T6L79 [TOSHIBA]

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC443, TCP-443, Display Driver;
T6L79
型号: T6L79
厂家: TOSHIBA    TOSHIBA
描述:

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC443, TCP-443, Display Driver

驱动 接口集成电路
文件: 总18页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
T6L79  
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic  
T6L79  
Source Driver for TFT LCD Panels  
The T6L79 is a 64-grayscale-level and 384-channel output  
source driver for TFT LCD panels. The device accepts 8-bit ×  
6-dot digital CMOS-level inputs, for which the direction of data  
transfer can be selected by the U/D pin. The 10 (5 × 2) external  
power supply and the internal DA converter realize display of  
260,000 colors, on which reference analog voltage inputs is made.  
The DA converter supports one side dot line inversion,  
achieving high picture quality. The output dynamic range is a  
generous 7.3 to 9.8 Vp-p.  
Unit: mm  
User Pitch Area  
IN OUT  
T6L79  
For the latest TCP specifications and  
product line-up, contact Toshiba or your  
local sales office.  
Base on high-speed CMOS, the T6L79 offers both low power  
consumption and high-speed operation. To configure an SXGA or  
XGA-compatible TFT-LCD module, it allows a maximum  
operating frequency 45 MHz.  
TCP (Tape Carrier Package)  
Features  
Grayscale data  
: Digital CMOS-level 36-bit (6-bit × 6-input) parallel transfer method, selectable transfer  
direction  
Panel drive outputs  
: 384 outputs, 64 grayscale levels, R-DAC system, reference analog voltage inputs,  
10 external power supplies (5 × 2), one side dot line inversion drive  
High-speed operation : 45 MHz max  
Power supply voltage : Digital power supply voltage . . . 3.0 to 3.6 V  
Analog power supply voltage . . . 7.5 to 10.0 V  
Operating temperature: 20 to 75°C  
Package: Tape carrier package (TCP)  
Cascading of multiple devices  
1
2002-04-03  
T6L79  
Block Diagram  
DI/O  
CPH  
U/D  
DO/I  
Data control unit  
DINV  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
Sampling register (REG1)  
LOAD  
Load register (REG2)  
POL  
DA converter  
V0 to V9  
TEST  
TESTP  
Output circuit  
AV  
DV  
DD  
DD  
AV  
DV  
SS  
SS  
OUT1  
OUT3  
OUT382  
OUT384  
OUT2  
OUT383  
2
2002-04-03  
T6L79  
Pin Assignment  
OUT1 60  
OUT2 61  
OUT3 62  
OUT4 63  
OUT5 64  
OUT6 65  
OUT7 66  
OUT8 67  
OUT9 68  
OUT10 69  
59 DI/O  
58 D00  
53 D05  
52 D10  
47 D15  
46 D20  
41 D25  
40 DINV  
39 POL  
38 LOAD  
37 CPH  
36  
TESTP  
35 DV  
34 V0  
33 V1  
32 V2  
31 V3  
30 V4  
29 AV  
28 AV  
27 V5  
26 V6  
25 V7  
24 V8  
23 V9  
SS  
T6L79  
(chip top view)  
SS  
DD  
22 U/D  
21 TEST  
20 DV  
DD  
19 D30  
14 D35  
13 D40  
OUT375 434  
OUT376 435  
OUT377 436  
OUT378 437  
OUT379 438  
OUT380 439  
OUT381 440  
OUT382 441  
OUT383 442  
OUT384 443  
8
7
D45  
D55  
2
1
D55  
DO/I  
The figure above shows an example of the pin assignment in the TCP. It does not specify the pad layout on the  
chip. For the latest TCP specifications, contact Toshiba or your local sales office.  
3
2002-04-03  
T6L79  
Pin Functions  
Pin Name  
I/O  
Function  
Data transfer enable pins  
These pins are used to input/output grayscale data.  
Input and output are switched as shown below according to the setting of the U/D pin.  
U/D  
DI/O  
Input  
DO/I  
Output  
Input  
H
L
Output  
DI/O  
DO/I  
