V62/18602-01XB [TI]

温度范围为 -55°C 至 105°C 且符合 JESD204B 标准的超低噪声时钟抖动消除器 | NKD | 64;
V62/18602-01XB
型号: V62/18602-01XB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

温度范围为 -55°C 至 105°C 且符合 JESD204B 标准的超低噪声时钟抖动消除器 | NKD | 64

时钟
文件: 总103页 (文件大小:2259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMK04828-EP  
SNAS703 APRIL 2017  
LMK04828-EP Ultra-Low-Noise, JESD204B-Compliant Clock Jitter Cleaner  
1 Features  
2 Applications  
1
EP Features  
Wireless Infrastructure  
Data Converter Clocking  
Gold Bondwires  
Networking, SONET/SDH, DSLAM  
Medical / Video / Military / Aerospace  
Test and Measurement  
Temperature Range: –55 to +105 °C  
Lead Finish SnPb  
Maximum Distribution Frequency: 3.2 GHz  
JESD204B Support  
3 Description  
The LMK04828-EP device is the industry's highest  
performance clock conditioner with JESD204B  
support.  
Ultra-Low RMS Jitter  
88-fs RMS Jitter (12 kHz to 20 MHz)  
91-fs RMS Jitter (100 Hz to 20 MHz)  
–162.5 dBc/Hz Noise Floor at 245.76 MHz  
The 14 clock outputs from PLL2 can be configured to  
drive seven JESD204B converters or other logic  
devices using device and SYSREF clocks. SYSREF  
can be provided using both DC and AC coupling. Not  
limited to JESD204B applications, each of the 14  
outputs can be individually configured as high-  
performance outputs for traditional clocking systems.  
Up to 14 Differential Device Clocks From PLL2  
Up to 7 SYSREF Clocks  
Maximum Clock Output Frequency 3.2 GHz  
LVPECL, LVDS, HSDS, LCPECL  
Programmable Outputs From PLL2  
Up to 1 Buffered VCXO/Crystal Output From PLL1  
LVPECL, LVDS, 2xLVCMOS Programmable  
The high performance combined with features like the  
ability to trade off between power or performance,  
dual VCOs, dynamic digital delay, holdover, and  
glitchless analog delay make the LMK04828-EP ideal  
for providing flexible high-performance clocking trees.  
Multi-Mode: Dual PLL, Single PLL, and Clock  
Distribution  
Dual Loop PLLatinum™ PLL Architecture  
PLL1  
Device Information(1)  
PART  
NUMBER  
VCO0  
FREQUENCY  
Up to 3 Redundant Input Clocks  
VCO1 FREQUENCY  
Automatic and Manual Switchover Modes  
Hitless Switching and LOS  
LMK04828-EP  
2450 to 2755 MHz  
2875 to 3080 MHz  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Integrated Low-Noise Crystal Oscillator Circuit  
Holdover Mode When Input Clocks are Lost  
Simplified Schematic  
PLL2  
Multiple —clean“  
clocks at different  
frequencies  
Normalized [1 Hz] PLL Noise Floor of  
–227 dBc/Hz  
Crystal or  
OSCout  
LMX2582  
VCXO  
Recovered  
—dirty“ clock or  
clean clock  
Phase Detector Rate up to 155 MHz  
OSCin Frequency-Doubler  
Two Integrated Low-Noise VCOs  
PLL+VCO  
CLKin0  
DCLKout12  
Backup  
Reference  
Clock  
FPGA  
SDCLKout13  
LMK04828-EP  
CLKin1  
DCLKout8 &  
DCLKout10  
50% Duty Cycle Output Divides, 1 to 32  
(Even and Odd)  
SDCLKout9 &  
SDCLKout11  
DCLKout0 &  
DCLKout2  
Precision Digital Delay, Dynamically Adjustable  
25-ps Step Analog Delay  
DCLKout4,  
SDCLKout5  
DAC  
ADC  
SDCLKout1 &  
SDCLKout3  
Serializer/  
Deserializer  
3.15-V to 3.45-V Operation  
Copyright © 2017, Texas Instruments Incorporated  
Package: 64-Pin WQFN (9.0 mm × 9.0 mm × 0.8  
mm)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Table of Contents  
9.4 Device Functional Modes........................................ 34  
9.5 Programming........................................................... 37  
9.6 Register Maps ........................................................ 38  
9.7 Device Register Descriptions.................................. 42  
10 Applications and Implementation...................... 84  
10.1 Application Information.......................................... 84  
10.2 Typical Application ................................................ 87  
10.3 Do's and Don'ts..................................................... 90  
11 Power Supply Recommendations ..................... 91  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 SPI Interface Timing ............................................... 13  
7.7 Timing Diagram....................................................... 13  
11.1 Current Consumption / Power Dissipation  
Calculations.............................................................. 91  
12 Layout................................................................... 92  
12.1 Layout Guidelines ................................................. 92  
12.2 Layout Example .................................................... 93  
13 Device and Documentation Support ................. 94  
13.1 Device Support .................................................... 94  
13.2 Receiving Notification of Documentation Updates 94  
13.3 Community Resources.......................................... 94  
13.4 Trademarks........................................................... 94  
13.5 Electrostatic Discharge Caution............................ 94  
13.6 Glossary................................................................ 94  
7.8 Typical Characteristics – Clock Output AC  
Characteristics ......................................................... 14  
8
9
Parameter Measurement Information ................ 15  
8.1 Charge Pump Current Specification Definitions...... 15  
8.2 Differential Voltage Measurement Terminology ..... 16  
Detailed Description ............................................ 17  
9.1 Overview ................................................................. 17  
9.2 Functional Block Diagram ....................................... 21  
9.3 Feature Description................................................. 24  
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 94  
4 Revision History  
DATE  
REVISION  
NOTES  
April 2017  
*
Initial release  
2
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
5 Device Comparison Table  
Table 1. Device Configuration Information  
REFERENC  
E
INPUTS(1)  
OSCout (BUFFERED OSCin  
PLL2 PROGRAMMABLE  
LVDS/LVPECL/HSDS  
OUTPUTS  
PART NUMBER  
Clock) LVDS/ LVPECL/  
VCO0 FREQUENCY  
VCO1 FREQUENCY  
(1)  
LVCMOS  
LMK04828-EP  
Up to 3  
Up to 1  
14  
2450 to 2755 MHz  
2875 to 3080 MHz  
(1) OSCout may also be third clock input, CLKin2.  
6 Pin Configuration and Functions  
NKD Package  
64-Pin WQFN  
Top View  
Clock Group 0  
Clock Group 3  
Status_LD2  
Vcc10_PLL2  
CPout2  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DCLKout0  
DCLKout0*  
SDCLKout1  
SDCLKout1*  
RESET/GPO  
SYNC/SYSREF_REQ  
NC  
1
2
3
Vcc9_CP2  
OSCin*  
4
5
OSCin  
6
Vcc8_OSCin  
7
NC  
OSCout*/CLKin2*  
OSCout/CLKin2  
Vcc7_OSCout  
8
LLP-64  
Top down view  
NC  
9
Vcc1_VCO  
LDObyp1  
10  
11  
12  
13  
14  
15  
16  
CLKin0*  
LDObyp2  
CLKin0  
SDCLKout3  
SDCLKout3*  
DCLKout2  
DCLKout2*  
Vcc6_PLL1  
CLKin1*/Fin*/FBCLKin*  
DAP  
CLKin1/Fin/FBCLKin  
Vcc5_DIG  
Clock Group 2  
Clock Group 1  
Pin Functions  
PIN  
I/O  
TYPE  
DESCRIPTION(1)  
NO.  
NAME  
1
2
DCLKout0,  
DCLKout0*  
O
Programmable  
Device clock output 0  
3
4
SDCLKout1,  
SDCLKout1*  
O
I
Programmable  
CMOS  
SYSREF or device clock output 1  
Device reset input or GPO  
5
RESET/GPO  
(1) See Pin Connection Recommendations for recommended connections.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION(1)  
NO.  
6
NAME  
SYNC/SYSREF_REQ  
NC  
I
CMOS  
Synchronization input or SYSREF_REQ for requesting continuous SYSREF  
Do not connect. These pins must be left floating.  
Power supply for VCO LDO  
7, 8, 9  
10  
Vcc1_VCO  
LDObyp1  
PWR  
ANLG  
ANLG  
11  
LDO bypass, bypassed to ground with 10-µF capacitor.  
LDO bypass, bypassed to ground with a 0.1-µF capacitor.  
12  
LDObyp2  
13  
14  
SDCLKout3,  
SDCLKout3*  
O
O
Programmable  
Programmable  
SYSREF or device clock output 3  
Device clock output 2  
15  
16  
DCLKout2,  
DCLKout2*  
17  
18  
19  
20  
21  
Vcc2_CG1  
CS*  
PWR  
CMOS  
CMOS  
CMOS  
PWR  
Power supply for clock outputs 2 and 3  
I
I
Chip select  
SCK  
SPI clock  
SDIO  
I/O  
SPI data  
Vcc3_SYSREF  
Power supply for SYSREF divider and SYNC  
22  
23  
SDCLKout5,  
SDCKLout5*  
O
O
Programmable  
SYSREF or device clock output 5  
24  
25  
DCLKout4,  
DCLKout4*  
Programmable  
PWR  
Device clock output 4  
26  
Vcc4_CG2  
Power supply for clock outputs 4, 5, 6 and 7  
Device clock output 6  
27  
28  
DCLKout6,  
DCLKout6*  
O
O
Programmable  
29  
30  
SDCLKout7,  
SDCLKout7*  
Programmable  
SYSREF or device clock output 7  
31  
32  
33  
Status_LD1  
CPout1  
I/O  
O
Programmable  
ANLG  
Programmable status pin  
Charge pump 1 output  
Vcc5_DIG  
PWR  
Power supply for the digital circuitry  
Reference clock Input Port 1 for PLL1  
CLKin1, CLKin1*  
I
I
I
ANLG  
34  
35  
FBCLKin,  
FBCLKin*  
ANLG  
Feedback input for external clock feedback input (0–delay mode)  
Fin, Fin*  
ANLG  
PWR  
External VCO input (external VCO mode)  
36  
Vcc6_PLL1  
Power supply for PLL1, charge pump 1, holdover DAC  
37  
38  
CLKin0, CLKin0*  
I
ANLG  
PWR  
Reference clock input port 0 for PLL1  
39  
Vcc7_OSCout  
OSCout, OSCout*  
CLKin2, CLKin2*  
Vcc8_OSCin  
Power supply for OSCout port  
Buffered output of OSCin port  
Reference clock Input Port 2 for PLL1  
Power supply for OSCin  
40  
41  
I/O  
Programmable  
42  
PWR  
43  
44  
OSCin, OSCin*  
I
ANLG  
Feedback to PLL1, reference input to PLL2 — AC-coupled  
45  
46  
47  
48  
Vcc9_CP2  
CPout2  
PWR  
ANLG  
Power supply for PLL2 charge pump  
Charge pump 2 output  
O
Vcc10_PLL2  
Status_LD2  
PWR  
Power supply for PLL2  
I/O  
O
Programmable  
Programmable status pin  
49  
50  
SDCLKout9,  
SDCLKout9*  
Programmable  
SYSREF or device clock 9  
51  
52  
DCLKout8,  
DCLKout8*  
O
Programmable  
PWR  
Device clock output 8  
53  
Vcc11_CG3  
Power supply for clock outputs 8, 9, 10, and 11  
Device clock output 10  
54  
55  
DCLKout10,  
DCLKout10*  
O
O
Programmable  
56  
57  
SDCLKout11,  
SDCLKout11*  
Programmable  
SYSREF or device clock output 11  
58  
59  
CLKin_SEL0  
CLKin_SEL1  
I/O  
I/O  
Programmable  
Programmable  
Programmable status pin  
Programmable status pin  
60  
61  
SDCLKout13,  
SDCLKout13*  
O
O
Programmable  
Programmable  
SYSREF or device clock output 13  
Device clock output 12  
62  
63  
DCLKout12,  
DCLKout12*  
64  
Vcc12_CG0  
DAP  
PWR  
GND  
Power supply for clock outputs 0, 1, 12, and 13  
DIE ATTACH PAD, connect to GND  
DAP  
4
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
(2)  
VCC  
VIN  
TL  
Supply voltage  
3.6  
Input voltage  
(VCC + 0.3)  
V
Lead temperature (solder 4 seconds)  
Junction temperature  
260  
150  
±5  
°C  
TJ  
°C  
IIN  
Differential input current (CLKinX/X*, OSCin/OSCin*, FBCLKin/FBCLKin*, Fin/Fin*)  
mA  
MSL  
Tstg  
Moisture sensitivity level  
Storage temperature  
3
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Never to exceed 3.6 V.  
7.2 ESD Ratings  
VALUE  
±2000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Machine Model (MM)  
V(ESD)  
V
±150  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±200 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
TJ  
Junction temperature  
Ambient temperature  
Supply voltage  
125  
105  
°C  
°C  
V
TA  
–55  
25  
VCC  
3.15  
3.3  
3.45  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
7.4 Thermal Information  
LMK04828-EP  
THERMAL METRIC(1)  
NKD (WQFN)  
UNIT  
64 PINS  
24.3  
6.1  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
3.5  
ψJT  
0.1  
ψJB  
3.5  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ΨJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ΨJB estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
7.5 Electrical Characteristics  
(3.15 V < VCC < 3.45 V, –55 °C < TA < +105°C. Typical values at VCC = 3.3 V, TA = 25 °C, at the recommended operating  
conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT CONSUMPTION  
ICC_PD  
Power-down supply current  
Supply current(1)  
1
3
mA  
mA  
14 HSDS 8 mA clocks enabled  
PLL1 and PLL2 locked.  
ICC_CLKS  
565  
670  
CLKin0/0*, CLKin1/1*, and CLKin2/2* INPUT CLOCK SPECIFICATIONS  
fCLKin  
Clock input frequency  
Clock input slew rate  
0.001  
0.15  
750  
MHz  
V/ns  
|V|  
(2)  
SLEWCLKin  
VIDCLKin  
VSSCLKin  
20% to 80%  
AC-coupled  
0.5  
Differential clock input voltage(3)  
See Figure 4  
0.125  
0.25  
1.55  
3.1  
Vpp  
AC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
CLKinX_TYPE = 0 (Bipolar)  
0.25  
0.35  
2.4  
2.4  
Vpp  
Vpp  
Clock input  
Single-ended input voltage  
VCLKin  
AC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
CLKinX_TYPE = 1 (MOS)  
Each pin is AC-coupled, CLKin0/1/2  
CLKinX_TYPE = 0 (Bipolar)  
0
55  
20  
|mV|  
|mV|  
|mV|  
DC offset voltage between  
CLKinX/CLKinX* (CLKinX* - CLKinX)  
Each pin is AC-coupled, CLKin0/1  
CLKinX_TYPE = 1 (MOS)  
|VCLKinX-offset  
|
DC offset voltage between  
CLKin2/CLKin2* (CLKin2* - CLKin2)  
Each pin is AC-coupled  
CLKinX_TYPE = 1 (MOS)  
VCLKin- VIH  
VCLKin– VIL  
High input voltage  
Low input voltage  
DC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
CLKinX_TYPE = 1 (MOS)  
2
0
VCC  
0.4  
V
V
(1) See the applications section of Power Supply Recommendations for ICC for specific part configuration and how to calculate ICC for a  
specific design.  
(2) To meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all input  
clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase noise performance will begin to degrade as the clock input slew  
rate is reduced. However, the device functions at slew rates down to the minimum listed. When compared to single-ended clocks,  
differential clocks (LVDS, LVPECL) will be less susceptible to degradation in phase noise performance at lower slew rates due to their  
common mode noise rejection. However, it is also recommended to use the highest possible slew rate for differential clocks to achieve  
optimal phase noise performance at the device outputs.  
(3) See Differential Voltage Measurement Terminology for definition of VID and VOD voltages.  
6
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –55 °C < TA < +105°C. Typical values at VCC = 3.3 V, TA = 25 °C, at the recommended operating  
conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FBCLKin/FBCLKin* and Fin/Fin* INPUT SPECIFICATIONS  
Clock input frequency for  
fFBCLKin  
AC-coupled  
CLKinX_TYPE = 0 (Bipolar)  
0.001  
0.001  
0.001  
0.25  
750  
3100  
3200  
2
MHz  
0-delay with external feedback.  
(4)  
Clock input frequency for  
AC-coupled  
CLKinX_TYPE = 0 (Bipolar)  
external VCO mode  
fFin  
MHz  
Clock input frequency for  
AC-coupled  
CLKinX_TYPE = 0 (Bipolar)  
distribution mode  
AC-coupled  
CLKinX_TYPE = 0 (Bipolar)  
VFBCLKin/Fin  
Single-ended clock input voltage  
Vpp  
AC-coupled; 20% to 80%;  
(CLKinX_TYPE = 0)  
(2)  
SLEWFBCLKin/Fin Slew rate on CLKin  
0.15  
0.5  
V/ns  
PLL1 SPECIFICATIONS  
fPD1  
PLL1 phase detector frequency  
40  
MHz  
µA  
VCPout1 = VCC/2, PLL1_CP_GAIN = 0  
VCPout1 = VCC/2, PLL1_CP_GAIN = 1  
VCPout1 = VCC/2, PLL1_CP_GAIN = 2  
50  
150  
250  
(5)  
ICPout1SOURCE PLL1 charge pump source current  
VCPout1 = VCC/2, PLL1_CP_GAIN = 14  
VCPout1 = VCC/2, PLL1_CP_GAIN = 15  
VCPout1=VCC/2, PLL1_CP_GAIN = 0  
VCPout1=VCC/2, PLL1_CP_GAIN = 1  
VCPout1=VCC/2, PLL1_CP_GAIN = 2  
1450  
1550  
–50  
–150  
–250  
(5)  
ICPout1SINK  
PLL1 Charge pump sink current  
µA  
VCPout1=VCC/2, PLL1_CP_GAIN = 14  
VCPout1=VCC/2, PLL1_CP_GAIN = 15  
VCPout1 = VCC/2, T = 25 °C  
–1450  
–1550  
1%  
ICPout1%MIS  
ICPout1VTUNE  
Charge pump sink / source mismatch  
10%  
10  
Magnitude of charge pump current  
variation vs. charge pump voltage  
0.5 V < VCPout1 < VCC - 0.5 V  
TA = 25 °C  
4%  
4%  
Charge pump current vs. temperature  
variation  
ICPout1%TEMP  
ICPout1TRI  
Charge pump TRI-STATE leakage current 0.5 V < VCPout < VCC - 0.5 V  
nA  
PLL1_CP_GAIN = 350 µA  
–117  
–118  
PLL 1/f Noise at 10-kHz offset.  
Normalized to 1-GHz Output Frequency  
PN10kHz  
PN1Hz  
dBc/Hz  
PLL1_CP_GAIN = 1550 µA  
PLL1_CP_GAIN = 350 µA  
Normalized phase noise contribution  
–221.5  
–223  
dBc/Hz  
PLL1_CP_GAIN = 1550 µA  
PLL2 REFERENCE INPUT (OSCin) SPECIFICATIONS  
(6)  
fOSCin  
PLL2 reference input  
500  
2.4  
MHz  
V/ns  
PLL2 reference clock minimum slew rate  
SLEWOSCin  
20% to 80%  
0.15  
0.2  
0.5  
(2)  
on OSCin  
AC-coupled; Single-ended  
(Unused pin AC-coupled to GND)  
VOSCin  
Input voltage for OSCin or OSCin*  
Vpp  
VIDOSCin  
VSSOSCin  
0.2  
0.4  
1.55  
3.1  
|V|  
Differential voltage swing  
See Figure 4  
AC-coupled  
Vpp  
DC offset voltage between  
OSCin/OSCin* (OSCinX* - OSCinX)  
|VOSCin-offset  
fdoubler_max  
|
Each pin is AC-coupled  
20  
|mV|  
MHz  
EN_PLL2_REF_2X = 1(8)  
OSCin Duty Cycle 40% to 60%  
;
(7)  
Doubler input frequency  
155  
(4) Assured by characterization.  
(5) This parameter is programmable.  
(6) FOSCin maximum frequency assured by characterization. Production tested at 122.88 MHz.  
(7) Assured by characterization. ATE tested at 122.88 MHz.  
(8) The EN_PLL2_REF_2X bit enables/disables a frequency doubler mode for the PLL2 OSCin path.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –55 °C < TA < +105°C. Typical values at VCC = 3.3 V, TA = 25 °C, at the recommended operating  
conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CRYSTAL OSCILLATOR MODE SPECIFICATIONS  
Fundamental mode crystal  
FXTAL  
Crystal frequency range  
ESR = 200 Ω (10 to 30 MHz)  
ESR = 125 Ω (30 to 40 MHz)  
10  
40  
MHz  
pF  
CIN  
Input capacitance of OSCin port  
–40 to 85 °C  
1
PLL2 PHASE DETECTOR and CHARGE PUMP SPECIFICATIONS  
(7)  
fPD2  
Phase detector frequency  
155  
MHz  
µA  
VCPout2 = VCC/2, PLL2_CP_GAIN = 0  
VCPout2 = VCC/2, PLL2_CP_GAIN = 1  
VCPout2 = VCC/2, PLL2_CP_GAIN = 2  
VCPout2 = VCC/2, PLL2_CP_GAIN = 3  
VCPout2 = VCC/2, PLL2_CP_GAIN = 0  
VCPout2 = VCC/2, PLL2_CP_GAIN = 1  
VCPout2 = VCC/2, PLL2_CP_GAIN = 2  
VCPout2 = VCC/2, PLL2_CP_GAIN = 3  
VCPout2 = VCC/2, TA = 25°C  
100  
400  
(5)  
ICPoutSOURCE PLL2 charge pump source current  
1600  
3200  
–100  
–400  
–1600  
–3200  
1%  
(5)  
ICPoutSINK  
PLL2 charge pump sink current  
µA  
ICPout2%MIS  
ICPout2VTUNE  
Charge pump sink/source mismatch  
10%  
20  
Magnitude of charge pump current vs.  
charge pump voltage variation  
0.5 V < VCPout2 < VCC – 0.5 V  
4%  
4%  
Charge pump current vs. temperature  
variation  
ICPout2%TEMP  
ICPout2TRI  
Charge pump leakage  
0.5 V < VCPout2 < VCC – 0.5 V  
PLL2_CP_GAIN = 400 µA  
nA  
PLL 1/f noise at 10-kHz offset(9)  
Normalized to  
.
–118  
–121  
PN10kHz  
PN1Hz  
dBc/Hz  
PLL2_CP_GAIN = 3200 µA  
1-GHz output frequency  
PLL2_CP_GAIN = 400 µA  
PLL2_CP_GAIN = 3200 µA  
–222.5  
–227  
Normalized phase noise contribution(10)  
dBc/Hz  
MHz  
INTERNAL VCO SPECIFICATIONS  
VCO0  
VCO1  
2450  
2875  
2755  
3080  
fVCO  
LMK04828-EP VCO tuning range  
Lower end  
17  
27  
17  
23  
VCO0  
Higher end  
KVCO  
LMK04828-EP fine tuning sensitivity  
MHz/V  
Lower end  
VCO1  
Higher end  
After programming for lock, no changes to output  
configuration are permitted to assure continuous  
lock.  
Allowable temperature drift for continuous  
lock(11)  
|ΔTCL  
|
160  
°C  
(9) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker  
noise has a 10 dB/decade slope. PN10kHz is normalized to a 10-kHz offset and a 1-GHz carrier frequency. PN10kHz = LPLL_flicker(10  
kHz) – 20log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total noise,  
L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean  
crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference  
oscillator performance if a low power or noisy source is used. The total PLL in-band phase noise performance is the sum of LPLL_flicker(f)  
and LPLL_flat(f).  
(10) A specification modeling PLL in-band phase noise. The normalized phase noise contribution of the PLL, LPLL_flat(f), is defined as:  
PN1HZ=LPLL_flat(f) - 20log(N) – 10log(fPDX). LPLL_flat(f) is the single side band phase noise measured at an offset frequency, f, in a 1-Hz  
bandwidth and fPDX is the phase detector frequency of the synthesizer. LPLL_flat(f) contributes to the total noise, L(f).  
(11) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was  
at the time that the 0x168 register was last programmed with PLL2_FCAL_DIS = 0, and still have the part stay in lock. The action of  
programming the 0x168 register, even to the same value, activates a frequency calibration routine. This implies the part will work over  
the entire frequency range, but if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be  
necessary to reload the appropriate register to ensure it stays in lock. Regardless of what temperature the part was initially programmed  
at, the temperature can never drift outside the frequency range of –55°C to 105°C without violating specifications.  
8
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –55 °C < TA < +105°C. Typical values at VCC = 3.3 V, TA = 25 °C, at the recommended operating  
conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
NOISE FLOOR  
LVDS  
–156.3  
–158.4  
–159.3  
–158.9  
–161.6  
–162.5  
–162.1  
–155.7  
–157.5  
–158.1  
–157.7  
–160.3  
–161.1  
–160.8  
HSDS 6 mA  
HSDS 8 mA  
LMK04828-EP, VCO0, noise floor  
20-MHz offset  
L(f)CLKout  
245.76 MHz  
HSDS 10 mA  
LVPECL16 with 240 Ω  
LVPECL20 with 240 Ω  
LCPECL  
dBc/Hz  
(12)  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
LMK04828-EP, VCO1, noise floor  
20-MHz offset  
L(f)CLKout  
245.76 MHz  
HSDS 10 mA  
LVPECL16 with 240 Ω  
LVPECL20 with 240 Ω  
LCPECL  
dBc/Hz  
(12)  
CLKout CLOSED LOOP PHASE NOISE SPECIFICATIONS A COMMERCIAL QUALITY VCXO(13)  
Offset = 1 kHz  
Offset = 10 kHz  
–124.3  
–134.7  
–136.5  
–148.4  
–156.4  
–159.1  
–160.8  
–124.2  
–134.4  
–135.2  
–151.5  
–159.9  
–155.8  
–158.1  
Offset = 100 kHz  
Offset = 1 MHz  
LMK04828-EP  
VCO0  
SSB phase noise  
245.76 MHz  
L(f)CLKout  
dBc/Hz  
(12)  
LVDS  
Offset = 10 MHz  
HSDS 8 mA  
LVPECL16 with 240 Ω  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
LMK04828-EP  
VCO1  
SSB phase noise  
245.76 MHz  
L(f)CLKout  
dBc/Hz  
(12)  
LVDS  
Offset = 10 MHz  
HSDS 8 mA  
LVPECL16 with 240 Ω  
(12) Data collected using ADT2-1T+ balun. Loop filter is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF, R4 =  
200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter  
loop bandwidth = 233 kHz, phase margin = 70 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.  
(13) VCXO used is a 122.88-MHz Crystek CVHD-950-122.880.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –55 °C < TA < +105°C. Typical values at VCC = 3.3 V, TA = 25 °C, at the recommended operating  
conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CLKout CLOSED LOOP JITTER SPECIFICATIONS A COMMERCIAL QUALITY VCXO(13)  
LVDS, BW = 100 Hz to 20 MHz  
112  
109  
102  
99  
LVDS, BW = 12 kHz to 20 MHz  
HSDS 8 mA, BW = 100 Hz to 20 MHz  
HSDS 8 mA, BW = 12 kHz to 20 MHz  
LVPECL16 with 240 Ω,  
BW = 100 Hz to 20 MHz  
LMK04828-EP, VCO0  
fCLKout = 245.76 MHz  
Integrated RMS jitter  
98  
95  
96  
93  
fs rms  
(12)  
LVPECL20 with 240 Ω,  
BW = 12 kHz to 20 MHz  
LCPECL with 240 Ω,  
BW = 100 Hz to 20 MHz  
LCPECL with 240 Ω,  
BW = 12 kHz to 20 MHz  
JCLKout  
LVDS, BW = 100 Hz to 20 MHz  
LVDS, BW = 12 kHz to 20 MHz  
108  
105  
98  
HSDS 8 mA, BW = 100 Hz to 20 MHz  
HSDS 8 mA, BW = 12 kHz to 20 MHz  
94  
LVPECL16 with 240 Ω,  
BW = 100 Hz to 20 MHz  
LMK04828-EP, VCO1  
fCLKout = 245.76 MHz  
Integrated RMS jitter  
93  
90  
91  
88  
fs rms  
(12)  
LVPECL20 with 240 Ω,  
BW = 12 kHz to 20 MHz  
LCPECL with 240 Ω,  
BW = 100 Hz to 20 MHz  
LCPECL with 240 Ω,  
BW = 12 kHz to 20 MHz  
DEFAULT POWER ON RESET CLOCK OUTPUT FREQUENCY  
Default output clock frequency at device  
fCLKout-start-up  
LMK04828-EP  
315  
MHz  
MHz  
(14)  
power on  
OSCout frequency  
CLOCK SKEW AND DELAY  
DCLKoutX to SDCLKoutY  
(7)  
fOSCout  
See  
500  
25  
Same pair, same format(16)  
SDCLKoutY_MUX = 0 (device clock)  
FCLK = 245.76 MHz, RL= 100 Ω  
(15)  
AC-coupled  
|TSKEW  
|
|ps|  
Maximum DCLKoutX or SDCLKoutY  
to DCLKoutX or SDCLKoutY  
FCLK = 245.76 MHz, RL= 100 Ω  
AC-coupled  
(16)  
Any pair, same format  
50  
SDCLKoutY_MUX = 0 (device clock)  
SDCLKoutY_MUX = 1 (SYSREF)  
SYSREF_DIV = 30  
SYSREF_DDLY = 8 (global)  
SDCLKoutY_DDLY = 1 (2 cycles, local)  
DCLKoutX_MUX = 1 (Div + DCC + HS)  
DCLKoutX_DIV = 30  
DCLKoutX_DDLY_CNTH = 7  
DCLKoutX_DDLY_CNTL = 6  
DCLKoutX_HS = 0  
SYSREF to device clock setup time base  
reference.  
See SYSREF to Device Clock Alignment  
to adjust SYSREF to device clock setup  
time as required.  
tsJESD204B  
–80  
ps  
SDCLKoutY_HS = 0  
CLKin0_OUT_MUX = 0 (SYSREF Mux)  
SYSREF_CLKin0_MUX = 1 (CLKin0)  
SDCLKout1_PD = 0  
SDCLKout1_DDLY = 0 (Bypass)  
SDCLKout1_MUX = 1 (SR)  
EN_SYNC = 1  
tPDCLKin0_  
SDCLKout1  
Propagation delay from CLKin0 to  
SDCLKout1  
0.65  
ns  
LVPECL16 with 240 Ω  
fADLYmax  
Maximum analog delay frequency  
DCLKoutX_MUX = 4  
1536  
MHz  
(14) OSCout will oscillate at start-up at the frequency of the VCXO attached to OSCin port.  
(15) Equal loading and identical clock output configuration on each clock output is required for specification to be valid. Specification not valid  
for delay mode.  
(16) LVPECL uses a 120-Ω emitter resistor, LVDS and HSDS use a 560-Ω shunt.  
10  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –55 °C < TA < +105°C. Typical values at VCC = 3.3 V, TA = 25 °C, at the recommended operating  
conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVDS CLOCK OUTPUTS (DCLKoutX, SDCLKoutY, AND OSCout)  
VOD  
Differential output voltage  
395  
|mV|  
mV  
V
Change in magnitude of VOD for  
complementary output states  
ΔVOD  
VOS  
–60  
60  
1.375  
35  
T = 25°C, DC measurement  
AC-coupled to receiver input  
RL = 100-Ω differential termination  
Output offset voltage  
1.125  
1.25  
180  
Change in VOS for complementary output  
states  
ΔVOS  
|mV|  
Output rise time  
Output fall time  
20% to 80%, RL = 100 Ω, 245.76 MHz  
80% to 20%, RL = 100 Ω  
TR / TF  
ps  
ISA  
ISB  
Single-ended output shorted to GND  
T = 25 °C  
Output short-circuit current - single-ended  
Output short-circuit current - differential  
–24  
–12  
24  
12  
mA  
mA  
ISAB  
Complimentary outputs tied together  
6-mA HSDS CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
VOH  
VCC – 1.05  
VCC – 1.64  
590  
T = 25 °C, DC measurement  
Termination = 50 Ω to  
VCC – 1.42 V  
VOL  
VOD  
Differential output voltage  
|mV|  
Change in VOD for complementary output  
states  
ΔVOD  
–80  
80  
mVpp  
8-mA HSDS CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
Output rise time  
Output fall time  
245.76 MHz, 20% to 80%, RL = 100 Ω  
TR / T F  
170  
ps  
245.76 MHz, 80% to 20%, RL = 100 Ω  
VOH  
VOL  
VOD  
VCC – 1.26  
VCC – 2.06  
800  
DC measurement  
Termination = 50 Ω to VCC – 1.64 V  
Differential output voltage  
|mV|  
Change in VOD for complementary output  
states  
ΔVOD  
–115  
–115  
115  
115  
mVpp  
10-mA HSDS CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
VOH  
VCC – 0.99  
VCC – 1.97  
980  
T = 25 °C, DC measurement  
Termination = 50 Ω to  
VCC – 1.43 V  
VOL  
VOD  
mVpp  
mVpp  
Change in VOD for complementary output  
states  
ΔVOD  
LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
20% to 80% output rise  
RL = 100 Ω, emitter resistors = 240 Ω to GND  
DCLKoutX_TYPE = 4 or 5  
(1600 or 2000 mVpp)  
TR / TF  
150  
ps  
80% to 20% output fall time  
1600-mVpp LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
VOH  
VOL  
Output high voltage  
Output low voltage  
VCC – 1.04  
VCC – 1.80  
V
V
DC Measurement  
Termination = 50 Ω to  
VCC – 2 V  
Output voltage  
See Figure 5  
VOD  
760  
|mV|  
2000-mVpp LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
VOH  
VOL  
Output high voltage  
Output low voltage  
VCC – 1.09  
VCC – 2.05  
V
V
DC Measurement  
Termination = 50 Ω to VCC – 2.3 V  
Output voltage  
See Figure 5  
VOD  
960  
|mV|  
LCPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
VOH  
VOL  
Output high voltage  
Output low voltage  
1.57  
0.62  
V
V
DC Measurement  
Termination = 50 Ω to 0.5 V  
Output voltage  
See Figure 5  
VOD  
950  
|mV|  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –55 °C < TA < +105°C. Typical values at VCC = 3.3 V, TA = 25 °C, at the recommended operating  
conditions and are not assured.)  
PARAMETER  
LVCMOS CLOCK OUTPUTS (OSCout)  
Maximum frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fCLKout  
5-pF Load  
250  
MHz  
V
(17)  
See  
VCC  
VOH  
Output high voltage  
1-mA Load  
1-mA Load  
0.1  
VOL  
IOH  
IOL  
Output low voltage  
0.1  
V
Output high current (source)  
Output low current (sink)  
VCC = 3.3 V, VO = 1.65 V  
VCC = 3.3 V, VO = 1.65 V  
28  
28  
mA  
mA  
VCC/2 to VCC/2,  
FCLK = 100 MHz, T = 25°C  
DUTYCLK  
Output duty cycle(18)  
50%  
TR  
TF  
Output rise time  
Output fall time  
20% to 80%, RL = 50 Ω, CL = 5 pF  
80% to 20%, RL = 50 Ω, CL = 5 pF  
400  
400  
ps  
ps  
DIGITAL OUTPUTS (CLKin_SELX, Status_LDX, AND RESET/GPO)  
IOH = –500 µA  
CLKin_SELX_TYPE = 3 or 4  
Status_LDX_TYPE = 3 or 4  
RESET_TYPE = 3 or 4  
VCC  
0.4  
VOH  
High-level output voltage  
V
V
IOL = 500 µA  
CLKin_SELX_TYPE = 3, 4, or 6  
Status_LDX_TYPE = 3, 4, or 6  
RESET_TYPE = 3, 4, or 6  
VOL  
Low-level output voltage  
0.4  
0.4  
DIGITAL OUTPUT (SDIO)  
IOH = –500 µA ; during SPI read.  
SDIO_RDBK_TYPE = 0  
VCC  
0.4  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
V
IOL = 500 µA ; during SPI read.  
SDIO_RDBK_TYPE = 0 or 1  
DIGITAL INPUTS (CLKinX_SEL, RESET/GPO, SYNC, SCK, SDIO, OR CS*)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.2  
–5  
VCC  
0.4  
V
V
DIGITAL INPUTS (CLKinX_SEL)  
CLKin_SELX_TYPE = 0,  
(high impedance)  
5
High-level input current  
VIH = VCC  
IIH  
µA  
µA  
CLKin_SELX_TYPE = 1 (pullup)  
CLKin_SELX_TYPE = 2 (pulldown)  
–5  
10  
5
80  
CLKin_SELX_TYPE = 0,  
(high impedance)  
–5  
5
Low-level input current  
VIL = 0 V  
IIL  
CLKin_SELX_TYPE = 1 (pullup)  
CLKin_SELX_TYPE = 2 (pulldown)  
–40  
–5  
–5  
5
DIGITAL INPUT (RESET/GPO)  
High-level input current  
RESET_TYPE = 2  
(pulldown)  
IIH  
10  
80  
µA  
µA  
VIH = VCC  
RESET_TYPE = 0 (high impedance)  
RESET_TYPE = 1 (pullup)  
–5  
–40  
–5  
5
–5  
5
Low-level input current  
VIL = 0 V  
IIL  
RESET_TYPE = 2 (pulldown)  
