level Added  
During Active Video Period  
Blank Level  
50 mV  
0 mV  
Active Video Period  
Figure 4-44. Y-Channel Output Waveform  
The input code range of the Y channel is from 64 to 940, but the range of input codes of Cr and Cb is from  
64 to 960.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
57  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
Analog Output of Cr and Cb Channels Without Sync Insertion  
E’ , E’  
cr cb  
700 mV  
350 mV  
0 mV  
960  
512  
64  
Blank Level  
Active Video Period  
Blanking Interval  
Figure 4-45. Analog Output of Cr and Cb Channels Without Sync Insertion  
The blanking level of all channels is at 350 mV. Note that for the Pb and Pr output channels, there is no dc  
offset added, so DAC input code 0 now corresponds to 0 V dc output. Whether or not offset is added to  
the DAC outputs is determined from the setting of the dtg2_rgb_mode_on register.  
4.8.5 SMPTE-Compatible YPbPr Output With Sync Signal Inserted on All Channels  
In this mode, sync signals are inserted on all three channels Y, Cr, and Cb. The Y channel output is  
identical to that of Section 4.8.4. The Pb and Pr channel outputs are shown below. The range of input  
codes to the Y channel is from 64 to 940. The range of input codes to the CrCb channels is from 64 to  
960.  
Analog Output of Cr and Cb Channels With Sync Insertion  
E’ , E’  
cr cb  
700 mV  
650 mV  
960  
896  
350 mV  
512  
Blank Level  
128  
64  
50 mV  
0 mV  
Active Video Period  
Blanking Interval  
O
H
Figure 4-46. Analog Output of Cr and Cb Channels With Sync Insertion  
The ac dynamic range during the active video period is the same on all channels, 700 mV. This means  
that two different code ranges are mapped to the same analog output range. Because three DACs in the  
THS8200 share a common full-scale adjust resistor, therefore, different input codes to the DAC result in  
different analog outputs. In order to map two code ranges into a same analog output, the input code range  
must be scaled in the CSM block.  
58  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
4.8.6 Summary of Supported Video Formats  
RGB WITHOUT  
RGB SYNC ON G  
SYNC  
RGB SYNC  
ON ALL  
YPbPr SYNC ON Y  
YPbPr SYNC ON ALL  
Range of input  
codes  
64 to 940 on Y;  
64 to 960 on Cr and Cb 64 to 960 on Cr and Cb  
64 to 940 on Y;  
0 to 1023  
64 to 940  
64 to 940  
Peak level  
Blank level  
700 mV or 1305 mV  
0 V  
1050 mV  
350 mV  
1050 mV  
350 mV  
1050 mV  
350 mV  
1050 mV  
350 mV  
DC level shift  
during active  
video period  
0
350 mV  
350 mV  
350 mV  
350 mV  
4.9 Test Functions  
The user can activate a 75% SMPTE color bar test pattern when the device is configured in VESA mode  
using the vesa_colorbars register setting. The width of each color bar can be programmed using the  
dtg1_vesa_cbar_size register.  
The digital logic in front of the DACs can be completely bypassed and the DACs can be driven directly  
with levels programmed from the I2C interface by activating the dac_i2c_cntl register. In this case the  
dac<n>_cntl registers set the DAC input codes. A fast or slow ramp signal can be internally generated and  
sent to the DACs using tst_fastramp and tst_slowramp registers. This could be useful for a static DAC  
linearity test.  
Alternatively, the input bus can directly drive the DACs when the tst_digbypass register is activated for  
tests at full speed.  
The delay of the Y channel can be changed in YCbCr modes with respect to Cb and Cr channels by  
programming the tst_ydelay register.  
Finally, there is a digital output port with data encoded according to ITU-R.BT656. This is a loop-through  
of the original input bus, prior to any THS8200 internal processing, and thus only provides standard data  
when input to the THS8200 is provided in a 10-bit ITU-R BT.656 format. This output bus could be used to  
connect to a separate NTSC/PAL video encoder. The data_clk656_on register activates the clock output  
on this bus and the data_tristate656 register disables the output bus. It is recommended to disable this  
output when not in use.  
4.10 Power Down  
THS8200 implements two power-down modes: dac_pwdn powers down the DAC channels but keeps all  
digital logic active; chip_pwdn powers down the digital logic except the I2C interface. Activating both  
registers enforces a complete analog/digital power down except for the I2C interface.  
4.11 CGMS Insertion  
The THS8200 can embed data within the vertical blanking interval, encoded according to the EIA-805 data  
insertion standard. CGMS is an implementation of the EIA-805 standard that defines data insertion in  
component video interface (CVI) video signals.  
The THS8200 supports CGMS data insertion on line 41 of every frame in the 525P format. The data is  
inserted on the Y channel only; Pb and Pr channels remain at the blanking level. CGMS data insertion is  
enabled by activating the cgms_en register and programming the cgms_header and cgms_payload  
registers appropriately. The user needs to program header and payload data in the correct format, as no  
additional data encoding is done prior to insertion into the analog DAC output. The THS8200 only  
performs a play-out function for the programmed data. The CGMS encoding block assumes that a full  
10-bit video range is used in order to determine the 70% of peak-white amplitude of a logic 1 bit, as  
prescribed by EIA-805. The CSM does not affect the amplitude of the CGMS data insertion.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
59  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
CGMS is inserted on line 41 as prescribed by EIA 770 standards for progressive format display of SDTV.  
Fourteen bits can be inserted on this line, consisting of 6 bits header and 8 bits payload. The user can  
directly program these bits into the corresponding THS8200 registers. Care should be taken to format this  
data according to CGMS semantics; the user is referred to the original standards to determine  
header/payload data programming. To avoid the transmission of invalid data, the data transmitted is  
updated only when the CGMS register with the highest subaddress is programmed with cgms_en active.  
CGMS insertion is possible in either 1× or 2× interpolated video modes of the THS8200. While EIA-805  
allows the inserted data to change on every frame, and also allows data packets that would span multiple  
lines (and therefore also multiple frames, since only 1 line/frame is used for insertion), the THS8200 does  
not support multiline data insertion because it is not required for CGMS.  
4.12 I2C Interface  
The THS8200 contains a slave-only I2C interface on which both write and read are supported. The register  
map shows which registers support read/write (R/W) and which are read-only (R). The device supports  
normal and fast I2C modes (SCL up to 400 kHz). The I2C interface is also operational when no input clock  
is received on CLKIN.  
To discriminate between write and read operations, the device is addressed at separate device addresses.  
There is an automatic internal sub-address increment counter to efficiently write/read multiple bytes in the  
register map during one write/read operation. Furthermore, bit1 of the I2C device address is dependent  
upon the setting of the I2CA pin, as follows:  
If address-selecting pin I2CA = 0, then  
write address is 40h (0100 0000)  
read address is 41h (0100 0001)  
If address-selecting pin I2CA = 1, then  
write address is 42h (0100 0010)  
read address is 43h (0100 0011)  
The I2C interface supports fast I2C, i.e., SCL up to 400 kHz.  
WRITE FORMAT  
S
Slave address(w)  
A
Sub-address  
A
Data0  
A
......  
DataN-  
1
A
P
S
Start condition  
Slave address(w)  
0100 0000 (0x40) if I2CA = 0, or 0100 0010 (0x42) if I2CA = 1  
Acknowledge, generated by the THS8200  
Sub-address of the first register to write, length: 1 byte  
First byte of the data  
A
Sub-address  
Data0  
DataN-1  
P
Nth byte of the data  
Stop condition  
READ FORMAT  
First write the sub-address, where the data must be read out to the THS8200 in the format as follows:  
S
Slave address(w)  
A
Sub-address  
Data(N+1) AM  
A
P
S
Slave address(r)  
A
DataN  
AM  
......  
NAM  
P
S
Start condition  
Slave address(r)  
0100 0001 (0x41) if I2CA = 0, or 0100 0011 (0x43) if I2CA = 1  
A
Acknowledge, generated by the THS8200; if the transmission is successful, then A = 0, else A = 1  
Acknowledge, generated by a master  
AM  
NAM  
Not acknowledge, generated by a master  
60  
Detailed Functional Description  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
Sub-address  
Sub-address of the first register to read, length: 1 byte  
First byte of the data read  
Data0  
DataN+1  
P
Nth byte of the data read  
Stop condition  
In both write and read operations, the sub-address is incremented automatically when multiple bytes are  
written/read. Therefore, only the first sub-address needs to be supplied to the THS8200.  
Copyright © 2009, Texas Instruments Incorporated  
Detailed Functional Description  
61  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
5
I2C Register Map  
R/W registers can be written and read.  
R registers are read-only.  
REGISTER  
NAME  
SUB-  
ADDRESS  
R/W  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0x00  
0x01  
Reserved  
SYSTEM  
version  
chip_ctl  
R
0x02  
0x03  
ver7  
ver6  
ver5  
ver4  
ver3  
ver2  
ver1  
ver0  
vesa_color dll_freq_  
arst_  
func_n  
R/W  
vesa_clk dll_bypass  
dac_pwdn chip_pwdn chip_ms  
bars  
sel  
COLOR SPACE CONVERSION  
csc_r11  
csc_r12  
csc_r21  
csc_r22  
csc_r31  
csc_r32  
csc_g11  
csc_g12  
csc_g21  
csc_g22  
csc_g31  
csc_g32  
csc_b11  
csc_b12  
csc_b21  
csc_b22  
csc_b31  
csc_b32  
csc_offs1  
csc_offs12  
csc_offs23  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0a  
0x0b  
0x0c  
0x0d  
0x0e  
0x0f  
csc_ric1(5:0)  
csc_rfc1(7:0)  
csc_ric2(5:0)  
csc_rfc2(7:0)  
csc_ric3(5:0)  
csc_rfc3(7:0)  
csc_gic1(5:0)  
csc_gfc1(7:0)  
csc_gic2(5:0)  
csc_gfc2(7:0)  
csc_gic3(5:0)  
csc_gfc3(7:0)  
csc_bic1(5:0)  
csc_bfc1(7:0)  
csc_bic2(5:0)  
csc_bfc2(7:0)  
csc_bic3(5:0)  
csc_bfc3(7:0)  
csc_rfc1(9:8)  
csc_rfc2(9:8)  
csc_rfc3(9:8)  
csc_gfc1(9:8)  
csc_gfc2(9:8)  
csc_gfc3(9:8)  
csc_bfc1(9:8)  
csc_bfc2(9:8)  
csc_bfc3(9:8)  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
csc_offset1(9:2)  
csc_offset1(1:0)  
csc_offset2(3:0)  
csc_offset2(9:4)  
