10-FZ07NBA100SM10-M305L68 [VINCOTECH]

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge;
10-FZ07NBA100SM10-M305L68
型号: 10-FZ07NBA100SM10-M305L68
厂家: VINCOTECH    VINCOTECH
描述:

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge

文件: 总14页 (文件大小:1516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
flow BOOST 0  
650 V / 100 A  
Features  
flow 0 12 mm housing  
● Symmetric booster  
● Ultra high switching frequency  
● Low inductance layout  
Target Applications  
● Solar Inverter  
● UPS  
Schematic  
Types  
● 10-FZ07NBA100SM10-M305L68  
● 10-PZ07NBA100SM10-M305L68Y  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Boost IGBT (T2, T4)  
V CES  
I C  
Collector-emitter break down voltage  
650  
80  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Pulsed collector current  
Turn off safe operating area  
Power dissipation  
300  
200  
136  
±20  
175  
A
T j ≤ 150 °C  
V CE V CES  
A
P tot  
V GE  
T j = T jmax  
T s = 80 °C  
W
V
Gate-emitter peak voltage  
Maximum Junction Temperature  
T jmax  
°C  
Boost Inverse Diode (D20, D40)  
V RRM  
I FAV  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
650  
18  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
Forward average current  
Repetitive peak forward current  
Power dissipation  
t p limited by T jmax  
T j = T jmax  
20  
A
33  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
copyright Vincotech  
1
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Boost FWD (D1, D2)  
V RRM  
I FAV  
Peak Repetitive Reverse Voltage  
650  
70  
V
A
T j = T jmax  
T s = 80 °C  
Forward average current  
I FSM  
I 2t  
Surge forward current  
700  
A
A2s  
A
t p = 10 ms  
I 2t value  
2450  
I FRM  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
200  
102  
175  
P tot  
T s = 80 °C  
W
T jmax  
Maximum Junction Temperature  
°C  
Thermal Properties  
T stg  
T op  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(T jmax - 25)  
Isolation Properties  
DC Test Voltage*  
AC Voltage  
t p = 2 s  
6000  
2500  
V
V isol  
Insulation voltage  
t p = 1 min  
V
Creepage distance  
min 12,7  
9,54  
mm  
mm  
Clearance  
Comparative Tracking Index  
*100% tested in production  
CTI  
>200  
copyright Vincotech  
2
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V CE [V] I F [A]  
V DS [V] I D [A]  
V GE [V]  
V GS [V]  
T j [°C]  
Min  
Max  
Boost IGBT (T2, T4)  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,001  
25  
3,3  
1
4
4,7  
2,5  
V
V
25  
125  
1,63  
1,78  
15  
0
100  
650  
0
25  
0,080  
40  
mA  
nA  
Ω
20  
25  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
24  
23  
10  
Rise time  
11  
ns  
135  
156  
5
t d(off)  
t f  
Turn-off delay time  
R goff = 4 Ω  
R gon = 4 Ω  
±15  
350  
70  
Fall time  
9
0,700  
1,160  
0,310  
0,560  
E on  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
125  
6000  
100  
22  
f = 1 MHz  
Output capacitance  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
520  
100  
240  
nC  
λ paste = 3,4 W/mK  
(PSX)  
R th(j-s)  
K/W  
Thermal resistance chip to heatsink  
0,70  
Boost Inverse Diode (D20, D40)  
25  
125  
1,73  
1,60  
V F  
Diode forward voltage  
20  
V
λ paste = 3,4 W/mK  
(PSX)  
R th(j-s)  
K/W  
Thermal resistance chip to heatsink  
2,87  
Boost FWD (D1, D2)  
Diode forward voltage  
25  
125  
1,5  
2,29  
1,69  
2,5  
20  
V F  
100  
V
μA  
I r  
I RRM  
Reverse leakage current  
650  
350  
25  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
73  
121  
26,4  
68,4  
1,3  
Peak reverse recovery current  
Reverse recovery time  
A
t rr  
ns  
Q rr  
R gon = 4 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
70  
µC  
3,9  
10424  
5304  
0,23  
0,79  
( di rf/dt )max  
E rec  
A/µs  
mWs  
λ paste = 3,4 W/mK  
(PSX)  
R th(j-s)  
K/W  
Thermal resistance chip to heatsink  
0,93  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
22000  
Ω
%
R 100 = 1486 Ω  
-12  
+12  
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
Tol. ±3%  
3884  
3964  
B (25/100)  
B-value  
K
Vincotech NTC Reference  
B
copyright Vincotech  
3
