TB62737FUG [TOSHIBA]

IC SWITCHING CONTROLLER, 1430 kHz SWITCHING FREQ-MAX, PDSO6, 0.95 MM PITCH, LEAD FREE, PLASTIC, SSOP-6, Switching Regulator or Controller;
TB62737FUG
型号: TB62737FUG
厂家: TOSHIBA    TOSHIBA
描述:

IC SWITCHING CONTROLLER, 1430 kHz SWITCHING FREQ-MAX, PDSO6, 0.95 MM PITCH, LEAD FREE, PLASTIC, SSOP-6, Switching Regulator or Controller

开关 光电二极管
文件: 总22页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB62737FUG  
TOSHIBA BiCD Digital Integrated Circuit Silicon Monolithic  
TB62737FUG  
Step-up Type DC/DC Converter for White LED  
The TB62737FUG is a high efficient step-up type DC/DC converter  
specially designed for constant current driving of White LED.  
This IC can drive 2-6 white LEDs connected series using a Li-ion  
battery.  
This IC contains N-ch MOS-FET Transistor for Coil-Switching, and  
LED Current (I ) is set with an external resistor.  
F
This IC is especially for driving back light white LEDs in LCD of  
PDA, Cellular Phone, or Handy Terminal Equipment.  
The suffix (G) appended to the part number represents a  
Lead(Pb)-Free product.  
Weight: 0.016 g (typ.)  
Features  
Brightness control function with changing drive current:  
LED current I = 25% to 100% (analog input)  
F
For the control in range of 25% or less, refer 6-page.  
Can drive 2-6 white LEDs connected series  
Built-in over voltage detection circuit:  
Protection Voltage: OVD pin =22V (TYP.)  
Variable LED current I is set with a external resistor:  
F
20 mA (typ.) @R  
= 16 Ω  
SENS  
Output power: Available for 400 mW LED loading  
High efficiency: 87% @maximum (using recommended external parts)  
IC package: SSOP6-P-0.95B  
Switching frequency: 1.1 MHz (typ.)  
1
2006-06-14  
TB62737FUG  
Block Diagram  
SW  
4
OVD  
2
Over voltage  
detection  
V
3
IN  
Off time  
control  
mono multi  
Reference  
mono multi  
CTL  
AMP.  
Level  
detect  
6
FB  
Error  
AMP.  
CTL  
AMP.  
SHDN  
1
5
GND  
Pin Assignment (top view)  
SHDN  
OVD  
1
2
3
6
FB  
5
4
GND  
SW  
V
IN  
Note: This IC could be destroyed in some case if amounted in 180° inverse direction.  
Please be careful about IC direction in mounting.  
Pin Function  
Pin No.  
Symbol  
SHDN  
Function Description  
Voltage-input terminal for IC-enable/setting LED-I .  
F
0 V to 0.5 V: Shutdown (PS) mode, IC operation is disabled.  
1
1.0 V to 2.5 V: I = 25% to 100%  
F
Over 2.5 V: I = 100%  
F
I
adjustment with PWM input signal is also available.  
F
Over voltage detection terminal.  
2
OVD  
IC switching operation is disabled with detection over voltage.  
If the voltage returns to detection level or less, operation is enabled again.  
Supply voltage input terminal. (2.8 V to 5.5 V)  
Switch terminal for DC/DC converter. Nch MOSFET built-in.  
Ground terminal.  
3
4
5
6
V
IN  
SW  
GND  
FB  
LED I setting resistor connecting terminal.  
F
2
2006-06-14  
TB62737FUG  
I/O Equivalent Pin Circuits  
1. SHDN Terminal  
2. OVD Terminal  
V
1 k  
IN  
OVD  
2
50 k  
SHDN  
1
20 k  
3. V Terminal to GND Terminal  
4. SW Terminal  
IN  
V
SW  
3
4
IN  
GND  
5
5. FB Terminal  
V
IN  
FB  
6
20 k  
5 k  
3
2006-06-14  
TB62737FUG  
Setting of External Capacitor  
In case not using PWM signal to SHDN terminal for brightness control, recommended values are  
= Over 2.2 (µF), C = Over 1.0 (µF)  
C
C
1
2
In case with PWM signal to SHDN terminal for brightness control, recommended values are  
= Over 4.7 (µF), C = Under 0.1 (µF).  
1
2
The recommended capacitor values depend on the Brightness Control Method.  
<Please refer the next page or later>  
The capacitor value must be considered for gain enough accuracy of brightness with reduction of noise from Input  
current changing.  
Setting of External Inductor Size  
Please select the inductor size with referring this table corresponding to each number of LEDs.  
Recommendation  
LEDs  
Indictor Size  
Note  
2
3
4
5
6
4.7 µH  