csc_offset3(9:6)  
csc_  
bypass  
csc_offs3  
R/W  
0x19  
csc_offset3(5:0)  
c_uof_cnt l  
TEST  
st_  
digbpass  
tst_cntl1  
tst_cntl2  
R/W  
R/W  
0x1a  
0x1b  
tst_offset  
Reserved  
tst_  
tst_  
tst_ydelay(1:0)  
Reserved Reserved Reserved Reserved  
fastramp  
slowramp  
DATA PATH  
data_  
clk6 56_on  
data_ifir12 data_ifir35 data_  
data_cntl  
R/W  
0x1c  
data_fsadj  
data_dman_cntl(2:0)  
_bypass  
_bypass  
tristate656  
DISPLAY TIMING GENERATION, PART 1  
dtg1_y_  
sync1_lsb  
R/W  
R/W  
R/W  
0x1d  
0x1e  
0x1f  
dtg1_y_blank(7:0)  
dtg1_y_  
sync2_lsb  
dtg1_y_sync_low(7:0)  
dtg1_y_sync_high(7:0)  
dtg1_y_  
sync3_lsb  
I2C Register Map  
62  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
REGISTER  
NAME  
SUB-  
ADDRESS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
dtg1_cbcr_  
sync1_lsb  
0x20  
0x21  
0x22  
0x23  
0x24  
dtg1_cbcr_blank(7:0)  
dtg1_cbcr_  
sync2_lsb  
dtg1_cbcr_sync_low(7:0)  
dtg1_cbcr_sync_high(7:0)  
dtg1_cbcr_  
sync3_lsb  
dtg1_y_  
sync_msb  
Reserved Reserved dtg1_y_blank(9:8)  
Reserved Reserved dtg1_cbcr_blank(9:8)  
dtg1_y_sync_low(9:8)  
dtg1_y_sync_high(9:8)  
dtg1_cbcr_  
sync_msb  
dtg1_cbcr_sync_low  
(9:8 )  
dtg1_cbcr_  
sync_high(9:8)  
dtg1_spec_ a R/W  
dtg1_spec_ b R/W  
dtg1_spec_ c R/W  
0x25  
0x26  
0x27  
dtg1_spec_a(7:0)  
dtg1_spec_b(7:0)  
dtg1_spec_c(7:0)  
dtg1_spec_  
R/W  
0x28  
0x29  
0x2a  
dtg1_spec_d(7:0)  
dtg1_spec_d1(7:0)  
dtg1_spec_e(7:0)  
d_lsb  
dtg1_spec_ d1 R/W  
dtg1_spec_  
R/W  
e_lsb  
dtg1_spec_  
R/W  
dtg1_  
spe c_d(8) _e(8)  
dtg1_spec  
0x2b  
0x2c  
0x2d  
0x2e  
0x2f  
Reserved Reserved Reserved Reserved dtg1_spec_h(9:8)  
deh_msb  
dtg1_spec_  
R/W  
dtg1_spec_h(7:0)  
h_lsb  
dtg1_spec_  
R/W  
Reserved Reserved Reserved Reserved dtg1_spec_i(11:8)  
i_msb  
dtg1_spec_  
R/W  
dtg1_spec_i(7:0)  
dtg1_spec_k(7:0)  
i_lsb  
dtg1_spec_  
R/W  
k_lsb  
dtg1_spec_  
R/W  
0x30  
0x31  
0x32  
Reserved Reserved Reserved Reserved Reserved dtg1_spec_k(10:8)  
k_msb  
dtg1_spec_ k1 R/W  
dtg1_spec_k1(7:0)  
dtg1_spec_g(7:0)  
dtg1_spec_  
R/W  
g_lsb  
dtg1_spec_  
R/W  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
Reserved Reserved Reserved Reserved dtg1_spec_g(11:8)  
Reserved Reserved Reserved dtg1_total_pixels(12:8)  
dtg1_total_pixels(7:0)  
g_msb  
dtg1_total_  
R/W  
pixels_msb  
dtg1_total_  
R/W  
pixels_lsb  
dtg1_fieldflip_  
R/W  
dtg1_field  
Reserved Reserved Reserved Reserved dtg1_linecnt(10:8)  
_flip  
linecnt_ msb  
dtg1_  
R/W  
dtg1_linecnt(7:0)  
dtg1_on Reserved Reserved  
linecnt_lsb  
dtg1_pass  
_through  
dtg1_mode  
R/W  
R/W  
dtg1_mode(3:0)  
dtg1_frame  
_field_size_  
msb  
0x39  
Reserved dtg1_frame_size(10:8)  
Reserved dtg1_field_size(10:8)  
dtg1_frame  
size_lsb  
R/W  
R/W  
R/W  
0x3a  
0x3b  
0x3c  
dtg1_frame_size(7:0)  
dtg1_field_size(7:0)  
dtg1_field_  
size_lsb  
dtg1_vesa_  
cbar_size  
dtg1_vesa_cbar_size(7:0)  
DAC  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
63  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
BIT0  
REGISTER  
R/W  
SUB-  
ADDRESS  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
dac3_cntl(9:8)  
NAME  
dac_i2c_  
cntl  
dac_cntl_ msb R/W  
0x3d  
Reserved  
dac1_cntl(9:8)  
dac2_cntl(9:8)  
dac1_cntl_ lsb R/W  
dac2_cntl_ lsb R/W  
dac3_cntl_ lsb R/W  
0x3e  
0x3f  
0x40  
dac1_cntl(7:0)  
dac2_cntl(7:0)  
dac3_cntl(7:0)  
CLIP/SHIFT/MULTIPLIER  
csm_clip_  
R/W  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
csm_clip_gy_low(7:0)  
csm_clip_bcb_low(7:0)  
csm_clip_rcr_low(7:0)  
csm_clip_gy_high(7:0)  
csm_clip_bcb_high(7:0)  
csm_clip_rcr_high(7:0)  
gy_low  
csm_clip_  
R/W  
bcb_low  
csm_clip_  
R/W  
rcr_low  
csm_clip_  
R/W  
gy_high  
csm_clip_  
R/W  
bcb_high  
csm_clip_  
R/W  
rcr_high  
csm_shift_ gy R/W  
csm_shift_ bcb R/W  
csm_shift_ rcr R/W  
0x47  
0x48  
0x49  
csm_shift_gy(7:0)  
csm_shift_bcb(7:0)  
csm_shift_rcr(7:0)  
csm_gy_  
csm_gy_  
high_clip_ low_clip_  
on on  
csm_gy_  
R/W  
csm_mult csm_shift_  
csm_of_  
cntl  
0x4a  
csm_mult_gy(10:8)  
cntl_mult_ msb  
_ gy_on  
gy_on  
csm_mult_  
R/W  
0x4b  
0x4c  
0x4d  
0x4e  
Reserved csm_mult_bcb(10:8)  
csm_mult_gy(7:0)  
Reserved csm_mult_rcr(10:8)  
bcb_rcr_ msb  
csm_mult_  
R/W  
gy_lsb  
csm_mult_  
R/W  
csm_mult_bcb(7:0)  
bcb_lsb  
csm_mult_  
R/W  
csm_mult_rcr(7:0)  
rcr_lsb  
csm_rcr_  
high_clip_ low_clip_  
on on  
csm_rcr_  
csm_bcb_ csm_bcb _  
high_clip_ low_clip_  
csm_rcr_  
R/W  
csm_mult csm_mult_ csm_shift_ csm_shift_  
0x4f  
bcb_cntl  
_ rcr_on  
bcb_on  
rcr_on  
bcb_on  
on  
on  
DISPLAY TIMING GENERATION, PART 2  
dtg2_bp1_  
R/W  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
Reserved dtg2_bp1(10:8)  
Reserved dtg2_bp3(10:8)  
Reserved dtg2_bp5(10:8)  
Reserved dtg2_bp7(10:8)  
Reserved dtg2_bp9(10:8)  
Reserved dtg2_bp11(10:8)  
Reserved dtg2_bp13(10:8)  
Reserved dtg2_bp15(10:8)  
Reserved dtg2_bp2(10:8)  
Reserved dtg2_bp4(10:8)  
Reserved dtg2_bp6(10:8)  
Reserved dtg2_bp8(10:8)  
Reserved dtg2_bp10(10:8)  
Reserved dtg2_bp12(10:8)  
Reserved dtg2_bp14(10:8)  
Reserved dtg2_bp16(10:8)  
2_msb  
dtg2_bp3_  
R/W  
4_msb  
dtg2_bp5_  
R/W  
6_msb  
dtg2_bp7_  
R/W  
8_msb  
dtg2_bp9_  
R/W  
10_msb  
dtg2_bp11_  
R/W  
12_msb  
dtg2_bp13_  
R/W  
14_msb  
dtg2_bp15_  
R/W  
16_msb  
dtg2_bp1_ lsb R/W  
dtg2_bp2_ lsb R/W  
dtg2_bp3_ lsb R/W  
0x58  
0x59  
0x5a  
dtg2_bp1(7:0)  
dtg2_bp2(7:0)  
dtg2_bp3(7:0)  
I2C Register Map  
64  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
REGISTER  
NAME  
SUB-  
ADDRESS  
R/W  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
dtg2_bp4_ lsb R/W  
dtg2_bp5_ lsb R/W  
dtg2_bp6_ lsb R/W  
dtg2_bp7_ lsb R/W  
dtg2_bp8_ lsb R/W  
dtg2_bp9_ lsb R/W  
0x5b  
0x5c  
0x5d  
0x5e  
0x5f  
dtg2_bp4(7:0)  
dtg2_bp5(7:0)  
dtg2_bp6(7:0)  
dtg2_bp7(7:0)  
dtg2_bp8(7:0)  
dtg2_bp9(7:0)  
0x60  
dtg2_bp10_  
R/W  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
dtg2_bp10(7:0)  
dtg2_bp11(7:0)  
dtg2_bp12(7:0)  
dtg2_bp13(7:0)  
dtg2_bp14(7:0)  
dtg2_bp15(7:0)  
dtg2_bp16(7:0)  
lsb  
dtg2_bp11_  
R/W  
lsb  
dtg2_bp12_  
R/W  
lsb  
dtg2_bp13_  
R/W  
lsb  
dtg2_bp14_  
R/W  
lsb  
dtg2_bp15_  
R/W  
lsb  
dtg2_bp16_  
R/W  
lsb  
dtg2_ linetype1 R/W  
dtg2_ linetype2 R/W  
dtg2_ linetype3 R/W  
dtg2_ linetype4 R/W  
dtg2_ linetype5 R/W  
dtg2_ linetype6 R/W  
dtg2_ linetype7 R/W  
dtg2_ linetype8 R/W  
0x68  
0x69  
0x6a  
0x6b  
0x6c  
0x6d  
0x6e  
0x6f  
dtg2_linetype1(3:0)  
dtg2_linetype3(3:0)  
dtg2_linetype5(3:0)  
dtg2_linetype7(3:0)  
dtg2_linetype9(3:0)  
dtg2_linetype11(3:0)  
dtg2_linetype13(3:0)  
dtg2_linetype15(3:0)  
dtg2_linetype2(3:0)  
dtg2_linetype4(3:0)  
dtg2_linetype6(3:0)  
dtg2_linetype8(3:0)  
dtg2_linetype10(3:0)  
dtg2_linetype12(3:0)  
dtg2_linetype14(3:0)  
dtg2_linetype16(3:0)  
dtg2_  
R/W  
0x70  
dtg2_hlength(7:0)  
hlength_lsb  
dtg2_  
hlength_lsb  
_hdly_msb  
R/W  
0x71  
dtg2_hlength(9:8)  
Reserved dtg2_hdly(12:8)  
dtg2_hdly_ lsb R/W  
0x72  
0x73  
dtg2_hdly(7:0)  
dtg2_  
R/W  
dtg2_vlength1(7:0)  
vlength1_ls b  
dtg2_vlength1  
_ msb_  
R/W  
0x74  
dtg2_vlength1(9:8)  
Reserved Reserved Reserved dtg2_vdly1(10:8)  
vdly1_msb  
dtg2_vdly1 _  
lsb  
R/W  
R/W  
0x75  
0x76  
dtg2_vdly1(7:0)  
dtg2_  
vlength2_ls b  
dtg2_vlength2(7:0)  
dtg2_vlength2  
_ msb_  
vdly2_msb  
R/W  
0x77  
dtg2_vlength2(9:8)  
dtg2_vdly2(7:0)  
Reserved Reserved Reserved dtg2_vlength2(9:8)  
dtg2_vdly2 _  
lsb  
R/W  
R/W  
R/W  
R/W  
0x78  
0x79  
0x7a  
0x7b  
dtg2_hs_  
in_dly_msb  
Reserved Reserved Reserved dtg2_hs_in_dly(12:8)  
dtg2_hs_in_dly(7:0)  
dtg2_hs_  
in_dly_lsb  
dtg2_vs_in  
_dly_msb  
Reserved Reserved Reserved Reserved Reserved dtg2_vs_in_dly(10:8)  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
65  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
BIT0  
REGISTER  
R/W  
SUB-  
ADDRESS  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
NAME  
dtg2_vs_in  
R/W  
0x7c  
0x7d  
0x7e  
0x7f  
dtg2_vs_in_dly(7:0)  
dtg2_pixel_cnt(15:8)  
dtg2_pixel_cnt(7:0)  
_dly_lsb  
dtg2_pixel_  
R
cnt_msb  
dtg2_pixel_  
R
cnt_lsb  
dtg2_line_  
R
dtg2_ip_  
Reserved  
fmt  
dtg2_line_cnt(10:8)  
cnt_msb  
dtg2_line_  
R
0x80  
0x81  
dtg2_line_cnt(7:0)  
Reserved  
cnt_msb  
dtg2_emb  
edded_  
timing  
dtg2_fid_  
de_cntl  
dtg2_rgb_  
mode_on  
dtg2_  
vsout_pol sout_pol  
dtg2_h  
dtg2_fid_  
pol  
dtg2_vs_  
pol  
dtg2_hs_  
pol  
dtg2_cntl  
R/W  
0x82  
CGMS CONTROL  
cgms_cntl_  
header  
R/W  
R/W  
R/W  
0x83  
0x84  
0x85  
Reserved cgms_en  
cgms_header(5:0)  
cgms_payload  
_ msb  
Reserved Reserved cgms_payload(13:8)  
cgms_payload(7:0)  
cgms_payload  
_ lsb  
misc_ppl_ lsb  
misc_ppl_ msb  
misc_lpf_ lsb  
misc_lpf_ msb  
R
R
R
R
0x86  
0x87  
0x88  
0x89  
misc_ppl(7:0)  
misc_ppl(7:0)  
misc_lpf(7:0)  
misc_lpf(15:8)  
5.1 Register Descriptions  
Between { } are shown the name(s), subaddress(es) and bit position(s) where each register can be found  
in the register map.  
The default register value is shown between [ ] in binary format, and hexadecimal (h) and/or decimal (d)  
notation where listed.  
5.1.1 System Control (Sub-Addresses 0x020x03)  
ver(7:0):  
Device version  
{version 0x02(7..0)}  
[0000 0000]  
The user can read this register to find out which version of THS8200 is in the system.  
vesa_clk:  
Clock mode selection  
{chip_ctl 0x03(7)}  
0 : Normal operation  
[0]  
1 : All clocks become identical, except for the half-rate clock, and the DLL is bypassed. This is used  
in VESA mode to support a direct 205-MHz input clock. No internal 2× interpolation is available. This  
mode should be used for all formats that require a >80 MSPS pixel clock because the internal DLL  
for 2× clock generation is specified only up to 80 MSPS.  
The half-rate clock is still internally generated if needed to allow, e.g., 148-MHz 20-bit input (1080P).  
dll_bypass:  
DLL bypass  
{chip_ctl 0x03(6)}  
[0]  
I2C Register Map  
66  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
0 : DLL used for clock generation; normal operation with internally generated 2× clock. This mode  
should be selected for most video formats when a 1× clock is available on the device clock input,  
and either 1× or 2× DAC operation is desired internally (as selected by register data_ifir35_bypass)  
1 : DLL bypassed for clock generation. In this case the clock input on the CLKIN pin is used directly  
as the 2× clock, rather than the internally generated signal from the DLL. This mode is meant for test  