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Boost IGBT (T2, T4) / Boost FWD (D1, D2)  
figure 1.  
T2, T4  
figure 2.  
T2, T4  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
1
2
3
4
V CE (V)  
5
V CE (V)  
1
2
3
4
5
At  
At  
t p  
=
t p =  
250  
25  
μs  
°C  
250  
125  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
5 V to 15 V in steps of 1 V  
5 V to 15 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
T2, T4  
figure 4.  
D1, D2  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
100  
300  
250  
200  
150  
100  
50  
80  
60  
40  
20  
0
0
0
0
0,8  
1,6  
2,4  
3,2  
4
2
4
6
8
10  
V GE (V)  
V F (V)  
At  
At  
T j =  
T j =  
25/125  
250  
°C  
μs  
V
25/125  
250  
°C  
μs  
t p  
=
t p =  
V CE  
=
10  
copyright Vincotech  
4
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Boost IGBT (T2, T4) / Boost FWD (D1, D2)  
figure 5.  
T2, T4  
figure 6.  
T2, T4  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
2,5  
2,5  
Eon High T  
2
2
Eon High T  
Eon Low T  
1,5  
1
1,5  
1
Eon Low T  
Eoff High T  
Eoff High T  
Eoff Low T  
Eoff Low T  
0,5  
0
0,5  
0
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
R G ( )  
I C(A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
°C  
V
25/125  
350  
15  
°C  
V
V CE  
=
V CE  
V GE  
=
350  
15  
4
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
70  
A
=
4
figure 7.  
D1, D2  
figure 8.  
D1, D2  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
1,5  
1,2  
0,9  
0,6  
0,3  
0
1,5  
1,2  
0,9  
0,6  
0,3  
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
125  
150  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
350  
15  
°C  
V
25/125  
350  
15  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
V
=
I C =  
4
Ω
70  
A
copyright Vincotech  
5
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Boost IGBT (T2, T4) / Boost FWD (D1, D2)  
figure 9.  
T2, T4  
figure 10.  
T2, T4  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdoff  
0,1  
0,1  
tdon  
tr  
tdon  
tr  
tf  
tf  
0,01  
0,01  
0,001  
0,001  
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
125  
150  
I
C(A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
350  
15  
4
°C  
V
125  
350  
15  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
70  
A
=
4
figure 11.  
D1, D2  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
D1, D2  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,15  
0,15  
µ
µ
µ
µ
µ
µ
µ
µ
trr High T  
0,12  
0,09  
0,06  
0,03  
0,00  
0,12  
0,09  
0,06  
0,03  
0,00  
trr High T  
trr Low T  
trr Low T  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
I
C(A)  
R gon( Ω)  
At  
T j =  
At  
T j =  
V R  
I F =  
V GE  
25/125  
350  
15  
°C  
V
25/125  
350  
70  
°C  
V
V CE  
V GE  
R gon  
=
=
=
V
A
=
=
4
Ω
15  
V
copyright Vincotech  
6
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Boost IGBT (T2, T4) / Boost FWD (D1, D2)  
figure 13.  
D1, D2  
figure 14.  
D1, D2  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
6
5
4
3
2
1
0
6
Qrr High T  
5
4
3
2
1
Qrr High T  
Qrr Low T  
Qrr Low T  
0
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
125  
150  
I
C(A)  
R gon( )  
At  
At  
T j =  
T j =  
25/125  
350  
15  
°C  
25/125  
350  
70  
°C  
V
V CE  
V GE  
=
=
V R  
=
V
V
Ω
I F =  
A
R gon  
=
V GE =  
4
15  
V
figure 15.  
D1, D2  
figure 16.  
D1, D2  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
175  
150  
125  
100  
75  
175  
IRRM High T  
150  
125  
100  
75  
IRRM Low T  
IRRM High T  
50  
50  
IRRM Low T  
25  
25  
0
0
0
0
25  
50  
75  
100  
125  
150  
4
8
12  
16  
20  
I C(A)  
R gon( Ω)  
At  
At  
T j =  
T j =  
V R  
I F =  
V GE  
25/125  
350  
15  
°C  
V
25/125  
350  
70  
°C  
V
V CE  
V GE  
R gon  
=
=
=
V
A
=
=
4
Ω
15  
V
copyright Vincotech  
7
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Boost IGBT (T2, T4) / Boost FWD (D1, D2)  
figure 17.  
D1, D2  
figure 18.  
D1, D2  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
16000  
14000  
12000  
10000  
8000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
