VMB0004_F_BCM [VICOR]

BCM Bus Converter; BCM母线转换器
VMB0004_F_BCM
型号: VMB0004_F_BCM
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

BCM Bus Converter
BCM母线转换器

转换器
文件: 总19页 (文件大小:1369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VMB0004MFJ  
VMB0004MFT  
PRELIMINARY DATASHEET  
TM  
BCM  
Bus Converter  
FEATURES  
DESCRIPTION  
The MIL-COTS VI ChipTM bus converter is a high efficiency  
(>95%) Sine Amplitude ConverterTM (SACTM) operating from a  
240 to 330 Vdc primary bus to deliver an isolated 30 – 41.25 V  
nominal, unregulated secondary.  
270 Vdc – 33.75 Vdc 235 W Bus Converter  
MIL-STD-704E/F Compliant  
High efficiency (>95%) reduces system power  
consumption  
The VMB0004MFJ and VMB0004MFT are provided in a  
VI Chip package compatible with standard pick-and-place and  
surface mount assembly processes.  
High power density (>796 W/in3)  
reduces power system footprint by >40%  
Contains built-in protection features: undervoltage,  
overvoltage lockout, overcurrent protection, short  
circuit protection, overtemperature protection.  
VIN = 240 – 330 V  
OUT = 30 – 41.25 V(NO LOAD)  
POUT = 235 W(NOM)  
K = 1/8  
V
Provides enable/disable control, internal temperature  
monitoring  
Can be paralleled to create multi-kW arrays  
TYPICAL APPLICATIONS  
High Voltage 270 V Aircraft Distributed Power  
28 Vdc MIL-COTS PRMtm Interface (MP028F036M21AL)  
High Density Power Supplies  
Communications Systems  
TYPICAL APPLICATION  
VC  
VC  
SG  
OS  
CD  
PR  
PC  
TM  
PC  
enable / disable  
TM  
PC  
TM  
IL  
L
O
A
D
switch  
SW1  
PRM  
240 – 330 Vdc  
BCM  
VTM  
(MIL-STD-704E/F)  
30 – 41.25 Vdc  
26 – 50 Vdc  
1 – 50 Vdc  
F1  
+Out  
+In  
+Out  
+In  
-In  
+Out  
+In  
C1  
20 µF  
VIN  
-Out  
-In  
-Out  
-Out  
-In  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 1 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
CONTROL PIN SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
See section 5.0 for further application details and guidelines.  
+IN to –IN . . . . . . . . . . . . . . . . . . . . . . . . -1.0 Vdc – +400 Vdc  
PC to –IN . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 Vdc – +20 Vdc  
TM to –IN . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 Vdc – +7 Vdc  
+IN/-IN to +OUT/-OUT . . . . . . . . . . . . . . . . . . . 4242 V (Hi Pot)  
+IN/-IN to +OUT/-OUT. . . . . . . . . . . . . . . . . . . 500 V (working)  
+OUT to –OUT . . . . . . . . . . . . . . . . . . . . . . -1.0 Vdc - +60 Vdc  
Temperature during reflow . . . . . . . . . . . . . . . . 245°C (MSL 6)  
PC (V I Chip BCM Primary Control)  
The PC pin can enable and disable the BCM. When held below  
VPC_DIS the BCM shall be disabled. When allowed to float with  
an impedance to –IN of greater than 50 kΩ the module will  
start. When connected to another BCM PC pin, the BCMs will  
start simultaneously when enabled. The PC pin is capable of  
being driven high by either an external logic signal or internal  
pull up to 5 V (operating).  
PACKAGE ORDERING INFORMATION  
TM (V I Chip BCM Temperature Monitor)  
The TM pin monitors the internal temperature of the BCM  
within an accuracy of +5/-5°C. It has a room temperature  
setpoint of ~3.0 V and an approximate gain of 10 mV/°C. It  
can source up to 100 µA and may also be used as a “Power  
Good” flag to verify that the BCM is operating.  
4
3
2
1
A
B
C
D
A
B
C
D
E
+Out  
-Out  
+In  
E
F
G
H
TM  
H
J
RSV  
PC  
J
K
L
K
+Out  
-Out  
L
M
N
P
R
T
M
N
P
R
T
-In  
Bottom View  
Signal  
Name  
Designation  
A1-E1, A2-E2  
L1-T1, L2-T2  
H1, H2  
J1, J2  
K1, K2  
+In  
–In  
TM  
RSV  
PC  
A3-D3, A4-D4,  
J3-M3, J4-M4  
E3-H3, E4-H4,  
N3-T3, N4-T4  
+Out  
–Out  
PART NUMBER  
DESCRIPTION  
VMB0004MFJ  