purposes only.  
vesa_colorbars:  
{chip_ctl 0x03(5)}  
0 : normal operation  
Color bar test pattern  
[0]  
1 : Device generates color bar pattern; external video inputs are ignored. The color bar pattern is  
only supported in VESA PC graphics mode, with the device configured in master mode  
(chip_ms = 1).  
dll_freq_sel:  
dll_freq_sel:  
{chip_ctl 0x03(4)}  
[0]  
Sets a frequency range for the DLL 2× clock generation. The DLL should not be used at >80 MHz. In  
this case the vesa_clk register should be enabled. As a consequence, 2× video interpolation is not  
available for formats with >80 MHz pixel clock.  
0 : high frequency range: pixel clock from 4080 MHz  
1 : low frequency range: pixel clock from 1040 MHz  
dac_pwdn:  
dac_pwdn:  
{chip_ctl 0x03(3)}  
0 : normal operation  
[0]  
1 : DACs go into power-down state.  
chip_pwdn:  
Chip power down  
[0]  
{chip_ctl 0x03(2)}  
0 : normal operation  
1 : power down of all digital logic except I2C  
chip_ms:  
Chip mode select  
{chip_ctl 0x03(1)}  
[0]  
0 : slave mode. Device synchronizes to incoming video sync signals, either embedded in  
ITU-R.BT656 interface or received from dedicated timing signals.  
1 : master mode. Device requests video data and generates video input timing signals to external  
(memory) device, according to the programmed frame/field format. Master mode is only available  
when the DTG is operating in VESA mode (PC graphics signals).  
arst_func_n:  
Chip software reset  
{chip_ctl 0x03(0)}  
[1]  
0 : functional block goes into reset state. I2C registers retain values.  
Note: the user needs to issue a software reset after input video is disconnected from the input bus  
and reconnected (e.g. after a video format change), in order to synchronize the internal display  
timing generator to the input video source properly.  
1 : normal operation  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
67  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
5.1.2 Color Space Conversion Control (Sub-Addresses 0x040x19)  
Signed magnitude: MSB is sign bit, remaining bits are binary representation of magnitude. This is not a 2s  
complement notation.  
Magnitude: Binary representation of magnitude.  
csc_ric1(5:0):  
R/Cr input channel – G/Y output channel coefficient, integer part  
{csc_r11 0x04(7:2)}  
[00 0000]  
6-bit integer portion of coefficient that is multiplied with R/Cr input, to produce G/Y output (signed  
magnitude format)  
csc_rfc1(9:0):  
R/Cr input channel – G/Y output channel, fractional part  
{csc_r11 0x04(1:0) and [00 0000 0000]  
csc_r12 0x05(7:0)}  
10-bit fractional portion of coefficient that is multiplied with R/Cr input, to produce G/Y output  
(magnitude format)  
csc_ric2(5:0):  
R/Cr input channel – B/Cb output channel, integer part  
{csc_r21 0x06(7:2)}  
{csc_r21 0x06(7:2)}  
6-bit integer portion of coefficient that is multiplied with R/Cr input, to produce B/Cb output (signed  
magnitude format)  
csc_rfc2(9:0):  
R/Cr input channel – B/Cb output channel, fractional part  
{csc_r21 0x06(1:0) and [00 0000 0000]  
csc_r22 0x07(7:0)}  
10-bit fractional portion of coefficient that is multiplied with R/Cr input, to produce B/Cb output  
(magnitude format)  
csc_ric3(5:0):  
R/Cr input channel – R/Cr output channel, integer part  
{csc_r31 0x08(7:2)}  
[000000]  
6-bit integer portion of coefficient that is multiplied with R/Cr input, to produce R/Cr output (signed  
magnitude format)  
csc_rfc3(9:0):  
R/Cr input channel R/Cr output channel, fractional part  
{csc_r31 0x08(1:0) and [00 0000 0000]  
csc_r32 0x09(7:0)}  
10-bit fractional portion of coefficient that is multiplied with R/Cr input, to produce R/Cr output  
(magnitude format)  
csc_gic1(5:0):  
G/Y input channel – G/Y output channel, integer part  
{csc_g11 0x0A(7:2)}  
[00 0000]  
6-bit fractional portion of coefficient that is multiplied with R/Cr input, to produce R/Cr output  
(magnitude format)  
csc_gfc1(9:0):  
G/Y input channel – G/Y output channel, fractional part  
{csc_g11 0x0A(1:0) and [00 0000 0000]  
csc_g12 0x0B(7:0)}  
10-bit fractional portion of coefficient that is multiplied with G/Y input, to produce G/Y output  
(magnitude format)  
I2C Register Map  
68  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
csc_gic2(5:0):  
G/Y input channel – B/Cb output channel, integer part  
[00 0000]  
{csc_g21 0x0C(7:2)}  
6-bit integer portion of coefficient that is multiplied with G/Y input, to produce G/Y output (magnitude  
format)  
csc_gfc2(9:0):  
G/Y input channel – B/Cb output channel, fractional part  
{csc_g21 0x0C(1:0) and [00 0000 0000]  
csc_g22 0x0D(7:0)}  
10-bit fractional portion of coefficient that is multiplied with G/Y input, to produce B/Cb output  
(magnitude format)  
csc_gic3(5:0):  
G/Y input channel – R/Cr output channel, integer part  
{csc_g31 0x0E(7:2)}  
{csc_g31 0x0E(7:2)}  
6-bit integer portion of coefficient that is multiplied with G/Y input, to produce R/Cr output (signed  
magnitude format)  
csc_gfc3(9:0)  
G/Y input channel – R/Cr output channel, fractional part  
{csc_g31 0x0E(1:0) and [00 0000 0000]  
csc_g32 0x0F(7:0)}  
10-bit fractional portion of coefficient that is multiplied with G/Y input, to produce R/Cr output  
(magnitude format)  
csc_bic1(5:0):  
B/Cb input channel – G/Y output channel, integer part  
{csc_b11 0x10(7:2)}  
[00 0000]  
6-bit integer portion of coefficient that is multiplied with B/Cb input, to produce G/Y output (signed  
magnitude format)  
csc_bfc1(9:0):  
B/Cb input channel – G/Y output channel, fractional part  
{csc_b11 0x10(1:0) and [00 0000 0000]  
csc_b12 0x11(7:0)}  
10-bit fractional portion of coefficient that is multiplied with B/Cb input, to produce G/Y output  
(magnitude format)  
csc_bic2(5:0):  
B/Cb input channel – B/Cb output channel, integer part  
{csc_b21 0x12(7:2)}  
[00 0000]  
6-bit integer portion of coefficient that is multiplied with B/Cb input, to produce B/Cb output (signed  
magnitude format)  
csc_bfc2(9:0):  
B/Cb input channel – B/Cb output channel, fractional part  
{csc_b21 0x12(1:0) and [00 0000 0000]  
csc_b22 0x13(7:0)}  
10-bit fractional portion of coefficient that is multiplied with B/Cb input, to produce B/Cb output  
(magnitude format)  
csc_bic3(5:0):  
B/Cb input channel – R/Cr output channel, integer part  
{csc_b31 0x14(7:2)}  
[00 0000]  
6-bit integer portion of coefficient that is multiplied with B/Cb input, to produce R/Cr output (signed  
magnitude format)  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
69  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
csc_bfc3(9:0):  
B/Cb input channel – R/Cr output channel, fractional part  
{csc_b31 0x14(1:0) and [00 0000 0000]  
csc_b32 0x15(7:0)}  
10-bit fractional portion of coefficient that is multiplied with B/Cb input, to produce R/Cr output  
(magnitude format)  
csc_offset1(9:0):  
DAC channel 1 offset  
{csc_offs1 0x16(7:0)  
and  
[00 0000 0000]  
csc_offs12 0x17(7:6)}  
Offset value for G/Y output (signed magnitude format)  
csc_offset2(9:0):  
DAC channel 2 offset  
{csc_offs12 0x17(5:0)  
and  
[00 0000 0000]  
csc_offs23 0x18(7:4)}  
Offset value for B/Cb output (signed magnitude format)  
csc_offset3(9:0):  
DAC channel 3 offset  
{csc_offs23 0x18(3:0)  
and  
[00 0000 0000]  
csc_offs3 0x19(7:2)}  
Offset value for R/Cr output (signed magnitude format)  
csc_bypass:  
Bypass for CSC block  
{csc_offs3 0x19(1)}  
[1]  
0 : Color space conversion (CSC) not bypassed  
1 : CSC bypassed  
csc_uof_cntl:  
Under-/overflow control for CSC block  
[0]  
{csc_offs3 0x19(1)}  
Controls over-/underflow protection logic on color space converter  
0 : Under-/overflow protection off  
1 : Under-/overflow protection on  
5.1.3 Test Control (Sub-Addresses 0x1A0x1B)  
tst_digbypass:  
Bypass to DAC inputs  
{tst_cntl1 0x1A(7)}  
[0]  
0 : Normal operation; nonbypass  
1 : Digital logic bypassed to directly control DACs from input bus  
tst_offset:  
Bypass for DAC offsets  
{tst_cntl1 0x1A(6)}  
[0]  
0 : Normal operation; logic not bypassed  
1 : Programmed offsets are always added to DAC codes regardless of mode or dtg_state  
tst_ydelay(1:0):  
Y delay path control  
I2C Register Map  
70  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
{tst_cntl2 0x1B(7:6)}  
[00]  
Adjusts the delay of the Y channel during YCbCr modes  
tst_fastramp:  
DAC test control, fast ramp  
{tst_cntl2 0x1B(1)}  
0 : Normal operation  
[0]  
1 : DAC outputs a ramp at 2× clock rate.  
tst_slowramp:  
DAC test control, slow ramp  
[0]  
{tst_cntl2 0x1B(0)}  
0 : Normal operation  
1 : DAC outputs a ramp at 2× clock rate divided by 64,000. This mode has a higher priority than the  
one set by tst_fastramp  
5.1.4 Data Path Control (Sub-Address 0x1C)  
data_clk656_on:  
ITU-R.BT656 output clock control  
{data_cntl 0x1C(7)}  
0 : D1CLKO output off  
1 : D1CLKO output on  
[0]  
data_fsadj:  
Full-scale adjust control  
{data_cntl 0x1C(6)}  
[0]  
Selects which full-scale setting to use. See FSADJ<n> terminal description for nominal full-scale  
adjust resistor values.  
0 : Use full-scale setting from resistor connected to FSADJ2 terminal  
1 : Use full-scale setting from resistor connected to FSADJ1 terminal  
data_ifir12_bypass:  
Bypass control 4:2:2 to 4:4:4  
{data_cntl 0x1C(5)}  
[0]  
0 : Interpolation filters before the CSC are in the data path, enabling 4:2:2 to 4:4:4 conversion  
internally. This mode should be used when the input data is in 4:2:2 format  
1 : Interpolation filters before the CSC are bypassed. This mode should be used when the input data  
is in 4:4:4 format.  
data_ifir35_bypass:  
Bypass control 2x interpolation  
{data_cntl 0x1C(4)}  
[0]  
0 : interpolation filters after the CSC are in the data path; enabling 1× to 2× interpolation of the video  
data.  
1 : interpolation filters after the CSC are bypassed. This mode should be used when 1× DAC  
operation is desired.  
data_tristate656:  
ITU-R.BT656 output bus  
{data_cntl 0x1C(3)}  
[0]  
0 : the ITU-R.BT656 output bus is active.  
1 : the ITU-R.BT656 output bus is in the high-impedance state.  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
71  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
data_dman_cntl(2:0): Data manager control  
{data_cntl 0x1C(2:0)} [011]  
Selects the format for the input data manager, as follows:  
dman_cntl  
MODE  
000  
001  
30-bit YCbCr/RGB 4:4:4  
16-bit RGB 4:4:4  
010  
15-bit RGB 4:4:4  
011  
20-bit YCbCr 4:2:2  