DIGITAL INPUTS (SYNC)  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC  
VIL = 0 V  
25  
5
µA  
–5  
DIGITAL INPUTS (SCK, SDIO, CS*)  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC  
VIL = 0  
–5  
–5  
5
5
µA  
µA  
DIGITAL INPUT TIMING  
tHIGH  
RESET pin held high for device reset  
25  
ns  
(17) Assured by characterization. ATE tested to 10 MHz.  
(18) Assumes OSCin has 50% input duty cycle.  
12  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
7.6 SPI Interface Timing  
MIN  
10  
NOM  
MAX  
UNIT  
ns  
tds  
Setup time for SDI edge to SCLK rising edge  
See Figure 1  
See Figure 1  
See Figure 1  
See Figure 1  
See Figure 1  
See Figure 1  
tdH  
Hold time for SDI edge from SCLK rising edge  
Period of SCLK  
10  
50(1)  
ns  
tSCLK  
tHIGH  
tLOW  
ns  
High width of SCLK  
25  
ns  
Low width of SCLK  
25  
ns  
Setup time for CS* falling edge to SCLK rising  
edge  
10  
ns  
tcs  
Hold time for CS* rising edge from SCLK rising  
edge  
See Figure 1  
See Figure 1  
30  
ns  
ns  
tcH  
tdv  
SCLK falling edge to valid read back data  
20  
(1) 20 MHz  
7.7 Timing Diagram  
Register programming information on the SDIO pin is clocked into a shift register on each rising edge of the SCK  
signal. On the rising edge of the CS* signal, the register is sent from the shift register to the register addressed.  
A slew rate of at least 30 V/µs is recommended for these signals. After programming is complete the CS* signal  
should be returned to a high state. If the SCK or SDIO lines are toggled while the VCO is in lock, as is  
sometimes the case when these lines are shared with other parts, the phase noise may be degraded during this  
programming.  
4-wire mode read back has the same timing as the SDIO pin.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
W1 and W0 is written as 0.  
SDIO  
(WRITE)  
A12 to A0,  
D7 to D2  
R/W  
W1  
W0  
D1  
D0  
tdS  
tdH  
SCLK  
tcH  
tcS  
tHIGH  
tLOW  
tSCLK  
SDIO  
D7 to  
D2  
D1  
D0  
(Read)  
Data valid only  
during read  
tdV  
CS*  
Figure 1. SPI Timing Diagram  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
7.8 Typical Characteristics – Clock Output AC Characteristics  
NOTE: These plots show performance at frequencies beyond the point at which the part is ensured to operate in order to give  
an idea of the capabilities of the part. They do not imply any sort of ensured specification.  
For Figure 2 and Figure 3, CLKout2_3_IDL=1; CLKout2_3_ODL=0; LVPECL20 with 240-Ω emitter resistors; DCLKout2  
Frequency = 245.76 MHz; DCLKout2_MUX = 0 (Divider). Balun is ADT2-1T+.  
VCO_MUX = 0 (VCO0)  
VCO0 = 2457.6 MHz  
DCLKout2_DIV = 10  
PLL2 Loop Filter Bandwidth = 344 kHz  
PLL2 Phase Margin = 73°  
VCO_MUX = 1 (VCO1)  
VCO = 2949.12 MHz  
DCLKout2_DIV = 12  
PLL2 Loop Filter Bandwidth = 233 kHz  
PLL2 Phase Margin = 70°  
Figure 2. LMK04828-EP DCLKout2 Phase Noise  
Figure 3. LMK04828-EP DCLKout2 Phase Noise  
14  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
8 Parameter Measurement Information  
8.1 Charge Pump Current Specification Definitions  
I1 = Charge Pump Sink Current at VCPout = VCC ΔV  
I2 = Charge Pump Sink Current at VCPout = VCC/2  
I3 = Charge Pump Sink Current at VCPout = ΔV  
I4 = Charge Pump Source Current at VCPout = VCC ΔV  
I5 = Charge Pump Source Current at VCPout = VCC/2  
I6 = Charge Pump Source Current at VCPout = ΔV  
ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.  
8.1.1 Charge Pump Output Current Magnitude Variation vs Charge Pump Output Voltage  
8.1.2 Charge Pump Sink Current vs Charge Pump Output Source Current Mismatch  
8.1.3 Charge Pump Output Current Magnitude Variation vs Ambient Temperature  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
8.2 Differential Voltage Measurement Terminology  
The differential voltage of a differential signal can be described by two different definitions, causing confusion  
when reading data sheets or communicating with other engineers. This section addresses the measurement and  
description of a differential signal so the reader can understand and distinguish between the two different  
definitions when used.  
The first definition used to describe a differential signal is the absolute value of the voltage potential between the  
inverting and noninverting signal. The symbol for this first measurement is typically VID or VOD, depending on if  
an input or output voltage is being described.  
The second definition used to describe a differential signal is to measure the potential of the noninverting signal  
with respect to the inverting signal. The symbol for this second measurement is VSS and is a calculated  
parameter. This signal only exists in reference to its differential pair and does not exist in the IC with respect to  
ground. VSS can be measured directly by oscilloscopes with floating references, otherwise this value can be  
calculated as twice the value of VOD as described in the first description.  
Figure 4 illustrates the two different definitions side-by-side for inputs and Figure 5 illustrates the two different  
definitions side-by-side for outputs. The VID and VOD definitions show VA and VB DC levels that the non-inverting  
and inverting signals toggle between with respect to ground. VSS input and output definitions show that if the  
inverting signal is considered the voltage potential reference, the non-inverting signal voltage potential is now  
increasing and decreasing above and below the noninverting reference. Thus, the peak-to-peak voltage of the  
differential signal can be measured.  
VID and VOD are often defined as volts (V) and VSS is often defined as volts peak-to-peak (VPP).  
V
ID  
Definition  
V
Definition for Input  
SS  
Non-Inverting Clock  
V
V
A
B
2·V  
V
ID  
ID  
Inverting Clock  
= | V - V  
V
|
B
V
SS  
= 2·V  
ID  
ID  
A
GND  
Figure 4. Two Different Definitions for  
Differential Input Signals  
V
Definition  
V
Definition for Output  
SS  
OD  
Non-Inverting Clock  
V
V
A
B
2·V  
OD  
V
OD  
Inverting Clock  
= | V - V  
V
|
B
V
SS  
= 2·V  
OD  
OD  
A
GND  
Figure 5. Two Different Definitions for  
Differential Output Signals  
Refer to application note AN-912 Common Data Transmission Parameters and their Definitions for more  
information.  
16  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9 Detailed Description  
9.1 Overview  
The LMK04828-EP device is very flexible in meeting many application requirements. The typical use case for the  
LMK04828-EP is as a cascaded dual loop jitter cleaner for JESD204B systems. However, traditional (non-  
JESD204B) systems are possible with use of the large SYSREF divider to produce a low frequency. Note that  
while the Device Clock outputs (DCLKoutX) do not provide LVCMOS outputs, the OSCout may be used to  
provide LVCMOS outputs at DCLKout6 or DCLKout8 frequency using the feedback mux.  
In addition to dual loop operation, by powering down various blocks the LMK04828-EP may be configured for  
single loop or clock distribution modes also.  
9.1.1 Jitter Cleaning  
The dual loop PLL architecture of the LMK04828-EP provides the lowest jitter performance over a wide range of  
output frequencies and phase noise integration bandwidths for clock inputs with unknown signal quality or low  
frequency. The first stage PLL (PLL1) is driven by an external reference clock and uses an external VCXO or  
tunable crystal to provide a frequency accurate, low phase noise reference clock for the second stage frequency  
multiplication PLL (PLL2).  
PLL1 uses a narrow loop bandwidth (typically 10 Hz to 300 Hz) to retain the frequency accuracy of the reference  
clock input signal while at the same time suppressing the higher offset frequency phase noise that the reference  
clock may have accumulated along its path or from other circuits. This “cleaned” reference clock provides the  
reference input to PLL2.  
The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (typically 50  
kHz to 200 kHz). The loop bandwidth for PLL2 is chosen to "minimize noise contribution from both PLL and  
VCO.  
Ultra-low jitter is achieved by allowing the phase noise of the external VCXO or crystal to dominate the final  
output phase noise at low offset frequencies, and thephase noise of the internal VCO to dominate the final output  
phase noise at high offset frequencies. This results in best overall phase noise and jitter performance.  
9.1.2 JEDEC JESD204B Support  
The LMK04828-EP provides support for JEDEC JESD204B. The LMK04828-EP will clock up to seven  
JESD204B targets using seven device clocks (DCLKoutX) and seven SYSREF clocks (SDCLKoutY). Each  
device clock is grouped with a SYSREF clock.  
It is also possible to reprogram SYSREF clocks to behave as extra device clocks for applications which have  
non-JESD204B clock requirements.  
9.1.3 Three PLL1 Redundant Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*, and CLKin2/CLKin2*)  
The LMK04828-EP has up to three reference clock inputs for PLL1: they are CLKin0, CLKin1, and CLKin2. The  
active clock is chosen based on CLKin_SEL_MODE. Automatic or manual switching can occur between the  
inputs.  
CLKin0, CLKin1, and CLKin2 each have their own PLL1 R dividers.  
CLKin1 is shared for use as an external 0-delay feedback (FBCLKin), or for use with an external VCO (Fin).  
CLKin2 is shared for use as OSCout. To use power-down OSCout, see VCO_MUX, OSCout_MUX,  
OSCout_FMT.  
Fast manual switching between reference clocks is possible with a external pins CLKin_SEL0 and CLKin_SEL1.  
9.1.4 VCXO or Crystal Buffered Output  
The LMK04828-EP provides OSCout, which by default is a buffered copy of the PLL1 feedback and PLL2  
reference input. This reference input is typically a low noise VCXO or Crystal. When using a VCXO, this output  
can be used to clock external devices such as microcontrollers, FPGAs, CPLDs, and so forth, before the  
LMK04828-EP is programmed.  
The OSCout buffer output type is programmable to LVDS, LVPECL, or LVCMOS.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Overview (continued)  
The VCXO or Crystal buffered output can be synchronized to the VCO clock distribution outputs by using  
Cascaded 0-Delay Mode. The buffered output of VCXO/Crystal has deterministic phase relationship with CLKin.  
9.1.5 Frequency Holdover  
The LMK04828-EP supports holdover operation to keep the clock outputs on frequency with minimum drift when  
the reference is lost until a valid reference clock signal is re-established.  
9.1.6 PLL2 Integrated Loop Filter Poles  
The LMK04828-EP features programmable 3rd and 4th order loop filter poles for PLL2. These internal resistors  
and capacitor values may be selected from a fixed range of values to achieve either a 3rd or 4th order loop filter  
response. The integrated programmable resistors and capacitors compliment external components mounted near  
the chip.  
These integrated components can be effectively disabled by programming the integrated resistors and capacitors  
to their minimum values.  
9.1.7 Internal VCOs  
The LMK04828-EP has two internal VCOs, selected by VCO_MUX. The output of the selected VCO is routed to  
the Clock Distribution Path. This same selection is also fed back to the PLL2 phase detector through a prescaler  
and N-divider.  
9.1.8 External VCO Mode  
The Fin/Fin* input allows an external VCO to be used with PLL2 of the LMK04828-EP.  
Using an external VCO reduces the number of available clock inputs by one.  
9.1.9 Clock Distribution  
The LMK04828-EP features a total of 14 PLL2 clock outputs driven from the internal or external VCO.  
All PLL2 clock outputs have programmable output types. They can be programmed to LVPECL, LVDS, or HSDS,  
or LCPECL.  
If OSCout is included in the total number of clock outputs the LMK04828-EP is able to distribute, then up to 15  
differential clocks. OSCout may be a buffered version of OSCin, DCLKout6, DCLKout8, or SYSREF.  
The following sections discuss specific features of the clock distribution channels that allow the user to control  
various aspects of the output clocks.  
9.1.9.1 Device Clock Divider  
Each device clock, DCLKoutX, has a single clock output divider. The divider supports a divide range of 1 to 32  
(even and odd) with 50% output duty cycle using duty cycle correction mode. The output of this divider may also  
be directed to SDCLKoutY, where Y = X + 1.  
9.1.9.2 SYSREF Clock Divider  
The SYSREF clocks, SDCLKoutY, all share a common divider. The divider supports a divide range of 8 to 8191  
(even and odd).  
9.1.9.3 Device Clock Delay  
The device clocks include both a analog and digital delay for phase adjustment of the clock outputs.  
The analog delay allows a nominal 25 ps step size and range from 0 to 575 ps of total delay. Enabling the analog  
delay adds a nominal 500 ps of delay in addition to the programmed value.  
The digital delay allows a group of outputs to be delayed from 4 to 32 VCO cycles. The delay step can be as  
small as half the period of the clock distribution path. For example, 2-GHz VCO frequency results in 250-ps  
coarse tuning steps. The coarse (digital) delay value takes effect on the clock outputs after a SYNC event.  
18  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Overview (continued)  
There are two different ways to use the digital delay.  
1. Fixed Digital Delay - Allows all the outputs to have a known phase relationship upon a SYNC event. Typically  
performed at start-up.  
2. Dynamic Digital Delay - Allows the phase relationships of clocks to change while clocks continue to operate.  
9.1.9.4 SYSREF Delay  
The global SYSREF divider includes a digital delay block which allows a global phase shift with respect to the  
other clocks.  
Each local SYSREF clock output includes both an analog and additional local digital delay for unique phase  
adjustment of each SYSREF clock.  
The local analog delay allows for 150-ps steps.  
The local digital delay and SYSREF_HS bit allows the each individual SYSREF output to be delayed from, 1.5 to  
11 VCO cycles. The delay step can be as small as half the period of the clock distribution path by using the  
DCLKoutX_HS bit. For example, 2-GHz VCO frequency results in 250-ps coarse tuning steps.  
9.1.9.5 Glitchless Half Step and Glitchless Analog Delay  
The device clocks include a features to ensure glitchless operation of the half step and analog delay operations  
when enabled.  
9.1.9.6 Programmable Output Formats  
For increased flexibility, all LMK04828-EP device and SYSREF clock outputs (DCLKoutX and SDCLKoutY) can  
be programmed to an LVDS, HSDS, LVPECL, or LCPECL output type. The OSCout can be programmed to an  
LVDS, LVPECL, or LVCMOS output type.  
Any LVPECL output type can be programmed to 1600-mVpp or 2000-mVpp amplitude levels. The 2000-mVpp  
LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000-mVpp differential  
swing for compatibility with many data converters and is also known as 2VPECL.  
LCPECL allows for DC-coupling SYSREF to low voltage converters.  
9.1.9.7 Clock Output Synchronization  
Using the SYNC input causes all active clock outputs to share a rising edge as programmed by fixed digital  
delay.  
The SYNC event must occur for digital delay values to take effect.  
9.1.10 0-Delay  
The LMK04828-EP supports two types of 0-delay.  
1. Cascaded 0-delay  
2. Nested 0-delay  
Cascaded 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL2 input clock  
(OSCin) to the phase of a clock selected by the feedback mux. The 0-delay feedback may performed with an  
internal feedback from CLKout6, CLKout8, SYSREF, or with an external feedback loop into the FBCLKin port as  
selected by the FB_MUX. Because OSCin has a fixed deterministic phase relationship to the feedback clock,  
OSCout will also have a fixed deterministic phase relationship to the feedback clock. In this mode PLL1 input  
clock (CLKinX) also has a fixed deterministic phase relationship to PLL2 input clock (OSCin), this results in a  
fixed deterministic phase relationship between all clocks from CLKinX to the clock outputs.  
Nested 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL1 input clock  
(CLKinX) to the phase of a clock selected by the feedback mux. The 0-delay feedback may performed with an  
internal feedback from CLKout6, CLKout8, SYSREF, or with an external feedback loop into the FBCLKin port as  
selected by the FB_MUX.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Overview (continued)  
Without using 0-delay mode there will be n possible fixed phase relationships from clock input to clock output  
depending on the clock output divide value.  
Using an external 0-delay feedback reduces the number of available clock inputs by one.  
9.1.11 Status Pins  
The LMK04828-EP provides status pins which can be monitored for feedback or in some cases used for input  
depending upon device programming. For example:  
The CLKin_SEL0 pin may indicate the LOS (loss-of-signal) for CLKin0.  
The CLKin_SEL1 pin may be an input for selecting the active clock input.  
The Status_LD1 pin may indicate if the device is locked.  
The Status_LD2 pin may indicate if PLL2 is locked.  
The status pins can be programmed to a variety of other outputs including PLL divider outputs, combined PLL  
lock detect signals, PLL1 Vtune railing, readback, and so forth. Refer to the programming section of this data  
sheet for more information.  
20  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.2 Functional Block Diagram  
Figure 6 illustrate the complete LMK04828-EP block diagram.  
CLKin0 R  
Divider  
(1 to 16,383)  
CLKin0  
CLKin0  
OUT  
CLKin  
MUX  
R Delay  
N Delay  
CLKin0*  
Phase  
Detector  
PLL1  
MUX  
CLKin1 R  
Divider  
SYNC and SYSREF  
CPout1  
N1 Divider  
(1 to 16,383)  
(1 to 16,383)  
CLKin2 R  
Divider  
(1 to 16,383)  
CLKin1/Fin/  
FBCLKin  
CLKin1*/Fin*/  
FBCLKin*  
CLKin1  
OUT  
MUX  
Fin  
FB Mux  
Holdover  
CLKout6  
CLKout8  
SYSREF Div  
FB  
Mux  
PLL1  
N MUX  
OSCout/  
CLKin2  
OSCout*/  
CLKin2*  
SPI  
Selectable  
2X  
Partially  
Integrated  
Loop Filter  
2X  
Mux  
R2 Divider  
(1 to 4,095)  
Internal Dual  
Core VCO  
OSCin  
OSCin*  
Phase  
Detector  
PLL2  
N2 Divider  
(1 to 262,143)  
PLL2  
N
Status_LD1  
Status_LD2  
RESET/GPO  
N2 Prescaler  
(2 to 8)  
MUX  
SYNC  
CLKin_SEL0  
CLKin_SEL1  
Device  
Control  
Clock Distribution Path  
VCO  
MUX  
Fin  
SCLK  
SDIO  
CS*  
Control  
Registers  
SPI  
System Reference Control  
Divider  
(8 to 8191)  
Div (1-32)  
Dig. Delay  
DCLKout12  
DCLKout12*  
Pulser  
A. Delay  
A. Delay  
SYNC and SYSREF  
SYNC  
SDCLKout13  
SDCLKout13*  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Div (1-32)  
DCLKout0  
DCLKout0*  
Div (1-32)  
DCLKout10  
DCLKout10*  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
SDCLKout1  
SDCLKout1*  
SDCLKout11  
SDCLKout11*  
Div (1-32)  
DCLKout2  
DCLKout2*  
Div (1-32)  
DCLKout8  
DCLKout8*  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
SDCLKout3  
SDCLKout3*  
Dig. Delay  
Dig. Delay  
SDCLKout9  
SDCLKout9*  
Dig. Delay  
Dig. Delay  
Div (1-32)  
DCLKout4  
DCLKout4*  
Div (1-32)  
DCLKout6  
DCLKout6*  
SDCLKout5  
SDCLKout5*  
Dig. Delay  
SDCLKout7  
SDCLKout7*  
Dig. Delay  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6. Detailed LMK04828-EP Block Diagram  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Functional Block Diagram (continued)  
/[Youtó_ò_ꢃ5  
5/[Yout6ꢀ8 to C._aÜó  
DCLKoutX_ADLY_PD  
DCLKoutX_ADLYg_PD  
DCLKoutX_DDLY_PD  
DCLKoutX_HSg_PD  
5/[Yout0, 2, 4, 6, 8, 10, 12  
ë/h  
DDLY  
(4 to 32) (1 to 32)  
Divider  
HS/  
DCC  
DCLKoutX  
_MUX  
DCLKoutX_  
FMT  
DCLKoutX  
_ADLY  
_MUX  
Analog  
DLY  
DDDLYdX_EN  
/[Youtó_ò_h5[  
SYNC_  
1SHOT_EN  
/[Youtó_ò_L5[  
{ò{w9C_D.[_ꢃ5  
{5/[Youtò_5L{_ah59  
One  
Shot  
SDCLKoutY  
_POL  
SYNC_  
DISX  
{5/[Youtò_ꢃ5  
SDCLKoutY  
_MUX  
SDCLKoutY_  
FMT  
SDCLKoutY  
_ADLY_EN  
{ò{w9Cꢀ{òb/  
Digital  
DLY  
Half  
Step  
Analog  
DLY  
{5/[Yout1, 3, ꢁ, 7, ꢂ, 11, 13  
[egend  
{ò{w9Cꢀ{òb/ /lock  
SYSREF_CLR  
{ꢃL wegister  
ë/hꢀ5istriꢄution /lock  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7. Device and SYSREF Clock Output Block  
22  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Functional Block Diagram (continued)  
{tL wegisꢀer: {òb/_9b  
aust ꢃe set to enꢄꢃle ꢄny  
{òb/ꢀ{ò{w9C functionꢄlity  
CLKin0  
_OUT  
_MUX  
CLKin0  
PLL1  
{òb/_ꢅ[[1_5[5  
ꢅ[[1_5[5  
bote: Çꢆe {òb/ꢀ/[Yin0 input is  
reclocked to tꢆe 5ist ꢅꢄtꢆ  
{òb/_ꢅ[[2_5[5  
{ò{w9C_w9v_9b  
ꢅ[[2_5[5  
SYSREF_REQ  
SYNC  
SYNC  
_MODE  
SYSREF  
_MUX  
SYNC  
_POL  
D
ꢅÜ[{9w ah59  
Pulser  
SYSREF_PULSE_CNT  
VCO0  
{ò{w9C_ꢅ[{w_ꢅ5  
Dist. Path  
VCO  
SYSREF SYSREF  
VCO1  
SYSREF  
_CLKin0  
_MUX  
_MUX  
DDLY  
Divider  
SYNC/SYSREF  
OSCin  
External VCO  
{ò{w9C_ꢅ5  
{ò{w9C_55[ò_ꢅ5  
DCLKout6  
DCLKout8  
OSCout  
_MUX  
SYNC_  
FB_MUX  
DISSYSREF  
h{/out  
CLKin1  
_OUT  
_MUX  
CLKin1  
CLKin1  
FB_MUX  
PLL1  
5/[Yout0, 2, 4, 6, 8, 10, 12  
ë/h Crequency  
DDLY  
(4 to 32) (1 to 32)  
Divider  
Analog  
DLY  
Output  
DCC  
Buffer  
SYNC_  
DISX  
{ò{w9Cꢀ{òb/  
Digital  
DLY  
Analog  
DLY  
Output  
Buffer  
[egend  
SYSREF_CLR  
{ò{w9Cꢀ{òb/ /lock  
ë/hꢀ5istriꢃution /lock  
{ꢅL wegister  
{5/[Yout1, 3, ꢁ, 7, ꢂ, 11, 13  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8. SYNC/SYSREF Clocking Paths  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.3 Feature Description  
9.3.1 SYNC/SYSREF  
The SYNC and SYSREF signals share the same clocking path. To properly use SYNC or SYSREF for  
JESD204B, it is important to understand the SYNC and SYSREF system. Figure 7 illustrates the detailed  
diagram of a clock output block with SYNC circuitry included. Figure 8 illustrates the interconnects and highlights  
some important registers used in controlling the device for SYNC and SYSREF purposes.  
To reset or synchronize a divider, the following conditions must be met:  
1. SYNC_EN must be set. This ensures proper operation of the SYNC circuitry.  
2. SYSREF_MUX and SYNC_MODE must be set to a proper combination to provide a valid SYNC or SYSREF  
signal.  
If SYSREF block is being used, the SYSREF_PD bit must be clear.  
If the SYSREF Pulser is being used, the SYSREF_PLSR_PD bit must be clear.  
For each SDCLKoutY being used for SYSREF, respective SDCLKoutY_PD bits must be cleared.  
3. SYSREF_DDLY_PD and DCLKoutX_DDLY_PD bits must be clear to power up the digital delay circuitry  
during SYNC as use requires.  
4. The SYNC_DISX bit must be clear to allow SYNC/SYSREF signal to divider circuit. The SYSREF_MUX  
register selects the SYNC source which resets the SYSREF and CLKoutX dividers provided the  
corresponding SYNC_DISX bit is clear.  
5. Other bits which impact the operation of SYNC signal, such as SYNC_1SHOT_EN, may be set as desired.  
Table 2 illustrates the some possible combinations of SYSREF_MUX and SYNC_MODE.  
Table 2. Some Possible SYNC Configurations  
SYSREF_MU  
NAME  
SYNC_MODE  
OTHER  
DESCRIPTION  
X
SYNC Disabled  
0
0
CLKin0_OUT_MUX 0  
No SYNC will occur.  
Basic SYNC functionality, SYNC pin polarity is  
selected by SYNC_POL.  
To achieve SYNC through SPI, toggle the  
SYNC_POL bit.  
Pin or SPI SYNC  
1
0
CLKin0_OUT_MUX 0  
Differential input  
SYNC  
0 or 1  
0 or 1  
CLKin0_OUT_MUX = 0  
Differential CLKin0 now operates as SYNC input.  
Produce SYSREF_PULSE_CNT programmed  
number of pulses on pin transition. SYNC_POL can  
be used to cause SYNC via SPI.  
JESD204B Pulser on  
pin transition  
SYSREF_PULSE_CNT  
sets pulse count  
2
3
2
2
JESD204B Pulser on  
SPI programming  
SYSREF_PULSE_CNT  
sets pulse count  
Programming SYSREF_PULSE_CNT register  
starts sending the number of pulses.  
SYSREF operational,  
SYSREF Divider as  
required for training frame  
size.  
Allows precise SYNC for n-bit frame training  
patterns for non-JESD converters such as  
LM97600.  
Re-clocked SYNC  
1
1
When SYNC pin is asserted, continuous SYSERF  
pulses occur. Turning on and off of the pulses is  
synchronized to prevent runt pulses from occurring  
on SYSREF.  
External SYSREF  
request  
SYSREF_REQ_EN = 1  
Pulser powered up  
0
2
3
SYSREF_PD = 0  
SYSREF_DDLY_PD = 0  
SYSREF_PLSR_PD = 1  
Continuous SYSREF  
X
Continuous SYSREF signal.  
(1)  
(1) SDCLKoutY_PD = 0 as required per SYSREF output. This applies to any SYNC or SYSREF output on SDCLKoutY when  
SDCLKoutY_MUX = 1 (SYSREF output)  
24  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Feature Description (continued)  
Table 2. Some Possible SYNC Configurations (continued)  
SYSREF_MU  
X
NAME  
SYNC_MODE  
OTHER  
DESCRIPTION  
CLKin0_OUT_MUX = 0  
SDCLKoutY_DDLY = 0  
(Local sysref DDLY  
bypassed)  
SYSREF_DDLY_PD = 1  
SYSREF_PLSR_PD = 1  
SYSREF_PD = 1.  
Direct SYSREF  
distribution  
A direct fan-out of SYSREF with no re-clocking to  
clock distribution path.  
0
0
9.3.2 JEDEC JESD204B  
9.3.2.1 How To Enable SYSREF  
Table 3 summarizes the bits needed to make SYSREF functionality operational.  
Table 3. SYSREF Bits  
REGIS  
TER  
FIELD  
VALUE  
DESCRIPTION  
Must be clear, power-up SYSREF circuitry.  
0x140  
SYSREF_PD  
0
0
1
SYSREF_DDLY_  
PD  
0x140  
0x143  
Must be clear to power-up digital delay circuitry during initial SYNC to ensure deterministic timing.  
Must be set, enable SYNC.  
SYNC_EN  
Do not hold local SYSREF DDLY block in reset except at start.  
Anytime SYSREF_PD = 1 because of user programming or device RESET, it is necessary to set  
SYSREF_CLR for 15 VCO clock cycles to clear the local SYSREF digital delay. Once cleared,  
SYSREF_CLR must be cleared to allow SYSREF to operate.  
0x143  
SYSREF_CLR  
1 0  
Enabling JESD204B operation involves synchronizing all the clock dividers with the SYSREF divder, then  
configuring the actual SYSREF functionality.  
9.3.2.1.1 Setup of SYSREF Example  
The following procedure is a programming example for a system which is to operate with a 3000 MHz VCO  
frequency. Use DCLKout0 and DCLKout2 to drive converters at 1500 MHz. Use DCLKout4 to drive an FPGA at  
150 MHz. Synchronize the converters and FPGA using a two SYSREF pulses at 10 MHz.  
1. Program registers 0x000 to 0x1fff as desired, but follow the Recommended Programming Sequence  
section for out-of-order registers. Key to prepare for SYSREF operations:  
(a) Prepare for manual SYNC: SYNC_POL = 0, SYNC_MODE = 1, SYSREF_MUX = 0  
(b) Set up output dividers as per example: DCLKout0_DIV and DCLKout2_DIV = 2 for frequency of 1500  
MHz. DCLKout4_DIV = 20 for frequency of 150 MHz.  
(c) Set up output dividers as per example: SYSREF_DIV = 300 for 10 MHz SYSREF  
(d) Set up SYSREF: SYSREF_PD  
= 0, SYSREF_DDLY_PD = 0, DCLKout0_DDLY_PD = 0,  
DCLKout2_DDLY_PD = 0, DCLKout4_DDLY_PD = 0, SYNC_EN = 1, SYSREF_PLSR_PD = 0,  
SYSREF_PULSE_CNT = 1 (2 pulses). SDCLKout1_PD = 0, SDCLKout3_PD = 0  
(e) Clear Local SYSREF DDLY: SYSREF_CLR = 1.  
2. Establish deterministic phase relationships between SYSREF and Device Clock for JESD204B:  
(a) Set device clock and SYSREF divider digital delays: DCLKout0_DDLY_CNTH, DCLKout0_DDLY_CNTL,  
DCLKout2_DDLY_CNTH, DCLKout2_DDLY_CNTL, DCLKout4_DDLY_CNTH, DCLKout4_DDLY_CNTL,  
SYSREF_DDLY.  
(b) Set device clock digital delay half steps: DCLKout0_HS, DCLKout2_HS, DCLKout4_HS.  
(c) Set SYSREF clock digital delay as required to achieve known phase relationships: SDCLKout1_DDLY,  
SDCLKout3_DDLY, SDCLKout5_DDLY.  
(d) To allow SYNC to affect dividers: SYNC_DIS0  
SYNC_DISSYSREF = 0  
=
0, SYNC_DIS2  
=
0, SYNC_DIS4  
=
0,  
(e) Perform SYNC by toggling SYNC_POL = 1 then SYNC_POL = 0.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
3. Disable SYNC from resetting these dividers when the dividers are synchronized. It is not desired for  
SYSREF to reset the divider of the SYSREF or the dividers of the output clocks.  
(a) Prevent SYNC (SYSREF) from affecting dividers: SYNC_DIS0 = 1, SYNC_DIS2 = 1, SYNC_DIS4 = 1,  
SYNC_DISSYSREF = 1.  
4. Release reset of local SYSREF digital delay.  
(a) SYSREF_CLR = 0. Note this bit needs to be set for only 15 VCO clocks after SYSREF_PD = 0.  
5. Set SYSREF operation.  
(a) Allow pin SYNC event to start pulser: SYNC_MODE = 2.  
(b) Select pulser as SYSREF signal: SYSREF_MUX = 2.  
6. Complete! Now asserting the SYNC pin, or toggling SYNC_POL will result in a series of two SYSREF  
pulses.  
9.3.2.1.2 SYSREF_CLR  
The local digital delay of the SDCLKout is implemented as a shift buffer. To ensure no unwanted pulses occur at  
this SYSREF output at start-up, when using SYSREF, users must clear the buffers by setting SYSREF_CLR = 1  
for 15 VCO clock cycles. The SYSREF_CLR bit is set after a POR or software reset, so it must be cleared before  
the SYSREF output is used.  
9.3.2.2 SYSREF Modes  
9.3.2.2.1 SYSREF Pulser  
This mode allows for the output of 1, 2, 4, or 8 SYSREF pulses for every SYNC pin event or SPI programming.  
This implements the gapped periodic functionality of the JEDEC JESD204B specification.  
When in SYSREF Pulser mode, programming the field SYSREF_PULSE_CNT in register 0x13E results in the  
pulser sending the programmed number of pulses.  
9.3.2.2.2 Continuous SYSREF  
This mode allows for continuous output of the SYSREF clock.  
Continuous operation of SYSREF is not recommended due to crosstalk from the SYSREF clock to device clock.  
JESD204B is designed to operate with a single burst of pulses to initialize the system at start-up after which it is  
theoretically not required to send another SYSREF because the system continues to operate with deterministic  
phases.  
If continuous operation of SYSREF is required, consider using a SYSREF output from a non-adjacent output or  
SYSREF from the OSCout pin to minimize crosstalk.  
9.3.2.2.3 SYSREF Request  
This mode allows an external source to synchronously turn on or off a continuous stream of SYSREF pulses  
using pin 6, the SYNC/SYSREF_REQ pin.  
Setup the mode by programming SYSREF_REQ_EN = 1 and SYSREF_MUX = 2 (Pulser). The pulser does not  
need to be powered for this mode of operation.  
When the SYSREF_REQ pin is asserted, the SYSREF_MUX will synchronously be set to continuous mode  
providing continuous pulses at the SYSREF frequency until the SYSREF_REQ pin is un-asserted and the final  
SYSREF pulse will complete sending synchronously.  
26  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.3.3 Digital Delay  