LED current I = 20 mA  
6.8 µH  
8.1 µH  
10 µH  
F
LED Current IF Setting  
The resistance between the FB pin and GND, RSENS () is the resistance for the setting the output current.  
Depending on the resistance value, it is possible to set the average output current Io (mA).  
The average output current Io (mA) can be approximated with the following equation:  
I
= (325 [mV]/RSENS [])  
F
The current value error is ± 5%.  
Protection in LED Opened Condition  
The operation with OVD terminal is available for the protection in case LED Circuit opened.  
Please see the example of application circuit.  
If load of LED is detached, Nch MOS switching operation is disabled with detection of boost circuit voltage.  
4
2006-06-14  
TB62737FUG  
Current Dimming Control  
Recommended Brightness Control Circuits are 5 types.  
1) Input analog voltage to SHDN terminal  
I can be adjusted in range of 25% to 100% after set with external resistor connected RSENS terminal.  
F
Linearity error in V-A Conversion is within +/10%.  
SHDN Voltage  
Valuable Rate  
VSHDN = 0 V to 0.5 V VSHDN = 1 V to 2.5 V  
VSHDN > 2.5 V  
Note  
I
0
25 to 100  
100  
Unit: %  
F
Current variable due to SHDN pin  
Vin = 3.0 V  
100  
80  
60  
40  
20  
0
25  
20  
15  
10  
5
I
F
I
F
variable rate  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8  
VSHDN (V)  
5
2006-06-14  
TB62737FUG  
2) Input PWM signal to SHDN terminal  
I can be adjusted with PWM signal by inputting it to SHDN terminal.  
F
[Notice]  
<<Minimum ON-time of PWM signal input>>  
Set the minimum ON-time or OFF-time 33 µs or more in inputting the PWM signal.  
Set the Duty ratio satisfying the condition above.  
Ex) In case PWM Frequency is 1 kHz,  
1 kHz is 1 ms (PWM width = 100%) and it takes 10 µs per 1%.  
To set the pulse width 33 µs or more, necessary ON-or-OFF-time is calculated below.  
33 µs ÷ 10 µs = 3.3% (Under the condition that 10 µs equals 1%.)  
Finally, the Duty Ratio can be set in range of 3.3% to 96.7%.  
Set ON-time  
33 µs or more = 3.3%  
Available Duty Ratio  
(3.3% to 96.7%)  
1 ms (1 kHz) = 100%  
Set OFF-time  
33 µs or more = 3.3%  
<<PWM signal frequency>>  
The recommended PWM signal frequency is from 100 Hz to 10 kHz. There is a possibility to arise the  
audible frequency in mounting to the board because it is within the auditory area.  
<<Constant number of external condenser>>  
To reduce the fluctuation of input current and increase the accuracy of brightness, the values that C =  
1
4.7 (µF) or more , C = 0.1 (µF) or less are recommended.  
2
When the PWM signal is off, the time to drain C of charge depends on the constant number. And so,  
2
the actual value is little different from the theoretical value.  
<<PWM input signal>>  
Set the amplitude of PWM signal within the range of SHDN terminal specification.  
<<Rush current in inputting>>  
In case dimming by inputting the PWM signal to the SHDN terminal, this IC turns on and off  
repeatedly.  
And the rush current, which provides the charge to C , arises in turning on. Take care in selecting the  
2
condenser.  
<<Current value in Control with PWM: Ideal Equation>>  
325[mV]× ON Duty[%]  
[mA]=  
I
F
RSENS[]  
6
2006-06-14  
TB62737FUG  
<Reference Data>  
Condition: V = 3.6 V, L = 6.8 µH, 4LEDs, RSENS = 16 m@Io = 20 mA  
IN  
(1) C = 4.7 µF, C = 0.1 µF  
1
2
Wave Form  
TB62737FUG  
ON Duty width[%] V.S. Error with Ideal Value  
25  
20  
15  
10  
5
SHDN  
VOUT  
500kHz  
1kHz  
2kHz  
4kHz  
8kHz  
12kHz  
I
IN  
0
0
20  
40  
60  
80  
100  
100  
100  
ON Duty width[%]  
(2) C = 4.7 µF, C = 0.47 µF  
1
2
Wave Form  
TB62737FUG  
ON Duty width[%] V.S. Error with Ideal Value  
SHDN  
VOUT  
25  
20  
15  
10  
5
500kHz  
1kHz  
2kHz  
4kHz  
8kHz  
12kHz  
I
IN  
0
0
20  
40  
60  
80  
ON Duty width[%]  
(3) C = 4.7 µF, C = 1.0 µF  
1
2
Wave Form  
TB62737FUG  