10-bit YCbCr 4:2:2 (ITU mode)  
(Reserved)  
100  
Others  
5.1.5 Display Timing Generator Control, Part 1 (Sub-Addresses 0x1D0x3C)  
dtg1_y_blank(9:0):  
Y channel blanking level amplitude control  
{dtg1_y_sync_msb 0x23(5:4) and  
dtg1_y_sync1_lsb 0x1D(7:0)}  
[10 0000 0000]  
Sets the amplitude of the blanking level for the Y channel  
dtg1_y_sync_low(9:0):  
Y channel low sync level amplitude control  
[00 0000 0000]  
{dtg1_y_sync_msb 0x23(3:2) and  
dtg1_y_sync2_lsb 0x1E(7:0)}  
Sets the amplitude of the negative sync and equalization/serration/broad pulses for the Y channel  
dtg1_y_sync_high(9:0):  
Y channel high sync level amplitude control  
{dtg1_y_sync_msb 0x23(1:0) and  
dtg1_y_sync3_lsb 0x1F(7:0)}  
[11 0000 0000]  
Sets the amplitude of the positive sync for the Y channel  
dtg1_cbcr_blank(9:0):  
Cb/Cr channel blanking level amplitude control  
[10 0000 0000]  
{dtg1_cbcr_sync_msb 0x24(5:4)  
and  
dtg1_cbcr_sync1_lsb 0x20(7:0)}  
Sets the amplitude of the blanking level for the Cb and Cr channels  
dtg1_cbcr_sync_low (9:0):  
Cb/Cr channel low sync level amplitude control  
[00 0000 0000]  
{dtg1_cbcr_sync_msb 0x24(3:2)  
and  
dtg1_cbcr_sync2_lsb 0x21(7:0)}  
Sets the amplitude of the negative sync and equalization/serration/broad pulses for the Cb and Cr  
channels  
dtg1_cbcr_sync_high(9:0):  
Cb/Cr channel high sync level amplitude control  
{dtg1_cbcr_sync_msb 0x24(1:0)  
and  
[11 0000 0000]  
dtg1_cbcr_sync3_lsb 0x22(7:0)}  
Sets the amplitude of the positive sync for the Cb and Cr channels  
dtg1_spec_a(7:0):  
Negative HSync width  
{dtg1_spec_a 0x25(7:0)}  
[0010 1100] = [44d]  
I2C Register Map  
72  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
Width of negative excursion of tri-level (HDTV mode) or bi-level (SDTV mode) sync  
dtg1_spec_b(7:0):  
End of active video to 0H  
{dtg1_spec_b 0x26(7:0)}  
[0101 1000] = [88d]  
Distance from end of active video to start of negative sync (SDTV mode) or to negative-to-positive  
transition of tri-level sync (HDTV mode)  
dtg1_spec_c(7:0):  
Positive Hsync width (HDTV)/Equalization pulse (SDTV)  
width  
{dtg1_spec_c 0x27(7:0)}  
[0010 1100] = [44d]  
Width of positive excursion of tri-level (HDTV mode). Width of equalization pulses (SDTV mode)  
dtg1_spec_d(8:0): Sync to active video(SDTV)/sync to broad pulse(HDTV)  
{dtg1_spec_deh_msb 0x2B(7) and [0 1000 0100] = [132d]  
dtg1_spec_d_lsb 0x28(7:0)}  
Distance from leading edge of Hsync to start of active video (SDTV mode) or from  
negative-to-positive transition of tri-level sync to start of broad pulse (HDTV mode)  
dtg1_spec_d1(7:0):  
Center equalization pulse to active video (SDTV)  
{dtg1_spec_d1 0x29(7:0)}  
[0000 0000]  
Distance from equalization pulse at center of line to active video (SDTV mode)  
dtg1_spec_e(8:0): Sync to active video (HDTV)/Color bar start (VESA)  
{dtg1_spec_deh_msb 0x2B(6) and [0 1100 0000] = [192d]  
dtg1_spec_e_lsb 0x2A(7:0)}  
Distance from negative-to-positive transition of tri-level sync to start of active video (HDTV mode). In  
case color bars are activated in VESA mode, this parameter specifies the start of the color bar with  
respect to the horizontal sync  
dtg1_spec_h(9:0):  
Broad pulse duration (SDTV)  
{dtg1_spec_deh_msb 0x2B(1:0)  
and  
[00 0000 0000]  
dtg1_spec_h_lsb 0x2C(7:0)}  
Duration of broad pulse (SDTV mode)  
dtg1_spec_i(11:0):  
Full-line broad pulse duration (SDTV)  
{dtg1_spec_i_msb 0x2D(3:0) and  
dtg1_spec_i_lsb 0x2E(7:0)}  
[0000 0000 0000]  
Duration of full-line broad pulse (SDTV mode)  
dtg1_spec_k(10:0):  
End of active video to sync (SDTV)/end of broad pulse to  
sync (HDTV)  
{dtg1_spec_k_msb 0x30(2:0) and  
dtg1_spec_k_lsb 0x2F(7:0)}  
[000 0101 1000] = [88d]  
Distance from end of active video to leading edge of sync (SDTV) or from end of broad pulse to  
negative-to-positive transition of tri-level sync (HDTV)  
dtg1_spec_k1(7:0):  
End of active video in first half of line to center equalization  
pulse (SDTV)  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
73  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
{dtg1_spec_k1 0x31(7:0)}  
[00000000]  
Distance from end of active video in first half of line to center equalization pulse for SDTV line type  
ACTIVE_NEQ  
dtg1_spec_g(11:0):  
1/2 of line length (SDTV)  
{dtg1_spec_g_msb 0x33(3:0) and [0000 0101 1000] = [88d]  
dtg1_spec_g_lsb 0x32(7:0)}  
Half the line length. Only used in the calculations of SDTV line types.  
dtg1_total_pixels(12:0):  
Total pixels per line (SDTV/HDTV/VESA)  
[0 0101 0010 0000] = [1312d]  
{dtg1_total_pixels_msb 0x34(4:0)  
and  
dtg1_total_pixels_lsb 0x35(7:0)}  
Total number of pixels per line. Used in all DTG modes.  
dtg1_field_flip: FID/F polarity select  
{dtg1_fieldflip_linecnt_msb 0x36(7)} [0]  
0 : DTG is initialized to field1 at active VS edge when a 0 is received on FID signal or F bit  
1 : DTG is initialized to field1 at active VS edge when a 1 is received on FID signal or F bit  
dtg1_linecnt(10:0):  
DTG start line number  
{dtg1_fieldflip_linecnt_msb  
0x36(2:0) and  
[000 0000 0001]  
dtg1_linecnt_lsb 0x37(7:0)}  
Sets the starting line number for the DTG when Vsync input or V-bit is asserted (vertical display  
control)  
dtg1_on:  
DTG on/off  
{dtg1_mode 0x38(7)}  
[1]  
0 : DTG output held to dtg_y_blank value  
1 : DTG on  
dtg1_pass_through:  
DTG pass-through  
[0]  
{dtg1_mode 0x38(4)}  
0 : Video data blocked during certain line types  
1 : Video data passed during certain line types  
See DTG Line Types Overview (Section 4.7.3) for details.  
dtg1_mode(3:0):  
DTG mode selection  
{dtg1_mode 0x38(3:0)}  
[0110]  
Selects the operation mode of the DTG according to the following table. Each setting is either an  
SDTV, HDTV or VESA format, as shown:  
I2C Register Map  
74  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
dtg1_mode  
0000  
MODE  
ATSC mode 1080P (SMPTE 274M progressive) [HDTV]  
ATSC mode 1080I (SMPTE274M interlaced) [HDTV]  
ATSC mode 720P (SMPTE296M progressive) [HDTV]  
Generic mode for HDTV [HDTV]  
0001  
0010  
0011  
0100  
ATSC mode 480I (SDTV 525 lines interlaced) [SDTV]  
ATSC mode 480P (SDTV 525 lines progressive) [SDTV]  
VESA master [VESA]  
0101  
0110  
0111  
VESA slave [VESA]  
1000  
SDTV 625 interlaced [SDTV]  
1001  
Generic mode for SDTV [SDTV]  
Others  
[Null]  
dtg1_frame_size(10:0):  
Generic mode frame size  
{dtg1_frame_field_size_msb  
0x39(6:4) and  
[011 0000 0000]  
dtg1_framesize_lsb 0x3A(7:0)}  
Determines number of lines per frame when in generic mode  
dtg1_field_size(10:0):  
Generic mode field size  
{dtg1_frame_field_size_msb  
0x39(2:0) and  
[000 0010 0000]  
dtg1_fieldsize_lsb 0x3B(7:0)}  
Determines number of lines in field 1 when in generic mode. This number should be programmed  
higher than frame_size for progressive scan formats.  
dtg1_vesa_cbar_size(7:0):  
Color bar pattern, width  
{dtg1_vesa_cbar_size 0x3C(7:0)}  
[1000 0000]  
Sets the width of each color bar in the color bar test pattern. This test pattern is only available when  
the DTG is in VESA mode.  
5.1.6 DAC Control (Sub-Addresses 0x3D0x40)  
dac_i2c_cntl:  
DAC I2C control  
{dac_cntl_msb 0x3D(6)}  
0 : DAC normal operation  
[0]  
1 : DAC inputs are fixed to values of <dac_cntl> registers  
dac1_cntl(9:0):  
DAC1 input value  
{dac_cntl_msb 0x3D(5:4) and  
dac1_cntl_lsb 0x3E(7:0)}  
[00 0000 0000]  
Direct input to G/Y DAC  
dac2_cntl(9:0):  
DAC2 input value  
{dac_cntl_msb 0x3D(3:2) and  
dac2_cntl_lsb 0x3F(7:0)}  
[00 0000 0000]  
Direct input to B/Cb DAC  
dac3_cntl(9:0):  
DAC3 input value  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
75  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
{dac_cntl_msb 0x3D(1:0) and  
[00 0000 0000]  
dac3_cntl_lsb 0x40(7:0)}  
Direct input to R/Cr DAC  
5.1.7 Clip/Scale/Multiplier Control (Sub-Addresses 0x410x4F)  
csm_clip_gy_low(7:0):  
G/Y low clipping value  
{csm_clip_gy_low 0x41(7:0)}  
[0100 0000]  
Sets the value at which low end clipping occurs on G/Y channel, if clipping is enabled. Range is  
0255.  
csm_clip_bcb_low(7:0):  
B/Cb low clipping value  
{csm_clip_bcb_low 0x42(7:0)}  
[0100 0000]  
Sets the value at which low end clipping occurs on B/Cb channel, if clipping is enabled. Range is  
0255.  
csm_clip_rcr_low(7:0):  
R/Cr low clipping value  
{csm_clip_rcr_low 0x43(7:0)}  
[0100 0000]  
Sets the value at which low end clipping occurs on R/Cr channel, if clipping is enabled. Range is  
0255.  
csm_clip_gy_high(7:0):  
G/Y high clipping value  
{csm_clip_gy_high 0x44(7:0)}  
[0101 0011]  
Sets the value at which high end clipping occurs on G/Y channel, if clipping is enabled.  
High clip value = 1023-csm_clip_gy_high  
csm_clip_bcb_high(7:0):  
B/Cb high clipping value  
{csm_clip_bcb_high 0x45(7:0)}  
[0011 1111]  
Sets the value at which high end clipping occurs on B/Cb channel, if clipping is enabled.  
High clip value = 1023csm_clip_bcb_high  
csm_clip_rcr_high(7:0):  
R/Cr high clipping value  
{csm_clip_rcr_high 0x46(7:0)}  
[0011 1111]  
Sets the value at which high end clipping occur on R/Cr channel, if clipping is enabled.  
High clip value = 1023csm_clip_rcr_highs  
csm_shift_gy(7:0):  
G/Y shift value  
{csm_shift_gy 0x47(7:0)}  
[0100 0000]  
Value that G/Y data is shifted downwards. Range 0255. Note: it is possible to shift the data so  
much that a roll over condition occurs.  
csm_shift_bcb(7:0):  
B/Cb shift value  
{csm_shift_bcb 0x48(7:0)}  
[0100 0000]  
Value that B/Cb data is shifted downwards. Range: 0255. Note: It is possible to shift the data so  
much that a roll over condition occurs.  
csm_shift_rcr(7:0):  
R/Cr shift value  
{csm_shift_rcr 0x49(7:0)}  
[0100 0000]  
I2C Register Map  
76  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
Value that B/Cb data is shifted downwards. Range: 0255. Note: It is possible to shift the data so  
much that a roll over condition occurs.  
csm_mult_gy_on:  
G/Y scaling on/off  
{csm_gy_cntl_mult_msb 0x4A(7)}  
0 : Scaling for G/Y channel off  
1 : Scaling for G/Y channel on  
[0]  
csm_shift_gy_on:  
G/Y shifting on/off  
{csm_gy_cntl_mult_msb 0x4A(6)}  
0 : Shifting for G/Y channel off  
1 : Shifting for G/Y channel on  
[0]  
csm_gy_high_clip_on:  
G/Y high-end clipping on/off  
{csm_gy_cntl_mult_msb 0x4A(5)}  
0 : G/Y data clipping at high end off  
1 : G/Y data clipping at high end on  
[0]  
csm_gy_low_clip_on:  
G/Y low-end clipping on/off  
{csm_gy_cntl_mult_msb 0x4A(4)}  
