10-FZ122PB075SC-M818F08 [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
10-FZ122PB075SC-M818F08
型号: 10-FZ122PB075SC-M818F08
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总15页 (文件大小:662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-FZ122PB075SC-M818F08  
datasheet  
flow PHASE 0  
1200 V / 75 A  
Features  
flow 0 housing  
Trench Fieldstop IGBT4 technology  
● 2-clip housing in 12mm height  
● Compact and low inductance design  
Target Applications  
Schematic  
● Motor Drive  
● UPS  
Types  
●10-FZ122PB075SC-M818F08  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter IGBT  
V CE  
I C  
Collector-emitter break down voltage  
1200  
V
A
T s = 80 °C  
T c = 80 °C  
59  
75  
T j=T jmax  
DC collector current  
I CRM  
t p limited by T jmax  
Pulsed collector current  
Turn off safe operating area  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
225  
150  
A
V CE ≤ 1200V, T j T op max  
T j=T jmax  
A
T s = 80 °C  
T c = 80 °C  
126  
191  
P tot  
V GE  
W
V
±20  
t SC  
V CC  
T j≤150°C  
V GE=15V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
Inverter FWD  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
V
A
T s = 80 °C  
T c = 80 °C  
55  
74  
T j=T jmax  
DC forward current  
t p limited by T jmax  
T j=T jmax  
Repetitive peak forward current  
Power dissipation per Diode  
Drain to source breakdown voltage  
150  
A
T s = 80 °C  
T c = 80 °C  
85  
W
°C  
128  
T jmax  
175  
copyright Vincotech  
1
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Thermal Properties  
Storage temperature  
T stg  
T op  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Insulation Properties  
Insulation voltage  
V is  
t = 2 s  
DC voltage  
4000  
min 12,7  
9,12  
V
Creepage distance  
Clearance  
mm  
mm  
copyright Vincotech  
2
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
I C [A]  
or  
V GE [V]  
or  
V CE [V] I F [A]  
T j [°C]  
or  
Min  
Max  
V GS [V]  
or or  
V DS [V] I D [A]  
Inverter IGBT  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
25  
150  
25  
150  
25  
150  
25  
5
5,8  
6,5  
2,3  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,003  
V
V
1,5  
1,94  
2,38  
15  
0
75  
0,03  
700  
1200  
0
mA  
nA  
Ω
20  
150  
10  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
178  
196  
34  
Rise time  
36  
ns  
284  
373  
63  
124  
6,17  
9,39  
4,01  
6,99  
t d(off)  
t f  
Turn-off delay time  
R goff = 4 Ω  
R gon = 4 Ω  
±15  
600  
75  
Fall time  
E on  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
150  
4400  
290  
235  
290  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
±15  
nC  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
K/W  
R th(j-s)  
Thermal resistance chip to heatsink  
0,75  
Inverter FWD  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
1
1,78  
1,72  
69,44  
86,2  
275,1  
457  
6,62  
14,08  
1859  
724  
2,3  
V F  
I RRM  
Diode forward voltage  
75  
75  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
Q rr  
R gon = 4 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
600  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
2,29  
5,22  
150  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
K/W  
R th(j-s)  
Thermal resistance chip to heatsink  
1,12  
Thermistor  
Rated resistance  
Deviation of R 100  
R
25  
22  
kΩ  
%
ΔR/R  
R 100 = 1484 Ω  
100  
25  
-5  
5
Power dissipation  
P
5
mW  
mW/K  
Power dissipation constant  
25  
1,5  
B(25/50)  
B-value  
Tol. ±1 %  
Tol. ±1 %  
25  
25  
3962  
4000  
K
K
B(25/100)  
B-value  
Vincotech NTC Reference  
I
copyright Vincotech  
3
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Output Inverter  
figure 1.  
Output inverter IGBT  
figure 2.  
Output inverter IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
200  
200  
160  
120  