Digital (coarse) delay allows a group of outputs to be delayed by 4 to 32 VCO cycles. The delay step can be as  
small as half the period of the VCO cycle by using the DCLKoutX_HS bit. There are two different ways to use the  
digital delay:  
1. Fixed digital delay  
2. Dynamic digital delay  
In both delay modes, the regular clock divider is substituted with an alternative divide value. The substitute divide  
value consists of two values, DCLKoutX_DDLY_CNTH and DCLKoutX_DDLY_CNTL. The minimum _CNTH or  
_CNTL value is 2 and the maximum _CNTH or _CNTL value is 16. This results in a minimum alternative divide  
value of 4 and a maximum of 32.  
9.3.3.1 Fixed Digital Delay  
Fixed digital delay value takes effect on the clock outputs after a SYNC event. As such, the outputs are LOW for  
a while during the SYNC event. Applications that cannot accept clock breakup when adjusting digital delay  
should use dynamic digital delay.  
9.3.3.1.1 Fixed Digital Delay Example  
Assume the device already has the following initial configurations, and the application should delay DCLKout2 by  
one VCO cycle compared to DCLKout0.  
VCO frequency = 2949.12 MHz  
DCLKout0 = 368.64 MHz (DCLKout0_DIV = 8)  
DCLKout2 = 368.64 MHz (DCLKout2_DIV = 8)  
The following steps should be followed  
1. Set DCLKout0_DDLY_CNTH = 4 and DCLKout2_DDLY_CNTH = 4. First part of delay for each clock.  
2. Set DCLKout0_DDLY_CNTL = 4 and DCLKout2_DDLY_CNTL = 5. Second part of delay for each clock.  
3. Set DCLKout0_DDLY_PD = 0 and DCLKout2_DDLY_PD = 0. Power up the digital delay circuit.  
4. Set SYNC_DIS0 = 0 and SYNC_DIS2 = 0. Allow the output to be synchronized.  
5. Perform SYNC by asserting, then unasserting SYNC. Either by using SYNC_POL bit or the SYNC pin.  
6. Now that the SYNC is complete, to save power it is allowable to power down DCLKout0_DDLY_PD = 1  
and/or DCLKout2_DDLY_PD = 1.  
7. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 1. To prevent the output from being synchronized, very important for  
steady state operation when using JESD204B.  
No CLKout during SYNC  
DCLKout0  
368.64 MHz  
DCLKout2  
368.64 MHz  
SYNC event  
1 VCO cycle delay  
Figure 9. Fixed Digital Delay Example  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.3.3.2 Dynamic Digital Delay  
Dynamic digital delay allows the phase of clocks to be changed with respect to each other with little impact to the  
clock signal. This is accomplished by substituting the regular clock divider with an alternate divide value for one  
cycle. This substitution occurs a number of times equal to the value programmed into the DDLYd_STEP_CNT  
field for all outputs with DDLYdX_EN = 1 or DDLYd_SYSREF_EN = 1 (see DDLYd_SYSREF_EN, DDLYdX_EN)  
and DCLKoutX_DDLY_PD = 0 or SYSREF_DDLY_PD = 0.  
By programming a larger alternate divider (delay) value, the phase of the adjusted outputs are delayed with  
respect to the other clocks.  
By programming a smaller alternate divider (delay) value, the phase of the adjusted output advances with  
respect to the other clocks.  
NOTE  
When programming DDLYd_STEP_CNT to execute more than one step adjustment, the  
output frequency of the lowest frequency divider having dynamic digital delay enabled  
must be greater than or equal to 50 MHz to ensure every programmed step is taken. If  
not, DDLYd_STEP_CNT must be programmed with single step adjustments. When  
programming back-to-back single DDLYd_STEP_CNT adjustments, wait 70 ns + period of  
slowest clock for which dynamic digital delay is enabled between DDLYd_STEP_CNT  
register programmings. This note typically only applies to dynamic digital delay  
adjustments on the SYSREF divider.  
Table 4 shows the recommended DCLKoutX_DDLY_CNTH and DCLKoutX_DDLY_CNTL alternate divide setting  
for delay by one VCO cycle. The clock outputs high during the DCLKoutX_DDLY_CNTH time to permit a  
continuous output clock. The clock output is low during the DCLKoutX_DDLY_CNTL time.  
When using dynamic digital delay, before the divider SYNC occurs, it is required to setup  
DCLKoutX_DDLY_CNTH/CNTL and DCLKoutX_DDLYd_CNTH/CNTL values to be the same. After a divider  
SYNC it is not permitted to change either of these values. If a different phase alignment is required that what is  
programmed, use the DDLYdX_EN/DDLYd_SYSREF_EN bits to toggle which dividers respond to a dynamic  
digital delay and execute dynamic digital delay adjustments so outputs have the required phase.  
Table 4. Recommended DCLKoutX_DDLY_CNTH/_CNTL and DCLKoutX_DDLYd_CNTH/_CNTL Values  
for Delay by One VCO Cycle  
CLOCK DIVIDER  
_CNTH  
_CNTL  
CLOCK DIVIDER  
_CNTH  
9
_CNTL  
9
2
3
2
3
2
3
3
4
4
5
5
6
6
7
7
8
8
3
4
3
3
4
4
5
5
6
6
7
7
8
8
9
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
9
10  
4
10  
10  
5
10  
11  
6
11  
11  
7
11  
12  
8
12  
12  
9
12  
13  
10  
11  
12  
13  
14  
15  
16  
13  
13  
13  
14  
14  
14  
14  
15  
15  
15  
15  
16(1)  
16(1)  
16(1)  
(1) To achieve _CNTH/_CNTL value of 16, 0 must be programmed into the _CNTH/_CNTL field.  
28  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.3.3.3 Single and Multiple Dynamic Digital Delay Example  
In this example, two separate adjustments are made to the device clocks. In the first adjustment, a single delay  
of one VCO cycle occurs between DCLKout2 and DCLKout0. In the second adjustment, two delays of one VCO  
cycle occurs between DCLKout2 and DCLKout0. At this point in the example, DCLKout2 is delayed three VCO  
cycles behind DCLKout0.  
Assuming the device already has the following initial configurations and has had the dividers synchronized:  
VCO frequency: 2949.12 MHz  
DCLKout0 = 368.64 MHz, DCLKout0_DIV = 8  
DCLKout2 = 368.64 MHz, DCLKout2_DIV = 8  
The following steps illustrate the example above:  
1. DCLKout2_DDLY_CNTH = 4 and DCLKout2_DDLYd_CNTH = 4. The delays of DCLKout2 and DCLKout0 are  
set before divider SYNC. Same settings were used for DLCKout0.  
2. DCLKout2_DDLY_CNTL = 5 and DCLKout2_DDLYd_CNTL = 5. The delays of DCLKout2 and DCLKout0 are  
set before divider SYNC. Same settings were used for DLCKout0. Together with the high count, this gives a  
substituted divide of 9.  
3. Set DCLKout2_DDLY_PD = 0 if not already powered up. This enable the digital delay for DCLKout2. Note it is  
required for the DDLY_PD = 0 during SYNC to ensure deterministic phase from the SYNC.  
4. Set DDLYd2_EN = 1. Enable dynamic digital delay for DCLKout2.  
5. Set DDLYd_STEP_CNT = 1. This begins the first adjustment.  
Before step 5, DCLKout2 clock edge is aligned with DCLKout0.  
After step 5, DCLKout2 counts four VCO cycles high and then five VCO cycles low as programmed by  
DCLKout2_DDLYd_CNTH and DCLKout2_DDLYd_CNTL fields, effectively delaying DCLKout2 by one VCO  
cycle with respect to DCLKout0. This is the first adjustment.  
6. Set DDLYd_STEP_CNT = 2. This begins the second adjustment.  
Before step 6, DCLKout2 clock edge was delayed 1 VCO cycle from DCLKout0.  
After step 6, DCLKout2 counts four VCO cycles high and then five VCO cycles low as programmed by  
DCLKout2_DDLYd_CNTH and DCLKout2_DDLYd_CNTL fields twice, but not necessarily back to back. In total  
this delays DCLKout2 by two VCO cycles with respect to DCLKout0. This is the second adjustment  
illustrating multi-step.  
VCO  
2949.12 MHz  
DCLKout0  
368.64 MHz  
DCLKout2  
368.64 MHz  
First  
Adjustment  
CNTH = 4 CNTL = 5  
DCLKout2  
368.64 MHz  
Second  
Adjustment  
CNTH = 4 CNTL = 5  
CNTH = 4 CNTL = 5  
Figure 10. Single and Multiple Adjustment Dynamic Digital Delay Example  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.3.4 SYSREF to Device Clock Alignment  
To ensure proper JESD204B operation, the timing relationship between the SYSREF and the Device clock must  
be adjusted for optimum setup and hold time. The tsJESD204B defines the time between SYSREF and Device  
Clock for a specific condition of SYSREF divider and Device Clock digital delay. From this point, the  
SYSREF_DDLY. SDCLKoutY_DDLY, DCLKoutX_DDLY_CNTH, DCLKoutDDLY_CNTL, and DCLKoutX_MUX,  
SDCKLoutX_ADLY, and so forth. can be adjusted to provide the required setup and hold time between SYSREF  
and Device Clock.  
It is possible to digitally adjust the SYSREF up to 20 VCO cycles before the SYSREF. So for example with a  
2949.12 MHz VCO frequency, tsJESD204B + 20 × (1/VCO Frequency) = –80 ps + 20 × (1/2949.12 MHz) = 6.7 ns.  
9.3.5 Input Clock Switching  
Manual, pin select, and automatic are three different kinds clock input switching modes can be set with the  
CLKin_SEL_MODE register.  
Below is information about how the active input clock is selected and what causes a switching event in the  
various clock input selection modes.  
9.3.5.1 Input Clock Switching - Manual Mode  
When CLKin_SEL_MODE is 0, 1, or 2 then CLKin0, CLKin1, or CLKin2 respectively is always selected as the  
active input clock. Manual mode also overrides the EN_CLKinX bits such that the CLKinX buffer operates even if  
CLKinX is disabled with EN_CLKinX = 0.  
If holdover is entered in this mode, then the device relocks to the selected CLKin upon holdover exit.  
9.3.5.2 Input Clock Switching - Pin Select Mode  
When CLKin_SEL_MODE is 3, the pins CLKin_SEL0 and CLKin_SEL1 select which clock input is active.  
Configuring Pin Select Mode  
The CLKin_SEL0_TYPE must be programmed to an input value for the CLKin_SEL0 pin to function as an input  
for pin select mode.  
The CLKin_SEL1_TYPE must be programmed to an input value for the CLKin_SEL1 pin to function as an input  
for pin select mode.  
If the CLKin_SELX_TYPE is set as output, the pin input value is considered LOW.  
The polarity of CLKin_SEL0 and CLKin_SEL1 input pins can be inverted with the CLKin_SEL_INV bit.  
Table 5 defines which input clock is active depending on CLKin_SEL0 and CLKin_SEL1 state.  
Table 5. Active Clock Input - Pin Select Mode, CLKin_SEL_INV = 0  
PIN CLKin_SEL1  
PIN CLKin_SEL0  
ACTIVE CLOCK  
CLKin0  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
CLKin1  
CLKin2  
Holdover  
The pin select mode overrides the EN_CLKinX bits such that the CLKinX buffer operates even if CLKinX is  
disabled with EN_CLKinX = 0. To switch as fast as possible, the clock input buffers (EN_CLKinX = 1) that could  
be switched to must remain enabled..  
30  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.3.5.3 Input Clock Switching - Automatic Mode  
When CLKin_SEL_MODE is 4, the active clock is selected in round-robin order of enabled clock inputs starting  
upon an input clock switch event. The switching order of the clocks is CLKin0 CLKin1 CLKin2 CLKin0,  
and so forth.  
For a clock input to be eligible to be switched through, it must be enabled using EN_CLKinX.  
Starting Active Clock  
Upon programming this mode, the currently active clock remains active if PLL1 lock detect is high. To ensure a  
particular clock input is the active clock when starting this mode, program CLKin_SEL_MODE to the manual  
mode which selects the desired clock input (CLKin0, 1, or 2). Wait for PLL1 to lock PLL1_DLD = 1, then select  
this mode with CLKin_SEL_MODE = 4.  
9.3.6 Digital Lock Detect  
Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference  
path (R) and the feedback path (N) of the PLL. When the time error, which is phase error, between the two  
signals is less than a specified window size (ε) a lock detect count increments. When the lock detect count  
reaches a user specified value, PLL1_DLD_CNT or PLL2_DLD_CNT, lock detect is asserted true. Once digital  
lock detect is true, a single phase comparison outside the specified window causes digital lock detect to be  
asserted false. This is illustrated in Figure 11.  
NO  
NO  
PLLX  
Lock Detected = False  
Lock Count = 0  
YES  
YES  
Increment  
PLLX Lock Count  
PLLX  
Lock Detected = True  
PLLX Lock Count =  
PLLX_DLD_CNT  
START  
Phase Error < g  
Phase Error < g  
YES  
NO  
Figure 11. Digital Lock Detect Flowchart  
This incremental lock detect count feature functions as a digital filter to ensure that lock detect isn't asserted for  
only a brief time when the phases of R and N are within the specified tolerance for only a brief time during initial  
phase lock.  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect signal can be monitored on the Status_LD1 or Status_LD2 pin. The pin may be  
programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.  
9.3.6.1 Calculating Digital Lock Detect Frequency Accuracy  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See Exiting  
Holdover for more info.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.3.7 Holdover  
Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock  
reference to PLL1 becomes invalid. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed  
tuning voltage is set on CPout1 to operate PLL1 in open loop.  
9.3.7.1 Enable Holdover  
Program HOLDOVER_EN = 1 to enable holdover mode.  
Holdover mode can be configured to set the CPout1 voltage upon holdover entry to a fixed user defined voltage  
or a tracked voltage.  
9.3.7.1.1 Fixed (Manual) CPout1 Holdover Mode  
By programming MAN_DAC_EN = 1, then the MAN_DAC value is set on the CPout1 pin during holdover.  
The user can optionally enable CPout1 voltage tracking (TRACK_EN = 1), read back the tracked DAC value,  
then re-program MAN_DAC value to a user desired value based on information from previous DAC read backs.  
This allows the most user control over the holdover CPout1 voltage, but also requires more user intervention.  
9.3.7.1.2 Tracked CPout1 Holdover Mode  
By programming MAN_DAC_EN = 0 and TRACK_EN = 1, the tracked voltage of CPout1 is set on the CPout1  
pin during holdover. When the DAC has acquired the current CPout1 voltage, the DAC_Locked signal is set  
which may be observed on Status_LD1 or Status_LD2 pins by programming PLL1_LD_MUX or PLL2_LD_MUX  
respectively.  
Updates to the DAC value for the Tracked CPout1 sub-mode occurs at the rate of the PLL1 phase detector  
frequency divided by (DAC_CLK_MULT × DAC_CLK_CNTR).  
The DAC update rate should be programmed for 100 kHz to ensure DAC holdover accuracy.  
The ability to program slow DAC update rates, for example one DAC update per 4.08 seconds when using 1024  
kHz PLL1 phase detector frequency with DAC_CLK_MULT = 16,384 and DAC_CLK_CNTR = 255, allows the  
device to look-back and set CPout1 at previous good CPout1 tuning voltage values before the event which  
caused holdover to occur.  
The current voltage of DAC value can be read back using RB_DAC_VALUE, see RB_DAC_VALUE .  
9.3.7.2 During Holdover  
PLL1 is run in open loop mode.  
PLL1 charge pump is set to TRI-STATE.  
PLL1 DLD is un-asserted.  
The HOLDOVER status is asserted  
During holdover If PLL2 was locked prior to entry of holdover mode, PLL2 DLD continues to be asserted.  
CPout1 voltage is set to:  
a voltage set in the MAN_DAC register (MAN_DAC_EN = 1).  
a voltage determined to be the last valid CPout1 voltage (MAN_DAC_EN = 0).  
PLL1 attempts to lock with the active clock input.  
The HOLDOVER status signal can be monitored on the Status_LD1 or Status_LD2 pin by programming the  
PLL1_DLD_MUX or PLL2_DLD_MUX register to Holdover Status.  
32  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.3.7.3 Exiting Holdover  
Holdover mode can be exited in one of two ways.  
Manually, by programming the device from the host.  
Automatically, By a clock operating within a specified ppm of the current PLL1 frequency on the active clock  
input.  
9.3.7.4 Holdover Frequency Accuracy and DAC Performance  
When in holdover mode, PLL1 runs in open-loop and the DAC sets the CPout1 voltage. If Fixed CPout1 mode is  
used, then the output of the DAC is a voltage dependant upon the MAN_DAC register. If Tracked CPout1 mode  
is used, then the output of the DAC is the voltage at the CPout1 pin before holdover mode was entered. When  
using Tracked mode and MAN_DAC_EN = 1, during holdover the DAC value is loaded with the programmed  
value in MAN_DAC, not the tracked value.  
When in Tracked CPout1 mode, the DAC has a worst case tracking error of ±2 LSBs once PLL1 tuning voltage is  
acquired. The step size is approximately 3.2 mV, therefore the VCXO frequency error during holdover mode  
caused by the DAC tracking accuracy is ±6.4 mV × Kv, where Kv is the tuning sensitivity of the VCXO in use.  
Therefore, the accuracy of the system when in holdover mode in ppm is:  
± 6.4 mV × Kv × 1e6  
Holdover accuracy (ppm) =  
VCXO Frequency  
(1)  
Example: consider a system with a 19.2-MHz clock input, a 153.6-MHz VCXO with a Kv of 17 kHz/V. The  
accuracy of the system in holdover in ppm is:  
±0.71 ppm = ±6.4 mV × 17 kHz/V × 1e6 / 153.6 MHz  
(2)  
It is important to account for this frequency error when determining the allowable frequency error window to  
cause holdover mode to exit.  
9.3.7.5 Holdover Mode - Automatic Exit of Holdover  
The LMK048xx device can be programmed to automatically exit holdover mode when the accuracy of the  
frequency on the active clock input achieves a specified accuracy. The programmable variables include  
PLL1_WND_SIZE and HOLDOVER_DLD_CNT.  
See Digital Lock Detect Frequency Accuracy to calculate the register values to cause holdover to automatically  
exit upon reference signal recovery to within a user specified ppm error of the holdover frequency.  
It is possible for the time to exit holdover to vary because the condition for automatic holdover exit is for the  
reference and feedback signals to have a time/phase error less than a programmable value. Because it is  
possible for two clock signals to be very close in frequency but not close in phase, it may take a long time for the  
phases of the clocks to align themselves within the allowable time/phase error before holdover exits.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.4 Device Functional Modes  
The following section describes the settings to enable various modes of operation for the LMK04828-EP. See  
Figure 7 and Figure 8 for visual diagrams of each mode.  
The LMK04828-EP is a flexible device that can be configured for many different use cases. The following  
simplified block diagrams help show the user the different use cases of the device.  
9.4.1 DUAL PLL  
Figure 12 illustrates the typical use case of the LMK04828-EP in dual loop mode. In dual loop mode the  
reference to PLL1 from CLKin0, CLKin1, or CLKin2. An external VCXO or tunable crystal is used to provide  
feedback for the first PLL and a reference to the second PLL. This first PLL cleans the jitter with the VCXO or low  
cost tunable crystal by using a narrow loop bandwidth. The VCXO or tunable crystal output may be buffered  
through the OSCout port. The VCXO or tunable crystal is used as the reference to PLL2 and may be doubled  
using the frequency doubler. The internal VCO drives up to seven divide/delay blocks which drive up to 14 clock  
outputs.  
Hitless switching and holdover functionality are optionally available when the input reference clock is lost.  
Holdover works by fixing the tuning voltage of PLL1 to the VCXO or tunable crystal.  
It is also possible to use an external VCO in place of the internal VCO of the PLL2. In this case one less CLKin is  
available as a reference.  
PLL1  
PLL2  
Up to 1 OSCout  
External  
OSCout  
OSCout*  
External VCXO  
or Tunable  
Crystal  
Loop Filter  
CLKinX  
CLKinX*  
Up to 3  
inputs  
R
N
7 Device  
Clocks  
DCLKoutX  
7 blocks  
Phase  
Detector  
PLL1  
CPout2  
External  
Loop Filter  
R
Device Clock  
Divider  
Digital Delay  
Analog Delay  
Phase  
Detector  
PLL2  
Partially  
Integrated  
Loop Filter  
DCLKoutX*  
Input  
Buffer  
N
Dual  
Internal  
VCOs  
7 SYSREF  
or Device  
Clocks  
SDCLKoutY  
SYSREF  
Digital Delay  
Analog Delay  
SDCLKoutY*  
LMK0482x  
1 Global SYSREF Divider  
Copyright © 2017, Texas Instruments Incorporated  
Figure 12. Simplified Functional Block Diagram for Dual Loop Mode  
Table 6. Dual Loop Mode Register Configuration  
REGISTER  
ADDRESS  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
FB_MUX  
0x13F  
Selects the input to the PLL1 N divider  
Selects the input to the PLL2 N divider  
Enables the Feedback Mux  
0
0
0
X
0
OSCin  
0x13F  
PLL2_P  
Disabled  
0x13F  
0x13F  
Selects the output of the Feedback Mux  
Powers down the OSCin port  
Don't care because FB_MUX is disabled  
Powered up  
OSCin_PD  
0x140  
Selects where the output of CLKin0 is  
directed.  
CLKin0_OUT_MUX  
CLKin1_OUT_MUX  
VCO_MUX  
0x147  
0x147  
0x138  
2
2
PLL1  
PLL1  
Selects where the output of CLKin1 is  
directed.  
Selects the VCO 0, 1, or an external  
VCO  
0 or 1  
VCO 0 or VCO 1  
34  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.4.2 0-DELAY Dual PLL  
Figure 13 illustrates the use case of cascaded 0-delay dual loop mode. This configuration differs from dual loop  
mode Figure 12 in that the feedback for PLL2 is driven by a clock output instead of the VCO output. Figure 14  
illustrates the use case of nested 0-delay dual loop mode. This configuration is similar to the dual PLL in DUAL  
PLL except that the feedback to the first PLL is driven by a clock output. This causes the clock outputs to have  
deterministic phase relationship with the clock input. Since all the clock outputs can be synchronized together, all  
the clock outputs can share the same deterministic phase relationship with the clock input signal. The feedback  
to PLL1 can be connected internally as shown using CLKout6, CLKout8, SYSREF, or externally using FBCLKin  
(CLKin1).  
It is also possible to use an external VCO in place of the internal VCO of PLL2, but one less CLKin is available  
as a reference and external 0-delay feedback is not available.  
PLL1  
PLL2  
Up to 1 OSCout  
External  
OSCout  
OSCout*  
External VCXO  
or Tunable  
Crystal  
Loop Filter  
CLKinX  
CLKinX*  
R
N
Phase  
Detector  
PLL1  
CPout2  
External  
Loop Filter  
Up to 3  
inputs  
Divider  
Digital Delay  
Analog Delay  
SDCLKoutY  
R
Phase  
Detector  
PLL2  
Partially  
Integrated  
Loop Filter  
SDCLKoutY*  
7 SYSREF  
or Device  
Clocks  
Input  
Buffer  
N
Dual  
Internal  
VCOs  
7 blocks  
SYSREF  
DCLKoutX  
Analog Delay  
Digital Delay  
DCLKoutX*  
7 Device  
Clocks  
Internal or external loopback, user programmable  
1 Global SYSREF Divider  
LMK0482x  
Copyright © 2017, Texas Instruments Incorporated  
Figure 13. Simplified Functional Block Diagram for Cascaded 0-delay Dual Loop Mode  
Table 7. Cascaded 0-delay Dual Loop Mode Register Configuration  
REGISTER  
ADDRESS  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
0x13F  
Selects the input to the PLL1 N divider.  
Selects the input to the PLL2 N divider  
Enables the Feedback Mux.  
0
1
1
OSCin  
0x13F  
Feedback Mux  
0x13F  
Feedback Mux Enabled  
Select between DCLKout6,  
DCLKout8, SYSREF  
FB_MUX  
0x13F  
Selects the output of the Feedback Mux.  
0, 1, or 2  
OSCin_PD  
CLKin0_OUT_MUX  
CLKin1_OUT_MUX  
VCO_MUX  
0x140  
0x147  
0x147  
0x138  
Powers down the OSCin port.  
0
Powered up  
PLL1  
Selects where the output of CLKin0 is directed.  
Selects where the output of CLKin1 is directed.  
Selects the VCO 0, 1, or an external VCO  
0
0 or 2  
0 or 1  
Fin or PLL1  
VCO 0 or VCO 1  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
PLL1  
PLL2  
Up to 1 OSCout  
External  
OSCout  
OSCout*  
External VCXO  
or Tunable  
Crystal  
Loop Filter  
CLKinX  
R
CLKinX*  
Up to 3  
inputs  
N
Phase  
Detector  
PLL1  
CPout2  
External  
Loop Filter  
Divider  
SDCLKoutY  
R
Digital Delay  
Analog Delay  
Phase  
Detector  
PLL2  
Partially  
Integrated  
Loop Filter  
SDCLKoutY*  
7 SYSREF  
or Device  
Clocks  
Input  
Buffer  
N
Dual  
Internal  
VCOs  
7 blocks  
SYSREF  
Analog Delay  
Digital Delay  
DCLKoutX  
DCLKoutX*  
7 Device  
Clocks  
Internal or external loopback, user programmable  
1 Global SYSREF Divider  
LMK0482x  
Copyright © 2017, Texas Instruments Incorporated  
Figure 14. Simplified Functional Block Diagram for Nested 0-delay Dual Loop Mode  
Table 8 illustrates nested 0-delay mode. This mode is the same as cascaded except the clock out feedback is to  
PLL1. The CLKin and CLKout have the same deterministic phase relationship but the VCXO's phase is not  
deterministic to the CLKin or CLKouts.  
Table 8. Nested 0-delay Dual Loop Mode Register Configuration  
REGISTER  
ADDRESS  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
0x13F  
Selects the input to the PLL1 N divider.  
Selects the input to the PLL2 N divider  
Enables the Feedback Mux.  
1
0
1
Feedback Mux  
PLL2 P  
0x13F  
0x13F  
Enabled  
Select between DCLKout6,  
DCLKout8, SYSREF  
FB_MUX  
0x13F  
Selects the output of the Feedback Mux.  
0, 1, or 2  
OSCin_PD  
CLKin0_OUT_MUX  
CLKin1_OUT_MUX  
VCO_MUX  
0x140  
0x147  
0x147  
0x138  
Powers down the OSCin port.  
0
Powered up  
PLL1  
Selects where the output of CLKin0 is directed.  
Selects where the output of CLKin1 is directed.  
Selects the VCO 0, 1, or an external VCO  
2
0 or 2  
0 or 1  
Fin or PLL1  
VCO 0 or VCO 1  
36  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.5 Programming  
LMK04828-EP devices are programmed using 24-bit registers. Each register consists of a 1-bit command field  
(R/W), a 2-bit multibyte field (W1, W0), a 13-bit address field (A12 to A0), and an 8-bit data field (D7 to D0). The  
contents of each register is clocked in MSB first (R/W), and the LSB (D0) last. During programming, the CS*  
signal is held low. The serial data is clocked in on the rising edge of the SCK signal. After the LSB is clocked in,  
the CS* signal goes high to latch the contents into the shift register. In general it is recommended to program  
registers in numeric order, for example 0x000 to 0x1FFF with exceptions as called out in Recommended  
Programming Sequence, to achieve proper device operation. This does not preclude the users ability to change  
single registers during operation.. Each register consists of one or more fields which control the device  
functionality. See electrical characteristics and Figure 1 for timing details.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
W1 and W0 shall be written as 0.  
9.5.1 Recommended Programming Sequence  
Registers are programmed in numeric order with 0x000 being the first and 0x1FFF being the last register  
programmed. The recommended programming sequence from POR involves:  
1. Program register 0x000 with RESET = 1.  
2. Program registers in numeric order from 0x000 to 0x165. Ensure the following register is programmed as  
follows:  
– 0x145 = 127 (0x7F)  
3. Program register 0x171 to 0xAA and 0x172 to 0x02 as required by OPT_REG_1 and OPT_REG_2.  
4. Program registers 0x17C and 0x17D as required by OPT_REG_1 and OPT_REG_2.  
5. Program registers 0x166 to 0x1FFF.  
Program register 0x171, 0x172, 0x17C (OPT_REG_1) and 0x17D (OPT_REG_2) before programming PLL2 in  
registers: 0x166, 0x167, and 0x168 to optimize PLL2_N and VCO1 phase noise performance over temperature.  
9.5.1.1 SPI LOCK  
When writing to SPI_LOCK, registers 0x1FFD, 0x1FFE, and 0x1FFF should all always be written sequentially.  
9.5.1.2 SYSREF_CLR  
When using SYSREF output, SYSREF local digital delay block should be cleared using SYSREF_CLR bit. See  
SYSREF_CLR for more infoormation.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.6 Register Maps  
9.6.1 Register Map for Device Programming  
Table 9 provides the register map for device programming. Any register can be read from the same data address  
it is written to.  
Table 9. LMK04828-EP Register Map  
ADDRESS  
[11:0]  
DATA  
7
6
5
4
3
2
1
0
SPI_3WIRE  
_DIS  
0x000  
0x002  
RESET  
0
0
0
0
0
0
POWER  
DOWN  
0
0
0
0
0
0
0
0x003  
0x004  
0x005  
0x006  
0x00C  
0x00D  
ID_DEVICE_TYPE  
ID_PROD[15:8]  
ID_PROD[7:0]  
ID_MASKREV  
ID_VNDR[15:8]  
ID_VNDR[7:0]  
CLKout0_1  
_ODL  
CLKout0_1  
_IDL  
0x100  
0
DCLKout0_DIV  
0x101  
0x102  
DCLKout0_DDLY_CNTH  
DCLKout0_DDLYd_CNTH  
DCLKout0_DDLY_CNTL  
DCLKout0_DDLYd_CNTL  
DCLKout0_  
0x103  
0x104  
0x105  
0x106  
0x107  
0x108  
DCLKout0_ADLY  
DCLKout0_MUX  
ADLY_MUX  
SDCLKout1_DDLY  
SDCLKout1_ADLY  
SDCLKout1_DIS_MODE  
CLKout0_FMT  
DCLKout0  
_HS  
SDCLKout1  
SDCLKout1  
_HS  
0
0
_MUX  
0
SDCLKout1_  
ADLY_EN  
0
CLKout0_1  
_PD  
SDCLKout1  
_PD  
DCLKout0  
_ DDLY_PD  
DCLKout0  
_ HSg_PD  
DCLKout0  
_ ADLYg_PD  
DCLKout0  
_ADLY _PD  
SDCLKout1  
_POL  
DCLKout0  
_POL  
CLKout1_FMT  
CLKout2_3  
_ODL  
CLKout2_3  
_IDL  
0
DCLKout2_DIV  
0x109  
0x10A  
DCLKout2_DDLY_CNTH  
DCLKout2_DDLYd_CNTH  
DCLKout2_DDLY_CNTL  
DCLKout2_DDLYd_CNTL  
DCLKout2_  
0x10B  
0x10C  
0x10D  
0x10E  
0x10F  
0x110  
DCLKout2_ADLY  
SDCLKout3  
DCLKout2_MUX  
ADLY_MUX  
SDCLKout3_DDLY  
SDCLKout3_ADLY  
SDCLKout3_DIS_MODE  
CLKout2_FMT  
DCLKout2  
_HS  
SDCLKout3  
_HS  
0
0
_MUX  
SDCLKout3  
_ ADLY_EN  
0
0
DCLKout2  
_ DDLY_PD  
DCLKout2  
_ HSg_PD  
DCLKout2  
_ ADLYg_PD  
DCLKout2  
_ADLY _PD  
CLKout2_3  
_PD  
SDCLKout3  
_PD  
SDCLKout3  
_POL  
DCLKout2  
_POL  
CLKout3_FMT  
CLKout4_5  
_ODL  
CLKout4_5  
_IDL  
0
DCLKout4_DIV  
0x111  
0x112  
DCLKout4_DDLY_CNTH  
DCLKout4_DDLYd_CNTH  
DCLKout4_DDLY_CNTL  
DCLKout4_DDLYd_CNTL  
DCLKout4_  
0x113  
0x114  
0x115  
0x116  
DCLKout4_ADLY  
DCLKout4_MUX  
ADLY_MUX  
SDCLKout5_DDLY  
SDCLKout5_ADLY  
SDCLKout5_DIS_MODE  
DCLKout4  
_HS  
SDCLKout5  
SDCLKout5  
_HS  
0
0
_MUX  
0
SDCLKout5  
_ ADLY_EN  
0
DCLKout4  
_ DDLY_PD  
DCLKout4  
_ HSg_PD  
DCLKout4  
_ ADLYg_PD  
DCLKout4  
_ADLY _PD  
CLKout4_5  
_PD  
SDCLKout5  
_PD  
38  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Register Maps (continued)  
Table 9. LMK04828-EP Register Map (continued)  
ADDRESS  
DATA  
[11:0]  
7
6
5
4
3
2
1
0
SDCLKout5  
_POL  
DCLKout4  
_POL  
0x117  
CLKout5_FMT  
CLKout4_FMT  
CLKout6_7  
_ODL  
CLKout6_8  
_IDL  
0x118  
0
DCLKout6_DIV  
0x119  
0x11A  
DCLKout6_DDLY_CNTH  
DCLKout6_DDLYd_CNTH  
DCLKout6_DDLY_CNTL  
DCLKout6_DDLYd_CNTL  
DCLKout6_  
0x11B  
0x11C  
0x11D  
0x11E  
0x11F  
0x120  
DCLKout6_ADLY  
SDCLKout7  
DCLKout6_MUX  
ADLY_MUX  
SDCLKout7_DDLY  
SDCLKout7_ADLY  
SDCLKout7_DIS_MODE  
CLKout6_FMT  
DCLKout6  
_HS  
SDCLKout7  
_HS  
0
0
_MUX  
SDCLKout7  
_ ADLY_EN  
0
0
DCLKout6  
_ DDLY_PD  
DCLKout6  
_ HSg_PD  
DCLKout6  
_ ADLYg_PD  
DCLKout6  
_ADLY _PD  
CLKout6_7  
_PD  
SDCLKout7  
_PD  
SDCLKout7  
_POL  
CLKout7  
_FMT  
DCLKout6  
_POL  
CLKout8_9  
_ODL  
CLKout8_9  
_IDL  
0
DCLKout8_DIV  
0x121  