0 : G/Y data clipping at low end off  
1 : G/Y data clipping at low end on  
[0]  
csm_of_cntl:  
CSM overflow control  
{csm_gy_cntl_mult_msb 0x4A(3)}  
[1]  
Controls overflow protection of the CSM multiplier  
0 : Overflow protection off  
1 : Overflow protection on  
Numerical format of the CSM mult registers:  
The 11-bit value is a binary weighted value in the range 01.999.  
Thus: csm_mult_<gy,rcr,bcb>(10:0) = [(multiplier in range 0..1.999)/1.999] × 2047.  
csm_mult_gy(10:0):  
G/Y scaling value  
{csm_gy_cntl_mult_msb 0x4A(2:0) [000 0000 0000]  
and  
csm_mult_gy_lsb 0x4C(7:0)}  
Multiplication factor for G/Y channel in CSM. Range: 01.999.  
Note: it is possible to scale the input so much that a rollover occurs.  
csm_mult_bcb(10:0):  
B/Cb scaling value  
{csm_mult_bcb_rcr_msb 0x4B(6:4) [000 0000 0000]  
and  
csm_mult_bcb_lsb 0x4D(7:0)}  
Multiplication factor for B/Cb channel in CSM. Range: 01.999.  
Note: it is possible to scale the input so much that a rollover occurs.  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
77  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
csm_mult_rcr(10:0):  
R/Cr scaling value  
{csm_mult_bcb_rcr_msb 0x4B(2:0) [000 0000 0000]  
and  
csm_mult_rcr_lsb 0x4E(7:0)}  
Multiplication factor for R/Cr channel in CSM. Range: 01.999.  
Note: it is possible to scale the input so much that a rollover occurs.  
csm_mult_rcr_on:  
R/Cr scaling on/off  
{csm_rcr_bcb_cntl 0x4F(7)}  
0 : Scaling for R/Cr channel off  
1 : Scaling for R/Cr channel on  
[0]  
csm_mult_bcb_on:  
B/Cb scaling on/off  
{csm_rcr_bcb_cntl 0x4F(6)}  
0 : Scaling for B/Cb channel of  
1 : Scaling for B/Cb channel on  
[0]  
csm_shift_rcr_on:  
R/Cr shifting on/off  
{csm_rcr_bcb_cntl 0x4F(5)}  
0 : Shifting for R/Cr channel off  
1 : Shifting for R/Cr channel on  
[0]  
csm_shift_bcb_on:  
B/Cb shifting on/off  
{csm_rcr_bcb_cntl 0x4F(4)}  
0 : Shifting for B/Cb channel off  
1 : Shifting for B/Cb channel on  
[0]  
csm_rcr_high_clip_on:  
R/Cr high-end clipping on/off  
{csm_rcr_bcb_cntl 0x4F(3)}  
[0]  
0 : R/Cr data clipping at high end off  
1 : R/Cr data clipping at high end on  
csm_rcr_low_clip_on:  
R/Cr low-end clipping on/off  
{csm_rcr_bcb_cntl 0x4F(2)}  
[0]  
0 : R/Cr data clipping at low end off  
1 : R/Cr data clipping at low end on  
csm_bcb_high_clip_on:  
B/Cb high-end clipping on/off  
{csm_rcr_bcb_cntl 0x4F(1)}  
[0]  
0 : B/Cb data clipping at high end off  
1 : B/Cb data clipping at high end on  
csm_bcb_low_clip_on:  
B/Cb low-end clipping on/off  
{csm_rcr_bcb_cntl 0x4F(0)}  
[0]  
0 : B/Cb data clipping at low end off  
1 : B/Cb data clipping at low end on  
I2C Register Map  
78  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
5.1.8 Display Timing Generator Control, Part 2 (Sub-Addresses 0x500x82)  
dtg2_bp<n>(10:0):  
breakpoint<n> line number  
{see register map table}  
[000 0000 0000]  
DTG outputs line type dtg2_linetype<n> until line number of dtg2_bp<n+1> is reached. (n = 1..16)  
dtg2_linetype<n>(3:0):  
Line type for dtg2_bp<n>  
{see register map table}  
[0000]  
The DTG outputs a line format corresponding to the table below until the next breakpoint line  
number is reached. (n = 1..16)  
LINE TYPE  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
MODE  
ACTIVE_VIDEO  
FULL_NTSP  
FULL_BTSP  
NTSP_NTSP  
BTSP_BTSP  
NTSP_BTSP  
BTSP_NTSP  
ACTIVE_NEQ  
NSP_ACTIVE  
FULL_NSP  
FULL_BSP  
FULL_NEQ  
NEQ_NEQ  
BSP_BSP  
BSP_NEQ  
NEQ_BSP  
dtg2_hlength(9:0):  
HS_OUT duration  
[00 0110 0000]  
{dtg2_hlength_lsb_hdly_msb  
0x71(7:6) and  
dtg2_hlength_lsb 0x70(7:0)}  
Sets the duration of the HS_OUT output signal  
dtg2_hdly(12:0):  
HS_OUT delay  
[0 0000 0000 0010]  
{dtg2_hlength_lsb_hdly_msb  
0x71(4:0) and  
dtg2_hdly_lsb 0x72(7:0)}  
Sets the pixel value that the HS_OUT signal is asserted on.  
Note: when programmed to a value higher than the total number of pixels per line, there will be no  
HS_OUT output.  
dtg2_vlength1(9:0):  
VS_OUT duration, field 1  
{dtg2_vlength1_msb_vdly1_msb  
0x74(7:6)  
[00 0000 0011]  
and dtg2_vlength1_lsb 0x73(7:0)}  
Sets the duration of the VS_OUT output signal during progressive scan video modes or during the  
vertical blank interval of field 1 in interlaced video modes.  
dtg2_vdly1(10:0):  
VS_OUT delay, field 1  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
79  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
{dtg2_vlength1_msb_vdly1_msb  
[000 0000 0011]  
0x74(2:0)  
and dtg2_vdly1_lsb 0x75(7:0)}  
Sets the line number that the VS_OUT signal is asserted on for progressive video modes or for field  
1 of interlaced video modes.  
Note: when programmed to a value higher than the total number of lines per frame, there is no  
VS_OUT output.  
dtg2_vlength2(9:0):  
VS_OUT duration, field 2  
{dtg2_vlength2_msb_vdly2_msb  
0x77(7:6)  
[00 0000 0000]  
and dtg2_vlength2_lsb 0x76(7:0)}  
Sets the duration of the VS_OUT output signal during the vertical blank interval of field 2 in  
interlaced video modes. In progressive video modes, this register must be set to all 0.  
dtg2_vdly2(10:0):  
VS_OUT delay, field 2  
{dtg2_vlength2_msb_vdly2_msb  
0x77(2:0)  
[111 1111 1111]  
and dtg2_vdly2_lsb 0x78(7:0)}  
Sets the line number that the VS_OUT signal is asserted on for field 2 of interlaced scan video  
modes. For progressive scan video modes, this register must be set to all 1.  
dtg2_hs_in_dly(12:0):  
DTG horizontal delay  
{dtg2_hs_in_dly_msb 0x79(4:0)  
and  
[0 0000 0011 1101]  
dtg2_hs_in_dly_lsb 0x7A(7:0)}  
Sets the number of pixels that the DTG startup is horizontally delayed with respect to HS input for  
dedicated timing modes or EAV input for embedded timing modes.  
Note: It is possible to delay startup past the end of a line when this delay is programmed higher than  
the total number of pixels per line.  
dtg2_vs_in_dly(10:0):  
DTG vertical delay  
{dtg2_vs_in_dly_msb 0x7B(2:0)  
and  
[000 0000 0011]  
dtg2_vs_in_dly_lsb 0x7C(7:0)}  
Sets the number of lines that the DTG startup is vertically delayed with respect to VS input for  
dedicated timing modes or the line counter value for embedded timing.  
Note: It is possible to delay startup past the end of a frame when this delay is programmed higher  
than the total number of lines per frame.  
dtg2_pixel_cnt(15:0):  
Pixel count readback  
{dtg2_pixel_cnt_msb 0x7D(7:0) and  
dtg2_pixel_cnt_lsb 0x7E(7:0)}  
Reports the number of clock 1x rising edges between consecutive Hsync input pulses  
dtg2_ip_fmt:  
Interlaced/progressive-scan indicator  
{dtg2_line_cnt_msb 0x7F(7)}  
Indicates whether current video frame is progressive (0) or interlaced (1)  
I2C Register Map  
80  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
dtg2_line_cnt(10:0):  
Line count readback  
{dtg2_lined_cnt_msb 0x7F(2:0) and dtg2_line_cnt_lsb 0x80(7:0)}  
Reports the number of Hsync input pulses between consecutive dtg_start signals (i.e., over one  
frame period)  
dtg2_fid_de_cntl:  
FID (field-ID)/DE (data enable)input selection for FID  
terminal  
{dtg2_cntl 0x82(7)}  
[0]  
Controls interpretation of signal on FID terminal  
0 : Signal interpeted as FieldID  
1 : If the DTG is programmed to the VESA mode, the FID pin becomes a data-enable input pin. Data  
enable is assumed high during the active video window, and low outside this area. This is  
compatible with the DE signal from TI DVI receivers. Data is passed through the THS8200 only  
when data enable is high. Otherwise, the input data is overridden by the THS8200 internally  
programmed blanking value. If the DTG is programmed in the SDTV or HDTV video mode with  
dedicated timing signals, a 1 in this register location causes the THS8200 to generate an internal  
FieldID value from the relative alignment of Hsync and Vsync inputs, rather than using the signal on  
the FID input pin (which is ignored). This is for EIA-861 compliant operation for video-over-DVI 1.0  
(with HDCP) where there is no dedicated FID signal available but the even/odd field ID is determined  
from Hsync/Vsync alignment.  
dtg2_rgb_mode_on:  
RGB/YPbPr mode selection  
{dtg2_cntl 0x82(6)}  
[1]  
This selection affects the relative blank vs video level position: on R,G,B, and Y channels an offset is  
added to the DAC outputs  
0 : YPbPr mode (blanking at bottom range for Y – mid-range for Pb, Pr channels)  
1 : RGB mode (blanking at bottom ranges for all channels)  
dtg2_embedded_timing:  
Video sync input source  
{dtg2_cntl 0x82(5)}  
[0]  
0 : Timing of video input bus is derived from HS, VS, and FID dedicated inputs  
1 : Timing of video input bus is assumed embedded in video data using SAV/EAV code sequences.  
dtg2_vsout_pol:  
{dtg2_cntl 0x82(4)}  
0 : Positive polarity  
1 : Negative polarity  
VS_OUT polarity  
[1]  
dtg2_hsout_pol:  
{dtg2_cntl 0x82(3)}  
0 : Negative polarity  
1 : Positive polarity  
HS_OUT polarity  
[1]  
dtg2_fid_pol:  
FID polarity  
{dtg2_cntl 0x82(2)}  
0 : Negative polarity  
1 : Positive polarity  
[1]  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
81  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
dtg2_vs_pol:  
VS_IN polarity  
{dtg2_cntl 0x82(1)}  
0 : Negative polarity  
1 : Positive polarity  
[1]  
dtg2_hs_pol:  
HS_IN polarity  
{dtg2_cntl 0x82(0)}  
0 : Negative polarity  
1 : Positive polarity  
[1]  
misc_ppl(15:0):  
HS high  
{misc_ppl_msb 0x87(7:0) and misc_ppl_lsb 0x86(7:0)}  
Reports the number of clock cycles HS was held high  
misc_lpf(15:0):  
VS high  
{misc_lpf_msb 0x89(7:0) and misc_lpf_lsb 0x88(7:0)}  
Reports the number of HS counts that VS was held high.  
5.1.9 CGMS Control (Sub-Addresses 0x830x85)  
cgms_en:  
CGMS enable  
[0]  
{cgms_cntl_header 0x83(6)}  
0 : No CGMS data inserted  
1 : CGMS data inserted on line 41 in SDTV mode  
cgms_header:  
CGMS header  
[00 0000]  
{cgms_cntl_header 0x83(5:0)}  
cgms_payload(13:0):  
CGMS payload  
{cgms_payload_msb 0x84(5:0) and [00 0000 0000 0000]  
cgms_payload_lsb 0x85(7:0)}  
CGMS payload data  
5.2 THS8200 Preset Mode Line Type Definitions  
The following are the (line type, breakpoint) combinations that are preprogrammed when selecting the  
corresponding DTG preset setting.  
5.2.1 SMPTE_274P (1080P)  
Breakpoints  
Line Type  
6
FULL_BTSP  
FULL_NTSP  
ACTIVE_VIDEO  
FULL_NTSP  
42  
1122  
1126  
frame_size = 10001100101; 1125d  
field_size = 11111111111; not needed  
I2C Register Map  
82  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
5.2.2 274M Interlaced (1080I)  