ON Duty width[%] V.S. Error with Ideal Value  
SHDN  
VOUT  
25  
20  
15  
10  
5
500kHz  
1kHz  
2kHz  
4kHz  
8kHz  
12kHz  
I
IN  
0
0
20  
40  
60  
80  
ON Duty width[%]  
(4) C = 2.2 µF, C = 1.0 µF  
1
2
Wave Form  
TB62737FUG  
ON Duty width[%] V.S. Error with Ideal Value  
SHDN  
VOUT  
25  
20  
15  
10  
5
500kHz  
1kHz  
2kHz  
4kHz  
8kHz  
I
12kHz  
IN  
0
0
20  
40  
60  
80  
100  
ON Duty width[%]  
7
2006-06-14  
TB62737FUG  
<Recommended application>  
V
=
IN  
2.8 to 5.5 V  
6.8 µH  
S-Di  
V
SW  
IN  
SHDN  
OVD  
PWM signal  
FB  
GND  
8
2006-06-14  
TB62737FUG  
3) Input analog voltage to FB terminal  
I can be adjusted with Analog voltage input to FB terminal.  
F
This method is without repeating IC ON/OFF, and no need to consider holding rash current.  
[Notice]  
LED current value goes over 100% of the current set with RSENS, if the input analog voltage is between 0  
V to 325 mV (typ.).  
(Reference data) Analog voltage = 0 to 2.2 V  
About external parts value, please see recommended circuit.  
Supply Voltage  
(V)  
Ratio with Setting  
Current  
No connect (OFF)  
100%  
116.0%  
106.5%  
95.4%  
84.5%  
73.6%  
59.9%  
48.4%  
37.4%  
26.6%  
15.9%  
5.8%  
0
TB62737FUG  
Analog Voltage Input to FB Terminal  
0.2  
0.4  
0.6  
0.8  
1
140.0%  
120.0%  
100.0%  
80.0%  
60.0%  
40.0%  
20.0%  
0.0%  
1.2  
1.4  
1.6  
1.8  
2
0
0.5  
1
1.5  
Input Voltage  
2
2.5  
2.2  
0.0%  
<Recommended application>  
V
=
IN  
2.8 to 5.5 V  
6.8 µH  
S-Di  
V
SW  
IN  
SHDN  
OVD  
16 kΩ  
FB  
GND  
Analog DAC  
9
2006-06-14  
TB62737FUG  
4) Input PWM signal with filtering to FB terminal  
I can be adjusted with filtering PWM signal using RC filter indicated in recommended circuit, because the PWM  
F
signal can be regard as analog voltage after filtering.  
This method is without repeating IC ON/OFF, and no need to consider holding rash current.  
[Notice]  
LED current value goes over 100% of the current set with RSENS, if the input voltage after filtering is  
between 0 V to 325 mV (typ.).  
(Reference data) Voltage during PWM Signal-ON = 2 V  
About external parts value, please see recommended circuit.  
Supply Voltage  
(V)  
Ratio with Setting  
Current  
No connect (OFF)  
100%  
116.1%  
105.3%  
95.1%  
84.8%  
74.6%  
64.0%  
53.8%  
43.7%  
34.0%  
24.2%  
13.3%  
0
TB62737FUG  
Input PWM signal filtered with RC to the FB terminal  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
140.0%  
120.0%  
100.0%  
80.0%  
60.0%  
40.0%  
20.0%  
0.0%  
0%  
20%  
40%  
60%  
80%  
100%  
PWM Duty(%)  
<Recommended application>  
V
=
IN  
2.8 to 5.5 V  
6.8 µH  
S-Di  
V
SW  
IN  
SHDN  
OVD  
16 kΩ  
FB  
GND  
PWM signal  
10  
2006-06-14  
TB62737FUG  
5) Input Logic signal  
I can be adjusted with Logic signal input as indicated in recommended circuit.  
F
The resistor connected the ON-State Nch MOS Drain and RSENS determines I .  
F
Average of setting current Io (mA) is next, approximately.  
I
= (325 [mV]/Sum of resistor value [])  
F
<Recommended application>  
V
=
IN  
2.8 to 5.5 V  
6.8 µH  
S-Di  
V
SW  
IN  
SHDN  
OVD  
FB  
GND  
R1  
R2  
M1  
M2  
Logic signal  
LED Current  
M1  
M2  
325 [mV]  
OFF  
OFF  
RSENS []  
RSENS []×R1[]  
RSENS[] + R1[]  
325 [mV] ×  
325 [mV] ×  
ON  
OFF  
ON  
OFF  
ON  
RSENS []×R2[]  
RSENS [] + R2[]  
RSENS []×R1[]×R2[]  
RSENS []×R1[] + RSENS []×R2[] + R1[]×R2[]  
325 [mV] ×  
ON  
11  
2006-06-14  
TB62737FUG  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Power supply voltage  
Symbol  
Rating  
Unit  
V
0.3 to +6.0  
V
V
V
IN  
Input voltage  
0.3 to +V + 0.3  
V
IN  
SHDN  
Switching terminal voltage  
V
(SW)  
0.3 to 24  
0.41 (device)  
0.47 (on PCB) (Note)  
300 (device)  
260 (on PCB)  
40 to+85  
o
Power dissipation  
Thermal resistance  
P
W
D
R
th (j-a)  
°C/W  
Operation temperature range  
Storage temperature range  
Maximum junction temperature  