0x122  
DCLKout8_DDLY_CNTH  
DCLKout8_DDLYd_CNTH  
DCLKout8_DDLY_CNTL  
DCLKout8_DDLYd_CNTL  
DCLKout8  
0x123  
0x124  
0x125  
0x126  
0x127  
0x128  
DCLKout8_ADLY  
DCLKout8_MUX  
_ ADLY_MUX  
SDCLKout9_DDLY  
SDCLKout9_ADLY  
SDCLKout9_DIS_MODE  
CLKout8_FMT  
DCLKout8  
_HS  
SDCLKout9  
SDCLKout9  
_HS  
0
0
_MUX  
0
SDCLKout9  
_ ADLY_EN  
0
DCLKout8  
_ DDLY_PD  
DCLKout8  
_ HSg_PD  
DCLKout8  
_ ADLYg_PD  
DCLKout8  
_ADLY _PD  
CLKout8_9  
_PD  
SDCLKout9  
_PD  
SDCLKout9  
_POL  
DCLKout8  
_POL  
CLKout9_FMT  
CLKout10  
_11 _ODL  
CLKout10  
_11_IDL  
0
DCLKout10_DIV  
0x129  
0x12A  
DCLKout10_DDLY_CNTH  
DCLKout10_DDLYd_CNTH  
DCLKout10_DDLY_CNTL  
DCLKout10_DDLYd_CNTL  
DCLKout10  
0x12B  
0x12C  
0x12D  
0x12E  
0x12F  
0x130  
DCLKout10_ADLY  
SDCLKout11  
DCLKout10_MUX  
_ ADLY_MUX  
SDCLKout11_DDLY  
SDCLKout11_ADLY  
SDCLKout11_DIS_MODE  
CLKout10_FMT  
DCLKout10  
_HS  
SDCLKout11  
_HS  
0
0
_MUX  
SDCKLout11  
_ ADLY_EN  
0
0
DCLKout10  
_ DDLY_PD  
DCLKout10  
_ HSg_PD  
DLCLKout10  
_ ADLYg_PD  
DCLKout10  
_ ADLY_PD  
CLKout10  
_11_PD  
SDCLKout11  
_PD  
SDCLKout11  
_POL  
DCLKout10  
_POL  
CLKout11_FMT  
CLKout12  
_13 _ODL  
CLKout12  
_13_IDL  
0
DCLKout12_DIV  
0x131  
0x132  
DCLKout12_DDLY_CNTH  
DCLKout12_DDLYd_CNTH  
DCLKout12_DDLY_CNTL  
DCLKout12_DDLYd_CNTL  
DCLKout12_  
0x133  
0x134  
0x135  
0x136  
DCLKout12_ADLY  
DCLKout12_MUX  
ADLY_MUX  
SDCLKout13_DDLY  
SDCLKout13_ADLY  
SDCLKout13_DIS_MODE  
DCLKout12  
_HS  
SDCLKout13  
SDCLKout13  
_HS  
0
0
_MUX  
0
SDCLKout13  
_ ADLY_EN  
0
DCLKout12  
_ DDLY_PD  
DCLKout12  
_ HSg_PD  
DCLKout12  
_ ADLYg_PD  
DCLKout12  
_ ADLY_PD  
CLKout12  
_13_PD  
SDCLKout13  
_PD  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Register Maps (continued)  
Table 9. LMK04828-EP Register Map (continued)  
ADDRESS  
DATA  
[11:0]  
7
6
5
4
3
2
1
0
SDCLKout13  
_POL  
DCLKout12  
_POL  
0x137  
CLKout13_FMT  
CLKout12_FMT  
OSCout  
_MUX  
0x138  
0x139  
0
VCO_MUX  
OSCout_FMT  
SYSREF_  
CLKin0_MUX  
0
0
0
0
0
0
0
0
SYSREF_MUX  
0x13A  
0x13B  
0x13C  
0x13D  
0x13E  
SYSREF_DIV[12:8]  
SYSREF_DDLY[12:8]  
0
SYSREF_DIV[7:0]  
0
0
0
SYSREF_DDLY[7:0]  
0
0
0
0
0
0
0
0
SYSREF_PULSE_CNT  
PLL2_NCLK  
_MUX  
PLL1_NCLK  
_MUX  
FB_MUX  
_EN  
0x13F  
0x140  
FB_MUX  
SYSREF_GBL  
_PD  
SYSREF  
_DDLY_PD  
SYSREF  
_PLSR_PD  
PLL1_PD  
VCO_LDO_PD  
VCO_PD  
OSCin_PD  
SYSREF_PD  
DDLYd_  
SYSREF_EN  
DDLYd12  
_EN  
DDLYd10  
_EN  
0x141  
0x142  
0x143  
DDLYd7_EN  
DDLYd6_EN  
DDLYd4_EN  
DDLYd2_EN  
DDLYd0_EN  
0
0
0
DDLYd_STEP_CNT  
SYSREF_DDLY SYNC_1SHOT  
SYNC_PLL2  
_DLD  
SYNC_PLL1  
_DLD  
SYNC_POL  
SYNC_EN  
SYNC_MODE  
_CLR  
_EN  
SYNC  
_DISSYSREF  
0x144  
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
SYNC_DIS2  
SYNC_DIS0  
0x145  
0x146  
0
0
1
1
1
1
1
1
1
0
CLKin2_EN  
CLKin1_EN  
CLKin0_EN  
CLKin2_TYPE  
CLKin1_TYPE  
CLKin0_TYPE  
CLKin_SEL  
_POL  
0x147  
0x148  
0x149  
0x14A  
0x14B  
CLKin_SEL_MODE  
CLKin1_OUT_MUX  
CLKin0_OUT_MUX  
0
0
0
0
CLKin_SEL0_MUX  
CLKin_SEL1_MUX  
RESET_MUX  
CLKin_SEL0_TYPE  
CLKin_SEL1_TYPE  
RESET_TYPE  
SDIO_RDBK  
_TYPE  
0
HOLDOVER  
_ FORCE  
MAN_DAC  
_EN  
LOS_TIMEOUT  
LOS_EN  
TRACK_EN  
MAN_DAC[9:8]  
0x14C  
0x14D  
0x14E  
0x14F  
MAN_DAC[7:0]  
0
0
DAC_TRIP_LOW  
DAC_TRIP_HIGH  
DAC_CLK_MULT  
DAC_CLK_CNTR  
HOLDOVER  
_HITLESS  
_SWITCH  
CLKin  
_OVERRIDE  
HOLDOVER  
_ PLL1_DET  
HOLDOVER  
_LOS _DET  
HOLDOVER  
_VTUNE_DET  
HOLDOVER  
_EN  
0x150  
0
0
0
0x151  
0x152  
0x153  
0x154  
0x155  
0x156  
0x157  
0x158  
0x159  
0x15A  
0
0
0
0
0
HOLDOVER_DLD_CNT[13:8]  
HOLDOVER_DLD_CNT[7:0]  
CLKin0_R[13:8]  
0
0
0
0
CLKin0_R[7:0]  
CLKin1_R[7:0]  
CLKin2_R[7:0]  
PLL1_N[7:0]  
CLKin1_R[13:8]  
CLKin2_R[13:8]  
PLL1_N[13:8]  
PLL1  
_CP_TRI  
PLL1  
_CP_POL  
0x15B  
PLL1_WND_SIZE  
PLL1_CP_GAIN  
0x15C  
0x15D  
0
0
PLL1_DLD_CNT[13:8]  
PLL1_DLD_CNT[7:0]  
40  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Register Maps (continued)  
Table 9. LMK04828-EP Register Map (continued)  
ADDRESS  
DATA  
[11:0]  
0x15E  
0x15F  
0x160  
0x161  
7
6
5
4
3
2
1
0
0
0
PLL1_R_DLY  
PLL1_N_DLY  
PLL1_LD_MUX  
0
PLL1_LD_TYPE  
0
0
0
0
PLL2_R[11:8]  
PLL2_R[7:0]  
PLL2  
_XTAL_EN  
PLL2  
_REF_2X_EN  
0x162  
PLL2_P  
0
OSCin_FREQ  
0
0x163  
0x164  
0x165  
0
0
0
0
0
PLL2_N_CAL[17:16]  
PLL2_N_CAL[15:8]  
PLL2_N_CAL[7:0]  
PLL2_FCAL  
_DIS  
0x166  
0
0
0
PLL2_N[17:16]  
0x167  
0x168  
PLL2_N[15:8]  
PLL2_N[7:0]  
PLL2  
_CP_POL  
PLL  
2_CP_TRI  
0x169  
0x16A  
0
0
PLL2_WND_SIZE  
PLL2_CP_GAIN  
1
SYSREF_REQ_  
EN  
PLL2_DLD_CNT[15:8]  
0x16B  
0x16C  
0x16D  
0x16E  
0x171  
0x172  
0x173  
0x174  
0x17C  
0x17D  
PLL2_DLD_CNT[7:0]  
PLL2_LF_R4  
0
0
PLL2_LF_R3  
PLL2_LF_C4  
PLL2_LF_C3  
PLL2_LD_MUX  
PLL2_LD_TYPE  
1
0
0
0
0
1
0
1
0
0
0
1
1
0
0
0
0
0
0
PLL2_PD  
0
0
0
0
PLL2_PRE_PD  
0
0
VCO1_DIV  
OPT_REG_1  
OPT_REG_2  
RB_PLL1_  
LD_LOST  
CLR_PLL1_  
LD_LOST  
0x182  
0x183  
0
0
0
0
0
0
0
0
0
0
RB_PLL1_LD  
RB_PLL2_LD  
RB_PLL2_  
LD_LOST  
CLR_PLL2_  
LD_LOST  
RB_CLKin2_  
SEL  
RB_CLKin1_  
SEL  
RB_CLKin0_  
SEL  
RB_CLKin1_  
LOS  
RB_CLKin0_  
LOS  
0x184  
0x185  
0x188  
RB_DAC_VALUE[9:8]  
X
RB_DAC_VALUE[7:0]  
RB_  
HOLDOVER  
0
0
0
X
X
X
X
0x1FFD  
0x1FFE  
0x1FFF  
SPI_LOCK[23:16]  
SPI_LOCK[15:8]  
SPI_LOCK[7:0]  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7 Device Register Descriptions  
The following section details the fields of each register, the Power On Reset Defaults, and specific descriptions of  
each bit.  
In some cases similar fields are located in multiple registers. In this case specific outputs may be designated as  
X or Y. In these cases, the X represents even numbers from 0 to 12 and the Y represents odd numbers from 1 to  
13. In the case where X and Y are both used in a bit name, then Y = X + 1.  
9.7.1 System Functions  
9.7.1.1 RESET, SPI_3WIRE_DIS  
This register contains the RESET function.  
Table 10. Register 0x000  
BIT  
NAME  
POR  
DEFAULT  
DESCRIPTION  
0: Normal Operation  
1: Reset (automatically cleared)  
7
RESET  
NA  
0
0
6:5  
Reserved  
Disable 3 wire SPI mode. 4 Wire SPI mode is enabled by selecting SPI Read back in one  
of the output MUX settings. For example CLKin0_SEL_MUX.  
0: 3 Wire Mode enabled  
4
SPI_3WIRE_DIS  
NA  
0
1: 3 Wire Mode disabled  
3:0  
NA  
Reserved  
9.7.1.2 POWERDOWN  
This register contains the POWERDOWN function.  
Table 11. Register 0x002  
POR  
DEFAULT  
BIT  
7:1  
0
NAME  
NA  
DESCRIPTION  
0
Reserved  
0: Normal Operation  
1: Powerdown  
POWERDOWN  
0
9.7.1.3 ID_DEVICE_TYPE  
This register contains the product device type. This is read only register.  
Table 12. Register 0x003  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
ID_DEVICE_TYPE  
6
PLL product device type.  
42  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.1.4 ID_PROD[15:8], ID_PROD  
These registers contain the product identifier. This is a read only register.  
Table 13. ID_PROD Register Configuration, ID_PROD[15:0]  
MSB  
LSB  
0x004[7:0]  
0x005[7:0]  
POR  
DEFAULT  
BIT REGISTERS  
FIELD NAME  
DESCRIPTION  
7:0  
7:0  
0x004  
0x005  
ID_PROD[15:8]  
ID_PROD  
208  
91  
MSB of the product identifier.  
LSB of the product identifier.  
9.7.1.5 ID_MASKREV  
This register contains the IC version identifier. This is a read only register.  
Table 14. Register 0x006  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
ID_MASKREV  
32  
IC version identifier for LMK04828-EP  
9.7.1.6 ID_VNDR[15:8], ID_VNDR  
These registers contain the vendor identifier. This is a read only register.  
Table 15. ID_VNDR Register Configuration, ID_VNDR[15:0]  
MSB  
LSB  
0x00C[7:0]  
0x00D[7:0]  
Table 16. Registers 0x00C, 0x00D  
BIT REGISTERS  
NAME  
POR  
DEFAULT  
DESCRIPTION  
7:0  
7:0  
0x00C  
0x00D  
ID_VNDR[15:8]  
ID_VNDR  
81  
MSB of the vendor identifier.  
LSB of the vendor identifier.  
4
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.2 (0x100 - 0x138) Device Clock and SYSREF Clock Output Controls  
9.7.2.1 CLKoutX_Y_ODL, CLKoutX_Y_IDL, DCLKoutX_DIV  
These registers control the input and output drive level as well as the device clock out divider values.  
Table 17. Registers 0x100, 0x108, 0x110, 0x118, 0x120, 0x128, and 0x130  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
6
5
NA  
0
0
0
Reserved  
CLKoutX_Y_ODL  
CLKoutX_Y_IDL  
Output drive level.  
Input drive level.  
DCLKoutX_DIV sets the divide value for the clock output, the divide may be even or odd.  
Both even or odd divides output a 50% duty cycle clock if duty cycle correction (DCC) is  
selected.  
Divider is unused if DCLKoutX_MUX = 2 (bypass), equivalent divide of 1.  
X = 0 2  
X = 2 4  
X = 4 8  
X = 6 8  
X = 8 8  
X = 10 8  
X = 12 2  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divider Value  
32  
4:0  
DCLKoutX_DIV  
(1)  
1
2
...  
30 (0x1E)  
31 (0x1F)  
30  
31  
(1) Not valid if DCLKoutX_MUX = 0, Divider only. Not valid if DCLKoutX_MUX = 3 (Analog Delay + Divider) and DCLKoutX_ADLY_MUX =  
0 (without duty cycle correction/halfstep).  
9.7.2.2 DCLKoutX_DDLY_CNTH, DCLKoutX_DDLY_CNTL  
This register controls the digital delay high and low count values for the device clock outputs.  
Table 18. Registers 0x101, 0x109, 0x111, 0x119, 0x121, 0x129, 0x131  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Number of clock cycles the output will be high when digital delay is engaged.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Values  
16  
DCLKoutX  
_DDLY_CNTH  
7:4  
5
Reserved  
2
...  
15 (0x0F)  
15  
Number of clock cycles the output will be low when digital delay is engaged.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Values  
16  
DCLKoutX  
_DDLY_CNTL  
3:0  
5
Reserved  
2
...  
15 (0x0F)  
15  
44  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.2.3 DCLKoutX_DDLYd_CNTH, DCLKoutX_DDLYd_CNTL  
This register controls the digital delay high and low count values for the device clock outputs during dynamic  
digital delay. The corresponding DCLKoutX_DDLY_CNTH/CNTL registers must be programmed to the same  
value.  
Table 19. Registers 0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Number of clock cycles the output will be high when dynamic digital delay is engaged.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Values  
16  
DCLKoutX  
_DDLYd_CNTH  
7:4  
5
Reserved  
2
...  
15 (0x0F)  
15  
Number of clock cycles the output will be low when dynamic digital delay is engaged.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Values  
16  
DCLKoutX  
_DDLYd_CNTL  
3:0  
5
Reserved  
2
...  
15 (0x0F)  
15  
9.7.2.4 DCLKoutX_ADLY, DCLKoutX_ADLY_MUX, DCLKout_MUX  
These registers control the analog delay properties for the device clocks.  
Table 20. Registers 0x103, 0x10B, 0x113, 0x11B, 0x123, 0x12B, 0x133  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Device clock analog delay value. Setting this value results in a 500 ps timing delay in  
additional to the delay of each 25 ps step. Effective range is 500 ps to 1075 ps.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Value  
0 ps  
7:3  
DCLKoutX_ADLY  
0
25 ps  
50 ps  
...  
23 (0x17)  
575 ps  
This register selects the input to the analog delay for the device clock. Used when  
DCLKoutX_MUX = 3.  
0: Divided without duty cycle correction or half step.  
DCLKoutX_ADLY  
_MUX  
2
0
0
(1)  
1: Divided with duty cycle correction and half step.  
This selects the input to the device clock buffer.  
Field Value  
Mux Output  
(1)  
0 (0x0)  
Divider only  
1:0  
DCLKoutX_MUX  
Divider with Duty Cycle Correction  
and Half Step  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Bypass  
Analog Delay + Divider  
(1) DCLKoutX_DIV = 1 is not valid.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.2.5 DCLKoutX_HS, SDCLKoutY_MUX, SDCLKoutY_DDLY, SDCLKoutY_HS  
These registers set the half step for the device clock, the SYSREF output MUX, the SYSREF clock digital delay,  
and half step.  
Table 21. Registers 0x104, 0x10C, 0x114, 0x11C, 0x124, 0x12C, 0x134  
BIT  
7
NAME  
NA  
POR  
DEFAULT  
DESCRIPTION  
0
0
Reserved  
Sets the device clock half step value. Half step must be zero (0) for a divide of 1.  
6
DCLKoutX_HS  
0: 0 cycles  
1: -0.5 cycles  
Sets the input the the SDCLKoutY outputs.  
0: Device clock output  
1: SYSREF output  
5
4:1  
0
SDCLKoutY_MUX  
SDCLKoutY_DDLY  
SDCLKoutY_HS  
0
0
0
Sets the number of VCO cycles to delay the SDCLKoutY by when SYSREF output is  
selected by SDCLKoutY_MUX.  
Field Value  
0 (0x00)  
Delay Cycles  
Bypass  
1 (0x01)  
2
2 (0x02)  
3
...  
...  
10 (0x0A)  
11  
11 to 15 (0x0B to 0x0F)  
Reserved  
Sets the SYSREF clock half step value.  
0: 0 cycles  
1: -0.5 cycles  
46  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.2.6 SDCLKoutY_ADLY_EN, SDCLKoutY_ADLY  
These registers set the analog delay parameters for the SYSREF outputs.  
Table 22. Registers 0x105, 0x10D, 0x115, 0x11D, 0x125, 0x12D, 0x135  
BIT  
7:5  
4
NAME  
POR  
DEFAULT  
DESCRIPTION  
NA  
0
Reserved  
Enables analog delay for the SYSREF output.  
SDCLKoutY  
_ADLY_EN  
0
0
0: Disabled  
1: Enabled  
Sets the analog delay value for the SYSREF output. Selecting analog delay adds an  
additional 700 ps in propagation delay. Effective range is 700 ps to 2950 ps.  
Field Value  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
...  
Delay Value  
0 ps  
600 ps  
SDCLKoutY  
_ADLY  
3:0  
750 ps (+150 ps from 0x1)  
900 ps (+150 ps from 0x2)  
...  
14 (0xE)  
15 (0xF)  
2100 ps (+150 ps from 0xD)  
2250 ps (+150 ps from 0xE)  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.2.7 DCLKoutX_DDLY_PD, DCLKoutX_HSg_PD, DCLKout_ADLYg_PD, DCLKout_ADLY_PD,  
DCLKoutX_Y_PD, SDCLKoutY_DIS_MODE, SDCLKoutY_PD  
This register controls the power down functions for the digital delay, glitchless half step, glitchless analog delay,  
analog delay, outputs, and SYSREF disable modes.  
Table 23. Registers 0x106, 0x10E, 0x116, 0x11E, 0x126, 0x12E, 0x136  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Powerdown the device clock digital delay circuitry.  
0: Enabled  
1: Powerdown  
DCLKoutX  
_DDLY_PD  
7
0
Powerdown the device clock glitchless half step feature.  
0: Enabled  
1: Powerdown  
DCLKoutX  
_HSg_PD  
6
5
4
1
1
1
Powerdown the device clock glitchless analog delay feature.  
0: Enabled, analog delay step size of one code is glitchless between values 1 to 23.  
1: Powerdown  
DCLKoutX  
_ADLYg_PD  
Powerdown the device clock analog delay feature.  
0: Enabled  
1: Powerdown  
DCLKoutX  
_ADLY_PD  
X_Y = 0_1 1  
X_Y = 2_3 1  
X_Y = 4_5 0  
X_Y = 6_7 0  
X_Y = 8_9 0  
X_Y = 10_11 0  
X_Y = 12_13 1  
Powerdown the clock group defined by X and Y.  
0: Enabled  
1: Powerdown  
3
CLKoutX_Y_PD  
Configures the output state of the SYSREF  
Field Value  
0 (0x00)  
Disable Mode  
Active in normal operation  
1 (0x01)  
If SYSREF_GBL_PD = 1, the output is a  
logic low, otherwise it is active.  
SDCLKoutY  
_DIS_MODE  
2:1  
0
1
2 (0x02)  
3 (0x03)  
If SYSREF_GBL_PD = 1, the output is a  
nominal Vcm voltage(1), otherwise it is  
active.  
Output is a nominal Vcm voltage(1)  
0
SDCLKoutY_PD  
Powerdown SDCLKoutY and set to the state defined by SDCLKoutY_DIS_MODE  
(1) If LVPECL mode is used with emitter resistors to ground, the output Vcm will be ~0 V, each pin will be ~0 V.  
48  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.2.8 SDCLKoutY_POL, SDCLKoutY_FMT, DCLKoutX_POL, DCLKoutX_FMT  
These registers configure the output polarity, and format.  
Table 24. Registers 0x107, 0x10F, 0x117, 0x11F, 0x127, 0x12F, 0x137  
BIT  
POR  
DEFAULT  
NAME  
DESCRIPTION  
Sets the polarity of clock on SDCLKoutY when device clock output is selected with  
SDCLKoutY_MUX.  
0: Normal  
7
SDCLKoutY_POL  
0
1: Inverted  
Sets the output format of the SYSREF clocks  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Output Format  
Powerdown  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
6:4  
SDCLKoutY_FMT  
DCLKoutX_POL  
DCLKoutX_FMT  
0
Sets the polarity of the device clocks from the DCLKoutX outputs  
3
0
0: Normal  
1: Inverted  
Sets the output format of the device clocks.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Output Format  
LMK04828-  
EP:  
Powerdown  
LVDS  
X = 0 0  
X = 2 0  
X = 4 1  
X = 6 1  
X = 8 1  
X = 10 1  
X = 12 0  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
2:0  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.3 SYSREF, SYNC, and Device Config  
9.7.3.1 VCO_MUX, OSCout_MUX, OSCout_FMT  
This register selects the clock distribution source, and OSCout parameters.  
Table 25. Register 0x138  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
Selects clock distribution path source from VCO0, VCO1, or CLKin (external VCO)  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
VCO Selected  
VCO 0  
6:5  
VCO_MUX  
0
0
VCO 1  
CLKin1 (external VCO)  
Reserved  
Select the source for OSCout:  
0: Buffered OSCin  
4
OSCout_MUX  
1: Feedback Mux  
Selects the output format of OSCout. When powered down, these pins may be used as  
CLKin2.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
OSCout Format  
Powerdown (CLKin2)  
LVDS  
Reserved  
Reserved  
LVPECL 1600 mVpp  
LVPECL 2000 mVpp  
LVCMOS (Norm / Inv)  
LVCMOS (Inv / Norm)  
LVCMOS (Norm / Norm)  
LVCMOS (Inv / Inv)  
LVCMOS (Off / Norm)  
LVCMOS (Off / Inv)  
LVCMOS (Norm / Off)  
LVCMOS (Inv / Off)  
LVCMOS (Off / Off)  
3:0  
OSCout_FMT  
4
50  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.3.2 SYSREF_CLKin0_MUX, SYSREF_MUX  
This register sets the source for the SYSREF outputs. Refer to Figure 8 and SYNC/SYSREF.  
Table 26. Register 0x139  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:3  
NA  
0
Reserved  
Selects the SYSREF output from SYSREF_MUX or CLKin0 direct  
Field Value  
SYSREF Source  
SYSREF Mux  
SYSREF_  
CLKin0_MUX  
2
0
0
0
1
Selects the SYSREF source.  
Field Value  
CLKin0 Direct (from CLKin0_OUT_MUX)  
SYSREF Source  
Normal SYNC  
0 (0x00)  
1:0  
SYSREF_MUX  
1 (0x01)  
Re-clocked  
2 (0x02)  
SYSREF Pulser  
SYSREF Continuous  
3 (0x03)  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.3.3 SYSREF_DIV[12:8], SYSREF_DIV[7:0]  
These registers set the value of the SYSREF output divider.  
Table 27. Registers 0x13A, 0x13B  
MSB  
LSB  
0x13A[4:0]  
0x13B[7:0]  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:5  
0x13A  
NA  
0
Reserved  
Divide value for the SYSREF outputs.  
Field Value  
0x00 to 0x07  
8 (0x08)  
Divide Value  
4:0  
0x13A  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
12  
Reserved  
8
9
9 (0x09)  
...  
...  
7:0  
0x13B  
0
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
9.7.3.4 SYSREF_DDLY[12:8], SYSREF_DDLY[7:0]  
These registers set the delay of the SYSREF digital delay value.  
Table 28. SYSREF Digital Delay Register Configuration, SYSREF_DDLY[12:0]  
MSB  
LSB  
0x13C[4:0]  
0x13D[7:0]  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:5  
0x13C  
NA  
0
Reserved  
Sets the value of the SYSREF digital delay.  
Field Value  
0x00 to 0x07  
8 (0x08)  
Delay Value  
4:0  
0x13C  
SYSREF_DDLY[12:8]  
SYSREF_DDLY[7:0]  
0
Reserved  
8
9
9 (0x09)  
...  
...  
7:0  
0x13D  
8
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
52  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.3.5 SYSREF_PULSE_CNT  
This register sets the number of SYSREF pulses if SYSREF is not in continuous mode. See  
SYSREF_CLKin0_MUX, SYSREF_MUX for further description of SYSREF's outputs.  
Programming the register causes the specified number of pulses to be output if "SYSREF Pulses" is selected by  
SYSREF_MUX and SYSREF functionality is powered up.  
Table 29. Register 0x13E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:2  
NA  
0
Reserved  
Sets the number of SYSREF pulses generated when not in continuous mode.  
See SYSREF_CLKin0_MUX, SYSREF_MUX for more information on SYSREF modes.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Number of Pulses  
1 pulse  
1:0  
SYSREF_PULSE_CNT  
3
2 pulses  
4 pulses  
8 pulses  
9.7.3.6 PLL2_NCLK_MUX, PLL1_NCLK_MUX, FB_MUX, FB_MUX_EN  
This register controls the feedback feature.  
Table 30. Register 0x13F  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:5  
NA  
0
Reserved  
Selects the input to the PLL2 N Divider  
0: PLL Prescaler  
1: Feedback Mux  
4
3
PLL2_NCLK_MUX  
PLL1_NCLK_MUX  
0
0
Selects the input to the PLL1 N Delay.  
0: OSCin  
1: Feedback Mux  
When in 0-delay mode, the feedback mux selects the clock output to be fed back into the  
PLL1 N Divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Source  
DCLKout6  
2:1  
FB_MUX  
0
0
DCLKout8  
SYSREF Divider  
External  
When using 0-delay, FB_MUX_EN must be set to 1 power up the feedback mux.  
0: Feedback mux powered down  
0
FB_MUX_EN  
1: Feedback mux enabled  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.3.7 PLL1_PD, VCO_LDO_PD, VCO_PD, OSCin_PD, SYSREF_GBL_PD, SYSREF_PD,  
SYSREF_DDLY_PD, SYSREF_PLSR_PD  
This register contains powerdown controls for OSCin and SYSREF functions.  
Table 31. Register 0x140  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Powerdown PLL1  
0: Normal operation  
1: Powerdown  
7
PLL1_PD  
0
Powerdown VCO_LDO  
0: Normal operation  
1: Powerdown  
6
5
4
VCO_LDO_PD  
VCO_PD  
0
0
0
Powerdown VCO  
0: Normal operation  
1: Powerdown  
Powerdown the OSCin port.  
0: Normal operation  
1: Powerdown  
OSCin_PD  
Powerdown individual SYSREF outputs depending on the setting of  
SDCLKoutY_DIS_MODE for each SYSREF output. SYSREF_GBL_PD allows many  
SYSREF outputs to be controlled through a single bit.  
0: Normal operation  
3
2
SYSREF_GBL_PD  
SYSREF_PD  
0
1
1: Activate Powerdown Mode  
Powerdown the SYSREF circuitry and divider. If powered down, SYSREF output mode  
cannot be used. SYNC cannot be provided either.  
0: SYSREF can be used as programmed by individual SYSREF output registers.  
1: Powerdown  
Powerdown the SYSREF digital delay circuitry.  
0: Normal operation, SYSREF digital delay may be used. Must be powered up during  
SYNC for deterministic phase relationship with other clocks.  
1: Powerdown  
1
0
SYSREF_DDLY_PD  
SYSREF_PLSR_PD  
1
1
Powerdown the SYSREF pulse generator.  
0: Normal operation  
1: Powerdown  
9.7.3.8 DDLYd_SYSREF_EN, DDLYdX_EN  
This register enables dynamic digital delay for enabled device clocks and SYSREF when DDLYd_STEP_CNT is  
programmed.  
Table 32. Register 0x141  
BIT  
7
NAME  
DDLYd_SYSREF_EN  
DDLYd12_EN  
DDLYd10_EN  
DDLYd8_EN  
POR DEFAULT  
DESCRIPTION  
Enables dynamic digital delay on SYSREF outputs  
Enables dynamic digital delay on DCLKout12  
Enables dynamic digital delay on DCLKout10  
Enables dynamic digital delay on DCLKout8  
Enables dynamic digital delay on DCLKout6  
Enables dynamic digital delay on DCLKout4  
Enables dynamic digital delay on DCLKout2  
Enables dynamic digital delay on DCLKout0  
0
0
0
0
0
0
0
0
6
5
4
0: Disabled  
1: Enabled  
3
DDLYd6_EN  
2
DDLYd4_EN  
1
DDLYd2_EN  
0
DDLYd0_EN  
54  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.3.9 DDLYd_STEP_CNT  
This register sets the number of dynamic digital delay adjustments occur. Upon programming, the dynamic digital  
delay adjustment begins for each clock output with dynamic digital delay enabled. Dynamic digital delay can only  
be started by SPI.  
Other registers must be set: SYNC_MODE = 3  
Table 33. Register 0x142  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:4  
NA  
0
Reserved  
Sets the number of dynamic digital delay adjustments that will occur.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
SYNC Generation  
No Adjust  
1 step  
3:0  
DDLYd_STEP_CNT  
0
2 steps  
3 steps  
...  
14 (0x0E)  
15 (0x0F)  
14 steps  
15 steps  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.3.10 SYSREF_CLR, SYNC_1SHOT_EN, SYNC_POL, SYNC_EN, SYNC_PLL2_DLD, SYNC_PLL1_DLD,  
SYNC_MODE  
This register sets general SYNC parameters such as polarization, and mode. Refer to Figure 8 for block diagram.  
Refer to Table 2 for using SYNC_MODE for specific SYNC use cases.  
Table 34. Register 0x143  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Except during SYSREF Setup Procedure (see SYNC/SYSREF), this bit should always be  
programmed to 0. While this bit is set, extra current is used. Refer to Table 85.  
7
SYSREF_CLR  
1
SYNC one shot enables edge sensitive SYNC.  
0: SYNC is level sensitive and outputs will be held in SYNC as long as SYNC is asserted.  
1: SYNC is edge sensitive, outputs will be SYNCed on rising edge of SYNC. This results in  
the clock being held in SYNC for a minimum amount of time.  
6
SYNC_1SHOT_EN  
0
Sets the polarity of the SYNC pin.  
0: Normal  
1: Inverted  
5
4
SYNC_POL  
SYNC_EN  
0
1
Enables the SYNC functionality.  
0: Disabled  
1: Enabled  
0: Off  
3
2
SYNC_PLL2_DLD  
SYNC_PLL1_DLD  
0
0
1: Assert SYNC until PLL2 DLD = 1  
0: Off  
1: Assert SYNC until PLL1 DLD = 1  
Sets the method of generating a SYNC event.  
Field Value  
SYNC Generation  
Prevent SYNC Pin, SYNC_PLL1_DLD flag, or SYNC_PLL2_DLD  
flag from generating a SYNC event.  
0 (0x00)  
SYNC event generated from SYNC pin or if enabled the  
SYNC_PLL1_DLD flag or SYNC_PLL2_DLD flag.  
1 (0x01)  
2 (0x02)  
1:0  
SYNC_MODE  
1
For use with pulser - SYNC/SYSREF pulses are generated by  
pulser block via SYNC Pin or if enabled SYNC_PLL1_DLD flag  
or SYNC_PLL2_DLD flag.  
For use with pulser - SYNC/SYSREF pulses are generated by  
pulser block when programming register 0x13E  
(SYSREF_PULSE_CNT) is written to (see ).  
3 (0x03)  
56  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.3.11 SYNC_DISSYSREF, SYNC_DISX  
SYNC_DISX will prevent a clock output from being synchronized or interrupted by a SYNC event or when  
outputting SYSREF.  
Table 35. Register 0x144  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Prevent the SYSREF clocks from becoming synchronized during a SYNC event. If  
SYNC_DISSYSREF is enabled it will continue to operate normally during a SYNC event.  
7
SYNC_DISSYSREF  
0
6
5
4
3
2
1
0
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
SYNC_DIS2  
SYNC_DIS0  
0
0
0
0
0
0
0
Prevent the device clock output from becoming synchronized during a SYNC event or  
SYSREF clock. If SYNC_DIS bit for a particular output is enabled then it will continue to  
operate normally during a SYNC event or SYSREF clock.  
9.7.3.12 Fixed Register  
Always program this register to value 127.  
Table 36. Register 0x145  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
Fixed Register  
0
Always program to 127  
9.7.4 (0x146 - 0x149) CLKin Control  
9.7.4.1 CLKin2_EN, CLKin1_EN, CLKin0_EN, CLKin2_TYPE, CLKin1_TYPE, CLKin0_TYPE  
This register has CLKin enable and type controls.  
Table 37. Register 0x146  
BIT  
7:6  
5
POR  
DEFAULT  
NAME  
DESCRIPTION  
NA  
0
Reserved  
Enable CLKin2 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
CLKin2_EN  
CLKin1_EN  
CLKin0_EN  
0
1: Enabled for auto mode  
Enable CLKin1 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
4
3
1
1
1: Enabled for auto mode  
Enable CLKin0 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
1: Enabled for auto mode  
2
1
CLKin2_TYPE  
CLKin1_TYPE  
0
0
There are two buffer types for CLKin0, 1, and 2: bipolar and CMOS.  
Bipolar is recommended for differential inputs like LVDS or LVPECL.  
CMOS is recommended for DC-coupled, single-ended inputs.  
When using bipolar, CLKinX and CLKinX* must be AC-coupled.  
When using CMOS, CLKinX and CLKinX* may be AC- or DC-coupled  
if the input signal is differential. If the input signal is single-ended the  
used input may be either AC- or DC-coupled and the unused input  
must AC grounded.  
0: Bipolar  
1: MOS  
0
CLKin0_TYPE  
0
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.4.2 CLKin_SEL_POL, CLKin_SEL_MODE, CLKin1_OUT_MUX, CLKin0_OUT_MUX  
Table 38. Register 0x147  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Inverts the CLKin polarity for use in pin select mode.  
7
CLKin_SEL_POL  
0
0: Active High  
1: Active Low  
Sets the mode used in determining the reference for PLL1.  
Field Value  
CLKin Mode  
CLKin0 Manual  
CLKin1 Manual  
CLKin2 Manual  
Pin Select Mode  
Auto Mode  
0 (0x00)  
1 (0x01)  
2 (0x02)  
6:4  
CLKin_SEL_MODE  
3
3 (0x03)  
4 (0x04)  
5 (0x05)  
Reserved  
6 (0x06)  
Reserved  
7 (0x07)  
Reserved  
Selects where the output of the CLKin1 buffer is directed.  
Field Value  
CLKin1 Destination  
0 (0x00)  
Fin  
3:2  
1:0  
CLKin1_OUT_MUX  
CLKin0_OUT_MUX  
2
2
1 (0x01)  
2 (0x02)  
3 (0x03)  
Feedback Mux (0-delay mode)  
PLL1  
Off  
Selects where the output of the CLKin0 buffer is directed.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
CLKin0 Destination  
SYSREF Mux  
Reserved  
PLL1  
Off  
58  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.4.3 CLKin_SEL0_MUX, CLKin_SEL0_TYPE  
This register has CLKin_SEL0 controls.  
Table 39. Register 0x148  
BIT  
NAME  
POR  
DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This set the output value of the CLKin_SEL0 pin. This register only applies if  
CLKin_SEL0_TYPE is set to an output mode  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
CLKin0 LOS  
CLKin0 Selected  
DAC Locked  
DAC Low  
2 (0x02)  
5:3  
CLKin_SEL0_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
Reserved  
7 (0x07)  
This sets the IO type of the CLKin_SEL0 pin.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Configuration  
Function  
Input  
Input mode, see Input  
Clock Switching - Pin  
Select Mode for  
Input /w pull-up resistor  
Input /w pull-down resistor  
Output (push-pull)  
2:0  
CLKin_SEL0_TYPE  
2
description of input mode.  
Output modes; the  
CLKin_SEL0_MUX  
register for description of  
outputs.  
Output inverted (push-pull)  
Reserved  
Output (open drain)  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.4.4 SDIO_RDBK_TYPE, CLKin_SEL1_MUX, CLKin_SEL1_TYPE  
This register has CLKin_SEL1 controls and register readback SDIO pin type.  
Table 40. Register 0x149  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
Sets the SDIO pin to open drain when during SPI readback in 3 wire mode.  
6
SDIO_RDBK_TYPE  
1
0: Output, push-pull  
1: Output, open drain.  
This set the output value of the CLKin_SEL1 pin. This register only applies if  
CLKin_SEL1_TYPE is set to an output mode.  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
CLKin1 LOS  
CLKin1 Selected  
DAC Locked  
DAC Low  
2 (0x02)  
5:3  
CLKin_SEL1_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