80  
160  
120  
80  
40  
40  
0
0
0
0
V
CE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
t p  
=
t p =  
350  
25  
μs  
°C  
350  
150  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
Output inverter IGBT  
figure 4.  
Output inverter FWD  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
75  
250  
200  
150  
100  
50  
Tj = 25°C  
60  
45  
30  
15  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
0
VGE (V)  
VF (V)  
3,6  
2
4
6
8
10  
12  
0
0,6  
1,2  
1,8  
2,4  
3
At  
At  
t p  
=
t p  
=
350  
10  
μs  
V
350  
μs  
V CE  
=
copyright Vincotech  
4
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Output Inverter  
figure 5.  
Output inverter IGBT  
figure 6.  
Output inverter IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
Eon High T  
Eon High T  
Eon Low T  
Eon Low T  
Eoff High T  
Eoff Low T  
Eoff High T  
Eoff Low T  
0
0
I C (A)  
R G ( )  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/150  
600  
±15  
4
25/150  
600  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
75  
V
=
I C =  
Ω
Ω
A
=
4
figure 7.  
Output inverter IGBT  
figure 8.  
Output inverter IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I C)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
8
8
Erec  
6
6
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
Erec  
4
2
0
4
Tj = 25°C  
Erec  
Tj = 25°C  
Erec  
2
0
I C (A)  
R G ( )  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/150  
600  
±15  
4
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
75  
V
=
I C =  
Ω
A
copyright Vincotech  
5
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Output Inverter  
figure 9.  
Output inverter IGBT  
figure 10.  
Output inverter IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdoff  
tdon  
tdon  
tf  
tf  
tr  
0,1  
0,1  
tr  
0,01  
0,01  
0,001  
0,001  
I C (A)  
R G ( )  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
150  
600  
±15  
4
°C  
V
150  
600  
±15  
75  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
4
figure 11.  
Output inverter FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
Output inverter FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I C)  
t rr = f(R gon  
)
0,7  
0,7  
0,6  
0,6  
trr  
trr  
Tj = Tjmax -25°C  
0,5  
0,4  
0,3  
0,2  
0,1  
0
0,5  
Tj = Tjmax -25°C  
0,4  
0,3  
trr  
trr  
Tj = 25°C  
0,2  
Tj = 25°C  
0,1  
0
I
C (A)  
150  
0
4
8
12  
16  
R g on ( ) 20  
0
25  
50  
75  
100  
125  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
600  
±15  
4
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
V
75  
A
=
V GE =  
Ω
±15  
V
copyright Vincotech  
6
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Output Inverter  
figure 13.  
Output inverter FWD  
figure 14.  
Output inverter FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
25  
20  
Qrr  
20  
16  
12  
8
Tj = Tjmax -25°C  
Qrr  
Tj = Tjmax -25°C  
15  
Tj = 25°C  
10  
Qrr  
Qrr  
5
4
Tj = 25°C  
0
0
0
I
C (A)  
R g on ( )  
0
25  
50  
75  
100  
125  
150  
4
8
12  
16  
20  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/150  
600  
±15  
4
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
V
75  
A
=
V GE =  
Ω
±15  
V
figure 15.  
Output inverter FWD  
figure 16.  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
Output inverter FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
I RRM = f(R gon  
)
150  
120  
120  
Tj = Tjmax - 25°C  
90  
60  
IRRM  
90  
Tj = Tjmax -25°C  
IRRM  
IRRM  
Tj = 25°C  
60  
IRRM  
Tj = 25°C  
30  
30  
0
0
I C (A)  
R gon ( )  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/150  
600  
±15  
4
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
=
=
V
75  
A
R gon  
=
V GE =  
Ω
±15  
V
copyright Vincotech  
7
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Output Inverter  
figure 17.  