T
opr  
°C  
°C  
°C  
T
stg  
55 to+150  
150  
T
j
Note: Power Dissipation must be calculated with subtraction of 3.8 mW/°C from Absolute Maximum Rating with every  
1°C if T is upper 25°C. (on PCB)  
opr  
Recommended Operating Condition (Ta = 40°C to 85°C if without notice)  
Characteristics  
Power supply voltage  
Symbol  
Test Condition  
Min  
Typ.  
Max  
5.5  
Unit  
V
2.8  
2.7  
0
V
V
IN  
SHDN terminal “H” level input voltage  
SHDN terminal “L” level input voltage  
SHDN terminal input pulse width  
V
V
V
IN  
SHDNH  
0.5  
V
SHDNL  
tpw  
Both “H” and “L” pulse  
33  
µs  
V
= 3.6 V, R  
SENS  
= 16 Ω  
= 25°C  
IN  
4 White LEDs, T  
LED current (average value)  
I
20  
mA  
F1  
opr  
Electrical Characteristics (Ta = 25°C, VIN = 2.8 to 5.5V if without notice)  
Characteristics  
Power supply voltage  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
2.8  
2.7  
0
0.9  
0.5  
5.5  
1.5  
1.0  
V
mA  
µA  
V
IN  
Operating consumption current  
I
I
(On)  
(Off)  
V
V
= 3.6 V, RSENS = 16 Ω  
IN  
IN  
IN  
IN  
Quiescent consumption current  
= 3.6 V, VSHDN = 0 V  
SHDN terminal “H” level input voltage  
SHDN terminal “L” level input voltage  
V
V
V
SHDNH  
SHDNL  
IN  
0.5  
V
Integrated MOS-Tr switching  
frequency  
f
V
= 3.6 V, VSHDN = 3.6 V  
0.77  
1.1  
1.43  
MHz  
OSC  
IN  
Switching terminal protection voltage  
Switching terminal current  
V
(SW)  
(SW)  
(SW)  
25  
400  
0.5  
1
V
o
oz  
oz  
I
I
mA  
µA  
Switching terminal leakage current  
V
= 3.6 V, RSENS = 16 Ω  
= 25°C, L = 6.8 µH  
IN  
FB terminal feedback voltage (VFB)  
FB terminal line regulation (VFB)  
V
308  
325  
342  
5
mV  
%
FB  
T
opr  
V
V
= 3.6 V (typ.)  
= 3.0 to 5.0 V  
IN  
IN  
V  
5  
FB  
OVD terminal voltage  
V
19  
22  
23.5  
1
V
OVD  
OVD terminal leakage current  
I
V
= 16 V  
0.5  
µA  
OVD  
OVD  
12  
2006-06-14  
TB62737FUG  
1. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
S-Di  
1
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
L
: CXLD120 series (NEO MAX CO.,Ltd.)  
(Size: 2.5 mm × 3.0 mm × 1.2 mm)  
: C2012JB1E225K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
1
V
SW  
WLEDs  
2 to 6  
IN  
SHDN  
OVD  
C
C
1
2
S-Di  
FB  
GND  
WLEDs: NSCW215T (NICHIA Corp.)  
RSENS: RK73B1ETBK (KOA Corp.)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
2LED Drive, L=4.7µH  
5LED Drive, L=10µH  
35  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
I
Efficiency  
I
I
F
F
Eff ciency  
2.8  
2.8  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
3LED Drive, L=6.8µH  
6LED Drive, L=10µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
I
I
Efficiency  
F
F
Efficiency  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
<Measurement Data>  
Input Voltage  
- Efficiency/Output Current  
Efficiency in the range of V = 2.8 to 5.5 V  
IN  
4LED Drive, L=6.8µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
82.60 to 88.46  
82.69 to 87.78  
80.73 to 86.22  
80.73 to 87.28  
79.78 to 85.55  
86.29  
85.95  
83.05  
83.45  
81.15  
I
Eicie
ff ncy  
F
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Tolerance (%)  
Output Current (mA)  
VIN(V)  
V
= 3.6 V  
IN  
Min  
Max  
1.77  
1.38  
1.11  
1.15  
1.28  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
21.13  
20.60  
20.87  
20.06  
19.90  
3.50  
1.95  
1.75  
1.81  
1.95  
* V  
voltage in driving 5 or 6 LEDs must be lower  
than OVD detection level. (V < 19 V)  
OUT  
OUT  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application's mass production design.  
13  
2006-06-14  
TB62737FUG  
2. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
S-Di  
1
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
: 1001AS series (TOKO, INC)  
L
1
V
SW  
WLEDs  
2 to 6  
IN  
(Size: 3.6 mm × 3.6 mm × 1.2 mm)  
: C2012JB1E225K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
SHDN  
OVD  
C
C
1
2
S-Di  