Reserved  
7 (0x07)  
This sets the IO type of the CLKin_SEL1 pin.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Configuration  
Input  
Function  
Input mode, see Input Clock  
Switching - Pin Select Mode for  
description of input mode.  
Input /w pull-up resistor  
Input /w pull-down resistor  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
2:0  
CLKin_SEL1_TYPE  
2
Output modes; see the  
CLKin_SEL1_MUX register for  
description of outputs.  
Output (open drain)  
60  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.5 RESET_MUX, RESET_TYPE  
This register contains control of the RESET pin.  
Table 41. Register 0x14A  
POR  
DEFAUL  
T
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This sets the output value of the RESET pin. This register only applies if RESET_TYPE is set to an  
output mode.  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
Reserved  
5:3  
RESET_MUX  
0
2 (0x02)  
CLKin2 Selected  
DAC Locked  
DAC Low  
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
This sets the IO type of the RESET pin.  
Field Value  
0 (0x00)  
Configuration  
Function  
Input  
Reset Mode  
Reset pin high = Reset  
1 (0x01)  
Input /w pull-up resistor  
2:0 RESET_TYPE  
2
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Input /w pull-down resistor  
Output (push-pull)  
Output modes; see the  
RESET_MUX register for  
description of outputs.  
Output inverted (push-pull)  
Reserved  
Output (open drain)  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.6 (0x14B - 0x152) Holdover  
9.7.6.1 LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8]  
This register contains the holdover functions.  
Table 42. Register 0x14B  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This controls the amount of time in which no activity on a CLKin forces a clock switch  
event.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Timeout  
370 kHz  
2.1 MHz  
8.8 MHz  
22 MHz  
7:6  
LOS_TIMEOUT  
0
Enables the LOS (Loss-of-Signal) timeout control. Valid for MOS clock inputs.  
5
4
LOS_EN  
0
1
0: Disabled  
1: Enabled  
Enable the DAC to track the PLL1 tuning voltage, optionally for use in holdover mode. After  
device reset, tracking starts at DAC code = 512.  
Tracking can be used to monitor PLL1 voltage in any mode.  
0: Disabled  
TRACK_EN  
1: Enabled, will only track when PLL1 is locked.  
This bit forces holdover mode. When holdover mode is forced, if MAN_DAC_EN = 1, then  
the DAC will set the programmed MAN_DAC value. Otherwise the tracked DAC value will  
set the DAC voltage.  
0: Disabled  
HOLDOVER  
_FORCE  
3
0
1: Enabled.  
This bit enables the manual DAC mode.  
2
MAN_DAC_EN  
MAN_DAC[9:8]  
1
2
0: Automatic  
1: Manual  
1:0  
See MAN_DAC[9:8], MAN_DAC[7:0] for more information on the MAN_DAC settings.  
62  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.6.2 MAN_DAC[9:8], MAN_DAC[7:0]  
These registers set the value of the DAC in holdover mode when used manually.  
Table 43. MAN_DAC[9:0]  
MSB  
LSB  
0x14B[1:0]  
0x14C[7:0]  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
See LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE,  
MAN_DAC_EN, MAN_DAC[9:8] for information on these bits.  
7:2  
0x14B  
Sets the value of the manual DAC when in manual DAC mode.  
Field Value  
0 (0x00)  
DAC Value  
1:0  
0x14B  
MAN_DAC[9:8]  
MAN_DAC[7:0]  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
7:0  
0x14C  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
9.7.6.3 DAC_TRIP_LOW  
This register contains the high value at which holdover mode is entered.  
Table 44. Register 0x14D  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Voltage from GND at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_LOW  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.6.4 DAC_CLK_MULT, DAC_TRIP_HIGH  
This register contains the multiplier for the DAC clock counter and the low value at which holdover mode is  
entered.  
Table 45. Register 0x14E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This is the multiplier for the DAC_CLK_CNTR which sets the rate at which the DAC value is  
tracked.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
DAC Multiplier Value  
4
7:6  
DAC_CLK_MULT  
0
64  
1024  
16384  
Voltage from Vcc at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_HIGH  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
9.7.6.5 DAC_CLK_CNTR  
This register contains the value of the DAC when in tracked mode.  
Table 46. Register 0x14F  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This with DAC_CLK_MULT set the rate at which the DAC is updated. The update rate is =  
DAC_CLK_MULT * DAC_CLK_CNTR / PLL1 PDF  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Value  
0
1
2
7:0  
DAC_CLK_CNTR  
127  
3
...  
253 (0xFD)  
254 (0xFE)  
255 (0xFF)  
253  
254  
255  
64  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.6.6 CLKin_OVERRIDE, HOLDOVER_PLL1_DET, HOLDOVER_LOS_DET, HOLDOVER_VTUNE_DET,  
HOLDOVER_HITLESS_SWITCH, HOLDOVER_EN  
This register has controls for enabling clock in switch events.  
Table 47. Register 0x150  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
When CLKin_SEL_MODE = 0/1/2 to select a manual clock input, CLKin_OVERRIDE = 1  
will force that clock input. Used with clock distribution mode for best performance.  
0: Normal, no override.  
CLKin  
_OVERRIDE  
6
0
1: Force select of only CLKin0/1/2 as specified by CLKin_SEL_MODE in manual mode.  
5
4
NA  
0
0
Reserved  
This enables the HOLDOVER when PLL1 lock detect signal transitions from high to low.  
0: PLL1 DLD does not cause a clock switch event  
1: PLL1 DLD causes a clock switch event  
HOLDOVER  
_PLL1_DET  
This enables HOLDOVER when PLL1 LOS signal is detected.  
0: Disabled  
1: Enabled  
HOLDOVER  
_LOS_DET  
3
2
0
0
Enables the DAC Vtune rail detections. When the DAC achieves a specified Vtune, if this  
bit is enabled, the current clock input is considered invalid and an input clock switch event  
is generated.  
0: Disabled  
1: Enabled  
HOLDOVER  
_VTUNE_DET  
HOLDOVER  
_HITLESS  
_SWITCH  
Determines whether a clock switch event will enter holdover use hitless switching.  
0: Hard Switch  
1: Hitless switching (has an undefined switch time)  
1
0
1
1
Sets whether holdover mode is active or not.  
0: Disabled  
1: Enabled  
HOLDOVER_EN  
9.7.6.7 HOLDOVER_DLD_CNT[13:8], HOLDOVER_DLD_CNT[7:0]  
Table 48. HOLDOVER_DLD_CNT[13:0]  
MSB  
LSB  
0x151[5:0]  
0x152[7:0]  
This register has the number of valid clocks of PLL1 PDF before holdover is exited.  
Table 49. Registers 0x151 and 0x152  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
0x151  
NA  
0
Reserved  
The number of valid clocks of PLL1 PDF before holdover mode is exited.  
Field Value  
0 (0x00)  
Count Value  
HOLDOVER  
_DLD_CNT[13:8]  
5:0  
0x151  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
HOLDOVER  
_DLD_CNT[7:0]  
7:0  
0x152  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.7 (0x153 - 0x15F) PLL1 Configuration  
9.7.7.1 CLKin0_R[13:8], CLKin0_R[7:0]  
Table 50. CLKin0_R[13:0]  
MSB  
LSB  
0x153[5:0]  
0x154[7:0]  
These registers contain the value of the CLKin0 divider.  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
0x153  
NA  
0
Reserved  
The value of PLL1 N counter when CLKin0 is selected.  
Field Value  
0 (0x00)  
Divide Value  
5:0  
0x153  
CLKin0_R[13:8]  
CLKin0_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x154  
120  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
9.7.7.2 CLKin1_R[13:8], CLKin1_R[7:0]  
Table 51. CLKin1_R[13:0]  
MSB  
LSB  
0x155[5:0]  
0x156[7:0]  
These registers contain the value of the CLKin1 R divider.  
Table 52. Registers 0x155 and 0x156  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
5:0  
0x155  
0x155  
NA  
0
0
Reserved  
The value of PLL1 N counter when CLKin1 is selected.  
Field Value  
0 (0x00)  
Divide Value  
CLKin1_R[13:8]  
CLKin1_R[7:0]  
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x156  
150  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
66  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.7.3 CLKin2_R[13:8], CLKin2_R[7:0]  
MSB  
LSB  
0x157[5:0]  
0x158[7:0]  
Table 53. Registers 0x157 and 0x158  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
0x157  
NA  
0
0
Reserved  
The value of PLL1 N counter when CLKin2 is selected.  
Field Value  
0 (0x00)  
Divide Value  
5:0  
0x157  
CLKin2_R[13:8]  
CLKin2_R[7:0]  
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x158  
150  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
9.7.7.4 PLL1_N  
Table 54. PLL1_N[13:8], PLL1_N[7:0]  
PLL1_N[13:0]  
MSB  
LSB  
0x159[5:0]  
0x15A[7:0]  
These registers contain the N divider value for PLL1.  
Table 55. Registers 0x159 and 0x15A  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
5:0  
0x159  
0x159  
NA  
0
0
Reserved  
The value of PLL1 N counter.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divide Value  
PLL1_N[13:8]  
PLL1_N[7:0]  
Not Valid  
1
2
7:0  
0x15A  
120  
...  
4,095 (0xFFF)  
4,095  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.7.5 PLL1_WND_SIZE, PLL1_CP_TRI, PLL1_CP_POL, PLL1_CP_GAIN  
This register controls the PLL1 phase detector.  
Table 56. Register 0x15B  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
PLL1_WND_SIZE sets the window size used for digital lock detect for PLL1. If the phase  
error between the reference and feedback of PLL1 is less than specified time, then the  
PLL1 lock counter increments.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
4 ns  
7:6  
PLL1_WND_SIZE  
3
9 ns  
19 ns  
43 ns  
This bit allows for the PLL1 charge pump output pin, CPout1, to be placed into TRI-STATE.  
0: PLL1 CPout1 is active  
1: PLL1 CPout1 is at TRI-STATE  
5
4
PLL1_CP_TRI  
PLL1_CP_POL  
0
1
PLL1_CP_POL sets the charge pump polarity for PLL1. Many VCXOs use positive slope.  
A positive slope VCXO increases output frequency with increasing voltage. A negative  
slope VCXO decreases output frequency with increasing voltage.  
0: Negative Slope VCO/VCXO  
1: Positive Slope VCO/VCXO  
This bit programs the PLL1 charge pump output current level.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
...  
Gain  
50 µA  
150 µA  
250 µA  
350 µA  
450 µA  
...  
3:0  
PLL1_CP_GAIN  
4
14 (0x0E)  
15 (0x0F)  
1450 µA  
1550 µA  
68  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.7.6 PLL1_DLD_CNT[13:8], PLL1_DLD_CNT[7:0]  
Table 57. PLL1_DLD_CNT[13:0]  
MSB  
LSB  
0x15C[5:0]  
0x15D[7:0]  
This register contains the value of the PLL1 DLD counter.  
Table 58. Registers 0x15C and 0x15D  
BIT REGISTERS  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
0x15C  
NA  
0
Reserved  
The reference and feedback of PLL1 must be within the window of phase  
error as specified by PLL1_WND_SIZE for this many phase detector  
cycles before PLL1 digital lock detect is asserted.  
PLL1_DLD  
_CNT[13:8]  
5:0  
0x15C  
32  
Field Value  
0 (0x00)  
Delay Value  
Reserved  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL1_DLD  
_CNT[7:0]  
7:0  
0x15D  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.7.7 PLL1_R_DLY, PLL1_N_DLY  
This register contains the delay value for PLL1 N and R delays.  
Table 59. Register 0x15E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Increasing delay of PLL1_R_DLY will cause the outputs to lag from CLKinX. For use in 0-  
delay mode.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Gain  
0 ps  
205 ps  
410 ps  
615 ps  
820 ps  
1025 ps  
1230 ps  
1435 ps  
5:3  
PLL1_R_DLY  
0
Increasing delay of PLL1_N_DLY will cause the outputs to lead from CLKinX. For use in 0-  
delay mode.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Gain  
0 ps  
205 ps  
410 ps  
615 ps  
820 ps  
1025 ps  
1230 ps  
1435 ps  
2:0  
PLL1_N_DLY  
0
70  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.7.8 PLL1_LD_MUX, PLL1_LD_TYPE  
This register configures the PLL1 LD pin.  
Table 60. Register 0x15F  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This sets the output value of the Status_LD1 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic Low  
PLL1 DLD  
PLL2 DLD  
PLL1 & PLL2 DLD  
Holdover Status  
DAC Locked  
Reserved  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI Readback  
DAC Rail  
7:3  
PLL1_LD_MUX  
1
8 (0x08)  
9 (0x09)  
DAC Low  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
DAC High  
PLL1_N  
PLL1_N/2  
PLL2_N  
PLL2_N/2  
PLL1_R  
PLL1_R/2  
17 (0x11)  
PLL2_R(1)  
PLL2_R/2(1)  
18 (0x12)  
Sets the IO type of the Status_LD1 pin.  
Field Value  
0 (0x00)  
TYPE  
Reserved  
1 (0x01)  
Reserved  
2:0  
PLL1_LD_TYPE  
6
2 (0x02)  
Reserved  
3 (0x03)  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output (open drain)  
(1) Only valid when PLL2_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.8 (0x160 - 0x16E) PLL2 Configuration  
9.7.8.1 PLL2_R[11:8], PLL2_R[7:0]  
Table 61. PLL2_R[11:0]  
MSB  
LSB  
0x160[3:0]  
0x161[7:0]  
This register contains the value of the PLL2 R divider.  
Table 62. Registers 0x160 and 0x161  
BIT REGISTERS  
NAME  
POR DEFAULT  
DESCRIPTION  
7:4  
0x160  
NA  
0
Reserved  
Valid values for the PLL2 R divider.  
Field Value  
0 (0x00)  
Divide Value  
3:0  
0x160  
PLL2_R[11:8]  
PLL2_R[7:0]  
0
2
Not Valid  
1 (0x01)  
1
2
2 (0x02)  
3 (0x03)  
3
7:0  
0x161  
...  
...  
4,094 (0xFFE)  
4,095 (0xFFF)  
4,094  
4,095  
72  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.8.2 PLL2_P, OSCin_FREQ, PLL2_XTAL_EN, PLL2_REF_2X_EN  
This register sets other PLL2 functions.  
Table 63. Register 0x162  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
The PLL2 N Prescaler divides the output of the VCO as selected by Mode_MUX1 and is  
connected to the PLL2 N divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Value  
8
2
2
3
4
5
6
7
7:5  
PLL2_P  
2
The frequency of the PLL2 reference input to the PLL2 Phase Detector (OSCin/OSCin*  
port) must be programmed in order to support proper operation of the frequency calibration  
routine which locks the internal VCO to the target frequency.  
Field Value  
0 (0x00)  
OSCin Frequency  
0 to 63 MHz  
4:2  
OSCin_FREQ  
7
1 (0x01)  
>63 MHz to 127 MHz  
>127 MHz to 255 MHz  
Reserved  
2 (0x02)  
3 (0x03)  
4 (0x04)  
>255 MHz to 500 MHz  
Reserved  
5 (0x05) to 7(0x07)  
If an external crystal is being used to implement a discrete VCXO, the internal feedback  
amplifier must be enabled with this bit in order to complete the oscillator circuit.  
0: Oscillator Amplifier Disabled  
1
0
PLL2_XTAL_EN  
0
1
1: Oscillator Amplifier Enabled  
Enabling the PLL2 reference frequency doubler allows for higher phase detector  
frequencies on PLL2 than would normally be allowed with the given VCXO or Crystal  
frequency.  
PLL2_REF_2X_EN  
Higher phase detector frequencies reduces the PLL N values which makes the design of  
wider loop bandwidth filters possible.  
0: Doubler Disabled  
1: Doubler Enabled  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.8.3 PLL2_N_CAL  
PLL2_N_CAL[17:0]  
PLL2 never uses 0-delay during frequency calibration. These registers contain the value of the PLL2 N divider  
used with PLL2 pre-scaler during calibration for cascaded 0-delay mode. Once calibration is complete, PLL2 will  
use PLL2_N value. Cascaded 0-delay mode occurs when PLL2_NCLK_MUX = 1.  
Table 64. Register 0x162  
MSB  
LSB  
0x163[1:0]  
0x164[7:0]  
0x165[7:0]  
Table 65. Registers 0x163, 0x164, and 0x165  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:2  
1:0  
0x163  
0x163  
NA  
0
Reserved  
Field Value  
0 (0x00)  
Divide Value  
PLL2_N  
_CAL[17:16]  
0
0
Not Valid  
1 (0x01)  
1
7:0  
7:0  
0x164  
0x165  
PLL2_N_CAL[15:8]  
2 (0x02)  
2
...  
...  
PLL2_N_CAL[7:0]  
12  
262,143 (0x3FFFF)  
262,143  
9.7.8.4 PLL2_FCAL_DIS, PLL2_N  
This register disables frequency calibration and sets the PLL2 N divider value. Programming register 0x168  
starts a VCO calibration routine if PLL2_FCAL_DIS = 0.  
Table 66. PLL2_N[17:0]  
MSB  
LSB  
0x166[1:0]  
0x167[7:0]  
0x168[7:0]  
Table 67. Registers 0x166, 0x167, and 0x168  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:3  
2
0x166  
0x166  
NA  
0
Reserved  
This disables the PLL2 frequency calibration on programming register 0x168.  
0: Frequency calibration enabled  
PLL2_FCAL_DIS  
0
1: Frequency calibration disabled  
Field Value  
0 (0x00)  
Divide Value  
1:0  
7:0  
7:0  
0x166  
0x167  
0x168  
PLL2_N[17:16]  
PLL2_N[15:8]  
PLL2_N[7:0]  
0
0
Not Valid  
1 (0x01)  
1
2 (0x02)  
2
...  
...  
12  
262,143 (0x3FFFF)  
262,143  
74  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.8.5 PLL2_WND_SIZE, PLL2_CP_GAIN, PLL2_CP_POL, PLL2_CP_TRI  
This register controls the PLL2 phase detector.  
Table 68. Register 0x169  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
PLL2_WND_SIZE sets the window size used for digital lock detect for PLL2. If the phase  
error between the reference and feedback of PLL2 is less than specified time, then the  
PLL2 lock counter increments. This value must be programmed to 2 (3.7 ns).  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
Reserved  
Reserved  
3.7 ns  
6:5  
PLL2_WND_SIZE  
2
Reserved  
This bit programs the PLL2 charge pump output current level. The table below also  
illustrates the impact of the PLL2 TRISTATE bit in conjunction with PLL2_CP_GAIN.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
100 µA  
4:3  
PLL2_CP_GAIN  
3
400 µA  
1600 µA  
3200 µA  
PLL2_CP_POL sets the charge pump polarity for PLL2. The internal VCO requires the  
negative charge pump polarity to be selected. Many VCOs use positive slope.  
A positive slope VCO increases output frequency with increasing voltage. A negative slope  
VCO decreases output frequency with increasing voltage.  
2
PLL2_CP_POL  
0
Field Value  
Description  
0
1
Negative Slope VCO/VCXO  
Positive Slope VCO/VCXO  
PLL2_CP_TRI TRI-STATEs the output of the PLL2 charge pump.  
1
0
PLL2_CP_TRI  
Fixed Value  
0
1
0: Disabled  
1: TRI-STATE  
When programming register 0x169, this field must be set to 1.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.8.6 SYSREF_REQ_EN, PLL2_DLD_CNT  
Table 69. PLL2_DLD_CNT[15:0]  
MSB  
LSB  
0x16A[5:0]  
0x16B[7:0]  
This register has the value of the PLL2 DLD counter.  
Table 70. Registers 0x16A and 0x16B  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7
6
0x16A  
0x16A  
NA  
0
Reserved  
Enables the SYNC/SYSREF_REQ pin to force the SYSREF_MUX = 3 for  
continuous pulses. When using this feature enable pulser and set  
SYSREF_MUX = 2 (Pulser).  
SYSREF_REQ_EN  
0
The reference and feedback of PLL2 must be within the window of phase error  
as specified by PLL2_WND_SIZE for PLL2_DLD_CNT cycles before PLL2 digital  
lock detect is asserted.  
PLL2_DLD  
_CNT[13:8]  
5:0  
7:0  
0x16A  
0x16B  
32  
Field Value  
0 (0x00)  
Divide Value  
Not Valid  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL2_DLD_CNT  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
76  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.8.7 PLL2_LF_R4, PLL2_LF_R3  
This register controls the integrated loop filter resistors.  
Table 71. Register 0x16C  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop  
filters without requiring external components.  
Internal loop filter resistor R4 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Resistance  
200 Ω  
1 kΩ  
5:3  
PLL2_LF_R4  
0
2 kΩ  
4 kΩ  
16 kΩ  
Reserved  
Reserved  
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop  
filters without requiring external components.  
Internal loop filter resistor R3 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Resistance  
200 Ω  
1 kΩ  
2:0  
PLL2_LF_R3  
0
2 kΩ  
4 kΩ  
16 kΩ  
Reserved  
Reserved  
Reserved  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.8.8 PLL2_LF_C4, PLL2_LF_C3  
This register controls the integrated loop filter capacitors.  
Table 72. Register 0x16D  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop  
filters without requiring external components.  
Internal loop filter capacitor C4 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Capacitance  
10 pF  
15 pF  
29 pF  
34 pF  
47 pF  
52 pF  
7:4  
PLL2_LF_C4  
0
66 pF  
71 pF  
103 pF  
108 pF  
122 pF  
126 pF  
141 pF  
146 pF  
Reserved  
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop  
filters without requiring external components.  
Internal loop filter capacitor C3 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Capacitance  
10 pF  
11 pF  
15 pF  
16 pF  
19 pF  
20 pF  
3:0  
PLL2_LF_C3  
0
24 pF  
25 pF  
29 pF  
30 pF  
33 pF  
34 pF  
38 pF  
39 pF  
Reserved  
Reserved  
78  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.8.9 PLL2_LD_MUX, PLL2_LD_TYPE  
This register sets the output value of the Status_LD2 pin.  
Table 73. Register 0x16E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This sets the output value of the Status_LD2 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic Low  
PLL1 DLD  
PLL2 DLD  
PLL1 & PLL2 DLD  
Holdover Status  
DAC Locked  
Reserved  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI Readback  
DAC Rail  
7:3  
PLL2_LD_MUX  
2
8 (0x08)  
9 (0x09)  
DAC Low  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
DAC High  
PLL1_N  
PLL1_N/2  
PLL2_N  
PLL2_N/2  
PLL1_R  
PLL1_R/2  
17 (0x11)  
PLL2_R(1)  
PLL2_R/2(1)  
18 (0x12)  
Sets the IO type of the Status_LD2 pin.  
Field Value  
0 (0x00)  
TYPE  
Reserved  
1 (0x01)  
Reserved  
2:0  
PLL2_LD_TYPE  
6
2 (0x02)  
Reserved  
3 (0x03)  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output (open drain)  
(1) Only valid when PLL1_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.9 (0x16F - 0x1FFF) Misc Registers  
9.7.9.1 Fixed Register 0x171  
Always program this register to value 170.  
Table 74. Register 0x171  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
Fixed Register  
10 (0x0A)  
Always program to 170 (0xAA)  
9.7.9.2 Fixed Register 0x172  
Always program this register to value 2.  
Table 75. Register 0x172  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
Fixed Register  
0
Always program to 2 (0x02)  
9.7.9.3 PLL2_PRE_PD, PLL2_PD  
Table 76. Register 0x173  
BIT  
NAME  
DESCRIPTION  
7
N/A  
Reserved  
Powerdown PLL2 prescaler  
0: Normal Operation  
1: Powerdown  
6
PLL2_PRE_PD  
Powerdown PLL2  
0: Normal Operation  
1: Powerdown  
5
PLL2_PD  
N/A  
4:0  
Reserved  
9.7.9.4 OPT_REG_1  
This register must be written to optimize VCO1 phase noise performance over temperature. This register must be  
written before writing register 0x168 for PLL2 calibration when using VCO1.  
Table 77. Register 0x17C  
BIT  
NAME  
DESCRIPTION  
7:0  
OPT_REG_1  
Program to 21 (0x15)  
80  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.9.5 OPT_REG_2  
This register must be written to optimize VCO1 phase noise performance over temperature. This register must be  
written before writing register 0x168 for PLL2 calibration when using VCO1.  
Table 78. Register 0x17D  
BIT  
NAME  
DESCRIPTION  
7:0  
OPT_REG_2  
Program to 51 (0x33)  
9.7.9.6 RB_PLL1_LD_LOST, RB_PLL1_LD, CLR_PLL1_LD_LOST  
Table 79. Register 0x182  
BIT  
7:3  
2
NAME  
N/A  
DESCRIPTION  
Reserved  
RB_PLL1_LD_LOST  
This is set when PLL1 DLD edge falls. Does not set if cleared while PLL1 DLD is low.  
Read back 0: PLL1 DLD is low.  
Read back 1: PLL1 DLD is high.  
1
RB_PLL1_LD  
To reset RB_PLL1_LD_LOST, write CLR_PLL1_LD_LOST with 1 and then 0.  
0: RB_PLL1_LD_LOST will be set on next falling PLL1 DLD edge.  
1: RB_PLL1_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL1_LD_LOST to  
become set again.  
0
CLR_PLL1_LD_LOST  
9.7.9.7 RB_PLL2_LD_LOST, RB_PLL2_LD, CLR_PLL2_LD_LOST  
Table 80. Register 0x0x183  
BIT  
7:3  
2
NAME  
N/A  
DESCRIPTION  
Reserved  
RB_PLL2_LD_LOST  
This is set when PLL2 DLD edge falls. Does not set if cleared while PLL2 DLD is low.  
PLL1_LD_MUX or PLL2_LD_MUX must select setting 2 (PLL2 DLD) for valid reading of this bit.  
Read back 0: PLL2 DLD is low.  
1
RB_PLL2_LD  
Read back 1: PLL2 DLD is high.  
To reset RB_PLL2_LD_LOST, write CLR_PLL2_LD_LOST with 1 and then 0.  
0: RB_PLL2_LD_LOST will be set on next falling PLL2 DLD edge.  
1: RB_PLL2_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL2_LD_LOST to  
become set again.  
0
CLR_PLL2_LD_LOST  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
9.7.9.8 RB_DAC_VALUE(MSB), RB_CLKinX_SEL, RB_CLKinX_LOS  
This register provides read back access to CLKinX selection indicator and CLKinX LOS indicator. The 2 MSBs  
are shared with the RB_DAC_VALUE. See RB_DAC_VALUE section.  
Table 81. Register 0x184  
BIT  
NAME  
DESCRIPTION  
7:6  
RB_DAC_VALUE[9:8] See RB_DAC_VALUE section.  
Read back 0: CLKin2 is not selected for input to PLL1.  
Read back 1: CLKin2 is selected for input to PLL1.  
5
4
RB_CLKin2_SEL  
RB_CLKin1_SEL  
Read back 0: CLKin1 is not selected for input to PLL1.  
Read back 1: CLKin1 is selected for input to PLL1.  
Read back 0: CLKin0 is not selected for input to PLL1.  
Read back 1: CLKin0 is selected for input to PLL1.  
3
2
1
RB_CLKin0_SEL  
N/A  
Read back 1: CLKin1 LOS is active.  
Read back 0: CLKin1 LOS is not active.  
RB_CLKin1_LOS  
Read back 1: CLKin0 LOS is active.  
Read back 0: CLKin0 LOS is not active.  
0
RB_CLKin0_LOS  
9.7.9.9 RB_DAC_VALUE  
Contains the value of the DAC for user readback.  
FIELD NAME  
MSB  
LSB  
RB_DAC_VALUE  
0x184 [7:6]  
0x185 [7:0]  
Table 82. Registers 0x184 and 0x185  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
RB_DAC_  
VALUE[9:8]  
DAC value is 512 on power on reset, if PLL1 locks upon power-up the DAC  
value will change.  
7:6  
7:0  
0x184  
0x185  
2
RB_DAC_  
VALUE[7:0]  
0
9.7.9.10 RB_HOLDOVER  
Table 83. Register 0x188  
BIT  
NAME  
DESCRIPTION  
7:5  
N/A  
Reserved  
Read back 0: Not in HOLDOVER.  
Read back 1: In HOLDOVER.  
4
RB_HOLDOVER  
N/A  
3:0  
Reserved  
82  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
9.7.9.11 SPI_LOCK  
Prevents SPI registers from being written to, except for 0x1FFD, 0x1FFE, 0x1FFF. These registers must be  
written to sequentially and in order: 0x1FFD, 0x1FFE, 0x1FFF.  
These registers cannot be read back.  
MSB  
LSB  
0x1FFD [7:0]  
0x1FFE [7:0]  
0x1FFF [7:0]  
Table 84. Registers 0x1FFD, 0x1FFE, and 0x1FFF  
POR  
BIT REGISTERS  
NAME  
DESCRIPTION  
DEFAULT  
0: Registers unlocked.  
1 to 255: Registers locked  
7:0  
7:0  
0x1FFD  
0x1FFE  
SPI_LOCK[23:16]  
SPI_LOCK[15:8]  
0
0
0: Registers unlocked.  
1 to 255: Registers locked  
0 to 82: Registers locked  
83: Registers unlocked  
84 to 256: Registers locked  
7:0  
0x1FFF  
SPI_LOCK[7:0]  
83  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
To assist customers in frequency planning and design of loop filters Texas Instrument's provides the Clock  
Design Tool (www.ti.com/tool/clockdesigntool) and Clock Architect (www.ti.com/clockarchitect).  
10.1.1 Digital Lock Detect Frequency Accuracy  
The digital lock detect circuit is used to determine PLL1 locked, PLL2 locked, and holdover exit events. A window  
size and lock count register are programmed to set a ppm frequency accuracy of reference to feedback signals  
of the PLL for each event to occur. When a PLL digital lock event occurs the PLL's digital lock detect is asserted  
true. When the holdover exit event occurs, the device exits holdover mode.  
EVENT  
PLL  
PLL1  
PLL2  
PLL1  
WINDOW SIZE  
PLL1_WND_SIZE  
PLL2_WND_SIZE  
PLL1_WND_SIZE  
LOCK COUNT  
PLL1_DLD_CNT  
PLL1 Locked  
PLL2 Locked  
Holdover exit  
PLL2_DLD_CNT  
HOLDOVER_DLD_CNT  
For a digital lock detect event to occur there must be a lock count number of phase detector cycles of PLLX  
during which the time/phase error of the PLLX_R reference and PLLX_N feedback signal edges are within the  
user programmable window size. Because there must be at least lock count phase detector events before a lock  
event occurs, a minimum digital lock event time can be calculated as lock count / fPDX where X = 1 for PLL1 or 2  
for PLL2.  
By using Equation 3, values for a lock count and window size can be chosen to set the frequency accuracy  
required by the system in ppm before the digital lock detect event occurs:  
1e6 × PLLX_WND_SIZE × fPDX  
ppm =  
PLLX_DLD_CNT  
(3)  
The effect of the lock count value is that it shortens the effective lock window size by dividing the window size by  
lock count.  
If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by window  
size, then the lock count value is reset to 0.  
10.1.1.1 Minimum Lock Time Calculation Example  
To calculate the minimum PLL2 digital lock time given a PLL2 phase detector frequency of 40 MHz and  
PLL2_DLD_CNT = 10,000. Then the minimum lock time of PLL2 is 10,000 / 40 MHz = 250 µs.  
84  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
10.1.2 Driving CLKin and OSCin Inputs  
10.1.2.1 Driving CLKin Pins With a Differential Source  
Both CLKin ports and OSCin can be driven by differential signals. TI recommends setting the input mode to  
bipolar (CLKinX_BUF_TYPE = 0) when using differential reference clocks. The LMK04828-EP internally biases  
the input pins so the differential interface should be AC-coupled. The recommended circuits for driving the CLKin  
pins with either LVDS or LVPECL are shown in Figure 15 and Figure 16.  
CLKinX/  
OSCin  
0.1 mF  
100 W Trace  
(Differential)  
LMK04828-  
EP Input  
LVDS  
0.1 mF  
CLKinX*/  
OSCin*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 15. CLKinX/X* or OSCin Termination for an LVDS Reference Clock Source  
CLKinX/  
OSCin  
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
LVPECL  
Ref Clk  
100 W Trace  
(Differential)  
LMK04828-  
EP Input  
CLKinX*/  
OSCin*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 16. CLKinX/X* or OSCin Termination for an LVPECL Reference Clock Source  
Finally, a reference clock source that produces a differential sine wave output can drive the CLKin or OSCin pins  
using Figure 17.  
NOTE  
The signal level must conform to the requirements for the CLKin pins or OSCin pins listed  
in Electrical Characteristics.  
CLKinX/  
OSCin  
0.1 mF  
100 W Trace  
(Differential)  
LMK04828-  
EP Input  
0.1 mF  
Differential  
Sinewave Clock  
Source  
CLKinX*/  
OSCin*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. CLKinX/X* or OSCin Termination for a Differential Sinewave Reference Clock Source  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: LMK04828-EP  
 