Breakpoints  
Line Type  
6
BTSP_BTSP  
NTSP_NTSP  
FULL_NTSP  
ACTIVE_VIDEO  
FULL_NTSP  
NTSP_BTSP  
BTSP_BTSP  
BTSP_NTSP  
FULL_NTSP  
ACTIVE_VIDEO  
FULL_NTSP  
7
21  
561  
563  
564  
568  
569  
584  
1124  
1126  
frame_size = 10001100101; 1125d  
field_size = 01000110011; 563d  
5.2.3 296M Progressive (720P)  
Breakpoints  
Line Type  
6
FULL_BTSP  
FULL_NTSP  
ACTIVE_VIDEO  
FULL_NTSP  
26  
746  
751  
frame_size = 01011101110; 750d  
field_size = 11111111111; not needed  
5.2.4 SDTV 525 Interlaced Mode  
Breakpoints  
Line Type  
NEQ_NEQ  
BSP_BSP  
4
7
10  
NEQ_NEQ  
FULL_NSP  
ACTIVE_VIDEO  
ACTIVE_NEQ  
NEQ_NEQ  
NEQ_BSP  
BSP_BSP  
20  
263  
264  
266  
267  
269  
270  
272  
273  
282  
BSP_NEQ  
NEQ_NEQ  
FULL_NEQ  
FULL_NSP  
I2C Register Map  
Copyright © 2009, Texas Instruments Incorporated  
83  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
283  
526  
NSP_ACTIVE  
ACTIVE_VIDEO  
frame_size = 1000001101; 525d  
field_size = 00100000111; 263d  
5.2.5 SDTV 525 Progressive Mode  
Breakpoints  
Line Type  
10  
FULL_NSP  
FULL_BSP  
FULL_NSP  
ACTIVE_VIDEO  
16  
46  
526  
frame_size = 01000001101; 525d  
field_size = 11111111111; not needed  
5.2.6 SDTV 625 Interlaced Mode  
Breakpoints  
Line Type  
3
BSP_BSP  
4
BSP_NEQ  
6
NEQ_NEQ  
FULL_NSP  
NSP_ACTIVE  
ACTIVE_VIDEO  
NEQ_NEQ  
NEQ_BSP  
23  
24  
311  
313  
314  
316  
BSP_BSP  
318  
NEQ_NEQ  
FULL_NEQ  
FULL_NSP  
ACTIVE_VIDEO  
ACTIVE_NEQ  
NEQ_NEQ  
319  
336  
623  
624  
626  
frame_size = 01001110001; 625d  
field_size = 00100111000; 312d  
I2C Register Map  
84  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
6
Application Information  
6.1 Video vs Computer Graphics Application  
THS8200 is a highly integrated and flexible universal analog component video/graphics generator that can  
be used in any application requiring D/A conversion of video/graphics signals.  
In a typical video application (e.g., DVD player, set-top box), the THS8200 receives its input from an  
MPEG decoder or media processor engine and converts the signal into the analog domain, thereby  
generating the correct timing/frame format for the selected format.  
Its ITU-R.BT656 output port could be used to connect to an NTSC/PAL video encoder, such as the Texas  
Instruments TVP6000, for regular composite/S-video output.  
Note that because the DAC speed is rated up to 205 MSPS, all popular SDTV and HDTV formats,  
including 1080I and 720P, are supported in both 1× and 2× interpolated modes. The 1080P is supported  
at the 1× rate.  
R/Y  
MPEG Decoder  
or  
Signal Receiver  
(From Satellite,  
Cable, DVD Disk)  
HDTV  
Monitor  
G/Pb  
B/Pr  
THS8200  
CCIR656  
Media  
Processor  
NTSC/PAL  
Video Encoder  
SDTV  
(NTSC/PAL)  
Figure 6-1. Typical Video Application  
Because of its programmable Hsync/Vsync outputs, the on-chip support for RGB as well as YCbCr color  
spaces and its internal color space conversion circuit, and the DAC operational speed of 205 MSPS, all  
PC graphics formats are supported as well, up to UXGA at 75 Hz. Video interpolation is now bypassed so  
that the full 205 MSPS can be used for the 1× pixel clock.  
R
3-D/2-D  
Graphics  
Controller  
VESA  
24 Bits  
G
B
Compatible  
CRT Monitor  
THS8200  
HS_OUT  
VS_OUT  
Figure 6-2. Computer Graphics Application  
6.2 DVI to Analog YPbPr/RGB Application  
Together with a DVI receiver, this device forms a two-chip solution to convert video or graphics formats  
sent over a DVI interface to an analog RGB or YPbPr format using embedded composite sync or separate  
Hsync, Vsync. THS8200 connects gluelessly to a DVI receiver using its data input bus and HS_IN and  
VS_IN terminals. TI DVI 1.0 (with HDCP) receivers provide a data enable (DE) signal that is high during  
Copyright © 2009, Texas Instruments Incorporated  
Application Information  
85  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
the active video window. The THS8200 can be configured to interpret this DE signal on its FID terminal to  
automatically insert a user-programmable blanking-level amplitude outside the active video window on its  
analog outputs; this blanking level can be correctly positioned for either RGB or YPbPr analog outputs.  
The user can optionally perform color space conversion in the THS8200 and adjust offset and gain ranges  
through the device’s CSM block.  
When sending (interlaced) video over DVI, the EIA-861 specification describes a method to derive the  
fieldID signal—not directly available from a DVI1.0 (with HDCP) receiver—from the relative alignment of  
the Hsync and Vsync signals. The THS8200 can be configured to derive internally the correct even/odd  
field identification from Hsync/Vsync alignment according to this specification, instead of using the FieldID  
signal on its FID input terminal. This avoids the need for additional glue logic in a DVI application.  
6.3 Master vs Slave Timing Modes  
In slave timing mode, the THS8200 output display timing is synchronized to the video data source. Display  
timing output signals are based on input sync signals, either fed to the device on the dedicated Hsync,  
Vsync, and FieldID (HS_IN, VS_IN, and FID) input terminals or based on SAV/EAV codes embedded in  
the input video data.  
GY[9:0]  
BPb[9:0]  
RPr[9:0]  
G/Y  
B/Pb  
MPEG Decoder/  
Graphics Processor/  
Video Memory  
R/Pr  
Drive TV or  
Computer Monitor  
THS8200  
CLKIN  
HS  
HS_OUT  
VS_OUT  
VS  
FID  
SDA  
SCL  
2
To an I C  
Master Device  
To an NTSC/PAL  
Encoder  
Figure 6-3. Slave Operation Mode of THS8200  
In master timing mode, the THS8200 generates two sets of output synchronization signals.  
HS_IN and VS_IN now become output signals to the video source (FID unused).  
HS_OUT and VS_OUT are still output signals to display device.  
The intended purpose is that THS8200 requests video data from a source that requires external timing,  
such as video memory.  
86  
Application Information  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
GY[9:0]  
BPb[9:0]  
RPr[9:0]  
G/Y  
B/Pb  
MPEG Decoder/  
Graphics Processor/  
Video Memory  
R/Pr  
THS8200  
Computer Monitor  
CLKIN  
HS  
HS_OUT  
VS_OUT  
VS  
SDA  
SCL  
2
To an I C  
Master Device  
To an NTSC/PAL  
Encoder  
Figure 6-4. Master Operation Mode of THS8200  
Copyright © 2009, Texas Instruments Incorporated  
Application Information  
87  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
7
Electrical Characteristics  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)  
(1)  
VALUE  
0.5 to 4.5  
UNIT  
AVDD to AVSS, VDD_IO to GND_IO  
DVDD to DVSS, VDD_DLL to DVSS  
Supply voltage range  
V
0.5 to 2.5  
Digital input voltage range to DVSS  
Operating free-air temperature range  
Storage temperature range  
0.5 to VDD_IO + 0.5  
40 to 85  
V
TA  
°C  
°C  
Tstg  
55 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 Recommended Operating Conditions  
Over operating free-air temperature range, TA  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
POWER SUPPLY  
AVDD  
3
3.3  
1.8  
3.6  
Supply  
voltage  
DVDD, VDD_DLL  
VDD_IO  
1.65  
2
V
V
1.65 1.8/3.3  
3.6  
DIGITAL AND REFERENCE INPUTS  
VDD_I  
O
VDD_IO = 1.8 V  
VDD_IO = 3.3 V  
0.95  
2.3  
VIH  
High-level input voltage  
Low-level input voltage  
VDD_I  
O
VDD_IO = 1.8 V  
VDD_IO = 3.3 V  
DVSS  
DVSS  
10  
0.4  
1.15  
205  
VIL  
V
fclk  
Clock frequency  
MHz  
tw(CLKH)  
tw(CLKL)  
Pulse duration, clock high  
Pulse duration, clock low  
40%  
40%  
2.99  
2.08  
60%  
60%  
VOC = 700 mV  
VOC = 1 V  
RFS  
FSADJ resistor  
kΩ  
88  
Electrical Characteristics  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
7.3 ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
AVDD = 3.3 V, DVDD = 1.8 V,  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
94  
94  
98  
98  
VDD_DLL = 1.8 V,  
VDD_IO = 3.3 V,  
CLK = 80 MHz  
Generic + no bias (1.25 V)  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
162  
94  
170  
Operating analog  
supply current  
IAVDD  
mA  
mA  
mA  
mA  
mW  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V  
(DLL bypassed),  
98  
98  
94  
VDD_IO = 1.8 V,  
CLK = 200 MHz  
Generic + no bias (1.25 V)  
162  
170  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V,  
VDD_IO = 3.3 V,  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
38  
38  
38  
89  
89  
45  
45  
45  
95  
95  
Generic + no bias (1.25 V)  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
CLK = 80 MHz  
Operating digital  
supply current  
IDVDD  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V  
(DLL bypassed),  
VDD_IO = 1.8 V,  
CLK = 200 MHz  
Generic + no bias (1.25 V)  
89  
95  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V,  
VDD_IO = 3.3 V,  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
1.7  
1.7  
1.7  
1.7  
1.7  
2.7  
2.7  
2.7  
2.7  
2.7  
Generic + no bias (1.25 V)  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
CLK = 80 MHz  
Operating IO  
supply current  
IVDD_IO  
IVDD_DLL  
PD  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V  
(DLL bypassed),  
VDD_IO = 1.8 V,  
CLK = 200 MHz  
Generic + no bias (1.25 V)  
1.7  
2.7  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V,  
VDD_IO = 3.3 V,  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
4.9  
4.9  
4.9  
4.9  
4.9  
5.6  
5.6  
5.6  
5.6  
5.6  
Generic + no bias (1.25 V)  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
CLK = 80 MHz  
Operating DLL  
supply current  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V  
(DLL bypassed),  
VDD_IO = 1.8 V,  
CLK = 200 MHz  
Generic + no bias (1.25 V)  
4.9  
5.6  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V,  
VDD_IO = 3.3 V,  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
398  
398  
641  
489  
489  
430  
430  
660  
500  
500  
Generic + no bias (1.25 V)  
Video + no bias (700 mV)  
Video + bias (1.05 V)  
CLK = 80 MHz  
Power disspiation  
AVDD = 3.3 V, DVDD = 1.8 V,  
VDD_DLL = 1.8 V  
(DLL bypassed),  
VDD_IO = 1.8 V,  
CLK = 200 MHz  
Generic + no bias (1.25 V)  
700  
735  
DIGITAL INPUTS - DC CHARACERISTICS  
High-level input  
current  
IIH  
1
1  
1
µA  
µA  
µA  
Low-level input  
current  
IIL  
VDD_IO = 3.3 V,  
Digital inputs and CLK at 0 V for IIL;  
Digital inputs and CLK at 3.6 V for IIH  
Low-level input  
current, CLK  
IIL(CLK)  
High-level input  
current, CLK  
IIH(CLK)  
CI  
1  
µA  
pF  
Input capacitance TA = 25°C  
5
VDD_IO = 1.8 V  
1.5  
1.5  