dIrec/dtLow T  
dIo/dtLow T  
6000  
4000  
2000  
0
dIrec/dtLow T  
di0/dtHigh T  
dI0/dtLow T  
dI0/dtHigh T  
dIrec/dtHigh T  
dIrec/dtHigh T  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
I
C(A)  
R gon( Ω)  
At  
T j =  
At  
T j =  
25/125  
350  
15  
°C  
V
25/125  
350  
70  
°C  
V
V CE  
V GE  
R gon  
=
V R  
I F =  
V GE  
=
=
V
A
=
=
4
Ω
15  
V
figure 19.  
T2, T4  
figure 20.  
D1, D2  
IGBT transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-1  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-2  
10-2  
0,1  
0,1  
0,05  
0,05  
0,02  
0,01  
0,02  
0,01  
0,005  
0,000  
0,005  
0,000  
10-3  
10-3  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,70  
K/W  
0,93  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
6,67E-02 1,43E+00  
1,15E-01 2,44E-01  
2,87E-01 6,53E-02  
1,30E-01 1,67E-02  
5,73E-02 4,56E-03  
4,15E-02 5,21E-04  
R (K/W) Tau (s)  
6,93E-02 3,04E+00  
1,64E-01 4,75E-01  
5,02E-01 9,73E-02  
8,20E-02 2,48E-02  
6,58E-02 4,90E-03  
4,43E-02 1,04E-03  
copyright Vincotech  
8
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Boost Inverse Diode (D20, D40)  
figure 21.  
D20, D40  
figure 22.  
D20, D40  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
101  
100  
10-1  
10-2  
30  
25  
20  
15  
10  
5
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0
0
0,5  
1
1,5  
2
2,5  
3
V F (V)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
T j =  
t
p / T  
25/125  
250  
°C  
μs  
D =  
R th(j-s) =  
t p  
=
2,87  
K/W  
Thermistor  
figure 23.  
NTC  
Typical NTC characteristic  
as a function of temperature  
R
T = f(T)  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
T (°C)  
25  
50  
75  
100  
125  
copyright Vincotech  
9
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Switching Definitions  
General conditions  
T j  
=
=
=
125 °C  
4 Ω  
4 Ω  
R gon  
R goff  
figure 1.  
T2, T4  
figure 2.  
T2, T4  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
%
300  
%
IC  
VCE  
125  
250  
200  
150  
tdoff  
100  
VCE 90%  
VGE 90%  
75  
IC  
VCE  
VGE  
50  
100  
tEoff  
VGE  
tdon  
25  
0
50  
IC 1%  
VGE 10%  
VCE 3%  
IC 10%  
0
tEon  
-25  
-50  
-0,2  
-0,1  
0
0,1  
0,2  
0,3  
2,9  
2,95  
3
3,05  
3,1  
3,15  
3,2  
time (us)  
time(us)  
V GE (0%) =  
0
V
V GE (0%) =  
0
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
350  
75  
V
350  
75  
V
A
A
t doff  
=
=
0,16  
0,20  
μs  
μs  
t don  
=
=
0,02  
0,11  
μs  
μs  
t E off  
t E on  
figure 3.  
T2, T4  
figure 4.  
T2, T4  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
140  
%
300  
%
IC  
120  
fitted  
IC  
250  
200  
150  
VCE  
100  
IC 90%  
80  
IC 60%  
60  
40  
20  
0
VCE  
100  
IC 90%  
tr  
IC 40%  
50  
IC10%  
IC 10%  
0
tf  
-20  
-50  
0,06  
0,08  
0,1  
0,12  
0,14  
0,16  
0,18  
time (us)  
2,9  
2,95  
3
3,05  
3,1  
3,15  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
350  
75  
V
V C (100%) =  
I C (100%) =  
t r =  
350  
75  
V
A
A
0,009  
μs  
0,011  
μs  
copyright Vincotech  
10  
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Switching Definitions  
figure 5.  
T2, T4  
figure 6.  
T2, T4  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
120  
%
160  
Pon  
%
140  
Eoff  
100  
Poff  
120  
Eon  
80  
60  
40  
20  
100  
80  
60  
40  
20  
VGE 90%  
VCE 3%  
IC 1%  
VGE 10%  
0
0
tEon  
tEoff  
-20  
-20  
2,95  
2,98  
3,01  
3,04  
3,07  
3,1  
3,13  
3,16  
time(us)  
-0,16  
-0,11  
-0,06  
-0,01  
0,04  
0,09  
0,14  
0,19  
0,24  
time (us)  
P off (100%) =  
E off (100%) =  
26,25  
0,56  
0,20  
kW  
P on (100%) =  
E on (100%) =  
26,25  
kW  
mJ  
μs  
mJ  
μs  
1,16  
0,11  
t E off  
=
t E on =  
figure 7.  
D1, D2  
Turn-off Switching Waveforms & definition of t rr  
120  
%
Id  
80  
trr  
40  
Vd  
0
IRRM 10%  
-40  
fitted  
-80  
-120  
IRRM 90%  
IRRM 100%  
-160  
-200  
2,97  
3
3,03  
3,06  
3,09  
3,12  
3,15  
time(us)  
V d (100%) =  
I d (100%) =  
350  
75  
V
A
I RRM (100%) =  
t rr  
-121  
0,07  
A
=
μs  
copyright Vincotech  
11  
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Switching Definitions  
figure 8.  
D1, D2  
figure 9.  
D1, D2  
Turn-on Switching Waveforms & definition of t Qrr  
Turn-on Switching Waveforms & definition of t Erec  
(t Q rr = integrating time for Q rr  
)
(t Erec= integrating time for E rec)  
150  
150  
%
Id  
%
Prec  
Qrr  
100  
50  
125  
100  
75  
Erec  
tQrr  
tErec  
0
-50  
-100  
-150  
-200  
50  
25  
0
-25  
2,95  
3
3,05  
3,1  
3,15  
3,2  
3,25  
2,95  
3
3,05  
3,1  
3,15  
3,2  
3,25  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
75  
A
P rec (100%) =  
E rec (100%) =  
26,25  
0,79  
0,14  
kW  
mJ  
μs  
3,91  
0,14  
μC  
μs  
t Q rr  
=
t E rec =  
copyright Vincotech  
12  
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Ordering Code & Marking  
Version  
Ordering Code  
without thermal paste 12 mm housing press-fit pins  
without thermal paste 12 mm housing solder pins  
10-PZ07NBA100SM10-M305L68Y  
10-FZ07NBA100SM10-M305L68  
Name  
Date code  
UL & VIN  
Lot  
Serial  
Text  
NN-NNNNNNNNNNNNNN  
TTTTTTVV WWYY UL  
VIN LLLLL SSSS  
NN-NNNNNNNNNNNNNN-TTTTTTVV  
WWYY  
UL VIN  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Date code  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
WWYY  
Outline  
Pin table [mm]  
Pin  
1
X
Y
Function  
33,6  
30,7  
0
0
G2  
2
S1-2  
3
Not assembled  
4
21,8  
18,9  
12,4  
9,5  
2,9  
0
0
GND1  
GND1  
+DC  
5
0
6
0
7
0
+DC  
8
0
0
+Boost  
+Boost  
+Boost  
-Boost  
-Boost  
-Boost  
-DC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
0
2,9  
0
19,7  
22,6  
22,6  
22,6  
22,6  
22,6  
22,6  
Not assembled  
22,6  
22,6  
14,6  
8
0
2,9  
9,5  
12,4  
18,9  
21,8  
-DC  
GND2  
GND2  
30,7  
33,6  
33,6  
33,6  
S3-4  
G4  
NTC1  
NTC2  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T2, T4  
D1, D2  
IGBT  
FWD  
650 V  
650 V  
650 V  
100 A  
100 A  
10 A  
Boost Switch  
Boost Diode  
Parallel devices. Values apply to complete device  
D20, D40  
NTC  
Diode  
Boost Inverse Diode  
Thermistor  
Thermistor  
copyright Vincotech  
13  
21 Mar. 2018 / Revision 3  
10-FZ07NBA100SM10-M305L68  
10-PZ07NBA100SM10-M305L68Y  
datasheet  
Packaging instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
135  
Handling instruction  
Handling instructions for flow 0 packages see vincotech.com website.  
Package data for flow 0 packages see vincotech.com website.  
Package data  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
10-xZ07NBA100SM10-M305L68x-D3k1-14  
21 Mar. 2018  
IGBT short circuit time removed  
1
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good  
faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur.  
Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation,  
guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same  
will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give  
desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant  
injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the  
life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
14  
21 Mar. 2018 / Revision 3  

相关型号:

10-FZ07NIA050SM-P925F58

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07NIA075S5-P926F53

High speed and smooth switching;Low gate charge;Very low collector emitter saturation voltage
VINCOTECH

10-FZ07NIA075SM-P926F58

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07NIA100S502-P927F58

High speed and smooth switching;Low gate charge;Very low collector emitter saturation voltage
VINCOTECH

10-FZ07NMA100SM-M265F58

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ122PA150SC-P990F08

Insulated Gate Bipolar Transistor
VINCOTECH

10-FZ122PB050SC02-M817F08

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ122PB075SC-M818F08

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ122PB100SC02-M819F08

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ122PB100SC03-M819F18

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ122PB100SH-M819F28

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

10-FZ124PA040F2-P629F38

5us short circuit withstand time;High speed switching;Minimized tail current
VINCOTECH