-55°C – 125°C TJ operating, J lead  
VMB0004MFT  
-55°C – 125°C TJ operating, Through hole  
Rev. 1.6  
2/2010  
Page 2 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
1.0 ELECTRICAL CHARACTERISTICS  
Specifications apply over all line and load conditions unless otherwise noted; Boldface specifications apply over the  
temperature range of --55°C < TJ < 125°C (M-Grade); All other specifications are at TJ = 25ºC unless otherwise noted  
ATTRIBUTE  
Voltage range  
dV/dt  
Quiescent power  
No load power dissipation  
SYMBOL  
CONDITIONS / NOTES  
MIN  
240  
TYP  
270  
MAX  
UNIT  
VIN  
dVIN /dt  
PQ  
330  
1
410  
10  
Vdc  
V/µs  
mW  
W
PC connected to -IN  
VIN = 240 to 330 V  
395  
2.5  
PNL  
VIN = 330 V COUT = 100 µF,  
POUT = 235 W  
Inrush Current Peak  
DC Input Current  
IINR_P  
IIN_DC  
4
A
A
POUT = 235 W  
0.95  
VOUT  
K Factor  
K
1/8  
(
)
VIN  
VIN = 270 VDC; See Figure 14  
VIN = 240 – 330 VDC; See Figure 14  
235  
215  
Output Power (Average)  
Output Power (Peak)  
POUT  
W
W
VIN = 270 VDC  
Average POUT < = 235 W, Tpeak < 5 ms  
POUT_P  
352.5  
Output Voltage  
Output Current (Average)  
VOUT  
IOUT  
Section 3.0 No load  
Pout < = 235 W  
30  
41.25  
7.3  
V
A
V
IN = 270 V, POUT = 235 W  
94.1  
94  
93.7  
95.4  
95.2  
94.7  
η
%
Efficiency (Ambient)  
VIN = 240 V to 330 V, POUT = 235 W  
VIN = 270 V, TJ = 100° C,POUT = 235 W  
η
η
Efficiency (Hot)  
Minimum Efficiency  
(Over Load Range)  
%
%
60 W < POUT < 235 W Max  
90  
Output Resistance (Ambient)  
Output Resistance (Hot)  
Output Resistance (Cold)  
Load Capacitance  
Switching Frequency  
Ripple Frequency  
ROUT  
ROUT  
ROUT  
COUT  
FSW  
TJ = 25° C  
TJ = 125° C  
TJ = -55° C  
100  
130  
40  
130  
180  
105  
170  
210  
160  
100  
1.72  
3.44  
mΩ  
mΩ  
mΩ  
uF  
MHz  
MHz  
1.56  
3.12  
1.64  
3.28  
FSW_RP  
COUT = 0 µF, POUT = 235 W, VIN = 270 V,  
Section 8.0  
VIN = 270 V, CPC = 0; See Figure 17  
Output Voltage Ripple  
VOUT_PP  
TON1  
160  
540  
400  
mV  
ms  
VIN to VOUT (Application of VIN)  
460  
620  
PC  
PC Voltage (Operating)  
PC Voltage (Enable)  
VPC  
4.7  
2
5
2.5  
5.3  
3
1.95  
300  
5
400  
1000  
1000  
V
V
V
uA  
mA  
kΩ  
pF  
pF  
kΩ  
Hz  
VPC_EN  
VPC_DIS  
IPC_EN  
IPC_OP  
RPC_SNK  
CPC_INT  
CPC_EXT  
RPC  
PC Voltage (Disable)  
PC Source Current (Startup)  
PC Source Current (Operating)  
PC Internal Resistance  
PC Capacitance (Internal)  
PC Capacitance (External)  
External PC Resistance  
PC External Toggle Rate  
50  
2
50  
100  
3.5  
150  
Internal pull down resistor  
Section 5.0  
External capacitance delays PC enable time  
Connected to –VIN  
50  
FPC_TOG  
1
V
IN = 270 V, Pre-applied  
PC to VOUT with PC Released  
Ton2  
50  
100  
4
150  
µs  
CPC = 0, COUT = 0; See Figure 17  
VIN = 270 V, Pre-applied  
CPC = 0, COUT = 0; See Figure 17  
PC to VOUT, Disable PC  
TPC_DIS  
10  
µs  
Rev. 1.6  
2/2010  
Page 3 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
1.0 ELECTRICAL CHARACTERISTICS (CONT.)  
Specifications apply over all line and load conditions unless otherwise noted; Boldface specifications apply over the  
temperature range of --55°C < TJ < 125°C (M-Grade); All other specifications are at TJ = 25ºC unless otherwise noted  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
TYP  
MAX  
+5  
UNIT  
TM  
TM accuracy  
TM Gain  
TM Source Current  
TM Internal Resistance  
External TM Capacitance  
TM Voltage Ripple  
ACTM  
ATM  
ITM  
RTM_SNK  
CTM  
VTM_PP  
-5  
ºC  
mV/°C  
uA  
10  
40  
100  
25  
50  
50  
500  
kΩ  
pF  
CTM = 0µF, VIN = 330 V, POUT = 235 W  
200  
400  
mV  
PROTECTION  
Negative going OVLO  
Positive going OVLO  
Negative going UVLO  
Positive going UVLO  
Output Overcurrent Trip  