I/O  
When DI/O or DO/I is set to input  
High level input to the pin is latched into the internal logic in sync with the rising edge of CPH.  
If the internal logic is in standby state, the device is ready for data transfer. Grayscale data are  
sequentially latched starting from the next rising edge of CPH.  
When DI/O or DO/I is set to output  
Sends enable signal to the T6L79 at the next stage of the LCD driver. After outputting High  
level, the pin enters standby state.  
Transfer direction select pin  
Controls the transfer direction of grayscale data. The data are transferred in the following order  
in sync with the rising edge of CPH:  
When U/D = High: OUT1 to OUT6, OUT7 to OUT12 . . . OUT379 to OUT384  
When U/D = Low: OUT379 to OUT384, OUT373 to OUT378 . . . OUT1 to OUT6  
The voltage applied to this pin must be DC level, High or Low.  
U/D  
I
I
I
Data transfer clock pin  
CPH  
Transfers grayscale data. Sequentially latches grayscale data into REG1 in sync with the rising  
edge of CPH. Input clocks at least three cycles after High level of the LOAD pin.  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
Grayscale data bus pins  
Inputs output data consisting of 6 bits for six channels in one transfer. The relationship between  
grayscale data and output pins is as follows:  
Grayscale data = 32 × Dn5 + 16 × Dn4 + 8 × Dn3 + 4 × Dn2 + 2 × Dn1 + Dn0  
(*) n = 0, 1, . . . , 5  
Data load input pin  
High level input to the pin is latched into the internal logic in sync with the rising edge of CPH.  
Then, the REG1 data are transferred to REG2. The voltage changes to that corresponding to  
grayscale data in sync with the falling edge of LOAD.  
LOAD  
DINV  
I
I
Data polarity inverting pin  
Selects inversion or non-inversion of grayscale data bus at the rising edge of CPH.  
DINV = Low: Data bus not inverted  
DINV = High: Data bus inverted  
”H” or “L” level is discriminated at the rising edge of CPH same as gray data bus.  
Polarity inverting pin  
Latches the input signal into the internal logic in sync with the rising edge of LOAD.  
POL = Low: The reference voltage for odd-numbered outputs is input from V0 to V4;  
for even-numbered outputs, V5 to V9.  
POL  
I
POL = High: The reference voltage for odd-numbered outputs is input from V5 to V9;  
for even-numbered outputs, V0 to V4.  
Reference analog voltage input pins  
Externally input reference analog voltage inputs voltage.  
Hold the input voltage during output of the voltage corresponding to grayscale data.  
V0 to V9  
TEST  
I
I
AV  
0.1 > V0 > V1 > V2 > V3 > V4 > 0.5 × AV  
SS  
> V5 > V6 > V7 > V8 >  
DD  
DD  
V9 > AV + 0.1  
Test pin  
Leave the pin open or set to DV level.  
SS  
Test pin  
Controlling the output amp constant current supply reduces current dissipation.  
In Low Power Mode ( TESTP = Low), current dissipation is reduced to 2/3 of the value in  
TESTP  
I
Normal Current Dissipation Mode. The pin is internally pulled up to DV  
.
DD  
TESTP = High or the pin left open: Normal Current Dissipation Mode  
TESTP = Low: Low-Current-Dissipation Mode  
OUT1 to OUT384  
O
LCD panel drive pins  
AV  
AV  
DV  
DV  
Analog power supply pin  
DD  
SS  
DD  
SS  
Analog GND pin  
Apply the same voltage as that of digital GND pin.  
Digital power supply pin  
Digital GND pin  
Apply the same voltage as that of analog GND pin.  
4
2002-04-03  
T6L79  