FB  
GND  
WLEDs: NSCW215T (NICHIA Corp.)  
RSENS: RK73B1ETBK (KOA Corp.)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
2LED Drive, L=4.7µH  
5LED Drive, L=10µH  
35  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
I
I
F
Eiiency  
icie
ff ncy  
F
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
3LED Drive, L=6.8µH  
6LED Drive, L=10µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
I
I
F
E
Efficiency  
I
IOUT  
F
E
Efficiency  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
<Measurement Data>  
Input Voltage  
- Efficiency/Output Current  
Efficiency in the range of V = 2.8 to 5.5 V  
4LED Drive, L=6.8µH  
IN  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
83.10 to 88.60  
81.32 to 86.47  
79.15 to 84.63  
79.72 to 86.39  
78.91 to 85.10  
86.55  
84.54  
81.30  
82.87  
80.47  
I
ic
ff iency  
F
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Tolerance (%)  
Output Current (mA)  
VIN(V)  
V
= 3.6 V  
IN  
Min  
Max  
1.73  
1.38  
1.15  
1.22  
1.26  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
21.17  
20.85  
20.56  
20.10  
19.95  
3.32  
1.95  
1.79  
1.82  
1.94  
* V  
voltage in driving 5 or 6 LEDs must be lower  
than OVD detection level. (V < 19 V)  
OUT  
OUT  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application's mass production design.  
14  
2006-06-14  
TB62737FUG  
3. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
S-Di  
1
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
: LQH2M series  
L
1
V
SW  
WLEDs  
2 to 6  
IN  
(Murata Manufacturing Co.,Ltd.)  
(Size: 2.0 mm × 1.6 mm × 0.95 mm)  
: C2012JB1E105K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
SHDN  
OVD  
C
C
1
2
FB  
GND  
S-Di  
WLEDs: NSCW215T (NICHIA Corp.)  
RSENS: RK73B1ETBK (KOA Corp.)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
2LED Drive, L=4.7µH  
5LED Drive, L=10µH  
35  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
I
I
F
EEiciecy  
I
I
F
Eficiency  
2.8  
2.8  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
3LED Drive, L=6.8µH  
6LED Drive, L=10µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
II
F
Efficiency  
I
ffi ency  
F
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
<Measurement Data>  
Input Voltage  
- Efficiency/Output Current  
Efficiency in the range of V = 2.8 to 5.5 V  
IN  
4LED Drive, L=6.8µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
82.37 to 88.70  
80.19 to 86.55  
78.11 to 84.54  
74.79 to 84.94  
74.14 to 83.47  
86.38  
84.12  
80.16  
79.94  
77.17  
I
Efficiency  
I
F
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Tolerance (%)  
Output Current (mA)  
VIN(V)  
V
= 3.6 V  
IN  
Min  
Max  
1.69  
2.17  
1.01  
1.25  
1.07  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
21.19  
20.90  
20.63  
20.09  
19.93  
3.26  
1.87  
1.78  
1.88  
1.99  
* V  
voltage in driving 5 or 6 LEDs must be lower  
than OVD detection level. (V < 19 V)  
OUT  
OUT  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application's mass production design.  
15  
2006-06-14  
TB62737FUG  
4. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
S-Di  
1
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
: VLF3010A series (TDK Corp.)  
L
1
V
SW  
WLEDs  
2 to 6  
IN  
(Size: 3.0 mm × 3.0 mm × 1.0 mm)  
: C2012JB1E225K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
SHDN  
OVD  
C
C
1
2
S-Di  
FB  
GND  
WLEDs: NSCW215T (NICHIA Corp.)  
RSENS: RK73B1ETBK (KOA Corp.)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
2LED Drive, L=4.7µH  
5LED Drive, L=10µH  
35  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
30  
25  
20  
15  
10  
II
F
Efficiency  
I
I
F
Efficiency  
2.8  
2.8  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
Input Voltage  
-
Efficiency/Output Current  
Input Voltage  
- Efficiency/Output Current  
3LED Drive, L=6.8µH  
6LED Drive, L=10µH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