Short Circuit Protection  
Trip Current  
Short Circuit Protection  
Response Time  
Thermal Shutdown  
Junction setpoint  
VIN_OVLO-  
VIN_OVLO+  
VIN_UVLO-  
VIN_UVLO+  
IOCP  
350  
355  
90  
100  
9
365  
372  
115  
125  
12  
380  
385  
125  
135  
14  
V
V
V
V
A
VIN = 270 V, 25°C  
ISCP  
TSCP  
14  
0.8  
125  
A
1
1.2  
us  
°C  
TJ_OTP  
130  
135  
GENERAL SPECIFICATION  
Isolation Voltage (Hi-Pot)  
Working Voltage (IN – OUT)  
Isolation Capacitance  
Isolation Resistance  
MTBF  
VHIPOT  
VWORKING  
CIN_OUT  
RIN_OUT  
4242  
V
V
pF  
500  
800  
Unpowered unit  
500  
10  
660  
4.2  
MΩ  
MIL HDBK 217F, 25° C, GB  
cTUVus  
CE Mark  
Mhrs  
Agency Approvals/Standards  
Rev. 1.6  
2/2010  
Page 4 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
1.1 APPLICATION CHARACTERISTICS  
All specifications are at TJ = 25ºC unless otherwise noted. See associated figures for general trend data.  
ATTRIBUTE  
No Load Power  
Inrush Current Peak  
SYMBOL  
CONDITIONS / NOTES  
TYP  
UNIT  
PNL  
INR_P  
η
VIN = 270 V, PC enabled; See Figure 1  
COUT = 100 µF, POUT = 235 W  
VIN = 270 V, POUT = 235 W  
VIN = 270 V, POUT = 235 W  
VIN = 270 V  
VIN = 270 V  
VIN = 270 V  
COUT = 0 uF, POUT = 235 W @ VIN = 270,  
VIN = 270 V  
5.5  
2.5  
W
A
%
Efficiency (Ambient)  
95.4  
94.7  
105  
130  
180  
η
Efficiency (Hot – 100°C)  
Output Resistance (-55°C)  
Output Resistance (25°C)  
Output Resistance (120°C)  
%
ROUT  
ROUT  
ROUT  
mΩ  
mΩ  
mΩ  
Output Voltage Ripple  
VOUT Transient (Positive)  
VOUT Transient (Negative)  
VOUT_PP  
VOUT_TRAN+  
VOUT_TRAN-  
TUVLO  
160  
1.4  
1.3  
150  
5
mV  
,
I
OUT_STEP = 0 TO 7.3 A  
ISLEW >10 A/us; See Figure 11  
OUT_STEP = 7.3 A to 0 A,  
V
I
V
ISLEW > 10 A/us; See Figure 12  
Undervoltage Lockout  
Response Time  
Output Overcurrent  
Response Time  
us  
ms  
TOCP  
9 < IOCP < 14 A  
Overvoltage Lockout  
Response Time  
TM Voltage (Ambient)  
TOVLO  
120  
3
µs  
V
VTM_AMB  
TJ 27°C  
Rev. 1.6  
2/2010  
Page 5 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
Full Load Efficiency vs. Case Temperature  
No Load Power Dissipation vs Line  
9
8
7
6
5
4
3
2
1
0
96.0  
95.8  
95.6  
95.4  
95.2  
95.0  
94.8  
94.6  
94.4  
94.2  
230  
250  
270  
Input Voltage (V)  
-55°C 25°C  
290  
310  
330  
-100  
-50  
Case Temperature (C)  
240 V 270 V  
0
50  
100  
330 V  
150  
TCASE  
:
100°C  
V
IN  
:
Figure 1 – No load power dissipation vs. VIN; TCASE  
Figure 2 – Full load efficiency vs. temperature; VIN  
Efficiency & Power Dissipation vs. 25°C Case  
Efficiency & Power Dissipation -55°C Case  
98  
95  
90  
85  
80  
75  
70  
65  
15  
13  
11  
9
15  
96  
94  
92  
90  
88  
86  
84  
82  
80  
η
η
13  
11  
9
PD  
PD  
7
7
5
5
3
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Output Current (A)  
Output Current (A)  
240 V  
270 V  
330 V  
240 V  
270 V  
330 V  
VIN:  
240 V  
270 V  
330 V  
240 V  
270 V  
330 V  
VIN:  
Figure 3 – Efficiency and power dissipation at -55°C (case); VIN  
Figure 4 – Efficiency and power dissipation at 25°C (case); VIN  
ROUT vs. Case Temperature  
Efficiency & Power Disspiation 100°C Case  
98  
190  
16.5  
14.5  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
96  
94  
92  
90  
88  
86  
84  
82  
80  
η
12.5  
10.5  
8.5  
PD  
6.5  
4.5  
2.5  
0
1
2
3
4
5
6
7
8
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Output Current (A)  
Case Temperature (°C)  
240 V  
270 V  
330 V  
240 V  
270 V  
330 V  
VIN:  
IOUT  
:
0.73 A  
7.3 A  
Figure 5 – Efficiency and power dissipation at 100°C (case); VIN  
Figure 6 – ROUT vs. temperature vs. IOUT  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 6 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