Device Operation  
(1) Starting data transfer  
High level input to the data transfer enable pin (DI/O or DO/I) is latched into the internal logic in sync with  
the rising edge of CPH, setting the device to ready for transfer.  
Set the period for High level input to the data transfer enable pin to one clock.  
(2) Data transfer method  
Grayscale data are transferred from the data bus to the sampling register (REG1) in sync with the rising edge  
of CPH. Grayscale data for six channels are simultaneously written in one transfer. Transfer completes after 64  
times and the device enters standby state. Data to be written to REG1 are the result of operations between the  
grayscale data bus and DINV.  
Note 1: Do not input High level to LOAD during data transfer.  
(3) Ending data transfer  
High level is output from the data transfer enable pin (DO/I or DI/O) from the rising edge of CPH, one cycle  
before the last data are latched, to the next rising edge of CPH.  
(4) LCD panel drive output  
Inputting High level to LOAD in sync with the rising edge of CPH following High level output from DO/I  
(DI/O) transfers data from the sampling register (REG1) to the load register (REG2) and outputs a voltage  
corresponding to the grayscale data in sync with the falling edge of LOAD.  
Note 2: Input High level to LOAD at least three clock cycles.  
The T6L79 has a capacity for polarity inverting corresponding to dot-inverting operation. By POL signal to  
the pin which is latched into the internal logic in sync with the rising edge of LOAD, the polarity of  
odd-numbered outputs and even-numbered outputs are inverted.  
By changing the cycle of POL signal, n-line inverting operation is available to correspond.  
The reference voltage for odd-numbered outputs is input  
POL = “L”  
from V0 to V4, for even-numbered outputs, V5 to V9  
The reference voltage for odd-numbered outputs is input  
from V5 to V9, for even-numbered outputs, V0 to V4  
POL = “H”  
(5)  
(Low power control function)  
TESTP  
Output amp bias current can be switched between two values using the TESTP pin. The current dissipation  
in Low Current Dissipation Mode can be reduced to 2/3 of that in Normal Current Dissipation mode.  
Note 3: Input the stabilized DC voltage (DV , DV ) to the TESTP pin.  
DD  
SS  
TESTP = “H”  
TESTP = “L”  
Normal current dissipation mode  
Low current dissipation mode  
5
2002-04-03  
T6L79  
(6) Reference analog voltage inputs power supply circuit  
The DA converter consists of ladder resistors and switches. Resistors are serially connected between the  
supply voltage input pins for reference analog voltage inputs.  
V0  
R0 to R15  
V1  
V2  
V3  
V4  
R16 to R31  
R32 to R47  
R48 to R62  
V5  
V6  
V7  
V8  
V9  
R62 to R48  
R47 to R32  
R31 to R16  
R15 to R0  
Resistors between power supply pins for reference analog voltage inputs (typical)  
Unit: Ω  
Resistor Resistance Resistor Resistance Resistor Resistance Resistor Resistance  
Name  
Values  
648.0  
607.5  
567.0  
Name  
Values  
243.0  
202.5  
202.5  
Name  
Values  
Name  
Values  
R
0
R
16  
R
32  
R
48  
81.0  
81.0  
R
1
R
17  
R
33  
R
49  
81.0  
81.0  
R
2
R
18  
R
34  
R
50  
81.0  
81.0  
R
3
R
R
R
526.5  
486.0  
445.5  
445.5  
405.0  
405.0  
324.0  
324.0  
283.5  
283.5  
283.5  
243.0  
243.0  
202.5  
162.0  
162.0  
162.0  
121.5  
121.5  
121.5  