Output inverter FWD  
figure 18.  
Output inverter FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I C)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
4000  
4000  
dI0/dt  
dI0/dt  
µ
µ
µ
µ
dIo/dtLow T  
dIrec/dt  
dIrec/dt  
3200  
2400  
1600  
800  
0
3200  
2400  
1600  
800  
0
Tj = 25°C  
di0/dtHigh T  
Tj = Tjmax - 25°C  
dIrec/dtLow T  
dIrec/dtHigh T  
dIrec/dtHigh T  
I
C (A)  
R gon ( )  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
600  
±15  
4
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
V
75  
A
=
V GE =  
Ω
±15  
V
figure 19.  
Output inverter IGBT  
figure 20.  
Output inverter FWD  
IGBT transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-5  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
10-4  
10-3  
10-2  
10-1  
100  
1011  
t p (s)  
t p (s)  
At  
At  
t
p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,75  
K/W  
1,12  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
0,05  
0,17  
0,39  
0,11  
0,02  
0,02  
4,2E+00  
7,6E-01  
1,7E-01  
2,2E-02  
2,2E-03  
2,9E-04  
0,03  
0,17  
0,57  
0,24  
0,07  
0,04  
9,3E+00  
1,1E+00  
1,8E-01  
3,1E-02  
5,5E-03  
4,0E-04  
copyright Vincotech  
8
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Output Inverter  
figure 21.  
Output inverter IGBT  
figure 22.  
Output inverter IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
240  
200  
160  
120  
80  
100  
80  
60  
40  
20  
0
40  
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
figure 23.  
Power dissipation as a  
Output inverter FWD  
figure 24.  
Forward current as a  
Output inverter FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
180  
150  
120  
90  
90  
75  
60  
45  
30  
15  
0
60  
30  
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
9
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Output Inverter  
figure 25.  
Output inverter IGBT  
figure 26.  
Output inverter IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
I C = f(V CE  
)
V GE = f(Q GE)  
103  
16  
14  
12  
10  
8
100uS  
1mS  
240 V  
10uS  
102  
101  
100  
960 V  
100mS  
DC  
10mS  
6
4
2
0
10-1  
100  
0
40  
80  
120  
160  
200  
240  
280  
320  
360  
Q g (nC)  
400  
103  
101  
102  
VCE (V)  
At  
At  
D =  
single pulse  
I C  
=
75  
A
T h  
V GE  
T j =  
=
80  
ºC  
=
±15  
T jmax  
V
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R T = f(T )  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
45  
65  
85  
105  
125  
T (°C)  
copyright Vincotech  
10  
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Switching Definitions Output Inverter  
General conditions  
T j  
=
=
=
150 °C  
4 Ω  
4 Ω  
R gon  
R goff  
figure 1.  
Output inverter IGBT  
figure 2.  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
250  
%
140  
%
IC  
tdoff  
120  
100  
80  
VCE  
200  
150  
VGE 90%  
VCE 90%  
IC  
VCE  
60  
100  
tEoff  
VGE  
40  
tdon  
50  
20  
IC10%  
VCE 3%  
VGE  
VGE10%  
0
0
IC 1%  
tEon  
-20  
-50  
-0,2  
-0,05  
0,1  
0,25  
0,4  
0,55  
0,7  
0,85  
time(µs)  
2,8  
2,95  
3,1  
3,25  
3,4  
3,55  
3,7  
time(µs)  
V GE (0%) =  
-15  
V
V GE (0%) =  
-15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V
A
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
600  
75  
600  
75  
V
A
t doff  
=
=
0,37  
0,78  
μs  
μs  
t don  
=
=
0,20  
0,55  
μs  
μs  
t E off  
t E on  
figure 3.  
Output inverter IGBT  
figure 4.  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
140  
250  
%
fitted  
%
Ic  
120  
IC  
VCE  
200  
100  
80  
60  
40  
20  
0
IC 90%  
150  
VCE  
IC  
60%  
100  
IC90%  
IC 40%  
tr  
50  
IC10%  
IC10%  
0
tf  
-20  
-50  
0,25  
0,3  
0,35  
0,4  
0,45  
0,5  
0,55  
time(µs)  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(µs)  
V C (100%) =  
I C (100%) =  
t f =  
600  
75  
V