I
I
F
Efficiency  
II
F
Efficiency  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN(V)  
VIN(V)  
<Measurement Data>  
Input Voltage  
- Efficiency/Output Current  
Efficiency in the range of V = 2.8 to 5.5 V  
4LED Drive, L=6.8µH  
IN  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
Efficiency (%)  
Average Efficiency (%)  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
79.85 to 86.97  
80.19 to 85.32  
78.77 to 83.60  
79.72 to 86.39  
78.91 to 85.10  
84.02  
83.39  
80.69  
82.87  
80.49  
I
Efficiency  
I
F
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Tolerance (%)  
Output Current (mA)  
VIN(V)  
V
= 3.6 V  
IN  
Min  
Max  
1.67  
1.33  
1.11  
1.22  
1.26  
2 LEDs  
3 LEDs  
4 LEDs  
5 LEDs  
6 LEDs  
21.19  
20.89  
20.64  
20.10  
19.95  
3.08  
1.86  
1.68  
1.82  
1.94  
* V  
voltage in driving 5 or 6 LEDs must be lower  
than OVD detection level. (V < 19 V)  
OUT  
OUT  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application's mass production design.  
16  
2006-06-14  
TB62737FUG  
5. Application Circuit Example and Measurement Data (reference data)  
V
=
IN  
L
S-Di  
1
2.8 to 5.5 V  
Evaluation conditions (Ta = 25°C)  
: 32R51 (KOA Corp.)  
L
1
V
SW  
WLEDs  
2 to 4  
IN  
(Size: 3.2 mm × 2.5 mm × 0.6 mm)  
: C2012JB1E225K (TDK Corp.)  
: C2012JB1E105K (TDK Corp.)  
: CUS02 1 A/30 V (TOSHIBA Corp.)  
SHDN  
OVD  
C
C
1
2
S-Di  
FB  
GND  
WLEDs: NSCW215T (NICHIA Corp.)  
RSENS: RK73B1ETBK (KOA Corp.)  
Input Voltage - Efficiency/Output Current  
2LED Drive, L=5.1μH  
Input Voltage - Efficiency/Output Current  
3LED Drive, L=5.1μH  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
I
F
I
F
Efficiency  
Efficiency  
2.8  
3.1  
3.4  
3.7  
4
4.3  
VIN(V)  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
VIN(V)  
4.6  
4.9  
5.2  
5.5  
<Measurement Data>  
Input Voltage - Efficiency/Output Current  
4LED Drive, L=5.1μH  
Efficiency in the range of V = 2.8 to 5.5 V  
IN  
Efficiency (%)  
Average Efficiency (%)  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
2 LEDs  
3 LEDs  
4 LEDs  
83.08 to 89.23  
79.02 to 86.30  
75.75 to 83.83  
86.73  
83.52  
80.78  
Output current in the range of V = 3.0 to 5.0 V (V = 3.6 V typ.)  
IN  
IN  
I
I
F
Efficiency  
Tolerance (%)  
Output Current (mA)  
V
= 3.6 V  
IN  
Min  
Max  
4.02  
2.94  
2.65  
2.8  
3.1  
3.4  
3.7  
4
4.3  
VIN(V)  
4.6  
4.9  
5.2  
5.5  
2 LEDs  
3 LEDs  
4 LEDs  
21.06  
20.57  
20.22  
2.46  
2.39  
2.28  
Note: These application examples are provided for reference only. Thorough evaluation and testing should be  
implemented when designing your application's mass production design.  
17  
2006-06-14  
TB62737FUG  
Package Dimensions  
Weight: 0.016 g (typ.)  
18  
2006-06-14  
TB62737FUG  
Notes on Contents  
1. Block Diagrams  
Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for  
explanatory purposes.  
2. Equivalent Circuits  
The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory  
purposes.  
3. Timing Charts  
Timing charts may be simplified for explanatory purposes.  
4. Application Circuits  
The application circuits shown in this document are provided for reference purposes only.  
Thorough evaluation is required, especially at the mass production design stage.  
Toshiba does not grant any license to any industrial property rights by providing these examples of  
application circuits.  
5. Test Circuits  
Components in the test circuits are used only to obtain and confirm the device characteristics. These  
components and circuits are not guaranteed to prevent malfunction or failure from occurring in the  
application equipment.  
IC Usage Considerations  
Notes on Handling of ICs  
(1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be  
exceeded, even for a moment. Do not exceed any of these ratings.  
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
(2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case  
of over current and/or IC failure. The IC will fully break down when used under conditions that exceed  
its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise  
occurs from the wiring or load, causing a large current to continuously flow and the breakdown can  
lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown,  
appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.  
(3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the  
design to prevent device malfunction or breakdown caused by the current resulting from the inrush  
current at power ON or the negative current resulting from the back electromotive force at power OFF.  
IC breakdown may cause injury, smoke or ignition.  
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable,  
the protection function may not operate, causing IC breakdown. IC breakdown may cause injury,  
smoke or ignition.  
(4) Do not insert devices in the wrong orientation or incorrectly.  
Make sure that the positive and negative terminals of power supplies are connected properly.  
Otherwise, the current or power consumption may exceed the absolute maximum rating, and  
exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
In addition, do not use any device that is applied the current with inserting in the wrong orientation or  
incorrectly even just one time.  
19  
2006-06-14  
TB62737FUG  
(5) Carefully select external components (such as inputs and negative feedback capacitors) and load  
components (such as speakers), for example, power amp and regulator.  
If there is a large amount of leakage current such as input or negative feedback condenser, the IC  
output DC voltage will increase. If this output voltage is connected to a speaker with low input  
withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause  
smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load  
(BTL) connection type IC that inputs output DC voltage to a speaker directly.  
20  
2006-06-14  
TB62737FUG  
Points to Remember on Handling of ICs  
(1) Heat Radiation Design  
In using an IC with large current flow such as power amp, regulator or driver, please design the device  
so that heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time  
and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation  
design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition,  
please design the device taking into considerate the effect of IC heat radiation with peripheral  
components.  
(2) Back-EMF  
When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the  
motor’s power supply due to the effect of back-EMF. If the current sink capability of the power supply  
is small, the device’s motor power supply and output pins might be exposed to conditions beyond  
absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in  
system design.  
21  
2006-06-14  
TB62737FUG  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-37Pb solder Bath  
· solder bath temperature = 230°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
· solder bath temperature = 245°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
RESTRICTIONS ON PRODUCT USE  
060116EBA  
The information contained herein is subject to change without notice. 021023_D  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety  
in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such  
TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc. 021023_A  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk. 021023_B  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q  
The information contained herein is presented only as a guide for the applications of our products. No responsibility  
is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.  
021023_C  
The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E  
22  
2006-06-14  