121.5  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
81.0  
19  
35  
51  
R
4
R
20  
R
36  
R
52  
R
5
R
21  
R
37  
R
53  
121.5  
121.5  
121.5  
162.0  
162.0  
202.5  
202.5  
243.0  
405.0  
648.0  
R
6
R
22  
R
38  
R
54  
R
7
R
23  
R
39  
R
55  
R
8
R
24  
R
40  
R
56  
R
9
R
25  
R
41  
R
57  
R
10  
R
26  
R
42  
R
58  
R
11  
R
27  
R
43  
R
59  
R
12  
R
28  
R
44  
R
60  
81.0  
R
13  
R
29  
R
45  
R
61  
81.0  
R
14  
R
30  
R
46  
R
62  
81.0  
R
15  
R
31  
R
47  
81.0  
6
2002-04-03  
T6L79  
(7) Relationship between grayscale data and output voltage  
The output voltage is determined according to the grayscale data values and the ten power supply voltages for  
reference analog voltage inputs. When U/D is High or Low, the grayscale data and the output pins correspond as  
shown in the table below.  
Output  
Grayscale Data  
U/D = “H”  
U/D = “L”  
OUT (6p 5)  
OUT (6 p 4)  
OUT (6p 3)  
OUT (6p 2)  
OUT (6p 1)  
OUT (6p)  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
OUT (6m 5)  
OUT (6m 4)  
OUT (6m 3)  
OUT (6m 2)  
OUT (6m 1)  
OUT (6m)  
(*) m = 1, 2, 3, • • • , 62, 63, 64  
p = 64, 63, 62, • • • , 3, 2, 1  
Schematic of reference analog voltage inputs  
Number of reference analog  
resistance divisions  
AV  
DD  
V0  
16  
V1  
V2  
V3  
16  
16  
15  
V4  
V5  
15  
V6  
V7  
V8  
16  
16  
16  
V9  
Number of reference analog  
AV  
SS  
resistance divisions  
“3F”  
“00”  
“10”  
“20”  
“30”  
Input grayscale data (HEX)  
7
2002-04-03  
T6L79  
Relationship 1 between grayscale data and output voltage  
(grayscale data: 00H to 1FH)  
(*) n = 0, 1, • • •, 5  
Output Voltage (reference value)  
Grayscale  
Data  
Dn5 Dn4 Dn3 Dn2 Dn1 Dn0  
V5 < V4 < V3 < V2 < V1 < V0 < AV  
DINV = L  
,
AV < V9 < V8 < V7 < V6 < V5 < V4,  
DD  
SS  
DINV = L  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
V00H V0  
V00H’ V9  
V01H V1 + (V0 V1) × 5872.5/6520.5 V01H’ V9 + (V8V9) × 648.0/6520.5  
V02H V1 + (V0 V1) × 5265.0/6520.5 V02H’ V9 + (V8V9) × 1255.5/6520.5  
V03H V1 + (V0 V1) × 4698.0/6520.5 V03H’ V9 + (V8V9) × 1822.5/6520.5  
V04H V1 + (V0 V1) × 4171.5/6520.5 V04H’ V9 + (V8V9) × 2349.0/6520.5  
V05H V1 + (V0 V1) × 3685.5/6520.5 V05H’ V9 + (V8V9) × 2835.0/6520.5  
V06H V1 + (V0 V1) × 3240.0/6520.5 V06H’ V9 + (V8V9) × 3280.5/6520.5  
V07H V1 + (V0 V1) × 2794.5/6520.5 V07H’ V9 + (V8V9) × 3726.0/6520.5  
V08H V1 + (V0 V1) × 2389.5/6520.5 V08H’ V9 + (V8V9) × 4131.0/6520.5  
V09H V1 + (V0 V1) × 1984.5/6520.5 V09H’ V9 + (V8V9) × 4536.0/6520.5  
V0AH V1 + (V0 V1) × 1660.5/6520.5 V0AH’ V9 + (V8 V9) × 4860.0/6520.5  
V0BH V1 + (V0 V1) × 1336.5/6520.5 V0BH’ V9 + (V8 V9) × 5184.0/6520.5  
V0CH V1 + (V0 V1) × 1053.0/6520.5 V0CH’ V9 + (V8 V9) × 5467.5/6520.5  
V0DH V1 + (V0 V1) × 769.5/6520.5  
V0EH V1 + (V0 V1) × 486.0/6520.5  
V0FH V1 + (V0 V1) × 243.0/6520.5  
V10H V1  
V0DH’ V9 + (V8 V9) × 5751.0/6520.5  
V0EH’ V9 + (V8 V9) × 6034.5/6520.5  
V0FH’ V9 + (V8 V9) × 6277.5/6520.5  
V10H’ V8  
V11H V2 + (V1 V2) × 1984.5/2227.5 V11H’ V8 + (V7 V8) × 243.0/2227.5  
V12H V2 + (V1 V2) × 1782.0/2227.5 V12H’ V8 + (V7 V8) × 445.5/2227.5  
V13H V2 + (V1 V2) × 1579.5/2227.5 V13H’ V8 + (V7 V8) × 648.0/2227.5  
V14H V2 + (V1 V2) × 1377.0/2227.5 V14H’ V8 + (V7 V8) × 850.5/2227.5  
V15H V2 + (V1 V2) × 1215.0/2227.5 V15H’ V8 + (V7 V8) × 1012.5/2227.5  
V16H V2 + (V1 V2) × 1053.0/2227.5 V16H’ V8 + (V7 V8) × 1174.5/2227.5  
V17H V2 + (V1 V2) × 891.0/2227.5  