Ripple vs. Load  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
Load Current (A)  
Vpk-pk (mV)  
Figure 7 – Vripple vs. IOUT ; 270 Vin, no external capacitance  
Figure 8 – PC to VOUT startup waveform  
Figure 9 – VIN to VOUT startup waveform  
Figure 10 – Output voltage and input current ripple, 270 Vin,  
235 W no COUT  
Figure 11 – Positive load transient (0 – 7.3 A)  
Figure 12 – Negative load transient (7.3 A – 0 A)  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 7 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
Safe Operating Area  
400  
350  
300  
250  
200  
150  
100  
50  
0
29.00  
31.00  
33.00  
35.00  
37.00  
39.00  
41.00  
Steady State  
5 mS 352.5 W Ave  
Figure 13 – PC disable waveform, 270 VIN, 100 µF COUT full load  
Figure 14 – Safe Operating Area vs. VOUT  
400  
350  
50 mS operation  
OVP  
full current  
330  
300  
Normal  
Operating Range  
280  
MIL-STD-704F Envelope of normal  
V transients for 270 Vdc systems  
250  
200  
50% rated current  
50 mS full current 1% duty  
150  
125  
UVL  
60  
0
20  
40  
80  
100  
120  
mS  
Figure 15 — Envelope of normal voltage transient for 270 volts DC system.  
Rev. 1.6  
2/2010  
Page 8 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
2.0 PACKAGE/MECHANICAL SPECIFICATIONS  
All specifications are at TJ = 25ºC unless otherwise noted. See associated figures for general trend data.  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
TYP  
MAX  
UNIT  
Length  
Width  
Height  
Volume  
Footprint  
L
W
H
Vol  
F
32.4 / 1.27  
21.7 / 0.85  
32.5 / 1.28  
22.0 / 0.87  
32.6 / 1.29  
22.3 / 0.89  
mm/in  
mm/in  
6.48 / 0.255 6.73 / 0.265 6.98 / 0.275 mm/in  
No Heatsink  
No Heatsink  
4.81 / 0.295  
7.3 / 1.1  
796  
cm3/in3  
cm2/in2  
W/in3  
W/cm3  
oz/g  
Power Density  
Weight  
PD  
W
No Heatsink  
49  
0.5/14  
Nickel (0.51-2.03 µm)  
Palladium (0.02-0.15 µm)  
Gold (0.003-0.05 µm)  
Lead Finish  
µm  
Operating Temperature  
Storage Temperature  
Thermal Capacity  
Peak Compressive Force  
Applied to Case (Z-axis)  
TJ  
TST  
-55  
-65  
125  
125  
°C  
°C  
Ws/°C  
9
5
No J-lead support  
6
lbs  
ESDHBM  
ESDMM  
Human Body Model[a]  
Machine Model[b]  
MSL 5  
1500  
400  
ESD Rating  
VDC  
225  
245  
150  
3
6
1.5  
°C  
°C  
s
°C/s  
°C/s  
°C/W  
Peak Temperature During Reflow  
MSL 6  
Peak Time Above 183°C  
Peak Heating Rate During Reflow  
Peak Cooling Rate Post Reflow  
Thermal Impedance  
1.5  
1.5  
1.1  
ØJC  
Min Board Heatsinking  
[a]  
[b]  
JEDEC JESD 22-A114C.01  
JEDED JESD 22-A115-A  
Rev. 1.6  
2/2010  
Page 9 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
2.1 MECHANICAL DRAWING  
NOTES:  
mm  
BOTTOM VIEW  
1. DIMENSIONS ARE  
.
inch  
2. UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X / [.XX] = +/-0.25 / [.01]; .XX / [.XXX] = +/-0.13 / [.005]  
3. PRODUCT MARKING ON TOP SURFACE  
TOP VIEW ( COMPONENT SIDE )  
DXF and PDF files are available on vicorpower.com  
2.2 RECOMMENDED LAND PATTERN  
RECOMMENDED LAND PATTERN  
NOTES:  
1. DIMENSIONS ARE  
mm  
(
COMPONENT SIDE SHOWN )  
.
inch  
2. UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X / [.XX] = +/-0.25 / [.01]; .XX / [.XXX] = +/-0.13 / [.005]  
3. PRODUCT MARKING ON TOP SURFACE  
DXF and PDF files are available on vicorpower.com  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 10 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
2.3 MECHANICAL DRAWING  
TOP VIEW ( COMPONENT SIDE )  
NOTES:  
BOTTOM VIEW  
(mm)  
1. DIMENSIONS ARE  
.
inch  
2. UNLESS OTHERWISE SPECIFIED TOLERANCES ARE:  
X.X [X.XX] = 0.25 [0.01]; X.XX [X.XXX] = 0.13 [0.005]  
3. RoHS COMPLIANT PER CST-0001 LATEST REVISION  
DXF and PDF files are available on vicorpower.com  
2.4 RECOMMENDED LAND PATTERN  
NOTES:  