相关型号:

TB62747AFG

16-Output Constant Current LED Driver
MARKTECH

TB62747AFNAG

16-Output Constant Current LED Driver
MARKTECH

TB62747AFNG

16-Output Constant Current LED Driver
MARKTECH

TB62747BFNAG

16-Output Constant Current LED Driver
MARKTECH

TB62750FTG

Step Up Type DC-DC Converter for White LED
MARKTECH

TB62752AFUG

Step Up Type DC/DC Converter for White LED
MARKTECH

TB62752BFUG

IC SWITCHING REGULATOR, 1430 kHz SWITCHING FREQ-MAX, PDSO6, 0.95 MM PITCH, LEAD FREE, PLASTIC, SSOP-6, Switching Regulator or Controller
TOSHIBA

TB62754AFNG

IC SWITCHING REGULATOR, 2280 kHz SWITCHING FREQ-MAX, PDSO20, 0.225 INCH, 0.65 MM PITCH, LEAD FREE, PLASTIC, SSOP-20, Switching Regulator or Controller
TOSHIBA

TB62755FPG

IC 1.5 A SWITCHING REGULATOR, 1430 kHz SWITCHING FREQ-MAX, PDSO6, 2 X 2 MM, 0.50 MM PITCH, PLASTIC, SON-6, Switching Regulator or Controller
TOSHIBA

TB62756FUG

Step-up Type DC/DC Converter for White LEDs
MARKTECH

TB62756FUG(EL)

IC,LASER DIODE/LED DRIVER,TSOP,6PIN,PLASTIC
TOSHIBA

TB62757FUG

IC SWITCHING REGULATOR, 1430 kHz SWITCHING FREQ-MAX, PDSO6, 0.95 MM, PITCH, LEAD FREE, PLASTIC, SSOP-6, Switching Regulator or Controller
TOSHIBA