V18H V2 + (V1 V2) × 769.5/2227.5  
V19H V2 + (V1 V2) × 648.0/2227.5  
V1AH V2 + (V1 V2) × 526.5/2227.5  
V1BH V2 + (V1 V2) × 405.0/2227.5  
V1CH V2 + (V1 V2) × 324.0/2227.5  
V1DH V2 + (V1 V2) × 243.0/2227.5  
V1EH V2 + (V1 V2) × 162.0/2227.5  
V1FH V2 + (V1 V2) × 81.0/2227.5  
V17H’ V8 + (V7 V8) × 1336.5/2227.5  
V18H’ V8 + (V7 V8) × 1458.0/2227.5  
V19H’ V8 + (V7 V8) × 1579.5/2227.5  
V1AH’ V8 + (V7 V8) × 1701.0/2227.5  
V1BH’ V8 + (V7 V8) × 1822.5/2227.5  
V1CH’ V8 + (V7 V8) × 1903.5/2227.5  
V1DH’ V8 + (V7 V8) × 1984.5/2227.5  
V1EH’ V8 + (V7 V8) × 2065.5/2227.5  
V1FH’ V8 + (V7 V8) × 2146.5/2227.5  
8
2002-04-03  
T6L79  
Relationship 2 between grayscale data and output voltage  
(grayscale data: 20H to 3FH)  
(*) n = 0, 1, • • •, 5  
Output Voltage (reference value)  
Grayscale  
Data  
Dn5 Dn4 Dn3 Dn2 Dn1 Dn0  
V5 < V4 < V3 < V2 < V1 < V0 < AV  
DINV = L  
,
AV < V9 < V8 < V7 < V6 < V5 < V4,  
DD  
SS  
DINV = L  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
20H V2  
20H’ V7  
21H V3 + (V2 V3) × 1215.0/1296.0 21H’ V7 + (V6 V7) × 81.0/1296.0  
22H V3 + (V2 V3) × 1134.0/1296.0 22H’ V7 + (V6 V7) × 162.0/1296.0  
23H V3 + (V2 V3) × 1053.0/1296.0 23H’ V7 + (V6 V7) × 243.0/1296.0  
24H V3 + (V2 V3) × 972.0/1296.0  
25H V3 + (V2 V3) × 891.0/1296.0  
26H V3 + (V2 V3) × 810.0/1296.0  
27H V3 + (V2 V3) × 729.0/1296.0  
28H V3 + (V2 V3) × 648.0/1296.0  
29H V3 + (V2 V3) × 567.0/1296.0  
2AH V3 + (V2 V3) × 486.0/1296.0  
2BH V3 + (V2 V3) × 405.0/1296.0  
2CH V3 + (V2 V3) × 324.0/1296.0  
2DH V3 + (V2 V3) × 243.0/1296.0  
2EH V3 + (V2 V3) × 162.0/1296.0  
2FH V3 + (V2 V3) × 81.0/1296.0  
30H V3  
24H’ V7 + (V6 V7) × 324.0/1296.0  
25H’ V7 + (V6 V7) × 405.0/1296.0  
26H’ V7 + (V6 V7) × 486.0/1296.0  
27H’ V7 + (V6 V7) × 567.0/1296.0  
28H’ V7 + (V6 V7) × 648.0/1296.0  
29H’ V7 + (V6 V7) × 729.0/1296.0  
2AH’ V7 + (V6 V7) × 810.0/1296.0  
2BH’ V7 + (V6 V7) × 891.0/1296.0  
2CH’ V7 + (V6 V7) × 972.0/1296.0  
2DH’ V7 + (V6 V7) × 1053.0/1296.0  
2EH’ V7 + (V6 V7) × 1134.0/1296.0  
2FH’ V7 + (V6 V7) × 1215.0/1296.0  
30H’ V6  
31H V4 + (V3 V4) × 2713.5/2794.5 31H’ V6 + (V5V6) × 81.0/2794.5  
32H V4 + (V3 V4) × 2632.5/2794.5 32H’ V6 + (V5V6) × 162.0/2794.5  
33H V4 + (V3 V4) × 2551.5/2794.5 33H’ V6 + (V5V6) × 243.0/2794.5  
34H V4 + (V3 V4) × 2470.5/2794.5 34H’ V6 + (V5V6) × 324.0/2794.5  
35H V4 + (V3 V4) × 2389.5/2794.5 35H’ V6 + (V5V6) × 405.0/2794.5  
36H V4 + (V3 V4) × 2268.0/2794.5 36H’ V6 + (V5V6) × 526.5/2794.5  
37H V4 + (V3 V4) × 2146.5/2794.5 37H’ V6 + (V5V6) × 648.0/2794.5  
38H V4 + (V3 V4) × 2025.0/2794.5 38H’ V6 + (V5V6) × 769.5/2794.5  
39H V4 + (V3 V4) × 1863.0/2794.5 39H’ V6 + (V5V6) × 931.5/2794.5  
3AH V4 + (V3 V4) × 1701.0/2794.5 3AH’ V6 + (V5V6) × 1093.5/2794.5  
3BH V4 + (V3 V4) × 1498.5/2794.5 3BH’ V6 + (V5V6) × 1296.0/2794.5  
3CH V4 + (V3 V4) × 1296.0/2794.5 3CH’ V6 + (V5V6) × 1498.5/2794.5  
3DH V4 + (V3 V4) × 1053.0/2794.5 3DH’ V7 + (V5V6) × 1741.5/2794.5  
3EH V4 + (V3 V4) × 648.0/2794.5  
3EH’ V7 + (V5V6) × 2146.5/2794.5  
3FH V4  
3FH’ V5  
9
2002-04-03  
T6L79  
Relationship between LOAD and POL output waveforms  
LOAD  
POL  
OUT  
2N-1  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
OUT  
2N  
POL  
OUT  
OUT  
2N  
2N-1  
L
V0 to V4  
V5 to V9  
V5 to V9  
V0 to V4  
H
(*) OUT  
2N-1  
(odd-numbered outputs)  
OUT (even-numbered outputs)  
2N  
10  
2002-04-03  
T6L79  
Timing Chart  