 
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
10.1.2.2 Driving CLKin or OSCin Pins With a Single-Ended Source  
The CLKin or OSCin pins of the LMK04828-EP can be driven using a single-ended reference clock source, for  
example, either a sine wave source or an LVCMOS/LVTTL source. Either AC coupling or DC coupling may be  
used for CLKin. OSCin requires AC coupling. In the case of the sine wave source that is expecting a 50 Ω load,  
TI recommends using AC coupling as shown in the circuit below with a 50-Ω termination. It may be required to  
add a series resistor to create a voltage divider to keep the input voltage within specification.  
NOTE  
The signal level must conform to the requirements for the CLKin pins listed in Electrical  
Characteristics. CLKinX_BUF_TYPE is recommended to be set to bipolar mode  
(CLKinX_BUF_TYPE = 0).  
0.1 mF  
CLKinX/  
OSCin  
50 W Trace  
LMK04828-  
EP Input  
50 W  
Clock Source  
CLKinX*/  
OSCin*  
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. CLKinX/X* or OSCin Single-Ended Termination  
If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC  
coupling may be used. If DC coupling is used, the CLKinX_BUF_TYPE should be set to MOS buffer mode  
(CLKinX_BUF_TYPE = 1) and the voltage swing of the source must meet the specifications for DC-coupled,  
MOS-mode clock inputs given in Electrical Characteristics. If AC coupling is used, the CLKinX_BUF_TYPE  
should be set to the bipolar buffer mode (CLKinX_BUF_TYPE = 0). The voltage swing at the input pins must  
meet the specifications for AC-coupled, bipolar mode clock inputs given in Electrical Characteristics . In this  
case, some attenuation of the clock input level may be required. A simple resistive divider circuit before the AC-  
coupling capacitor is sufficient.  
Rs  
50 W Trace  
CLKinX  
LMK04828-  
EP Input  
Clock Source  
CLKinX*  
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. DC-Coupled LVCMOS/LVTTL Reference Clock  
10.1.3 Using AC-Coupled Clock Outputs  
When using LVDS or HSDS output modes and AC coupling, place shunt a 560 Ω across the outputs close to the  
IC to provide a DC path to the driver.  
86  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
10.2 Typical Application  
This design example below highlights using the available tools to design loop filters and create programming  
map for LMK04828-EP.  
Multiple —clean“  
clocks at different  
frequencies  
Crystal or  
OSCout  
LMX2582  
VCXO  
Recovered  
—dirty“ clock or  
clean clock  
PLL+VCO  
CLKin0  
DCLKout12  
Backup  
Reference  
Clock  
FPGA  
SDCLKout13  
LMK04828-EP  
CLKin1  
DCLKout8 &  
DCLKout10  
SDCLKout9 &  
SDCLKout11  
DCLKout4,  
SDCLKout5  
DCLKout0 &  
DCLKout2  
DAC  
ADC  
SDCLKout1 &  
SDCLKout3  
Serializer/  
Deserializer  
Copyright © 2017, Texas Instruments Incorporated  
Figure 20. Typical Application  
10.2.1 Design Requirements  
Clocks outputs:  
1x 245.76-MHz clock for JESD204B ADC, LVPECL.  
This clock requires the best performance in this example.  
2x 983.04-MHz clock for JESD204B DAC, LVPECL.  
1x 122.88-MHz clock for JESD204B FPGA block, LVDS  
3x 10.24-MHz SYSREF for ADC (LVPECL), DAC (LVPECL), FPGA (LVDS).  
2x 122.88-MHz clock for FPGA, LVDS  
For best performance, the highest possible phase detector frequency is used at PLL2. As such, a 122.88-MHz  
VCXO is used.  
10.2.2 Detailed Design Procedure  
Note this information is current as of the date of the release of this data sheet. Design tools receive continuous  
improvements to add features and improve model accuracy. Refer to software instructions or training for latest  
features.  
10.2.2.1 Device Selection  
Enter the required frequencies into the tools. In this design, the LMK04828-EP VCO1 meets the design  
requirements. Note that VCO0 offers lower noise floor while VCO1 offers improved VCO phase noise which  
reduces RMS jitter. Depending on application requirements only one or both VCOs may be an option. In this  
case, the only option is to choose the LMK04828-EP_VCO1 that has improved RMS jitter in the 12-kHz to 20-  
MHz integration range. Larger integration ranges may benefit from the lower noise floor of VCO0.  
10.2.2.1.1 Clock Architect  
Only one device of a part family is returned as a possible solution. For the above example, if there is a valid  
solution using both VCO0 and VCO1 of LMK04828-EP, only the solution for LMK04828-EP_VCO1 displays.  
Under advanced tab, filtering of specific parts can be done using regular expressions in the Part Filter box.  
[LMK04828-EP] filters for only LMK04828-EP devices (without the brackets); this includes a VCO0 and VCO1  
simulation profile. More detailed filters can be given such as the entire part name LMK04828-EP_VCO0 to force  
an LMK04828-EP using VCO0 solution if one is available.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Typical Application (continued)  
10.2.2.1.2 Clock Design Tool  
In wizard-mode, select Dual Loop PLL to find LMK04828-EP devices. If a high frequency and clean reference is  
available, it is not required to use dual loop; PLL1 can be powered down and input is then provided through the  
OSCin port. When simulating single loop solutions, set PLL1 loop filter block to [0 Hz LBW] and use VCXO as  
the reference block.  
In the Clock Design Tool, use LMK04828B to simulate LMK04828-EP.  
10.2.2.2 Device Configuration and Simulation  
The tools automatically configure the simulation to meet the input and output frequency requirements given and  
make assumptions about other parameters to give some default simulations. However the user may chose to  
make adjustments for more accurate simulations to their application. For example:  
Entering the VCO Gain of the external VCXO or possible external VCO used device.  
Adjust the charge pump current to help with loop filter component selection. Lower charge pump currents  
result in smaller components but may increase impacts of leakage and at the lowest values reduce PLL  
phase nosie performance.  
Clock Design Tool allows loading a custom phase noise plot for any block. Typically, a custom phase noise  
plot is entered for CLKin to match the reference phase noise to device; a phase noise plot for the VCXO can  
additionally be provided to match the performance of VCXO used. For improved accuracy in simulation and  
optimum loop filter design, be sure to load these custom noise profiles for use in application.  
The design tools return with high reference or phase detector frequencies by default. In the Clock Design Tool  
the user may increase the reference divider to reduce the frequency if desired. Due to the narrow loop  
bandwidth used on PLL1, it is common to reduce the phase detector frequency on PLL1.  
10.2.2.3 Device Programming  
Using the clock design tools configuration the TICS Pro software is manually updated with this information to  
meet the required application. Note for the JESD204B outputs place device clocks on the DCLKoutX output, then  
turn on the paired SDCLKoutY output for SYSREF output. For Non-JESD204B outputs both DCLKoutX and  
paired SDCLKoutY may be driven by the device clock divider to maximize number of available outputs.  
Frequency planning for assignment of outputs:  
To minimize crosstalk perform frequency planning or CLKout assignments to keep common frequencies on  
outputs close together.  
It is best to place common device clock output frequencies on outputs sharing the same VCC group. For  
example, these outputs share Vcc4_CG2. Refer to Pin Configuration and Functions to see the VCC groupings  
the clock outputs.  
In this example, the 245.76-MHz ADC output needs the best performance. DCLKout2 on the LMK04828-EP  
provides the best noise floor or performance. The 245.76 MHz is placed on DCLKout2 with 10.24-MHz SYSREF  
on SDCLKout3.  
For best performance the input and output drive level bits may be set. Best noise floor performance is  
achieved with DCLKout2_IDL = 1 and DCLKout2_ODL = 1.  
In this example, the 983.04-MHz DAC output is placed on DCLKout4 and DCLKout6 with 10.24-MHz SYSREF  
on paired SDCLKout5 and SDCLKout7 outputs.  
These outputs share Vcc4_CG2.  
In this example, the 122.88-MHz FPGA JESD204B output is placed on DCLKout10 with 10.24-MHz SYSREF on  
paired SDCLKout11 output.  
Additionally, the 122.88-MHz FPGA non-JESD204B outputs are placed on DCLKout8 and SDCLKout9.  
When frequency planning, consider PLL2 as a clock output at the phase detector frequency. As such, these  
122.88-MHz outputs have been placed on the outputs close to the PLL2 and Charge Pump power supplies.  
Once the device programming is completed as desired in the TICS Pro software, it is possible to export the  
register settings from the Register tab for use in application.  
88  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
Typical Application (continued)  
10.2.3 Application Curves  
Figure 21. DCLKout0, 245.76 MHz,  
Figure 22. DCLKout2, 245.76 MHz,  
LVPECL20 With 240-Ω Emitter Resistors  
LVPECL20 With 240-Ω Emitter Resistors  
DCLKout0_1_IDL = 1, DCLKout0_1_ODL = 1  
DCLKout2_3_IDL = 1, DCLKout2_3_ODL = 1  
Figure 23. DCLKout4, 983.04 MHz,  
LVPECL16 With 240-Ω Emitter Resistors  
DCLKout0_1_IDL = 1, DCLKout0_1_ODL = 0  
Figure 24. DCLKout6, 983.04 MHz,  
LVPECL16 With 240-Ω Emitter Resistors  
DCLKout0_1_IDL = 1, DCLKout0_1_ODL = 0  
Figure 25. DCLKout10, 122.88 MHz, LVDS  
DCLKout0_1_IDL = 1, DCLKout0_1_ODL = 0  
Figure 26. SDCLKout11, 122.88 MHz, LVDS  
DCLKout0_1_IDL = 1, DCLKout0_1_ODL = 0  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
Typical Application (continued)  
Figure 27. OSCout, 122.88 MHz, LVCMOS (Norm/Inv)  
Normal Output Measured, Inverse 50-Ω Termination  
Figure 28. Direct VCXO Measurement  
Open-Loop, Holdover Mode Set  
10.3 Do's and Don'ts  
Do use the software RESET bit at the beginning of system programming as suggested in recommended  
programming sequence.  
10.3.1 Pin Connection Recommendations  
VCC Pins and Decoupling: all VCC pins must always be connected.  
Unused Clock Outputs: leave unused clock outputs floating and powered down.  
Unused Clock Inputs: unused clock inputs can be left floating.  
Unused OSCin or OSCout can be left floating and powered down.  
If the RESET pin is unused, program the RESET pin as an output using RESET_MUX to prevent chance for  
device reset via RESET pin. If RESET pin is used, consider placing a capacitor at pin to prevent a possible  
glitch from system resetting the device.  
90  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
11 Power Supply Recommendations  
11.1 Current Consumption / Power Dissipation Calculations  
From Table 85 the current consumption can be calculated for any configuration. Data below is typical and not  
assured.  
Table 85. Typical Current Consumption for Selected Functional Blocks  
(TA = 25°C, VCC = 3.3 V)  
POWER  
DISSIPATED  
in DEVICE  
(mW)  
POWER  
DISSIPATED  
EXTERNALLY  
(mW)  
TYPICAL ICC  
(mA)  
BLOCK  
TEST CONDITIONS  
CORE AND FUNCTIONAL BLOCKS  
Dual Loop, Internal  
VCO0  
Core  
PLL1 and PLL2 locked  
131.5  
433.95  
VCO  
VCO1 is selected  
Doubler is enabled  
LMK04828-EP  
13.5  
3
44.55  
9.9  
OSCin Doubler  
CLKin  
EN_PLL2_REF_2X = 1  
Any one of the CLKinX is enabled  
4.9  
1.3  
16.17  
4.29  
Holdover is enabled  
Hitless switch is enabled  
Track mode  
HOLDOVER_EN = 1  
HOLDOVER_HITLESS_  
SWITCH = 1  
Holdover  
0.9  
2.97  
TRACK_EN = 1  
2.5  
7.6  
8.25  
25.08  
89.76  
SYNC_EN = 1  
Required for SYNC and SYSREF functionality  
Enabled  
SYSREF_PD = 0  
27.2  
Dynamic Digital Delay  
enabled  
SYSREF_DDLY_PD = 0  
5
16.5  
SYSREF  
Pulser is enabled  
SYSREF_PLSR_PD = 0  
SYSREF_MUX = 2  
SYSREF_MUX = 3  
4.1  
3
13.53  
9.9  
SYSREF Pulses mode  
SYSREF Continuous  
mode  
3
9.9  
CLOCK GROUP  
Enabled  
IDL  
Any one of the CLKoutX_Y_PD = 0  
Any one of the CLKoutX_Y_IDL = 1  
Andy one of the CLKoutX_Y_ODL = 1  
20.1  
2.2  
66.33  
7.26  
ODL  
3.2  
10.56  
44.88  
58.41  
44.88  
Divider Only  
DCLKoutX_MUX = 0  
13.6  
17.7  
13.6  
Clock Divider  
Divider + DCC + HS  
Analog Delay + Divider  
DCLKoutX_MUX = 1  
DCLKoutX_MUX = 3  
CLOCK OUTPUT BUFFERS  
LVDS  
100 Ω differential termination  
6
19.8  
29.04  
38.28  
64.02  
HSDS 6 mA, 100 Ω differential termination  
HSDS 8 mA, 100 Ω differential termination  
HSDS 10 mA, 100-Ω differential termination  
8.8  
HSDS  
11.6  
19.4  
OSCout BUFFERS  
LVDS  
100-Ω differential termination  
18.5  
42.6  
27  
61.05  
140.58  
89.1  
LVCMOS Pair  
150 MHz  
150 MHz  
LVCMOS  
LVCMOS Single  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
Product Folder Links: LMK04828-EP  
 