GY, RCr, BCb data  
inputs setup time  
ts  
nA  
VDD_IO = 3.3 V  
(1) TA = 25°C for typical parameters.  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Characteristics  
89  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
VDD_IO = 1.8 V  
VDD_IO = 3.3 V  
0.5  
0.5  
GY, RCr, BCb data  
inputs hold time  
tH  
nA  
HS_IN, VS_IN, FID  
inputs setup time  
ts  
VDD_IO = 3.3 V(2)  
VDD_IO = 3.3 V(2)  
1.5  
nA  
nA  
HS_IN, VS_IN, FID  
inputs hold time  
tH  
0.5  
10-bit/20-bit 4:2:2 with CSM, CSC,  
2x interpolation active  
73(4)  
Digital process  
delay(3)  
td(D)  
pixels  
30-bit 4:4:4  
33(4)  
9
VESA clock mode (DLL, CSM, CSC, FIRs bypassed)  
ANALOG (DAC) OUTPUTS  
10  
10  
DAC resolution  
(11 bit  
(11 bit  
bits  
internal) internal)  
Best-fit  
VDD_IO = 3.3 V,  
CLK = 500 kHz  
Video (0.7 + 0.35 V bias)  
–3  
3
Integral  
INL  
LSB  
nonlinearity  
Generic (1.25 + 0 V bias)  
–10  
10  
0.2/0.  
Video (0.7 + 0.35 V bias)  
Generic (1.25 + 0 V bias)  
1/1  
Differential  
DNL  
VDD_IO = 3.3 V,  
CLK = 500 kHz  
3
LSB  
nonlinearity  
1/1  
1/1  
Power supply  
ripple rejection  
ratio of DAC output  
PSRR  
f = dc to 100 kHz(5)  
42  
dB  
(full scale)  
1 MHz sine wave,  
offset bias off  
49  
42  
1 MHz sine wave,  
offset bias on  
10 MHz sine wave,  
offset bias off  
CLK = 205 MHz, -1 dB sine wave  
Crosstalk between applied to active channels, offset bias  
49  
XTALK  
dB  
channels(6)  
applied to all channels when turned  
on, 37.5 Ω load on all channels  
10 MHz sine wave,  
offset bias on  
42  
30 MHz sine wave,  
offset bias off  
48  
30 MHz sine wave,  
offset bias on  
40.5  
Imbalance  
between DACs  
KIMBAL  
CLK = 80 MHz(7)  
±2%  
Video mode (bias  
offset can be added)  
0.7  
0.72  
V
DAC output  
VOC  
compliance voltage RL = 37.5 Ω(8)  
Generic mode (bias  
offset cannot be added)  
(video only)  
1.25  
1.3  
DAC output  
CO  
capacitance (pin  
capacitance)  
5
pF  
DAC output current  
rise time  
tri  
10 to 90% of full-scale, CLK = 80 MHz  
3.5  
4.2  
ns  
(2) The HS_IN, VS_IN, and FID input setup/hold times are valid for 3.3-V I/O operation only. These sync inputs are not recommended for  
use with 1.8-V I/O logic levels.  
(3) Defined as the delay on Y pixel data, starting from the rising edge of CLKIN, until the clock period.  
(4) CSC contribution: 8 pixels, CSM contribution: 1 pixel, 2x interpolation filter contribution: 18 pixels  
(5) PSRR is defined as 20*log (ripple voltage at DAC output/ripple voltage at AVDD input). Limits from characterization only.  
(6) Crosstalk spec applies to each possible pair of the 3 DAC outputs. Limit from characterization only.  
(7) The imbalance between DACs applies to all possible pairs of the three DACs.  
(8) Nominal values at RFS = RFS(nom), see Figure 7-12 . Limit from characterization only. Excludes bias offset.  
90  
Electrical Characteristics  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
DAC output current  
fall time  
tfi  
10 to 90% of full-scale, CLK = 80 MHz  
3.5  
6.5  
6.6  
4.2  
ns  
ns  
ns  
Analog output  
delay  
Measured from falling edge of CLKIN to 50%  
of full-scale transition(9)  
td  
Analog output  
settling time  
Measured from 50% of full scale transition on output to output  
settling, within 2%(10)  
tsa  
1 MHz, 1 dB FS digital sine input  
10 MHz, 1 dB FS digital sine input  
–55  
–43  
90  
Spurious-free  
dynamic range  
SFDR  
dB  
BW  
Bandwidth (3 dB)  
Glitch energy  
MHz  
pVs  
Eglitch  
Full-scale code transition at 205 MSPS  
25  
(9) This value excludes the digital process delay, tD(D). Limit from characterization only. Data is clocked in on the rising edge of CLKIN.  
Analog outputs become available on the falling edge of CLKIN.  
(10) Limit from characterization only.  
7.4 Power Requirements  
7.4.1 Power for 700-mV DAC Output Compliance + 350-mV Bias at AVDD = 3.3 V,  
DVDD = 1.8 V, VDD_IO = 3.3 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels  
POWER (mW),  
DLL BYPASSED  
POWER (mW),  
DLL USED  
f (MHz)  
IAVDD (mA)  
IDVDD (mA)  
IVDD_IO (mA)  
IVDD_DLL (mA)  
20  
30  
329.91  
338.52  
382.47  
450.51  
476.01  
332.88  
351.72  
399.63  
93.2  
93.2  
93.2  
93.2  
93.2  
10.4  
15  
1.1  
1.2  
1.7  
2.3  
2.5  
0.9  
4
80  
38.5  
75.2  
89  
5.2  
160  
200  
500  
400  
DLL  
Bypassed  
DLL Used  
300  
200  
100  
0
V = 700 mV  
V
V
= 3.3 V  
IO  
(BIAS)  
= 350 mV  
0
30  
80  
160  
200  
2
f - Frequency - MHz  
Figure 7-1. POWER vs FREQUENCY  
7.4.2 Power for 700-mV DAC Output Compliance + 350-mV Bias at AVDD = 3.3 V,  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Characteristics  
91  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
DVDD = 1.8 V, VDD_IO = 1.8 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels  
POWER (mW),  
DLL BYPASSED  
POWER (mW),  
DLL USED  
f (MHz)  
IAVDD (mA)  
IDVDD (mA)  
IVDD_IO (mA)  
IVDD_DLL (mA)  
20  
30  
328.26  
331.23  
349.92  
397.08  
93.2  
93.2  
93.2  
93.2  
93.2  
10.4  
15  
1.1  
1.2  
1.7  
2.3  
2.5  
0.9  
4
336.72  
80  
379.92  
38.5  
75.2  
89  
5.2  
160  
200  
447.06  
472.26  
500  
400  
DLL  
Bypassed  
DLL Used  
300  
200  
100  
0
V = 700 mV  
V
V
= 1.8 V  
IO  
(BIAS)  
= 350 mV  
0
30  
80  
160  
200  
2
f - Frequency - MHz  
Figure 7-2. POWER vs FREQUENCY  
7.4.3 Power for 1.25-V Output Compliance Without Bias at AVDD = 3.3 V,  
DVDD = 1.8 V, VDD_IO = 3.3 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels  
POWER (mW),  
DLL BYPASSED  
POWER (mW),  
DLL USED  
f (MHz)  
IAVDD (mA)  
IDVDD (mA)  
IVDD_IO (mA)  
IVDD_DLL (mA)  
20  
30  
556.95  
565.56  
609.51  
677.55  
703.05  
559.92  
578.76  
626.67  
162  
162  
162  
162  
162  
10.4  
15  
1.1  
1.2  
1.7  
2.3  
2.5  
0.9  
4
80  
38.5  
75.2  
89  
5.2  
160  
200  
92  
Electrical Characteristics  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
800  
700  
600  
500  
400  
300  
200  
100  
0
DLL Used  
DLL  
Bypassed  
V = 1.25 V  
V
V
= 3.3 V  
IO  
(BIAS)  
= 0 V  
30  
80  
f - Frequency - MHz  
160  
200  
20  
Figure 7-3. POWER vs FREQUENCY  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Characteristics  
93  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
7.4.4 Power for 1.25-V Output Compliance Without Bias at AVDD = 3.3 V,  
DVDD = 1.8 V, VDD_IO = 1.8 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels  
POWER (mW),  
DLL BYPASSED  
POWER (mW),  
DLL USED  
f (MHz)  
IAVDD (mA)  
IDVDD (mA)  
IVDD_IO (mA)  
IVDD_DLL (mA)  
20  
30  
555.30  
563.76  
606.96  
674.10  
699.30  
558.27  
576.96  
624.12  
162  
162  
162  
162  
162  
10.4  
15  
1.1  
1.2  
1.7  
2.3  
2.5  
0.9  
4
80  
38.5  
75.2  
89  
5.2  
160  
200  
800  
700  
600  
500  
400  
300  
200  
DLL Used  
DLL  
Bypassed  
V = 1.25 V  
V
V
= 1.8 V  
IO  
(BIAS)  
100  
= 0 V  
0
20  
30  
80  
f - Frequency - MHz  
160  
200  
Figure 7-4. POWER vs FREQUENCY  
7.5 Nonlinearity  
7.5.1 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV Without Bias  
0.6  
V = 700 mV  
V
0.4  
0.2  
= 0 V  
(BIAS)  
0
-0.2  
-0.4  
-0.6  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 7-5. INTEGRAL NONLINEARITY vs CODE  
94  
Electrical Characteristics  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
0.3  
0.2  
0.1  
V = 700 mV  
= 0 V  
V
(BIAS)  
0
-0.1  
-0.2  
-0.3  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 7-6. DIFFERENTIAL NONLINEARITY vs CODE  
7.5.2 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV + 350-mV Bias  
0.8  
V = 700 mV  
V
0.6  
0.4  
0.2  
= 350 mV  
(BIAS)  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 7-7. INTEGRAL NONLINEARITY vs CODE  
0.3  
0.2  
0.1  
V = 700 mV  
V
= 350 mV  
(BIAS)  
0
-0.1  
-0.2  
-0.3  
-0.4  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 7-8. DIFFERENTIAL NONLINEARITY vs CODE  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Characteristics  
95  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
7.5.3 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 1.25 V Without Bias  
1.0  
V = 1.25 V  
V
0.5  
= 0 V  
(BIAS)  
0
-0.5  
-1.0  
-1.5  
-2.0  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 7-9. INTEGRAL NONLINEARITY vs CODE  
0.15  
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
V = 1.25 V, V  
= 0 V  
(BIAS)  
0
64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024  
Code  
Figure 7-10. DIFFERENTIAL NONLINEARITY vs CODE  
96  
Electrical Characteristics  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
www.ti.com  
SLES253DECEMBER 2009  
7.6 Analog Output Bandwidth (sinx/x corrected) at fS = 205 MSPS  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
f
= 205 MSPS  
S
-10  
0
10 20 30 40 50 60 70 80 90 100 110  
- Output Frequency - MHz  
f
(O)  
Figure 7-11. AMPLITUDE vs OUTPUT FREQUENCY  
7.7 Output Compliance vs Full-Scale Adjustment Resistor Value  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
R
V
= 37.5  
L
450  
400  
350  
= 0 V  
(BIAS)  
3.2 3.7  
R(fs) - Full Scale Resistance - kW  
5.2 5.7  
1.2 1.7 2.2 2.7  
4.2 4.7  
Figure 7-12. OUTPUT VOLTAGE vs FULL-SCALE RESISTANCE  
Copyright © 2009, Texas Instruments Incorporated  
Electrical Characteristics  
97  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
THS8200-EP  
SLES253DECEMBER 2009  
www.ti.com  
7.8 Vertical Sync of the HDTV 1080I Format Preset in First and Second Field, and  
Horizontal Line Waveform Detail  
Vertical Blanking, First Field  
Vertical Blanking, Second Field  
Active Video Line  
Figure 7-13. THS8200 Output Waveforms for 1080I: Vertical Blanking in First and Second Fields, and  
Active Video  
98  
Electrical Characteristics  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): THS8200-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jun-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
THS8200IPFPEP  
V62/10604-01XE  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
PFP  
PFP  
80  
80  
96  
96  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Contact TI Distributor  
or Sales Office  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Contact TI Distributor  
or Sales Office  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF THS8200-EP :  
Catalog: THS8200  
NOTE: Qualified Version Definitions:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jun-2010  
Catalog - TI's standard catalog product  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connctivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