Start pulse and data sequence  
DI/O, DO/I  
(Input)  
0
1
2
3
62  
63  
64  
CPH  
(*)  
OUT1/  
D00 to D05  
XOR DINV  
OUT7/  
OUT13/  
OUT367/ OUT373/ OUT379/  
OUT13 OUT7 OUT1  
OUT379 OUT373 OUT367  
D10 to D15  
XOR DINV  
OUT2/  
OUT8/  
OUT14/  
OUT368/ OUT374/ OUT380/  
OUT14 OUT8 OUT2  
OUT380 OUT374 OUT368  
D20 to D25  
XOR DINV  
OUT3/  
OUT9/  
OUT15/  
OUT369/ OUT375/ OUT381/  
OUT15 OUT9 OUT3  
OUT381 OUT375 OUT369  
D30 to D35  
XOR DINV  
OUT4/  
OUT10/ OUT16/  
OUT370/ OUT376/ OUT382/  
OUT16 OUT10 OUT4  
OUT382 OUT376 OUT370  
D40 to D45  
XOR DINV  
OUT5/  
OUT11/ OUT17/  
OUT371/ OUT377/ OUT383/  
OUT17 OUT11 OUT5  
OUT383 OUT377 OUT371  
D50 to D55  
XOR DINV  
OUT6/  
OUT12/ OUT18/  
OUT372/ OUT378/ OUT384/  
OUT18 OUT12 OUT6  
OUT384 OUT378 OUT372  
DO/I, DI/O  
(Output)  
(*) Upper: OUT1 U/D = High level  
Lower: OUT379 U/D = Low level  
11  
2002-04-03  
T6L79  
Loading and cascading operation  
0
1
63  
64  
64n  
0
1
CPH  
() First input  
DI/O  
() First output  
DO/I  
() nth output  
DO/I  
Grayscale  
data bus  
First DATA  
Last DATA  
First DATA at  
next stage  
LOAD  
POL  
Hi-z  
OUT1~  
OUT384  
1
2
3
4
n
(*) First input  
DI/O  
First output  
DO/I  
nth output  
DO/I  
· · ·  
Panel  
12  
2002-04-03  
T6L79  
Maximum Ratings (DV = AV = 0 V)  
SS  
SS  
Characteristics  
Digital supply voltage  
Symbol  
Rating  
Unit  
Applicable Pin  
V0 to V9  
DV  
AV  
0.3 to 4.0  
V
V
DD  
Analog supply voltage  
Gamma correction voltage  
Digital input voltage  
0.3 to 11.0  
DD  
V (0:9)  
0.3 to AV  
+ 0.3  
V
DD  
DD  
V
0.3 to DV  
+ 0.3  
V
IN  
Storage temperature  
T
55 to 125  
°C  
stg  
Operating Range (DV = AV = 0 V)  
SS  
SS  
Characteristics  
Digital supply voltage  
Symbol  
Rating  
Unit  
Applicable Pin  
DV  
AV  
3.0 to 3.6  
V
V
DD  
Analog supply voltage  
Gamma correction voltage  
Operating temperature  
Operating frequency  
7.5 to 10.0  
DD  
V (0:9)  
0.1 to AV  
0.1  
V
V0 to V9  
CPH  
DD  
T
20 to 75  
°C  
MHz  
opr  
f
40 (max)  
75  
CPH  
OUT1 to  
OUT384  
Output load capacitance  
C
L
pF/PIN  
8 (max)  
5 (max)  
DI/O, DO/I  
Input capacitance  
C
IN  
pF  
Input pins  
except DI/O, DO/I  
13  
2002-04-03  
T6L79  
Electrical Characteristics  
DC Characteristics  
(DV = 3.0 to 3.6 V, AV = 7.5 to 10.0 V, DV = AV = 0 V, Ta = −20 to 75°C)  
DD  
DD  
SS  
SS  
Test  
Circuit  
Applicable  
Pin  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
0.3 ×  
Low level  
V
0
IL  
DV  
DD  
Input voltage  
Logic input  
0.7 ×  
High level  
Low level  
High level  
V
DV  
IH  
OL  
OH  
DD  
DV  
DD  
V
I
I
=1 mA  
0
0.5  
OL  
Logic  
output  
Output voltage  
V
DV  
DD  
V
= −1 mA  
OH  
0.5  
AV  
AV  
0.1  
OUT1 to  
OUT384  
SS  
DD  
Output voltage range  
VDO  
V
+ 0.1  
(Note 4) 20  
(Note 5) 30  
(Note 6) 10  
(Note 7) 20  
(Note 8) 30  
20  
OUT1 to  
OUT384  
Output voltage deviation  
V  
mV  
O
30  
10  
mV  
mV  
mV  
Output amplitude voltage  
deviation  
OUT1 to  
OUT384  
Vp-p  
Rγ  
20  
30  
V0 to V4  
V5 to V9  
Gamma resistance fluctuation  
7.7  
12.8  
18  
kΩ  
Leakage current  
Standby current  
I
1  
1
1
µA  
µA  
Logic input  
IN  
ID  
STB  
DV  
DV  
DD  
DD  
DI  
5
DD  
(Note 9)  
AI  
AI  
AI  
AI  
6
DD1  
DD2  
DD3  
DD4  
Current dissipation  
Output current  
mA  
4
AV  
DD  
16  
16  
(Note 10)  
Vout = 8.9 V, AV  
Vx = 4 V  
= 9 V  
(Note 11)  