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Thermal Management  
Power consumption of the LMK04828-EP can be high enough to require attention to thermal management. For  
reliability and performance reasons the die temperature must be limited to a maximum of 125°C. That is, as an  
estimate, TA (ambient temperature) plus device power consumption times RθJA must not exceed 125°C.  
The package of the device has an exposed pad that provides the primary heat removal path as well as excellent  
electrical grounding to a printed-circuit board. To maximize the removal of heat from the package a thermal land  
pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the  
package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package.  
7.2 mm  
0.2 mm  
1.46 mm  
1.15 mm  
Figure 29. Recommended Land and Via Pattern  
92  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
www.ti.com  
SNAS703 APRIL 2017  
12.2 Layout Example  
Charge pump output œ shorter traces are better. Place all  
resistors and caps closer to IC except for a single capacitor  
and associated resistor, if any, next to VCXO. In a 2nd order  
filter place C1 close to VCXO Vtune pin. In a 3rd and 4th  
order filter place R3/C3 or R4/C4 respectively close to  
VCXO.  
CLKin and OSCin path œ if differential input (preferred) route traces tightly coupled. If single  
ended, have at least 3 trace width (of CLKin/OSCin trace) separation from other RF traces.  
When using CLKin1 for high frequency input for external VCO or distribution, a 3 dB pi pad is  
suggested for termination.  
Place terminations close to IC.  
CLKin2 and OSCout share pins and is programmable for input or output.  
CLKouts/OSCouts œ Normally differential signals, should be  
routed tightly coupled to minimize PCB crosstalk. Trace  
impedance and terminations should be designed according  
to output type being used (i.e. LVDS, LVPECL, LVCMOS).  
For LVPECL/LCPECL place emitter resistors close to IC.  
OSCout shares pins with CLKin2 and is programmable for  
input or output  
For CLKout Vccs in JESD204B application, place ferrite beads then 1 µF  
capacitor. The 1 µF capacitor supports low frequency SYSREF switching/turn on.  
For CLKout Vccs in traditional application place ferrite bead on top layer close to  
pins to choke high frequency noise from via.  
Figure 30. LMK04828-EP Layout Example  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
Product Folder Links: LMK04828-EP  
LMK04828-EP  
SNAS703 APRIL 2017  
www.ti.com  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Development Support  
13.1.1.1 Clock Architect  
Part selection, loop filter design, simulation.  
For the Clock Architect, go to www.ti.com/clockarchitect.  
13.1.1.2 Clock Design Tool  
Limited part selection, advanced loop filter design and simulation capabilities. For the Clock Design Tool, go to  
www.ti.com/tool/clockdesigntool. Note training videos on this tool page.  
13.1.1.3 TICS Pro  
EVM programming software. Can also be used to generate register map for programming for a specific  
application.  
For TICS Pro, go to www.ti.com/tool/ticspro-sw  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 Trademarks  
PLLatinum, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
94  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: LMK04828-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK04828SNKDREP  
LMK04828SNKDTEP  
V62/18602-01XB  
ACTIVE  
WQFN  
WQFN  
WQFN  
NKD  
64  
64  
64  
Non-RoHS  
& Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 105  
4828SNKDEP  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
NKD  
Non-RoHS  
& Green  
Call TI  
Call TI  
4828SNKDEP  
4828SNKDEP  
NKD  
2000  
Non-RoHS  
& Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMK04828-EP :  
Catalog : LMK04828  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK04828SNKDREP  
LMK04828SNKDTEP  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000  
250  
330.0  
178.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.3  
1.3  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK04828SNKDREP  
LMK04828SNKDTEP  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
NKD 64  
9 x 9, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229637/A  
www.ti.com  
PACKAGE OUTLINE  
NKD0064A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
6
0
0
WQFN  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
9.1  
8.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
(0.1)  
TYP  
7.2 0.1  
SEE TERMINAL  
DETAIL  
17  
32  
60X 0.5  
33  
16  
4X  
7.5  
1
48  
0.3  
64X  
PIN 1 ID  
64  
49  
0.2  
(OPTIONAL)  
0.1  
C A  
C
B
0.5  
0.3  
64X  
0.05  
4214996/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
(
7.2)  
SYMM  
64X (0.6)  
64X (0.25)  
SEE DETAILS  
49  
64  
1
48  
60X (0.5)  
SYMM  
(8.8)  
(1.36)  
TYP  
8X (1.31)  
33  
(
0.2) VIA  
TYP  
16  
17  
32  
(1.36) TYP  
8X (1.31)  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214996/A 08/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64X (0.25)  
64  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
SOLDERPASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4214996/A 08/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