V C (100%) =  
I C (100%) =  
t r =  
600  
75  
V
A
A
0,12  
μs  
0,04  
μs  
copyright Vincotech  
11  
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Switching Definitions Output Inverter  
figure 5.  
Output inverter IGBT  
figure 6.  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
120  
220  
%
%
Poff  
Eoff  
Pon  
100  
170  
120  
70  
80  
60  
Eon  
40  
20  
VGE 10%  
20  
VGE 90%  
VCE  
3%  
0
tEon  
tEoff  
IC 1%  
0,8  
-30  
-20  
-0,2  
2,9  
3,05  
3,2  
3,35  
3,5  
3,65  
time(µs)  
0
0,2  
0,4  
0,6  
1
time(µs)  
P off (100%) =  
E off (100%) =  
44,97  
7,03  
0,78  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
44,97  
kW  
mJ  
μs  
9,36  
0,55  
t E off  
=
t E on =  
figure 7.  
Output inverter FWD  
figure 8.  
Output inverter IGBT  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of t rr  
20  
120  
%
fitted  
Id  
15  
10  
5
80  
trr  
40  
0
Vd  
0
IRRM10%  
-40  
-5  
-80  
-10  
-15  
-20  
IRRM90%  
IRRM100%  
-120  
-160  
3
3,2  
3,4  
3,6  
3,8  
4
-50  
0
50  
100  
150  
200  
250  
300  
350  
400  
time(µs)  
450  
time(µs)  
V GE off  
V GE on  
=
=
-15  
V
V
V
A
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
600  
75  
V
15  
A
V C (100%) =  
I C (100%) =  
600  
75  
-85  
0,46  
A
t rr  
=
μs  
Q g  
=
6601,20 nC  
copyright Vincotech  
12  
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Switching Definitions Output Inverter  
figure 9.  
Output inverter FWD  
figure 10.  
Output inverter FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
120  
%
Erec  
%
Qrr  
100  
100  
Id  
80  
50  
tQrr  
tErec  
60  
40  
20  
0
0
-50  
Prec  
-100  
-150  
-20  
3
3,3  
3,6  
3,9  
4,2  
4,5  
time(µs)  
3
3,3  
3,6  
3,9  
4,2  
4,5  
time(µs)  
I d (100%) =  
Q rr (100%) =  
75  
A
P rec (100%) =  
E rec (100%) =  
44,97  
kW  
13,41  
0,92  
μC  
μs  
4,88  
0,92  
mJ  
μs  
t Q rr  
=
t E rec =  
copyright Vincotech  
13  
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
without thermal paste 12mm housing  
10-FZ122PB075SC-M818F08  
M818F08  
M818F08  
Outline  
Pin table  
Pin  
X
Y
1
2
3
4
5
6
7
8
9
0
0
0
0
0
0
0
0
0
2,3  
4,6  
6,9  
15,6  
17,9  
20,2  
22,5  
13,85 16,45  
10 16,75 16,45  
11 33,5 11,5  
12 33,5  
13 33,5  
14 33,5  
15 33,5  
16 33,5  
9,2  
6,9  
4,6  
2,3  
0
17 13,85 13,55  
18 19,55 4,95  
19 19,55 7,85  
20 33,5 22,5  
21 26,1 22,5  
Pinout  
copyright Vincotech  
14  
28 Feb. 2017 / Revision 3  
10-FZ122PB075SC-M818F08  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
135  
Handling instructions for flow 0 packages see vincotech.com website.  
Package data  
Package data for flow 0 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
10-FZ122PB075SC-M818F08-D3-14  
28.febr.17  
new brand  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
15  
28 Feb. 2017 / Revision 3  

相关型号:

10-FZ122PB100SC02-M819F08

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ122PB100SC03-M819F18

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ122PB100SH-M819F28

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

10-FZ124PA040F2-P629F38

5us short circuit withstand time;High speed switching;Minimized tail current
VINCOTECH

10-FZ126PA010M7-P867F78

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ126PA015M7-P868F78

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ126PA025M7-P869F78

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ126PA035M7-P860F78

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ127PA008SC-L156E08

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ127PA015SC-L158E08

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ127PA025SC-L159E08

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-FZ12B2A080MR04-P629L82

Easy paralleling;Low on-resistance;Fast switching speed;Fast recovery body diode
VINCOTECH