(mm)  
1. DIMENSIONS ARE  
.
inch  
RECOMMENDED HOLE PATTERN  
( COMPONENT SIDE SHOWN )  
2. UNLESS OTHERWISE SPECIFIED TOLERANCES ARE:  
X.X [X.XX] = 0.25 [0.01]; X.XX [X.XXX] = 0.13 [0.005]  
3. RoHS COMPLIANT PER CST-0001 LATEST REVISION  
DXF and PDF files are available on vicorpower.com  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 11 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
2.5 RECOMMENDED LAND PATTERN FOR PUSH PIN HEAT SINK  
RECOMMENDED LAND PATTERN  
(NO GROUNDING CLIPS)  
TOP SIDE SHOWN  
NOTES: 1. MAINTAIN 3.50 [0.138] DIA. KEEP-OUT ZONE  
FREE OF COPPER, ALL PCB LAYERS.  
2. (A) MINIMUM RECOMMENDED PITCH IS 39.50 [1.555],  
THIS PROVIDES 7.00 [0.275] COMPONENT  
EDGE-TO-EDGE SPACING, AND 0.50 [0.020]  
CLEARANCE BETWEEN VICOR HEAT SINKS.  
(B) MINIMUM RECOMMENDED PITCH IS 41.00 [1.614],  
THIS PROVIDES 8.50 [0.334] COMPONENT  
EDGE-TO-EDGE SPACING, AND 2.00 [0.079]  
CLEARANCE BETWEEN VICOR HEAT SINKS.  
3. V•I CHIP LAND PATTERN SHOWN FOR REFERENCE ONLY;  
ACTUAL LAND PATTERN MAY DIFFER.  
DIMENSIONS FROM EDGES OF LAND PATTERN  
TO PUSH-PIN HOLES WILL BE THE SAME FOR  
ALL FULL SIZE V•ICHIP PRODUCTS.  
RECOMMENDED LAND PATTERN  
(With GROUNDING CLIPS)  
TOP SIDE SHOWN  
4. UNLESS OTHERWISE SPECIFIED:  
DIMENSIONS ARE MM [INCH].  
TOLERANCES ARE:  
X.X [X.XX] = 0.3 [0.01]  
X.XX [X.XXX] = 0.13 [0.005]  
5. PLATED THROUGH HOLES FOR GROUNDING CLIPS (33855)  
SHOWN FOR REFERENCE. HEATSINK ORIENTATION AND  
DEVICE PITCH WILL DICTATE FINAL GROUNDING SOLUTION.  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 12 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
3.0 POWER, VOLTAGE, EFFICIENCY RELATIONSHIPS  
Because of the high frequency, fully resonant SAC topology,  
power dissipation and overall conversion efficiency of BCM  
converters can be estimated as shown below.  
OUTPUT  
POWER  
INPUT  
POWER  
Key relationships to be considered are the following:  
1. Transfer Function  
a. No load condition  
PR  
OUT  
PNL  
VOUT = VIN • K  
Eq. 1  
Figure 16 – Power transfer diagram  
Where K (transformer turns ratio) is constant  
for each part number  
b. Loaded condition  
VOUT = Vin • K – IOUT • ROUT  
Eq. 2  
2. Dissipated Power  
The two main terms of power losses in the  
BCM module are:  
- No load power dissipation (PNL) defined as the power  
used to power up the module with an enabled power  
train at no load.  
- Resistive loss (ROUT) refers to the power loss across  
the BCM modeled as pure resistive impedance.  
~
~
PDISSIPATED  
P
NL + PROUT  
Eq. 3  
Therefore, with reference to the diagram shown in Figure 16  
POUT = PIN – PDISSIPATED = PIN – PNL – PROUT Eq. 4  
Notice that ROUT is temperature and input voltage dependent  
and PNL is temperature dependent (See Figure 16).  
The above relations can be combined to calculate the overall module efficiency:  
POUT  
PIN  
PIN – PNL – PROUT  
VIN • IIN – PNL – (IOUT)2 • ROUT  
PNL + (IOUT)2 • ROUT  
η
=
=
=
= 1 –  
Eq. 5  
(
)
PIN  
VIN • IIN  
VIN • IIN  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 13 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
4.0 OPERATING  
Figure 17 – Timing diagram  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 14 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
5.0 USING THE CONTROL SIGNALS TM AND PC  
6.0 FUSE SELECTION  
The PC control pin can be used to accomplish the following  
functions:  
VI Chips are not internally fused in order to provide flexibility  
in configuring power systems. Input line fusing of VI Chips is  
recommended at system level, in order to provide thermal  
protection in case of catastrophic failure.  
Delayed start: At start-up, PC pin will source a constant  
100 uA current to the internal RC network. Adding an  
external capacitor will allow further delay in reaching the  
2.5 V threshold for module start.  
The fuse shall be selected by closely matching system  
requirements with the following characteristics:  
Synchronized start up: In a parallel module array, PC pins  
shall be connected in order to ensure synchronous start of all  
the units. While every controller has a calibrated 2.5 V  
reference on PC comparator, many factors might cause  
different timing in turning on the 100 uA current source on  
each module, i.e.:  
• Current rating (usually greater than maximum BCM current)  
• Maximum voltage rating (usually greater than the maximum  
possible input voltage)  
• Ambient temperature  
• Nominal melting I2t  
• Recommended fuse: 2.5 A Bussmann PC-Tron or  
SOC type 36CFA.  
– Different VIN slew rate  
– Statistical component value distribution  
By connecting all PC pins, the charging transient will be  
shared and all the modules will be enabled synchronously.  
Auxiliary voltage source: Once enabled in regular  
operational conditions (no fault), each BCM PC provides a  
regulated 5 V, 2 mA voltage source.  
Output Disable: PC pin can be actively pulled down in order  
to disable module operations. Pull down impedance shall be  
lower than 850 Ω and toggle rate lower than 1 Hz.  
Fault detection flag: The PC 5 V voltage source is internally  
turned off as soon as a fault is detected. After a minimum  
disable time, the module tries to re-start, and PC voltage is  
re-enabled. For system monitoring purposes (microcontroller  
interface) faults are detected on falling edges of PC signal.  
It is important to notice that PC doesn’t have current sink  
capability (only 150 kΩ typical pull down is present),  
therefore, in an array, PC line will not be capable of disabling  
all the modules if a fault occurs on one of them.  
The temperature monitor (TM) pin provides a voltage propor-  
tional to the absolute temperature of the converter control IC.  
It can be used to accomplish the following functions:  
Monitor the control IC temperature: The temperature in  
Kelvin is equal to the voltage on the TM pin scaled  
by x100. (i.e. 3.0 V = 300 K = 27ºC). It is important to  
remember that V I chips are multi-chip modules, whose  
temperature distribution greatly vary for each part number as  
well with input/output conditions, thermal management and  
environmental conditions. Therefore, TM cannot be used to  
thermally protect the system.  
Fault detection flag: The TM voltage source is internally  
turned off as soon as a fault is detected. After a minimum  
disable time, the module tries to re-start, and TM voltage is  
re-enabled.  
Rev. 1.6  
2/2010  
Page 15 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
7.0 CURRENT SHARING  
The SAC topology bases its performance on efficient transfer  
of energy through a transformer, without the need of closed  
loop control. For this reason, the transfer characteristic can be  
approximated by an ideal transformer with some resistive drop  
and positive temperature coefficient.  
It is important to notice that, when successfully started, BCMs  
are capable of bidirectional operations (reverse power transfer  
is enabled if the BCM input falls within its operating range and  
the BCM is otherwise enabled). In parallel arrays, because of  
the resistive behavior, circulating currents are never experienced  
(energy conservation law).  
This type of characteristic is close to the impedance characteristic  
of a DC power distribution system, both in behavior  
(AC dynamic) and absolute value (DC dynamic).  
General recommendations to achieve matched array impedances  
are (see also AN016 for further details):  
When connected in an array (with same K factor), the BCM  
module will inherently share the load current with parallel  
units, according to the equivalent impedance divider that the  
system implements from the power source to the point of load.  
• to dedicate common copper planes within the PCB to  
deliver and return the current to the modules  
• to make the PCB layout as symmetric as possible  
• to apply same input/output filters (if present) to each unit  
Figure 18 – BCM Array  
Rev. 1.6  
2/2010  
Page 16 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
8.0 INPUT AND OUTPUT FILTER DESIGN  
A major advantage of SAC systems versus conventional PWM  
converters is that the transformers do not require large  
functional filters. The resonant LC tank, operated at extreme  
high frequency, is amplitude modulated as a function of input  
voltage and output current, and efficiently transfers charge  
through the isolation transformer. A small amount of  
capacitance, embedded in the input and output stages of the  
module, is sufficient for full functionality and is key to achieve  
power density.  
Total load capacitance at the output of the BCM shall not  
exceed the specified maximum. Owing to the wide bandwidth  
and low output impedance of the BCM, low frequency bypass  
capacitance and significant energy storage may be more  
densely and efficiently provided by adding capacitance at the  
input of the BCM. At frequencies <500 kHz the BCM appears  
as an impedance of ROUT between the source and load.  
Within this frequency range capacitance at the input appears  
as effective capacitance on the output per the relationship  
defined in Eq. 5.  
This paradigm shift requires system design to carefully evaluate  
external filters in order to:  
CIN  
K2  
COUT  
=
Eq. 6  
1.Guarantee low source impedance:  
To take full advantage of the BCM dynamic response, the  
impedance presented to its input terminals must be low  
from DC to approximately 5 MHz. The connection of the  
This enables a reduction in the size and number of capacitors  
used in a typical system.  
V I Chip to its power source should be implemented with  
minimal distribution inductance. If the interconnect  
inductance exceeds 100 nH, the input should be bypassed  
with a RC damper to retain low source impedance and  
stable operation. With an interconnect inductance of  
200 nH, the RC damper may be as high as 1 µF in series  
with 0.3 Ω. A single electrolytic or equivalent low-Q  
capacitor may be used in place of the series RC bypass.  
2.Further reduce input and/or output voltage ripple without  
sacrificing dynamic response:  
Given the wide bandwidth of the BCM, the source  
response is generally the limiting factor in the overall  
system response. Anomalies in the response of the source  
will appear at the output of the BCM multiplied by its  
K factor. This is illustrated in Figures 11 and 12.  
3.Protect the module from overvoltage transients imposed  
by the system that would exceed maximum ratings and  
cause failures:  
The V I Chip input/output voltage ranges shall not be  
exceeded. An internal overvoltage lockout function  
prevents operation outside of the normal operating input  
range. Even during this condition, the powertrain is exposed  
to the applied voltage and power MOSFETs must withstand  
it. A criterion for protection is the maximum amount of  
energy that the input or output switches can tolerate if  
avalanched.  
Rev. 1.6  
2/2010  
Page 17 of 19  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 18 of 19  
vicorpower.com  
VMB0004MFJ - VMB0004M  
PRELIMINARY DATASHEET  
F
T
Warranty  
Vicor products are guaranteed for two years from date of shipment against defects in material or workmanship when in  
normal use and service. This warranty does not extend to products subjected to misuse, accident, or improper applica-  
tion or maintenance. Vicor shall not be liable for collateral or consequential damage. This warranty is extended to the  
original purchaser only.  
EXCEPT FOR THE FOREGOING EXPRESS WARRANTY, VICOR MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING,  
BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
Vicor will repair or replace defective products in accordance with its own best judgement. For service under this war-  
ranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions.  
Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in re-  
turning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of  
this warranty.  
Information published by Vicor has been carefully checked and is believed to be accurate; however, no responsibility is  
assumed for inaccuracies. Vicor reserves the right to make changes to any products without further notice to improve  
reliability, function, or design. Vicor does not assume any liability arising out of the application or use of any product or  
circuit; neither does it convey any license under its patent rights nor the rights of others. Vicor general policy does not  
recommend the use of its components in life support applications wherein a failure or malfunction may directly threaten  
life or injury. Per Vicor Terms and Conditions of Sale, the user of Vicor components in life support applications assumes  
all risks of such use and indemnifies Vicor against all damages.  
Vicor’s comprehensive line of power solutions includes high density AC-DC  
and DC-DC modules and accessory components, fully configurable AC-DC  
and DC-DC power supplies, and complete custom power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for  
its use. Vicor components are not designed to be used in applications, such as life support systems, wherein a failure or  
malfunction could result in injury or death. All sales are subject to Vicors Terms and Conditions of Sale, which are  
available upon request.  
Specifications are subject to change without notice.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent  
applications) relating to the products described in this data sheet. Interested parties should contact Vicor's Intel-  
lectual Property Department.  
The products described on this data sheet are protected by the following U.S. Patents Numbers:  
5,945,130; 6,403,009; 6,710,257; 6,911,848; 6,930,893; 6,934,166; 6,940,013; 6,969,909; 7,038,917;  
7,166,898; 7,187,263; 7,361,844; D496,906; D505,114; D506,438; D509,472; and for use under 6,975,098  
and 6,984,965  
Rev. 1.6  
2/2010  
V•I CHIP INC. (A VICOR COMPANY) 25 FRONTAGE RD. ANDOVER, MA 01810 800-735-6200  
Page 19 of 19  
vicorpower.com  

相关型号:

VMB0510S

Infinitesimal surface mount bridge rectifier
JUXING

VMB054S

Infinitesimal surface mount bridge rectifier
JUXING

VMB056S

Infinitesimal surface mount bridge rectifier
JUXING

VMB058S

Infinitesimal surface mount bridge rectifier
JUXING

VMB10-12F

NPN SILICON RF POWER TRANSISTOR
ASI

VMB10-12S

NPN SILICON RF POWER TRANSISTOR
ASI

VMB10-12S_07

NPN SILICON RF POWER TRANSISTOR
ASI

VMB100-12

NPN SILICON RF POWER TRANSISTOR
ASI

VMB150-28

NPN SILICON RF POWER TRANSISTOR
ASI

VMB1A80B-AEC00-000

Rocker Switch, DPDT, Momentary, 15A, 24VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount,
Carling Techn

VMB1A80C-00000-000

Rocker Switch, DPDT, Momentary, 15A, 24VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount,
Carling Techn

VMB1BP0C-AER00-000

Rocker Switch, DPDT, Momentary, 15A, 24VDC, Quick Connect Terminal, Rocker Actuator, Panel Mount,
Carling Techn