TB62747AFNAG [MARKTECH]

16-Output Constant Current LED Driver; 16路输出恒流LED驱动器
TB62747AFNAG
型号: TB62747AFNAG
厂家: MARKTECH CORPORATE    MARKTECH CORPORATE
描述:

16-Output Constant Current LED Driver
16路输出恒流LED驱动器

驱动器 接口集成电路 光电二极管 信息通信管理
文件: 总20页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB62747AFG/AFNG/AFNAG/BFNAG  
TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic  
TB62747AFG,TB62747AFNG,  
TB62747AFNAG,TB62747BFNAG  
16-Output Constant Current LED Driver  
TB62747AFG  
The TB62747 series is comprised of constant-current drivers  
designed for LEDs and LED panel displays.  
The regulated current sources are designed to provide a  
constant current, which is adjustable through one external  
resistor.  
The TB62747 series incorporates 16 channels of shift registers,  
latches, AND gates and constant-current outputs.  
SSOP24-P-300-1.00B  
Fabricated using the Bi-CMOS process, the TB62747 series  
satisfies the system requirement of high-speed data transmission.  
The TB62747 series is RoHS compatible  
TB62747AFNG  
SSOP24-P-300-0.65A  
TB62747AFNAG/BFNAG  
SSOP24-P-150-0.64  
Weight  
Features  
SSOP24-P-300-1.00B : 0.29 g (typ.)  
SSOP24-P-300-0.65A : 0.14 g (typ.)  
SSOP24-P-150-0.64: 0.14 g (typ.)  
Power supply voltages: V  
16-output built-in  
= 3.3 V to 5.0 V  
DD  
Output current setting range  
: 1.5 to 35 mA @ V  
= 3.3 V, VO = 0.4 to 1.0 V  
DD  
: 1.5 to 45 mA @ V  
= 5.0 V, VO = 0.4 to 1.2 V  
DD  
Constant current output voltage: V = 26 V (max)  
O
Current accuracy (@ R  
EXT  
= 1.2 k, V = 0.4 V, V = 3.3 V, 5.0 V)  
DD  
O
: Between outputs: ± 1.5 % (max)  
: Between devices: ± 1.5 % (max)  
Fast response of output current : t  
= 100 ns (min)  
wOE(L)  
Control data format: serial-in, parallel-out  
Input signal voltage level: 3.3 V and 5 V CMOS interfaces (Schmitt trigger input)  
Serial data transfer rate: 25 MHz (max) @cascade connection  
Operation temperature range: T  
Power on reset (POR)  
= −40 to 85 °C  
opr  
Package  
: AFG type  
: SSOP24-P-300-1.00B  
: AFNG type  
: AFNAG type  
: BFNAG type  
: SSOP24-P-300-0.65A  
: SSOP24-P-150-0.64  
: SSOP24-P-150-0.64  
1
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Pin Assignment (top view)  
TB62747AFG/AFNG/AFNAG  
TB62747BFNAG  
OUT13  
OUT14  
GND  
SIN  
V
DD  
R
OUT12  
OUT11  
OUT10  
OUT9  
OUT15  
OE  
EXT  
SCK  
SOUT  
OE  
SLAT  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
SOUT  
R
EXT  
OUT15  
OUT14  
OUT13  
OUT12  
OUT8  
V
DD  
OUT7  
GND  
SIN  
OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
SCK  
OUT11  
OUT10  
OUT9  
SLAT  
OUT0  
OUT1  
OUT8  
Note1: Short circuiting an output pin to a power supply pin (V  
DD  
or V ), or short-circuiting the R  
LED*  
pin to  
EXT  
the GND pin will likely exceed the rating, which in turn may result in smoldering and/or permanent  
damage. Please keep this in mind when determining the wiring layout for the power supply and GND pins.  
*VLED: LED power supply  
2
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Block Diagram  
OUT0  
OUT1  
OUT15  
V
DD  
OUT0  
OUT1  
Constant current outputs  
OUT15  
POR  
B.G  
GND  
R
EXT  
OE  
Q0 Q1  
16-bit D-latch  
D0 D1  
Q15  
D15  
R
G
SLAT  
SIN  
D0  
Q0 Q1  
16-bit shift register  
Q15  
Q15  
R
SOUT  
SCK  
3
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Truth Table  
SCK  
SLAT  
OE  
SIN  
OUT0 … OUT7 … OUT15 *1  
SOUT  
H
L
L
L
L
L
H
Dn  
Dn … Dn 7 … Dn 15  
No Change  
Dn 15  
Dn 14  
Dn 13  
Dn 13  
Dn 13  
Dn + 1  
Dn + 2  
Dn + 3  
Dn + 3  
H
Dn + 2 … Dn 5 … Dn 13  
Dn + 2 … Dn 5 … Dn 13  
OFF  
*2  
*2  
Note1: When OUT0 to OUT15 output pins are set to "H" the respective output will be ON and when set to  
"L" the respective output will be OFF.  
Note2: “-“ is irrelevant to the truth table.  
Timing Diagram  
n = 0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
SCK  
SIN  
L
H
L
H
SLAT  
OE  
L
H
L
ON  
OFF  
ON  
OFF  
ON  
OFF  
OUT0  
OUT1  
OUT2  
ON  
OFF  
H
OUT15  
SOUT  
L
Note 1: The latch circuit is a leveled-latch circuit. Please exercise precaution as it is not triggered-latch circuit.  
Note 2: Keep the SLAT pin is set to “L” to enable the latch circuit to hold data. In addition, when the SLAT pin  
is set to “H” the latch circuit does not hold data. The data will instead pass onto output.  
When the OE pin is set to “L” the OUT0 to OUT15 output pins will go ON and OFF in response to  
the data. In addition, when the OE pin is set to “H” all the output pins will be forced OFF regardless of  
the data.  
4
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Pin Functions  
Pin No  
AFG  
AFNG  
AFNAG  
Pin Name  
I/O  
Function  
BFNAG  
1
2
3
7
8
9
GND  
SIN  
The ground pin.  
I
I
The serial data input pin.  
SCK  
The serial data transfer clock input pin.  
The latch signal input pin.  
Data is saved at L level.  
4
10  
SLAT  
I
5
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
1
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
A sink type constant current output pin.  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
2
The constant current output enable signal input pin.  
During the “H” level, the output will be forced off.  
21  
3
OE  
I
22  
23  
24  
4
5
6
SOUT  
O
The serial data output pin.  
R
EXT  
The constant current value setting resistor connection pin.  
The power supply input pin.  
V
DD  
5
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Absolute Maximum Ratings (T = 25°C)  
a
Characteristics  
Power supply voltage  
Symbol  
Rating *1  
Unit  
V
0.4 to 6.0  
V
mA  
V
DD  
Output current  
I
55  
O
Logic input voltage  
Output voltage  
V
0.3 to V  
+ 0.3 *2  
DD  
IN  
V
0.3 to 26  
V
O
Operating temperature  
Storage temperature  
T
40 to 85  
°C  
°C  
opr  
T
55 to 150  
stg  
94 (AFG) *3, 120 (AFNG) *3, 80.07(AFNAG/BFNAG)  
When mounted PCB  
Rth(j-a)  
°C/W  
W
Thermal resistance  
Power dissipation  
1.32 (AFG) *3, 1.04 (AFNG) *3, 1.56(AFNAG/BFNAG)  
When mounted PCB  
P *4  
D
Note1: Voltage is ground referenced.  
Note2: However, do not exceed 6V.  
Note3: PCB condition 76.2 x 114.3 x 1.6 mm, Cu 30% (SEMI conforming)  
Note4: The power dissipation decreases the reciprocal of the saturated thermal resistance (1/ Rth(j-a)) for each  
degree (1°C) that the ambient temperature is exceeded (Ta = 25°C).  
Operating Conditions  
DC Items (Unless otherwise specified, V = 3.0 to 5.5 V, T = 40°C to 85°C)  
DD  
a
Characteristics  
Power supply voltage  
Symbol  
Test Conditions  
Min  
Typ.  
Max  
Unit  
V
3.0  
0.4  
5.5  
4.0  
V
V
DD  
Output voltage when OFF  
V
OUTn  
O (ON)  
0.7 ×  
DD  
High level logic input voltage  
V
SIN,SCK, SLAT , OE  
SIN,SCK, SLAT , OE  
V
V
V
IH  
DD  
V
0.3 ×  
V
Low level logic input voltage  
V
GND  
IL  
DD  
High level SOUT output current  
Low level SOUT output current  
I
1  
1
mA  
mA  
OH  
I
I
I
OL  
O1  
O2  
OUTn , V  
DD  
= 3.3 V, V = 0.4 to 1.0 V  
1.5  
1.5  
35  
45  
O
Constant current output  
mA  
OUTn , V = 5.0 V, V = 0.4 to 1.2 V  
DD  
O
AC Items (Unless otherwise specified, V = 3.0 to 5.5 V, T = 40°C to 85°C)  
DD  
a
Test  
Characteristics  
Symbol  
Test Conditions  
Min  
Typ.  
Max  
Unit  
Circuits  
Serial data transfer frequency  
Hold time  
f
6
6
6
6
6
6
6
5
25  
MHz  
ns  
SCK  
t
t
HOLD1  
HOLD2  
5
ns  
t
5
ns  
SETUP1  
SETUP2  
Setup time  
t
5
ns  
Maximum clock rise time  
Maximum clock fall time  
t
t
*1  
*1  
500  
500  
ns  
r
ns  
f
Note1: If the device is connected in a cascade and the tr/tf of the clock waveform increases due to deceleration of the clock  
waveform,it may not be possible to achieve the timing required for data transfer. Please keep these timing conditions in mind  
when designing your application.  
6
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Electrical Characteristics (Unless otherwise specified, VDD = 3.3V, T = 25°C)  
a
Test  
Circuits  
Characteristics  
Symbol  
Test Conditions  
Min  
Typ.  
Max  
Unit  
V
V
DD  
High level logic output voltage  
V
1
I
I
= 1 mA  
OH  
OH  
0.4  
Low level logic output voltage  
High level logic input current  
Low level logic input current  
V
I
1
2
3
= +1 mA  
0.4  
1
V
OL  
OL  
V
V
V
= V , OE , SIN, SCK  
DD  
µA  
µA  
IH  
IN  
IN  
O
I
= GND, SLAT , SIN, SCK  
1  
IL  
= 25 V, R  
EXT  
= OPEN,  
I
4
1.0  
mA  
DD1  
SCK = “L”, OE = “H”  
Power supply current  
Output current  
I
I
4
4
R
= 1.2 k, All output off  
= 1.2 k, All output on  
4.0  
8.0  
mA  
mA  
DD2  
DD3  
EXT  
EXT  
R
V
= 3.3 V, V = 0.4 V,  
O
DD  
I
5
14  
mA  
O
R
= 1.2 kΩ, OUT0 to OUT15  
EXT  
= 3.3 V, V = 0.4 V,  
V
DD  
O
Constant current error(Ch to Ch)  
Constant current error(IC to IC)  
Output OFF leak current  
I  
5
5
5
5
±1  
±1  
±1  
±1.5  
±1.5  
0.5  
%
%
O
R
EXT  
= 1.2 k, OUT0 to OUT15  
V
= 3.3 V, V = 0.4 V,  
DD  
O
I  
O(IC)  
R
EXT  
= 1.2 k, OUT0 to OUT15  
V
= 3.3 V, V = 25 V,  
DD  
O
I
µA  
%
OK  
R
V
= 1.2 k, OUT0 to OUT15  
EXT  
= 3.0 to 3.6 V, V = 0.4 V,  
Constant current power supply voltage  
regulation  
DD  
O
%V  
±2  
DD  
R
EXT  
= 1.2 k, OUT0 to OUT15  
V
= 3.3 V, V = 0.4 to 3.0 V,  
Constant current output voltage  
regulation  
DD  
O
%V  
5
±1  
%/V  
O
R
= 1.2 k, OUT0 to OUT15  
EXT  
OE  
SLAT  
Pull-up resistor  
R
UP  
3
2
250  
250  
500  
500  
800  
800  
kΩ  
kΩ  
Pull-down resistor  
R
DOWN  
Electrical Characteristics (Unless otherwise specified, VDD = 5.0V, T = 25°C)  
a
Test  
Circuits  
Characteristics  
Symbol  
Test Conditions  
Min  
Typ.  
Max  
Unit  
V
V
DD  
High level logic output voltage  
V
1
I
I
= 1 mA  
OH  
OH  
0.4  
Low level logic output voltage  
High level logic input current  
Low level logic input current  
V
I
1
2
3
= +1 mA  
0.4  
1
V
OL  
OL  
V
V
V
= V , OE , SIN, SCK  
DD  
µA  
µA  
IH  
IN  
IN  
O
I
= GND, SLAT , SIN, SCK  
1  
IL  
= 25 V, R  
EXT  
= OPEN,  
I
4
1.0  
mA  
DD1  
SCK = “L”, OE = “H”  
Power supply current  
Output current  
I
I
4
4
R
= 1.2 k, All output off  
= 1.2 k, All output on  
4.5  
8.0  
mA  
mA  
DD2  
DD3  
EXT  
EXT  
R
V
= 5.0 V, V = 0.4 V,  
O
DD  
I
5
14  
mA  
O
R
EXT  
= 1.2 kΩ, OUT0 to OUT15  
V
= 5.0 V, V = 0.4 V,  
DD  
O
Constant current error(Ch to Ch)  
Constant current error(IC to IC)  
Output OFF leak current  
I  
5
5
5
5
±1  
±1  
±1  
±1.5  
±1.5  
0.5  
%
%
O
R
= 1.2 k, OUT0 to OUT15  
EXT  
V
= 5.0 V, V = 0.4 V,  
DD  
O
I  
O(IC)  
R
= 1.2 k, OUT0 to OUT15  
EXT  
V
= 5.0 V, V = 25 V,  
DD  
O
I
µA  
%
OK  
R
V
= 1.2 k, OUT0 to OUT15  
EXT  
= 4.5 to 5.5 V, V = 0.4 V,  
Constant current power supply voltage  
regulation  
DD  
O
%V  
±2  
DD  
R
= 1.2 k, OUT0 to OUT15  
EXT  
V
= 5.0 V, V = 0.4 to 3.0 V,  
Constant current output voltage  
regulation  
DD  
O
%V  
5
±1  
%/V  
O
R
= 1.2 k, OUT0 to OUT15  
EXT  
OE  
SLAT  
Pull-up resistor  
R
UP  
3
2
250  
250  
500  
500  
800  
800  
kΩ  
kΩ  
Pull-down resistor  
R
DOWN  
7
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Switching Characteristics (Unless otherwise specified, V = 3.3V, T = 25°C)  
DD  
a
Test  
Characteristics  
Symbol  
Test Conditions  
Min  
Typ.  
Max  
Unit  
Circuits  
SCK- OUT0  
t
t
t
6
6
6
6
6
6
6
6
6
6
SLAT = “H”, OE = “L”  
OE = “L”  
10  
10  
20  
20  
20  
20  
30  
70  
70  
20  
20  
25  
300  
300  
300  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pLH1  
pLH2  
pLH3  
SLAT - OUT0  
OE - OUT0  
SLAT = “H”  
SCK-SOUT  
SCK- OUT0  
SLAT - OUT0  
OE - OUT0  
t
CL=10.5 pF  
pLH  
Propagation delay  
time  
t
SLAT = “H”, OE = “L”  
OE = “L”  
340  
340  
340  
35  
pHL1  
pHL2  
pHL3  
t
t
SLAT = “H”  
SCK-SOUT  
t
CL=10.5 pF  
pHL  
Output rise time  
Output fall time  
t
or  
10 to 90% of voltage waveform  
90 to 10% of voltage waveform  
90  
t
180  
of  
wOE(L)  
Enable pulse width  
t
6
100  
ns  
OE = “L” *1  
SCK = “H” or “L”  
SLAT = “H”  
Clock pulse width  
Latch pulse width  
t
6
6
20  
20  
ns  
ns  
wSCK  
t
wSLAT  
Note1: At the condition of t  
= 250ns or more  
wOE(H)  
Switching Characteristics (Unless otherwise specified, V = 5.0V, T = 25°C)  
DD  
a
Test  
Characteristics  
Symbol  
Test Conditions  
Min  
Typ.  
Max  
Unit  
Circuits  
SCK- OUT0  
t
t
t
6
6
6
6
6
6
6
6
6
6
SLAT = “H”, OE = “L”  
OE = “L”  
10  
10  
20  
20  
20  
20  
30  
70  
70  
20  
20  
25  
300  
300  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pLH1  
pLH2  
pLH3  
SLAT - OUT0  
OE - OUT0  
SLAT = “H”  
SCK-SOUT  
SCK- OUT0  
SLAT - OUT0  
OE - OUT0  
t
CL=10.5 pF  
35  
pLH  
Propagation delay  
time  
t
SLAT = “H”, OE = “L”  
OE = “L”  
340  
340  
340  
35  
pHL1  
pHL2  
pHL3  
t
t
SLAT = “H”  
SCK-SOUT  
t
CL=10.5 pF  
pHL  
Output rise time  
Output fall time  
t
or  
10 to 90% of voltage waveform  
90 to 10% of voltage waveform  
90  
t
180  
of  
wOE(L)  
Enable pulse width  
t
6
100  
ns  
OE = “L” *1  
Clock pulse width  
Latch pulse width  
t
6
6
SCK = “H” or “L”  
SLAT = “H”  
20  
20  
ns  
ns  
wSCK  
t
wSLAT  
Note1: At the condition of t  
= 250ns or more  
wOE(H)  
8
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
I/O Equivalent Circuits  
1. SCK, SIN  
2. OE  
V
V
DD  
DD  
(SCK)  
(SIN)  
OE  
GND  
GND  
3. SLAT  
4. SOUT  
V
V
DD  
DD  
SOUT  
GND  
SLAT  
GND  
5. OUT0 to OUT15  
OUT0 to OUT15  
GND  
9
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Test Circuits  
Test Circuit1: High level logic input voltage / Low level logic input voltage  
V
DD  
SCK  
OUT0  
OUT7  
SIN  
SLAT  
F.G  
OE  
OUT15  
V
V
= V  
DD  
= 0 V  
IH  
IL  
R
EXT  
GND  
SOUT  
t = t = 10 ns  
r
f
(10 to 90%)  
V
Test Circuit2: High level logic input current / Pull-down resistor  
= V  
V
IN  
DD  
V
DD  
A
SCK  
OUT0  
OUT7  
SIN  
SLAT  
A
A
OE  
A
OUT15  
R
EXT  
GND  
SOUT  
Test Circuit3: Low level logic input current / Pull-up resistor  
V
DD  
A
SCK  
OUT0  
OUT7  
SIN  
SLAT  
A
A
OE  
A
OUT15  
R
EXT  
GND  
SOUT  
10  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Test Circuit4: Power supply current  
F.G  
V
DD  
SCK  
OUT0  
OUT7  
SIN  
SLAT  
OE  
OUT15  
A
V
V
= V  
DD  
= 0 V  
IH  
IL  
R
EXT  
GND  
SOUT  
t = t = 10 ns  
r
f
(10 to 90%)  
Test Circuit5: Constant current output / Output OFF leak current / Constant current error  
Test Circuit5: Constant current power supply voltage regulation / Constant current output voltage regulation  
V
DD  
SCK  
OUT0  
OUT7  
A
A
SIN  
SLAT  
F.G  
OE  
OUT15  
A
V
V
= V  
DD  
= 0 V  
IH  
IL  
R
EXT  
GND  
SOUT  
t = t = 10 ns  
r
f
(10 to 90%)  
Test Circuit6: Switching Characteristics  
SCK  
R
L
= 300 Ω  
V
DD  
OUT0  
OUT7  
C
L
SIN  
SLAT  
F.G  
R
C
L
L
OE  
R
L
OUT15  
V
V
= V  
DD  
= 0 V  
IH  
IL  
R
EXT  
GND  
SOUT  
C = 10.5 pF  
L
t = t = 10 ns  
r
f
(10 to 90%)  
11  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Timing Waveforms  
1. SCK, SIN, SOUT  
t
wSCK  
90%  
10%  
90%  
10%  
SCK  
50%  
50%  
50%  
t
SETUP1  
t
wSCK  
t
t
f
r
SIN  
50%  
50%  
50%  
t
HOLD1  
SOUT  
t
/t  
pLH pHL  
2. SCK, SIN, SLAT , OE, OUT0  
SCK  
50%  
50%  
SIN  
t
t
SETUP2  
HOLD2  
50%  
SLAT  
50%  
t
t
wOE(L)  
wSLAT  
50%  
50%  
OE  
OUT0  
50%  
t
/t  
pHL1 pLH1  
t
/t  
pHL2 pLH2  
3. OE, OUT0  
t
wOE  
50%  
50%  
OE  
tpLH3  
tpHL3  
90%  
OFF  
ON  
90%  
50%  
10%  
50%  
10%  
OUT0  
t
t
or  
of  
12  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Reference data  
*This data is provided for reference only. Thorough evaluation and testing should be implemented when  
designing your application's mass production design.  
Output Current – R  
Resistor  
EXT  
IOUT - R  
EXT  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Theoretical value  
IOUT (A) = 1.13 (V) ÷ REXT () × 14.9  
All output on  
Ta=25°C  
VOUT=0.7V  
0
100  
1000  
( )  
10000  
R
EXT  
17  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Reference data  
*This data is provided for reference only. Thorough evaluation and testing should be implemented when  
designing your application's mass production design.  
Output Current – Duty (LED turn-on rate)  
IO - Duty  
AFNG AFNAG/BFNAG  
IO - Duty  
AFNAG/BFNAG  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
AFG  
AFG  
AFNG  
Ta=25°C  
Ta=55°C  
VDD=5.0V  
VO=1.0V  
ON PCB  
VDD=5.0V  
VO=1.0V  
ON PCB  
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Duty - Turn on rate (%)  
Duty - Turn on rate (%)  
IO - Duty  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
AFNAG/BFNAG  
AFG  
AFNG  
Ta=85°C  
VDD=5.0V  
VO=1.0V  
ON PCB  
0
0
20  
40  
60  
80  
100  
Duty - Turn on rate (%)  
Power dissipation – Ta  
PD - Ta  
1.8  
AFNAG/BFNAG  
1.6  
1.4  
AFG  
1.2  
1.0  
AFNG  
0.8  
0.6  
0.4  
0.2  
0.0  
0
10 20 30 40 50 60 70 80 90  
Ta ()  
18  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Package Dimensions  
Weight: 0.29 g (typ.)  
19  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Package Dimensions  
Weight: 0.14 g (typ.)  
20  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Package Dimensions  
SSOP24-P-150-0.64  
Unit : Inch  
0.337 to 0.344  
0.0325(REF)  
0.025  
0.008 to 0.012  
0.004 to 0.098  
0.010(TYP)  
0.016 to 0.034  
Weight: 0.14 g (typ.)  
21  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
Notes on Contents  
1. Block Diagrams  
Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for  
explanatory purposes.  
2. Equivalent Circuits  
The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory  
purposes.  
3. Timing Charts  
Timing charts may be simplified for explanatory purposes.  
4. Application Circuits  
The application circuits shown in this document are provided for reference purposes only. Thorough  
evaluation is required, especially at the mass production design stage.  
Toshiba does not grant any license to any industrial property rights by providing these examples of  
application circuits.  
5. Test Circuits  
Components in the test circuits are used only to obtain and confirm the device characteristics. These  
components and circuits are not guaranteed to prevent malfunction or failure from occurring in the  
application equipment.  
22  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
IC Usage Considerations  
Notes on handling of ICs  
[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded,  
even for a moment. Do not exceed any of these ratings.  
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury  
by explosion or combustion.  
[2] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of  
over current and/or IC failure. The IC will fully break down when used under conditions that exceed its  
absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs  
from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or  
ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings,  
such as fuse capacity, fusing time and insertion circuit location, are required.  
[3] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the  
design to prevent device malfunction or breakdown caused by the current resulting from the inrush  
current at power ON or the negative current resulting from the back electromotive force at power OFF. IC  
breakdown may cause injury, smoke or ignition.  
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the  
protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or  
ignition.  
[4] Do not insert devices in the wrong orientation or incorrectly.  
Make sure that the positive and negative terminals of power supplies are connected properly.  
Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding  
the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by  
explosion or combustion.  
In addition, do not use any device that is applied the current with inserting in the wrong orientation or  
incorrectly even just one time.  
[5] Carefully select external components (such as inputs and negative feedback capacitors) and load  
components (such as speakers), for example, power amp and regulator.  
If there is a large amount of leakage current such as input or negative feedback condenser, the IC output  
DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage,  
overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from  
the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC  
that inputs output DC voltage to a speaker directly.  
Points to remember on handling of ICs  
(1) Heat Radiation Design  
In using an IC with large current flow such as power amp, regulator or driver, please design the  
device so that heat is appropriately radiated, not to exceed the specified junction temperature (TJ) at  
any time and condition. These ICs generate heat even during normal use. An inadequate IC heat  
radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown.  
In addition, please design the device taking into considerate the effect of IC heat radiation with  
peripheral components.  
(2) Back-EMF  
When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor’s  
power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the  
device’s motor power supply and output pins might be exposed to conditions beyond maximum ratings. To avoid  
this problem, take the effect of back-EMF into consideration in system design.  
23  
2009-01-21  
TB62747AFG/AFNG/AFNAG/BFNAG  
RESTRICTIONS ON PRODUCT USE  
20070701-EN  
The information contained herein is subject to change without notice.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety  
in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such  
TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc.  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his  
document shall be made at the customer’s own risk.  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations.  
The information contained herein is presented only as a guide for the applications of our products. No responsibility  
is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from  
its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third  
parties.  
Please use these products in this document in compliance with all applicable laws and regulations that regulate the  
inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result  
of noncompliance with applicable laws and regulations.  
The products described in this document are subject to foreign exchange and foreign trade control laws.  
24  
2009-01-21  

相关型号:

TB62747AFNG

16-Output Constant Current LED Driver
MARKTECH

TB62747BFNAG

16-Output Constant Current LED Driver
MARKTECH

TB62750FTG

Step Up Type DC-DC Converter for White LED
MARKTECH

TB62752AFUG

Step Up Type DC/DC Converter for White LED
MARKTECH

TB62752BFUG

IC SWITCHING REGULATOR, 1430 kHz SWITCHING FREQ-MAX, PDSO6, 0.95 MM PITCH, LEAD FREE, PLASTIC, SSOP-6, Switching Regulator or Controller
TOSHIBA

TB62754AFNG

IC SWITCHING REGULATOR, 2280 kHz SWITCHING FREQ-MAX, PDSO20, 0.225 INCH, 0.65 MM PITCH, LEAD FREE, PLASTIC, SSOP-20, Switching Regulator or Controller
TOSHIBA

TB62755FPG

IC 1.5 A SWITCHING REGULATOR, 1430 kHz SWITCHING FREQ-MAX, PDSO6, 2 X 2 MM, 0.50 MM PITCH, PLASTIC, SON-6, Switching Regulator or Controller
TOSHIBA

TB62756FUG

Step-up Type DC/DC Converter for White LEDs
MARKTECH

TB62756FUG(EL)

IC,LASER DIODE/LED DRIVER,TSOP,6PIN,PLASTIC
TOSHIBA

TB62757FUG

IC SWITCHING REGULATOR, 1430 kHz SWITCHING FREQ-MAX, PDSO6, 0.95 MM, PITCH, LEAD FREE, PLASTIC, SSOP-6, Switching Regulator or Controller
TOSHIBA

TB62757FUG

Interface Circuit
MARKTECH

TB62771FTG

IC LED DISPLAY DRIVER, QCC48, QFN-48, Display Driver
TOSHIBA