V62/10605-01XE

PRECISION, LOW POWER INSTRUMENTATION AMPLIFIERS
TI

V62/10606-01XE

1-Mbps QUAD DIGITAL ISOLATORS
TI

V62/10607-01XE

ULTRALOW-POWER 100-mA LOW DROPOUT LINEAR REGULATORS
TI

V62/10610-01XE

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL
TI

V62/10610-01YE

16-CHANNEL LED DRIVER WITH DOT CORRECTION AND GRAYSCALE PWM CONTROL
TI

V62/10611-01XE

3.0-A ULTRA-LDO WITH PROGRAMMABLE SOFT-START
TI

V62/10613-01XE

LOW-NOISE,VERY LOW DRIFT,PRECISION VOLTAGE REFERENCE
TI

V62/10613-02XE

LOW-NOISE,VERY LOW DRIFT,PRECISION VOLTAGE REFERENCE
TI

V62/10613-03XE

LOW-NOISE,VERY LOW DRIFT,PRECISION VOLTAGE REFERENCE
TI

V62/10613-04XE

Low-Noise, Very Low Drift, Precision Voltage Reference
TI

V62/10616-01XE

具有差分电流感应的增强型产品开关模式铅酸电池充电器 | DW | 20 | -55 to 125
TI

V62/11601-01XE

具有分离输出和使能功能的增强型产品 9A/9A 单通道栅极驱动器 | DGK | 8 | -40 to 105
TI