V62/18605-01XE

具有 60MHz 频率、128KB 闪存、CLA 的 C2000™ 增强型产品 32 位 MCU | PN | 80 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18606-01XF

增强型产品 16/32 位 RISC 闪存 MCU、Arm Cortex-R5F、EMAC、FlexRay | GWT | 337 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18609-01XE

增强型产品 2.5V、200MHz GBW、CMOS 双路运算放大器 | DGK | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18609-01XE-R

增强型产品 2.5V、200MHz GBW、CMOS 双路运算放大器 | DGK | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18613-01XE

采用增强型航天塑料的 2.2V 至 36V 耐辐射微功耗四路比较器 | PW | 14 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18613-01XE-T

采用增强型航天塑料的 2.2V 至 36V 耐辐射微功耗四路比较器 | PW | 14 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18615-01XE

采用增强型航天塑料、具有增强的 PWM 抑制能力的 -4V 至 80V、超精密电流感应放大器 | PW | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18615-01XE-T

采用增强型航天塑料、具有增强的 PWM 抑制能力的 -4V 至 80V、超精密电流感应放大器 | PW | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18616-01XE

采用塑料封装的耐辐射、2.2V 至 20V 输入、1A 可调节 LDO 稳压器 | DCQ | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18616-01XE-T

采用塑料封装的耐辐射、2.2V 至 20V 输入、1A 可调节 LDO 稳压器 | DCQ | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18617-01XE

采用增强型航天塑料封装且具有待机模式的耐辐射加固保障 3.3V CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

V62/18617-01XE-T

采用增强型航天塑料封装且具有待机模式的耐辐射加固保障 3.3V CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI