TB6586FG [TOSHIBA]

IC BRUSHLESS DC MOTOR CONTROLLER, 0.001 A, PDSO24, 0.300 INCH, 1 MM PITCH, PLASTIC, SSOP-24, Motion Control Electronics;
TB6586FG
型号: TB6586FG
厂家: TOSHIBA    TOSHIBA
描述:

IC BRUSHLESS DC MOTOR CONTROLLER, 0.001 A, PDSO24, 0.300 INCH, 1 MM PITCH, PLASTIC, SSOP-24, Motion Control Electronics

电动机控制 信息通信管理 光电二极管
文件: 总20页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB6586FG/AFG  
TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic  
TB6586FG, TB6586AFG  
Three-Phase Full-Wave Brushless Motor Controller  
Features  
Upper-phase PWM control  
Built-in triangular-wave generator  
Support of a bootstrap circuit  
Built-in Hall amplifier (support of a Hall element)  
Selectable 120°/150° energization  
Built-in lead angle control function  
Overcurrent protection signal input pin (V = 0.5 V (typ.))  
RS  
Weight: 0.27 g (typ.)  
Built-in regulator (V  
= 5 V (typ.), 35 mA (max))  
refout  
Operating supply voltage range: V  
= 6.5 to 16.5 V, V = 4.5 to 16.5 V  
CC  
M
The TB6586FG and TB6586AFG differ in the number of pulses per revolution:  
TB6586FG: 1 pulse / electrical angle: 360°  
TB6586AFG: 3 pulses / electrical angle: 360°  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-37Pb solder Bath  
·
·
·
·
solder bath temperature = 230°C  
dipping time = 5 seconds  
the number of times = once  
use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
·
·
·
·
solder bath temperature = 245°C  
dipping time = 5 seconds  
the number of times = once  
use of R-type flux  
1
2007-08-03  
TB6586FG/AFG  
Pin Description  
Pin No.  
Symbol  
Description  
1
2
V
Speed control  
SP  
HUP  
HUM  
HVP  
U-phase Hall signal input (+) pin  
U-phase Hall signal input () pin  
V-phase Hall signal input (+) pin  
V-phase Hall signal input () pin  
W-phase Hall signal input (+) pin  
W-phase Hall signal input () pin  
3
4
5
HVM  
HWP  
HWM  
6
7
8
V
Outputs reference voltage signal (5 V / 35 mA)  
Lead angle setting signal input pin (30° / 4 bits)  
Ground pin  
refout  
LA  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
GND  
CW/CCW  
OSC/C  
OSC/R  
RS  
Rotation direction signal input pin  
Connect to condenser for PWM oscillator  
Connect to resistor for PWM oscillator  
Overcurrent protection (0.5 V)  
Energization width toggle pin (Low: 150°, High; Reset, 6.35 V: 120°)  
Power supply  
RESET  
V
CC  
V
Input for output power  
M
UL  
VL  
U-phase output pin (Low)  
V-phase output pin (Low)  
WL  
UH  
VH  
WH  
W-phase output pin (Low)  
U-phase output pin (Low)  
V-phase output pin (Low)  
W-phase output pin (Low)  
Output of number of pulses per revolution  
(FG: 1 pulse / electrical angle; AFG: 3 pulses / electrical angle)  
24  
FG  
Pin Layout  
V
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
FG  
WH  
VH  
UH  
WL  
VL  
UL  
SP  
HUP  
HUM  
HVP  
2
3
4
HVM  
HWP  
HWM  
5
6
7
V
8
V
V
refout  
LA  
M
9
CC  
GND  
CW/CCW  
OSC/C  
10  
11  
12  
RESET  
RS  
OSC/R  
2
2007-08-03  
TB6586FG/AFG  
Input/Output Equivalent Circuits  
Pin Description  
Symbol  
Input/Output Signal  
Input/Output Internal Circuit  
HUP  
HUM  
HVP  
V
V
refout refout  
Analog/Digital  
Positional signal  
input pin  
HVM  
HWP  
HWM  
Hysteresis ± 7.5 mV (typ.)  
100 Ω  
Analog  
Speed control signal  
input pin  
V
SP  
Input range 0 to 7 V  
V
CC  
Digital  
Rotation direction  
signal input pin  
L: 0.8 V (max)  
65 kΩ  
CW/CCW  
Reset  
H: V  
1 V (min)  
refout  
CW/CCW  
Test input  
If CW/CCW = 6.35 V (typ.) or  
higher, the system resets  
L: Forward (CW)  
H: Reverse (CCW)  
Hysteresis 150 mV (typ.)  
Digital  
V
CC  
L: 0.8 V (max)  
H: V  
1 V (min)  
refout  
Reset input  
65 kΩ  
If RESET = 6.35 V (typ.) or higher, then  
120° energization drive is selected  
Reset  
RESET  
L: 150° turn-on mode  
H: Reset  
Hysteresis 150 mV (typ.)  
120°  
During a reset: Output OFF (all phases  
Low). The internal counter continues to  
operate.  
Analog  
V
refout  
Input range 0 to 5.0 V (V  
)
refout  
Lead angle setting  
signal input  
LA  
100 kΩ  
Electrical angle 0°~28° can be divided  
into 16 by 4-bit data.  
Lead angle 0°: LA = 0 V (GND)  
Lead angle 28°: LA = 5 V (V  
)
refout  
3
2007-08-03  
TB6586FG/AFG  
Pin Description  
Symbol  
Input/Output Signal  
Input/Output Internal Circuit  
V
V
refout  
refout  
Analog  
Overcurrent  
protection signal  
input  
Analog filter 0.5 µs (typ.)  
RS  
200 kΩ  
If RS = 0.5 V (typ.) or higher, UH, VH  
and WH pin goes low (released at  
carrier cycle)  
V
V
V
CC CC  
CC  
Reference voltage  
signal output pin  
5.0 ± 0.5 V (35 mA)  
5.0 ± 0.3 V (15 mA)  
V
refout  
V
V
refout  
refout  
Digital  
Push-pull output  
(± 2 mA (max))  
Rotational frequency  
output  
FG  
TB6586FG:  
1 pulse / electrical angle of 360°  
TB6586AFG:  
100 Ω  
3 pulses / electrical angle of 360°  
V
M
UH  
UL  
VH  
VL  
Energization signal  
input  
Push-pull output (± 3 mA (max))  
WH  
WL  
4
2007-08-03  
TB6586FG/AFG  
Block Diagram  
V
RESET  
15  
refout  
8
5-V regulator  
(internal reference  
voltage)  
V
16  
CC  
Low-voltage  
protection circuit  
Protection & Reset  
17 V  
M
CW/CCW 11  
HUP 2  
HUM 3  
HVP 4  
HVM 5  
HWP 6  
HWM 7  
21 UH  
22 VH  
23 WH  
18 UL  
19 VL  
20 WL  
Lead  
angle  
setting  
circuit  
RESET matrix  
Output control  
FG 24  
OSC/C 12  
OSC/R 13  
Oscillating  
circuit  
14 RS  
PWM  
control  
V
1
SP  
0.5 V  
10  
GND  
9
LA  
5
2007-08-03  
TB6586FG/AFG  
Absolute Maximum Ratings  
Characteristic  
Symbol  
Rating  
Unit  
V
18  
18  
CC  
Supply voltage  
V
V
M
0.3 to 8  
V
V
IN1  
(Note 1)  
Input voltage  
V
0.3 to 8.5  
IN2  
(Note 2)  
LA  
0.3 to V  
+ 0.3  
refout  
3
Turn-on signal output current  
Supply voltage  
I
mA  
W
OUT  
0.8 (Note2)  
1.0 (Note 3)  
P
D
Operating temperature  
Storage temperature  
T
30 to 85  
55 to 150  
opr  
°C  
T
stg  
Note 1: CW/CCW, RESET  
Note 2: V  
SP  
Note 3: No heatsink  
Note 4: When mounted on a PCB (50 × 50 × 1.6 mm, Cu 10%)  
Operation Conditions (Ta = 25°C)  
Characteristic  
Symbol  
Min  
Typ.  
Max  
Unit  
V
6.5  
4.5  
2
15  
5
16.5  
16.5  
8
V
V
CC  
Supply voltage  
Oscillation frequency  
V
M
F
MHz  
osc  
6
2007-08-03  
TB6586FG/AFG  
Electrical Characteristics (Unless otherwise specified Ta = 25°C, V = 15 V, V = 5 V)  
CC  
M
Test  
Circuit  
Characteristic  
Symbol  
Test Condition  
Min  
Typ.  
5.5  
Max  
10  
1
Unit  
mA  
mA  
V
= OPEN,  
OSC/C = 560 pF,  
OSC/R = 6.2 kΩ  
refout  
Supply current  
I
CC  
Drive output (UH, UL, VH, VL,  
WH, WL) = OPEN  
Output current  
I
0.5  
M
I
V
V
V
V
V
= 5 V LA  
25  
35  
50  
70  
IN (LA)  
IN  
IN  
IN  
IN  
IN  
I
= 5 V V  
SP  
IN (SP)  
Input current  
µA  
I
= 5 V RESET  
= 5 V CW/CCW  
= 0 V RS  
25  
50  
IN (RESET)  
I
25  
50  
IN (CW)  
I
25  
50  
IN (RS)  
V
refout  
High  
Low  
V
V
refout  
1  
V
CW/CCW, RESET  
IN1  
0
6.35  
6.35  
0.8  
6.7  
6.7  
V
RESET: 120° turn-on mode  
CW/CCW: System reset  
RESET: Power off reset  
PWM ON duty 95%  
6.0  
6.0  
2.2  
5.1  
IN2  
V
V
RST1  
RST2  
Input voltage  
V
V
V
refout  
5.7  
H
5.4  
Refresh Start motor  
operation  
V
M
L
1.8  
2.1  
2.4  
SP  
Energization OFF Refresh  
0.7  
40  
1.0  
1.3  
Input sensitivity  
Common mode  
Input hysteresis  
V
Differential input  
mVpp  
V
S
Hall element input  
V
1.5  
3.5  
W
VH  
VH  
(Note) ±4.5  
±7.5  
±10.5  
mV  
(1)  
RESET: Reset 120°  
energization  
0.15  
0.15  
(2)  
(3)  
(Note)  
Input hysteresis voltage  
Input delay  
V
CW/CCW: CCW Reset  
VH  
(Note)  
T
RS  
RS Output OFF  
13  
2.2  
14.2  
0.8  
4.2  
0.8  
µs  
V
I
I
I
I
I
I
I
I
= 3 mA, V = 15 V  
M
OUT (15) H  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
= 3 mA, V = 15 V  
1.2  
OUT (15) L  
M
V
= 2 mA, V = 5 V  
4.0  
OUT (5) H  
M
V
= 2 mA, V = 5 V  
1.0  
OUT (5) L  
M
Output voltage  
V
V
= 2 mA FG  
= 2 mA FG  
4
FG (H)  
V
1.0  
5.3  
5.5  
1
FG (L)  
refout1  
refout2  
V
V
= 15 mA V  
= 35 mA V  
4.7  
4.5  
5.0  
5.0  
0
refout  
refout  
I
V
V
= 0 V  
L (H)  
OUT  
OUT  
Output leakage current  
µA  
I
= 15 V  
0
1
L (L)  
Electrical current detector  
V
RS  
0.46  
0.5  
0.54  
V
RS  
LA = 0 V or open,  
Hall IN = 100 Hz  
T
LA (0)  
0
Lead angle correction  
°
T
LA = 2.5 V, Hall IN = 100 Hz  
LA = 5 V, Hall IN = 100 Hz  
Output start operation point  
No output operation point  
17  
28  
LA (2.5)  
T
LA (5)  
V
(H)  
(L)  
5.7  
4.7  
6.0  
5.0  
1.0  
6.3  
5.3  
CC  
V
monitor  
V
V
CC  
CC  
VH  
Input hysteresis width  
(Note)  
(4)  
7
2007-08-03  
TB6586FG/AFG  
Test  
Circuit  
Characteristic  
Symbol  
Test Condition  
OSC/C = 560 pF,  
Min  
18  
Typ.  
20  
Max  
22  
Unit  
F
C (20)  
C (18)  
OSC/R = 6.2 kΩ  
PWM oscillator frequency  
(carrier frequency)  
kHz  
OSC/C = 470 pF,  
OSC/R = 8.2 kΩ  
F
16.2  
92  
18  
19.8  
98  
OSC/C = 560 pF,  
Output duty (max)  
T
on  
(max)  
95  
%
OSC/R = 6.2 k, V = 5.7 V  
SP  
Note: Pre-shipment testing is not performed.  
8
2007-08-03  
TB6586FG/AFG  
Functional Description  
1. Basic operation  
At startup, the motor runs at 120° energization. When the position detection signal reaches a revolution  
count of fs = 5 Hz or higher, the rotor position is extrapolated from the position detection signal and output  
is activated using the lead angle based on the LA signal.  
Startup - 5 Hz: 120° energization  
fs = f  
/ (120 × 25 × 28)  
osc  
5 Hz or higher: 120° energization or 150° energization *  
Approximately 5 Hz if f  
= 5 MHz.  
osc  
*: At 5 Hz or higher, operation is performed in accordance with commands from RESET and LA pins.  
When the motor is running at 5 Hz or lower and in reverse (in accordance with the timing chart), it will  
be driven at 120° energization for a lead angle of 0°.  
2. V voltage command signal function  
SP  
<
(1) When voltage instruction is input at V  
1.0 V:  
SP
=  
Output is turned off (gate block protection).  
(2) When voltage instruction is input at 1.0 V < V  
<
2.1 V (refresh operation):  
SP
=  
The lower transistor is turned on at a regular (carrier) cycle. (ON duty: T = 18/f  
)
osc  
on  
(3) When a voltage instruction is input at V > 2.1 V:  
SP  
The drive signal is output using the energization method configured using the RESET pin.  
Note: At startup, to charge the upper transistor gate power supply, turn the lower transistor on for a fixed  
<
time with 1.0 V < V  
2.1 V.  
=
SP  
PWM ON Duty (Upper)  
*95%  
(typ.)  
(1)  
(2)  
(3)  
0
1.0 V  
2.1 V  
5.4 V  
V
sp  
*: The maximum ON duty is T = 95% (typ.) when V = 5.4 V (typ.).  
on  
SP  
Example:  
If f  
If f  
= 5 MHz, then ON time = 48 µs (typ.) (f = 19.8 kHz)  
c
osc  
osc  
= 4 MHz, then ON time = 60 µs (typ.) (f = 15.9 kHz)  
c
3. Function to stabilize the bootstrap voltage  
The product is equipped with a bootstrap capacitor charging function that supports the output level of the  
bootstrap method.  
<
(1) If the V input current is 1.0 V < V  
2.1 V, the ON signal is output to the lower phase (UL, VL,  
SP  
SP
=  
WH) based on the carrier cycle. If the output waveform is upper phase (UH, VH, WH), the OFF signal  
(Low) is output.  
Output Waveform  
Upper (UH, VH, WH)  
Lower (UL, VL, WL)  
Magnified view  
UH  
UL  
T
on  
T
= 18/f  
osc  
on  
Example: f  
= 5 MHz T = 3.6 µs  
on  
osc  
9
2007-08-03  
TB6586FG/AFG  
(2) If the V input current is 2.1 V < V and the Hall signal is 5 Hz or less, the upper phase (UH, VH,  
SP  
SP  
WH) will perform 120° energization at a PWM that complies with the V ; and the lower phase (UL,  
SP  
VL, WL) will operate at 120° energization, performing refresh operation based on the OFF timing.  
(The same drive is executed during “headwind” operation as well.)  
Example Output Waveform  
UH  
UL  
VH  
VL  
WH  
WL  
Magnified view  
WH  
T
SP  
T
d
T
d
WL  
T
on  
T
SP: Variable depending on the V  
(the figure above being applicable when V  
= 5.4 V (typ.)); T  
=
on  
SP  
SP  
18/f ; Td = 18/f  
osc  
osc  
*: The lead angle correction (LA pin) function does not operate when the Hall signal is 5 Hz or less. The  
lead angle correction function also does not operate when in a reverse detection state.  
4. Correcting the lead angle  
The lead angle can be corrected in the turn-on signal range from 0 to 28° in relation to the induced voltage.  
Analog input from the LA pin (0 V to 4.3 V divided by 16):  
0 V = 0°  
4.3 V or higher = 28°  
Sample Evaluation Results  
LA (V) Lead Angle (°) Characteristic  
30  
Lead  
Angle (°)  
Steps  
LA (V)  
25  
20  
15  
10  
5
1
2
0.00  
0.05  
0.28  
0.59  
0.89  
1.21  
1.52  
1.83  
2.14  
2.45  
2.75  
3.06  
3.37  
3.68  
3.99  
4.30  
0.00  
1.93  
3
3.79  
4
5.65  
5
7.54  
6
9.43  
7
11.29  
13.15  
15.08  
16.87  
18.73  
20.66  
22.55  
24.37  
26.16  
28.09  
8
9
0
0.0  
10  
11  
12  
13  
14  
15  
16  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
LA (V)  
10  
2007-08-03  
TB6586FG/AFG  
5. Setting the carrier frequency  
This function involves setting the triangular wave cycle (carrier cycle) necessary for generating PWM  
signals.  
Carrier frequency: f = f /252 (Hz)  
f
= reference clock (crystal oscillation)  
osc  
c
osc  
Example: If f  
If f  
= 5 MHz, then f = 19.8 kHz  
c
osc  
osc  
= 4 MHz, then f = 15.9 kHz  
c
6. Position detection pin  
The common-mode voltage range is V = 1.5 to 3.5 V. The input hysteresis is V = 7.5 mV (typ.).  
W
H
V
= 7.5 mV (typ.)  
H
V
S
V
H
HUM  
V
H
Higher than V = 40 mV  
S
HUP  
7. Revolution pulse output pin (the difference between TB6586FG and TB6586AFG)  
This pin outputs the revolution pulses based on the Hall signal. The TB6586FG outputs one (1) pulse /  
electrical angle and the TB6586AFG outputs three (3) pulses / electrical angle. In the case of the  
TB6586FG, this pulse is generated via the U phase Hall signal. For a Hall element, the pulse is converted  
to digital and then output. For a Hall IC, it is output in the equivalent waveform. In the case of the  
TB6586AFG, the up-down edges of the U, V and W phase (respectively) are combined and then generated.  
Example:  
Number of FG pulses for an 8-pole motor:  
TB6586FG: 4 pulses per revolution (4 ppr)  
TB6586AFG: 12 pulses per revolution (12 ppr)  
FG Signal Timing Chart  
HUM  
HUP  
HVM  
HVP  
HWM  
HWP  
TB6586AFG  
TB6586FG  
11  
2007-08-03  
TB6586FG/AFG  
8. Protecting input pin  
(1) Overcurrent protection (Pin RS)  
When the DC link current exceeds the internal reference voltage, this pin performs gate block  
protection. Overcurrent protection is restored for each carrier frequency.  
The pin is equipped with a filter (analog filter = 0.5 µs (typ.)) that prevents malfunctioning due to  
external noise.  
(2) Position detection signal error protection  
When the position detection signals are either all High, Low or Open, all the output is turned OFF  
(all phases Low). Anything else results in a restart.  
(3) Low power voltage protection (V  
power monitor)  
CC  
If the operation voltage range is exceeded when the power is being turned on or off, all the output is  
turned Low to prevent short circuit damage to the power element. Also, if 2.1 V or higher is input via  
the V pin, and if the motor is not rotating (Hall signal = 5 Hz or less), then normal drive is restored  
SP  
after a refresh operation (1.5 ms (typ.)) is performed. However, operations cannot be guaranteed  
during a power restoration as the circuitry will be unstable when the power is turned on.  
V
CC  
GND  
Power supply  
voltage  
6.0 V (typ.)  
5.0 V (typ.)  
V
M
Turn-on signal  
Low output  
Output  
Low output  
(4) Output pulse width restriction  
To prevent damage to the output driver (externally attached), the drive output signals (UH, VH, WH,  
UL, VL, WL) are restricted from being output at a pulse width of 1 µs or less.  
(5) Reset circuit  
When 1.7 V (typ.) or more is input to the RESET pin, a reset will be performed with all output phases  
being turned off (i.e., all phases Low). Output is also turned off if 6.35 V (typ.) or more is supplied to  
the CW/CCW pin. However, do not use this method as the restoration obtained from it is unstable.  
RESET pin: Output off reset  
All output phases are turned Low and the externally connected power element is stopped. When  
1.7 V or less is input, the power is restored. During the restoration, if 2.1 V or more is not input to  
the V pin, and if the motor is not rotating (Hall signal = 5 Hz or less), a refresh operation will be  
SP  
performed (1.5 ms (typ.)). Normal drive will then be restored.  
During the reset, the internal counter continues to operate and the FG signal continues to be  
output.  
CW/CCW pin: System reset  
All output phases are turned Low and the externally connected power element is stopped.  
Restoration takes place at an input of 6.35 V (typ.). However, operation after this kind of system  
reset is unstable.  
TB6586FG: During a system reset, the FG signal is output in compliance with the U-phase Hall  
signal.  
TB6586AFG: The FG signal is not output during a system reset.  
12  
2007-08-03  
TB6586FG/AFG  
Timing Chart (CW/CCW = Low, LA = GND)  
(The FG signal shown here is for the TB6586AFG.)  
(Normal Hall input)  
HUM  
HUP  
HVM  
HVP  
HWM  
HWP  
0 < Hall < 5 Hz  
(120° energization)  
UH  
VH  
WH  
UL  
VL  
WL  
FG  
5 Hz < Hall  
(120° energization: RESET = 6.5 V)  
UH  
VH  
WH  
UL  
VL  
WL  
FG  
5 Hz < Hall  
(150° energization: RESET = Low)  
UH  
VH  
WH  
UL  
VL  
WL  
FG  
T
T/4  
T = 60°  
*: When the Hall signal is 5 Hz or higher, the lead angle function operates in accordance with the LA pin. signal.  
13  
2007-08-03  
TB6586FG/AFG  
Timing Chart (CW/CCW = High, LA = GND)  
(The FG signal shown here is for the TB6586AFG.)  
(Normal Hall input)  
HUM  
HUP  
HVM  
HVP  
HWM  
HWP  
Reverse detection  
(120° energization)  
UH  
VH  
WH  
UL  
VL  
WL  
FG  
*: When CW/CCW = Low and a reverse Hall signal is input, it runs at 120° energization for a lead angle of 0° (“headwind” operation).  
14  
2007-08-03  
TB6586FG/AFG  
Timing Chart (CW/CCW = High, LA = GND)  
(The FG signal shown here is for the TB6586AFG.)  
(Reverse Hall input)  
HUM  
HUP  
HVM  
HVP  
HWM  
HWP  
0 < Hall < 5 Hz  
(120° energization)  
UH  
VH  
WH  
UL  
VL  
WL  
FG  
5 Hz < Hall  
(120° energization: RESET = 6.5 V)  
UH  
VH  
WH  
UL  
VL  
WL  
FG  
5 Hz < Hall  
(150° energization: RESET = Low)  
UH  
VH  
WH  
UL  
VL  
WL  
FG  
T
T/4  
T = 60°  
*: When the Hall signal is 5 Hz or higher, the lead angle function operates in accordance with the LA pin signal.  
15  
2007-08-03  
TB6586FG/AFG  
Timing Chart (CW/CCW = Low, LA = GND)  
(The FG signal shown here is for the TB6586AFG.)  
(Reverse Hall input)  
HUM  
HUP  
HVM  
HVP  
HWM  
HWP  
Reverse detection  
(120° energization)  
UH  
VH  
WH  
UL  
VL  
WL  
FG  
*: When CW/CCW = Low and a reverse Hall signal is input, the motor runs at 120° energization for a lead angle of 0° (“headwind” operation)  
16  
2007-08-03  
TB6586FG/AFG  
V
Example Application Circuit  
refout  
0.1 µF  
V
RESET  
refout  
8
15  
5-V regulator  
(internal reference  
voltage)  
V
CC  
16  
11  
V
M
V
= 6.5~16.5 V  
CC  
17  
Low-voltage  
protection circuit  
Protection & Reset  
V
= 4.5~16.5 V  
M
V
refout  
CW/CCW  
Motor power  
supply  
V
refout  
HUP  
HUM  
HVP  
UH  
VH  
WH  
UL  
2
3
4
5
6
7
21  
22  
23  
18  
19  
20  
Hall element  
Lead  
angle  
setting  
circuit  
RESET matrix  
Output control  
Driver  
HVM  
HWP  
HWM  
VL  
WL  
FG  
24  
12  
RS  
14  
OSC/C  
Oscillating  
circuit  
C
MCU  
OSC/R  
0.5 V  
13  
1
PWM  
control  
R
VSP  
10  
GND  
9
V
LA  
refout  
Note:  
Utmost care is necessary in the design of the output, V , V , and GND lines since the IC may be destroyed by short-circuiting between outputs, air contamination faults,  
CC M  
or faults due to improper grounding, or by short-circuiting between contiguous pins.  
Add overcurrent protection such as a fuse to make the device drive normally should a current exceeding the maximum rating flow in the IC for any reason.  
17  
2007-08-03  
TB6586FG/AFG  
Package Dimensions  
Weight: 0.27 g (typ.)  
18  
2007-08-03  
TB6586FG/AFG  
Notes on Contents  
1. Block Diagrams  
Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified  
for explanatory purposes.  
2. Equivalent Circuits  
The equivalent circuit diagrams may be simplified or some parts of them may be omitted for  
explanatory purposes.  
3. Timing Charts  
Timing charts may be simplified for explanatory purposes.  
4. Application Circuits  
The application circuits shown in this document are provided for reference purposes only. Thorough  
evaluation is required, especially at the mass production design stage.  
Toshiba does not grant any license to any industrial property rights by providing these examples of  
application circuits.  
5. Test Circuits  
Components in the test circuits are used only to obtain and confirm the device characteristics. These  
components and circuits are not guaranteed to prevent malfunction or failure from occurring in the  
application equipment.  
IC Usage Considerations  
Notes on handling of ICs  
[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be  
exceeded, even for a moment. Do not exceed any of these ratings.  
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
[2] Do not insert devices in the wrong orientation or incorrectly.  
Make sure that the positive and negative terminals of power supplies are connected properly.  
Otherwise, the current or power consumption may exceed the absolute maximum rating, and  
exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
In addition, do not use any device that is applied the current with inserting in the wrong orientation  
or incorrectly even just one time.  
Points to remember on handling of ICs  
Heat Radiation Design  
In using an IC with large current flow such as power amp, regulator or driver, please design the  
device so that heat is appropriately radiated, not to exceed the specified junction temperature (TJ)  
at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat  
radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown.  
In addition, please design the device taking into considerate the effect of IC heat radiation with  
peripheral components.  
19  
2007-08-03  
TB6586FG/AFG  
RESTRICTIONS ON PRODUCT USE  
070122EBA_R6  
The information contained herein is subject to change without notice. 021023_D  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc. 021023_A  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk. 021023_B  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patents or other rights of  
TOSHIBA or the third parties. 070122_C  
Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of  
controlled substances.  
Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws  
and regulations. 060819_AF  
The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E  
20  
2007-08-03  

相关型号:

TB6588FG

3-Phase Full-Wave PWM Driver for Sensorless DC Motors
TOSHIBA

TB6590FTG

IC BRUSH DC MOTOR CONTROLLER, 0.5 A, PQCC16, 3 X 3 MM, 0.50 MM PITCH, LEAD FREE, PLASTIC, VQON-16, Motion Control Electronics
TOSHIBA

TB6591FL

Micro Peripheral IC
MARKTECH

TB6591FLG

Micro Peripheral IC
MARKTECH

TB6592FL

Dual-Bridge Driver IC for DC motor
SIPEX

TB6592FL

Micro Peripheral IC
MARKTECH

TB6592FLG

Micro Peripheral IC
MARKTECH

TB6592FLG

IC BRUSH DC MOTOR CONTROLLER, 0.8 A, PQCC24, 0.505 INCH, 0.5 MM PITCH, LEAD FREE, PLASTIC, QON-24, Motion Control Electronics
TOSHIBA

TB6593FNG

Toshiba Bi-CD Integrated Circuit Silicon Monolithic
TOSHIBA

TB6594FLG

IC BRUSH DC MOTOR CONTROLLER, PQCC24, 5 X 5 MM, 0.50 MM PITCH, QON-24, Motion Control Electronics
TOSHIBA

TB6595FL

IC BRUSH DC MOTOR CONTROLLER, 0.8 A, PQCC36, 0.50 MM PITCH, PLASTIC, QON-36, Motion Control Electronics
TOSHIBA

TB6595FLG

IC BRUSH DC MOTOR CONTROLLER, 0.8 A, PQCC36, 0.50 MM PITCH, PLASTIC, QON-36, Motion Control Electronics
TOSHIBA