DD  
I
20  
chg  
OUT1 to  
OUT384  
µA  
Vout = 0.1 V, AV  
Vx = 1 V  
= 9 V  
(Note 11)  
DD  
I
30  
dis  
Note4: AV  
= 9V, AV = 0 V, AV + 1.5 V VOUT AV  
1.5 V  
DD  
SS SS DD  
VO is the numerical different the anticipated value of LCD panel drive output voltage (refer for (7)  
relationship between grayscale data and output voltage) from each LCD panel drive output voltage, These  
relationship shows as following formula.  
VO = [each LCD panel drive pin output voltage] [anticipated value of LCD panel drive output voltage]  
Note 5: AV  
DD  
= 9 V, AV = 0 V, AV + 0.1 V VOUT < AV + 1.5 VAV  
1.5 V < VOUT AV 0.1 V  
DD  
SS  
SS  
SS  
DD  
The formula for VO is same as Note 4.  
Note 6: AV = 9 V, AV = 0 V, AV + 1.5 V < VOUT < AV  
1.5 V  
DD SS SS  
DD  
Vpp is the numerical different the remainder of the average of all LCD panel drive output voltage at positive  
electrode and negative electrode from each LCD panel drive output voltage  
Vpp = {[the remainder of each LCD panel drive output voltage at positive electrode (V0 to V4) and negative  
electrode (V5 to V9)][all LCD panel drive output voltage at positive electrode (V0 to V4) and negative  
electrode (V5 to V9) of LCD panel drive output voltage]} in the same grayscale  
Note 7: AV  
DD  
= 9 V, AV = 0 V, AV + 0.8 V < VOUT AV + 1.5 V, AV  
SS SS SS  
1.5 V VOUT < AV  
0.8 V  
DD  
DD  
The formula for Vpp is same as Note 6.  
Note 8: AV = 9 V, AV = 0 V, AV + 0.1 V VOUT AV + 0.8 V, AV  
0.8 V VOUT AV  
0.1 V  
DD SS SS SS  
DD  
DD  
The formula for Vpp is same as Note 6.  
14  
2002-04-03  
T6L79  
Note 9: LOAD cycle = 20 µs, f  
= 32.5 MHz  
CPH  
DI : dot-checkered input pattern, no loaded  
DD  
AI 1: V0 to V4 = V5 to V9 = 4.5 V, AV  
= 9 V, LCD panel drive load = 200 Ω + 80 pF, TESTP = “H”  
DD  
DD  
AI 2: V0 to V4 = V5 to V9 = 4.5 V, AV  
= 9 V, LCD panel drive load = 200 Ω + 80 pF, TESTP = “L”  
DD  
DD  
Note 10: LOAD cycle = 20 µs, f  
= 32.5 MHz  
CPH  
AI 3: V0 = 8.9 V, V4 = V5, V9 = 0.1 V, AV  
= 9 V, LCD panel drive load = 200 Ω + 80 pF, TESTP = “H”  
= 9 V, LCD panel drive load = 200 Ω + 80 pF, TESTP = “L”  
DD  
DD  
DD  
AI 4: V0 = 8.9 V, V4 = V5, V9 = 0.1 V, AV  
DD  
Note 11: Voltage applied to LCD panel drive  
I
I
dis  
chg  
A
A
Vout  
Vout  
Vx  
Vx  
AC Characteristics  
(DV = 3.0 to 3.6 V, AV = 7.5 to 10.0 V, DV = AV = 0 V, Ta = −20 to 75°C)  
DD  
DD  
SS  
SS  
Test  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Circuit  
CPH pulse width H  
CPH pulse width L  
Enable setup time  
Enable hold time  
t
4
4
4
0
4
0
ns  
ns  
ns  
ns  
ns  
ns  
CWH  
t
CWL  
t
t
sDI  
hDI  
Data DINV setup time  
Data DINV hold time  
t
sDD  
hDD  
t
CPH  
cycle  
LOAD high period  
t
3
2
1
LWH  
CPH  
cycle  
LOAD enable input period  
LOAD enable output period  
t
t
LOAD-D1  
LD-LOAD  
CPH  
cycle  
LOAD setup time  
POL setup time  
t
6
4
15  
ns  
ns  
ns  
ns  
sLD  
sDP  
hDP  
t
t
POL hold time  
6
Enable output delay time  
t
C
C
= 15 pF  
pdDO  
L
= 75 pF  
L
R = 5 kΩ  
Target output voltage × 0.9  
Output delay time 1  
Output delay time 2  
t
t
6
µs  
µs  
pdDE  
pdDX  
(Note 12)  
C
L
= 75 pF  
R = 5 kΩ  
Target output voltage ± ∆V  
11  
O
(Note 12)  
Note 12: Output load condition  
LCD drive output pin  
(Measured here)  
R = 1 kΩ  
C = 15 pF  
R
R
R
R
R
C
C
C
C
C
15  
2002-04-03  
T6L79  
t
t
CWL  
CWH  
CPH  
0.7 × DV  
0.3 × DV  
DD  
DD  
DI/O  
0.7 × DV  
0.7 × DV  
DD  
DD  
(入力)  
t
t
hDI  
sDI  
t
LOAD-DI  
0.7 × DV  
DD  
LOAD  
0.7 × DV  
DD  
CPH  
t
t
hDD  
sDD  
Dn0~Dn5  
XOR DINV  
(n = 0, 1, ・・・4, 5)  
0.7 × DV /0.3 × DV  
DD  
DD  
(*)  
0.7 × DV  
CPH  
0.7 × DV  
DD  
DD  
t
t
pdDO  
pdDO  
DO/I  
(出力)  
0.7 × DV  
0.7 × DV  
DD  
DD  
Note: Timing for loading OUT379 to OUT384  
Timing for loading OUT1 to OUT6  
0.7 × DV  
0.7 × DV  
DD  
DD  
CPH  
Dn0~Dn5  
XOR DINV  
(n = 0, 1, ・・・4, 5)  
Last data  
t
LD-LOAD  
t
SLD  
0.7 × DV  
0.7 × DV  
DD  
DD  
LOAD  
t
LWH  
16  
2002-04-03  
T6L79  
0.7 × DV  
0.7 × DV  
DD  
DD  
LOAD  
POL  
t
t
hDP  
sDP  
0.7 × DV /0.3 × DV  
DD  
DD  
t
pdDX  
t
pdDE  
90%  
10%  
OUT1 to OUT384  
Power-On Sequence  
At power ON, the sequence is: DV  
LOGOC input signal AV , reference analog voltage  
DD  
DD  
At power OFF, the sequence is the reverse of that for power ON.  
Turn ON/OFF power supplies for AV  
and reference analog voltage inputs simultaneously.  
DD  
DD  
As long as the voltage condition, AV  
simultaneously.  
> DV , is satisfied, all power supplies can be turned OFF  
DD  
AV , reference analog voltage  
DD  
(2)  
(1)  
(2)  
(1)  
(1) DV , (2) LOGOC input signal  
DD  
DV , AV  
SS  
SS  
17  
2002-04-03  
T6L79  
RESTRICTIONS ON PRODUCT USE  
000707EBE  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
Polyimide base film is hard and thin. Be careful not to injure yourself on the film or to scratch any other parts with  
the film. Try to design and manufacture products so that there is no chance of users touching the film after  
assembly, or if they do , that there is no chance of them injuring themselves. When cutting out the film, try to  
ensure that the film shavings do not cause accidents. After use, treat the leftover film and reel spacers as  
industrial waste.  
Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases  
this can cause the device to malfunction.  
This is especially true for devices in which the surface (back), or side of the chip is exposed. When designing  
circuits, make sure that devices are protected against incident light from external sources. Exposure to light both  
during regular operation and during inspection must be taken into account.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other  
rights of the third parties which may result from its use. No license is granted by implication or otherwise under  
any intellectual property or other rights of TOSHIBA CORPORATION or others.  
The information contained herein is subject to change without notice.  
18  
2002-04-03  

相关型号:

T6L97

IC LIQUID CRYSTAL DISPLAY DRIVER, U, TCP, Display Driver
TOSHIBA

T6LA0B

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC281, TCP-281, Display Driver
TOSHIBA

T6LD4

Gate Driver for TFT LCD Panels
TOSHIBA

T6LE2

Gate Driver for TFT LCD Panels
TOSHIBA

T6M14S

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA

T6M19

CMOS 1 CHIP LSI FOR LCD ESECTRONIC CALCULATOR
TOSHIBA

T6M20F3

TRANSISTOR | BJT | NPN | 230V V(BR)CEO | 6A I(C) | TO-66VAR
ETC

T6M23A

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA

T6M27S

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA

T6M40F3

TRANSISTOR | BJT | NPN | 400V V(BR)CEO | 6A I(C) | TO-66VAR
ETC

T6M45

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA

T6M72

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA