70-W424NIA800SH-M800F [VINCOTECH]

Easy paralleling;High speed switching;Low switching losses;
70-W424NIA800SH-M800F
型号: 70-W424NIA800SH-M800F
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;High speed switching;Low switching losses

文件: 总32页 (文件大小:2552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
70-W424NIA800SH-M800F  
datasheet  
VINcoNPC X8  
1500 V / 800 A  
Features  
VINco X8 housing  
1500 V NPC-topology  
● High power screw interface  
● Low inductive interface for external DC-capacitors  
and paralleling on component level  
● Snubber diode for optional asymmetrical inductance  
● High speed buck IGBT´s  
Temperature sensor  
Target Applications  
Schematic  
● Solar inverter  
● Wind Power  
● Motor Drive  
Types  
● 70-W424NIA800SH-M800F  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Snubber Diode (D61, D62)  
V RRM  
I FAV  
Repetitive peak reverse voltage  
1200  
181  
V
A
sine , d = 0.5  
T j = T jmax  
T s = 80 °C  
T j = 150°C  
T s = 80 °C  
Forward average current  
I FSM  
I 2t  
Surge forward current  
1080  
5832  
A
A2s  
W
t p = 10ms, sin 180º  
T j = T jmax  
I 2t-value  
P tot  
Power dissipation  
323  
175  
T jmax  
Maximum Junction Temperature  
°C  
Buck IGBT (T11, T12)  
V CE  
I C  
Collector-emitter break down voltage  
1200  
651  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC collector current  
I CRM  
P tot  
V GE  
t p limited by T jmax  
T j = T jmax  
Repetitive peak collector current  
Power dissipation  
2400  
1759  
±20  
A
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck Diode (D11, D12)  
V RRM  
I F  
Peak Repetitive Reverse Voltage  
1200  
540  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
I FSM  
P tot  
T jmax  
t p = 10ms, sin 180º  
T j = T jmax  
Surge Forward Current  
Power dissipation  
4400  
1131  
175  
A
W
°C  
Maximum Junction Temperature  
Boost IGBT (T13, T14)  
V CE  
I C  
Collector-emitter break down voltage  
1200  
689  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC collector current  
I CRM  
P tot  
V GE  
t p limited by T jmax  
T j = T jmax  
Repetitive peak collector current  
Power dissipation  
2400  
1652  
±20  
A
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
Boost Inverse Diode (D15, D16)  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
680  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive Forward Current  
Power dissipation  
1200  
1759  
175  
A
W
°C  
T jmax  
Maximum Junction Temperature  
Boost Diode (D14, D13)  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
514  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
1200  
905  
A
W
°C  
T jmax  
Maximum Junction Temperature  
175  
copyright Vincotech  
2
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Thermal Properties  
T stg  
T op  
Storage temperature  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
for power part  
Insulation Properties  
DC Test Voltage*  
AC Voltage  
t p = 2 s  
4000  
2500  
V
V isol  
Insulation voltage  
t p = 1 min  
V
Creepage distance  
Clearance  
min 12,7  
min 12,7  
>200  
mm  
mm  
Comparative Tracking Index  
CTI  
*100% tested in production  
copyright Vincotech  
3
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Characteristic values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V GS [V]  
V CE [V] I F [A]  
V DS [V] I D [A]  
T j [°C]  
Min  
Max  
Snubber Diode (D61, D62)  
Forward voltage  
25  
125  
25  
125  
25  
125  
25  
1,91  
1,85  
1,25  
1,11  
0,003  
0,004  
2,54  
V F  
V to  
200  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
200  
r t  
200  
mΩ  
mA  
0,12  
I r  
1200  
150  
R th(j-s)  
R th(j-c)  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
0,294  
0,194  
λpaste = 3,4 W/mK  
(PSX)  
K/W  
Buck IGBT (T11, T12)  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
25  
125  
25  
125  
25  
125  
25  
5,2  
1,7  
5,8  
6,4  
2,4  
V GE(th)  
V CEsat  
I CES  
V CE = V GE  
0,0272  
V
V
2,14  
2,44  
15  
0
800  
0,096  
1920  
1200  
0
mA  
nA  
Ω
I GES  
R gint  
t d(on)  
t r  
20  
125  
0,25  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
151  
135  
42  
Rise time  
40  
ns  
195  
231  
24  
48  
41  
50  
26  
43  
t d(off)  
t f  
Turn-off delay time  
R goff = 0,5 Ω  
R gon = 0,5 Ω  
±15  
600  
824  
Fall time  
E on  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
E off  
125  
C ies  
44320  
2600  
2560  
6080  
0,052  
0,035  
C oss  
C rss  
Output capacitance  
f
= 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
Q G  
±15  
960  
800  
nC  
R th(j-s)  
R th(j-c)  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
λpaste = 3,4 W/mK  
(PSX)  
K/W  
Buck Diode (D11, D12)  
Diode forward voltage  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
2,34  
2,38  
2,52  
960  
V F  
I R  
800  
V
µA  
Reverse leakage current  
1200  
600  
932  
1319  
165  
193  
64  
136  
16722  
16606  
22  
I RRM  
Reverse recovery time  
A
t rr  
Reverse recovery time  
ns  
Q rr  
R gon = 0,5 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
824  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
56  
R th(j-s)  
R th(j-c)  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
0,081  
0,054  
λpaste = 3,4 W/mK  
(PSX)  
K/W  
copyright Vincotech  
4
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Characteristic values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V GS [V]  
V CE [V] I F [A]  
V DS [V] I D [A]  
T j [°C]  
Min  
Max  
Boost IGBT (T13, T14)  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
25  
125  
25  
125  
25  
125  
25  
5
5,80  
6,5  
2,05  
0,104  
4800  
V GE(th)  
V CEsat  
I CES  
V CE = V GE  
0,0304  
V
V
1,55  
1,91  
2,14  
15  
0
800  
1200  
0
mA  
nA  
Ω
I GES  
R gint  
t d(on)  
t r  
20  
125  
0,9375  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
290  
301  
57  
Rise time  
60  
ns  
384  
455  
43  
108  
49  
65  
49  
76  
t d(off)  
t f  
Turn-off delay time  
R goff = 0,5 Ω  
R gon = 0,5 Ω  
±15  
600  
800  
Fall time  
E on  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
E off  
125  
C ies  
49200  
3240  
2760  
6400  
0,058  
0,038  
C oss  
C rss  
Output capacitance  
f
= 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
Q G  
15  
960  
800  
nC  
R th(j-s)  
R th(j-c)  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
λpaste = 3,4 W/mK  
(PSX)  
K/W  
Boost Inverse Diode (D15, D16)  
25  
1,35  
1,90  
1,84  
2,05  
V F  
Diode forward voltage  
600  
V
125  
R th(j-s)  
R th(j-c)  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
0,054  
0,036  
λpaste = 3,4 W/mK  
(PSX)  
K/W  
Boost Diode (D14, D13)  
Diode forward voltage  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
1,35  
1,90  
1,84  
2,05  
112  
V F  
I r  
600  
V
μA  
Reverse leakage current  
1200  
600  
576  
806  
271  
341  
63  
118  
4456  
6686  
23  
I RRM  
Peak reverse recovery current  
Reverse recovery time  
A
t rr  
ns  
Q rr  
R gon = 0,5 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
±15  
800  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
47  
R th(j-s)  
R th(j-c)  
Thermal resistance chip to heatsink  
Thermal resistance chip to case  
0,102  
0,067  
λpaste = 3,4 W/mK  
(PSX)  
K/W  
copyright Vincotech  
5
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Characteristic values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V GS [V]  
V CE [V] I F [A]  
V DS [V] I D [A]  
T j [°C]  
Min  
Max  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
25  
25  
25  
25  
25  
22000  
Ω
%
R 100 = 1486 Ω  
-5  
+5  
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3996  
B (25/100)  
B-value  
K
Vincotech NTC Reference  
B
Module Properties  
Buck  
Boost  
9
17  
LsCE  
Module inductance (from chips to PCB)  
nH  
nH  
mΩ  
Nm  
Nm  
Nm  
g
Module inductance (from PCB to PCB using  
Intercon board)  
Resistance of Intercon boards (from PCB to  
PCB using Intercon board)  
LsCE  
5
Rcc'1+EE'  
1,5  
Screw M4 - mounting according to valid application note  
VINcoX-*-HI  
Screw M5 - mounting according to valid application note  
VINcoX-*-HI  
Screw M6 - mounting according to valid application note  
VINcoX-*-HI  
Mounting torque  
Mounting torque  
Terminal connection torque  
Weight  
M
M
M
G
2
4
2,2  
6
2,5  
5
1300  
copyright Vincotech  
6
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 1.  
Typical output characteristics  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
I C = f(V CE  
)
I C = f(V CE)  
1800  
1800  
1600  
1400  
1200  
1000  
800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
350  
25  
μs  
°C  
350  
125  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
700  
600  
500  
400  
300  
200  
100  
1750  
1500  
1250  
1000  
750  
500  
Tj = 125°C  
250  
Tj = 125°C  
Tj = 25°C  
Tj = 25°C  
0
0
0
2
4
6
8
10  
12  
0
1
2
3
4
VGE (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
350  
10  
μs  
V
350  
μs  
V CE  
=
copyright Vincotech  
7
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
Eon High T  
Eon Low T  
Eoff High T  
Eon High T  
Eon Low T  
Eoff Low T  
60  
Eoff High T  
40  
Eoff Low T  
20  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
I C (A)  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
600  
25/125  
600  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
±15  
0,5  
V
±15  
V
=
I C =  
Ω
Ω
824  
A
=
0,5  
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
80  
60  
40  
20  
0
70  
60  
50  
40  
30  
20  
10  
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
I C (A)  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
±15  
V
±15  
V
=
I C =  
0,5  
Ω
824  
A
copyright Vincotech  
8
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
10,00  
1,00  
µ
µ
µ
µ
µ
µ
µ
µ
tdoff  
1,00  
0,10  
0,01  
0,00  
tdon  
0,10  
0,01  
0,00  
tdon  
tr  
tdoff  
tf  
tf  
tr  
0
250  
500  
750  
1000  
1250  
1500  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
I C (A)  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
600  
±15  
0,5  
°C  
V
125  
600  
±15  
824  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
0,5  
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,25  
0,30  
µ
µ
µ
µ
µ
µ
µ
µ
trr High T  
trr High T  
0,25  
0,20  
0,15  
0,10  
0,05  
0,00  
0,20  
0,15  
0,10  
0,05  
0,00  
trr Low T  
trr Low T  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
0
1
1
2
2
3
I C (A)  
R gon ( Ω)  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
=
=
±15  
V
824  
A
R gon  
=
V GE =  
0,5  
Ω
±15  
V
copyright Vincotech  
9
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
200  
150  
µ
µ
µ
µ
µ
µ
µ
µ
Qrr High T  
Qrr High T  
125  
100  
75  
50  
25  
0
150  
100  
50  
Qrr Low T  
Qrr Low T  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
I C (A)  
0
0,5  
1
1,5  
2
2,5  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
V
824  
A
=
V GE =  
0,5  
Ω
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1800  
IRRM High T  
1600  
1400  
1200  
1000  
800  
IRRM Low T  
IRRM High T  
IRRM Low T  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
I C (A)  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
V
824  
A
=
V GE =  
0,5  
Ω
±15  
V
copyright Vincotech  
10  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
25000  
36000  
dIrec/dt T  
dIrec/dt T  
dI0/dt T  
dIo/dt T  
32000  
28000  
24000  
20000  
16000  
12000  
8000  
4000  
0
20000  
15000  
10000  
5000  
0
0
250  
500  
750  
1000  
1250  
1500  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
I C (A)  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
°C  
V
V CE  
V GE  
R gon  
=
600  
824  
±15  
=
±15  
V
A
=
V GE =  
0,5  
Ω
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
10-1  
10-1  
10-2  
10-3  
10-4  
10-2  
10-3  
10-4  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s)  
=
R th(j-s)  
=
R th(j-s) =  
0,054  
K/W  
0,035  
K/W  
0,084  
K/W  
0,054  
K/W  
IGBT thermal model values  
FWD thermal model values  
With thermal grease  
With phase change interface  
R (K/W) Tau (s)  
With thermal grease  
With phase change interface  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
2,24E-02 3,38E+00  
1,01E-02 6,30E-01  
6,56E-03 1,08E-01  
1,05E-02 3,09E-02  
2,05E-03 4,92E-03  
2,45E-03 4,72E-04  
R (K/W) Tau (s)  
9,13E-03 8,79E+00  
1,56E-02 1,88E+00  
1,59E-02 3,42E-01  
2,15E-02 7,47E-02  
1,66E-02 2,42E-02  
5,19E-03 2,16E-03  
2,17E-02 3,38E+00  
9,75E-03 6,30E-01  
6,36E-03 1,08E-01  
1,02E-02 3,09E-02  
1,99E-03 4,92E-03  
2,38E-03 4,72E-04  
8,86E-03 8,79E+00  
1,52E-02 1,88E+00  
1,55E-02 3,42E-01  
2,08E-02 7,47E-02  
1,61E-02 2,42E-02  
5,04E-03 2,16E-03  
copyright Vincotech  
11  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
1000  
800  
600  
400  
200  
0
0
T s (  
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
2500  
2000  
1500  
1000  
500  
1000  
800  
600  
400  
200  
0
0
T s (  
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
12  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 25.  
IGBT  
figure 26.  
IGBT  
Safe operating area as a function  
of collector-emitter voltage  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
17,5  
15  
12,5  
10  
103  
240 V  
100uS  
100mS  
1mS  
102  
960 V  
10mS  
DC  
101  
7,5  
5
100  
2,5  
0
10-1  
0
850  
1700  
2550  
3400  
4250  
5100  
5950  
Q g (nC)  
6800  
102  
101  
103  
100  
VCE (V)  
At  
At  
D =  
single pulse  
I C  
=
800  
A
T s =  
80  
ºC  
V GE  
=
15  
V
T jmax  
T j =  
ºC  
figure 27.  
Reverse bias safe operating area  
IGBT  
I C = f(V CE  
)
1800  
IC MAX  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
VCE (V)  
At  
T j =  
T jmax-25  
ºC  
3 level switching  
Uccminus=Uccplus  
Switching mode :  
copyright Vincotech  
13  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 1.  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
1800  
1800  
1600  
1400  
1200  
1000  
800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
350  
25  
μs  
°C  
350  
125  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
800  
700  
600  
500  
400  
300  
200  
100  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
Tj = 125°C  
Tj = 25°C  
200  
Tj = 125°C  
Tj = 25°C  
0
0
0
2
4
6
8
10  
12  
0
1
2
3
4
VGE (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
350  
10  
μs  
V
350  
μs  
V CE  
=
copyright Vincotech  
14  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
150  
120  
90  
60  
30  
0
180  
150  
120  
90  
Eon High T  
Eoff High T  
Eon Low T  
Eoff Low T  
Eon High T  
Eoff High T  
Eon Low T  
60  
Eoff Low T  
30  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
1600 1800  
I C (A)  
0
1
2
3
4
5
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
±15  
0,5  
V
±15  
V
=
I C =  
Ω
Ω
796  
A
=
0,5  
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
1
2
3
4
5
0
200  
400  
600  
800  
1000  
1200  
1400  
1600 1800  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
±15  
V
±15  
V
=
I C =  
0,5  
Ω
796  
A
copyright Vincotech  
15  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdon  
tdoff  
tdon  
tr  
tf  
0,1  
0,1  
tf  
tr  
0,01  
0,01  
0
1
2
3
4
5
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
600  
±15  
0,5  
°C  
V
125  
600  
±15  
796  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
0,5  
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,6  
0,7  
trr High T  
µ
µ
µ
µ
µ
µ
µ
µ
trr High T  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
0,5  
0,4  
0,3  
0,2  
0,1  
0
trr Low T  
trr Low T  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
I C (A)  
0
1
2
3
4
5
R gon ( Ω)  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/125  
°C  
25/125  
600  
°C  
V
V CE  
V GE  
=
=
600  
±15  
0,5  
V
V
Ω
796  
A
R gon  
=
V GE =  
±15  
V
copyright Vincotech  
16  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
180  
150  
Qrr High T  
µ
µ
µ
µ
µ
µ
µ
µ
Qrr High T  
150  
120  
90  
60  
30  
0
120  
90  
60  
30  
0
Qrr Low T  
Qrr Low T  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
C (A)  
0
1
2
3
4
5
I
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
600  
°C  
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
V
V
Ω
=
±15  
796  
A
=
V GE =  
0,5  
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
1000  
800  
600  
400  
200  
0
1000  
IRRM High T  
IRRM Low T  
800  
600  
400  
200  
IRRM High T  
IRRM Low T  
0
0
1
2
3
4
5
0
400  
800  
1200  
1600  
2000  
I C (A)  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
600  
±15  
0,5  
=
V
796  
A
=
V GE =  
Ω
±15  
V
copyright Vincotech  
17  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
30000  
25000  
dIrec/dt T  
dI0/dt T  
dIrec/dt T  
di0/dt T  
27000  
22500  
20000  
17500  
15000  
12500  
10000  
7500  
5000  
2500  
0
24000  
21000  
18000  
15000  
12000  
9000  
6000  
3000  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
0
1
2
3
4
5
I C (A)  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
V
796  
A
=
V GE  
=
0,5  
Ω
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
as a function of pulse width  
Z th(j-s) = f(t p)  
10-1  
10-1  
10-2  
10-3  
10-4  
10-2  
10-3  
10-4  
t p (s)  
t p (s)  
10110  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R thJC  
=
R th(j-s)  
=
R thJC =  
0,058  
K/W  
0,038  
0,105  
K/W  
0,067  
IGBT thermal model values  
FWD thermal model values  
With thermal grease  
With phase change interface  
R (K/W) Tau (s)  
With thermal grease  
With phase change interface  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
5,96E-03 9,88E+00  
2,38E-02 2,75E+00  
1,03E-02 6,14E-01  
6,58E-03 1,36E-01  
9,98E-03 3,02E-02  
8,88E-04 3,49E-03  
R (K/W) Tau (s)  
1,04E-02 8,27E+00  
3,36E-02 1,88E+00  
2,41E-02 4,66E-01  
2,74E-02 4,79E-02  
6,20E-03 1,19E-02  
3,34E-03 1,20E-03  
5,78E-03 9,88E+00  
2,31E-02 2,75E+00  
1,00E-02 6,14E-01  
6,38E-03 1,36E-01  
9,68E-03 3,02E-02  
8,61E-04 3,49E-03  
1,01E-02 8,27E+00  
3,26E-02 1,88E+00  
2,33E-02 4,66E-01  
2,66E-02 4,79E-02  
6,01E-03 1,19E-02  
3,24E-03 1,20E-03  
copyright Vincotech  
18  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
1000  
800  
600  
400  
200  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
2000  
1500  
1000  
500  
0
800  
600  
400  
200  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
19  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost  
Boost IGBT  
figure 25.  
IGBT  
Reverse bias safe operating area  
I C = f(V CE  
)
1800  
IC MAX  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
1200  
VCE (V)  
1400  
At  
T j =  
T jmax-25  
ºC  
Uccminus=Uccplus  
Switching mode :  
3 level switching  
copyright Vincotech  
20  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost Inverse Diode  
figure 25.  
Boost Inverse Diode  
figure 26.  
Boost Inverse Diode  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
10-1  
10-2  
10-3  
10-4  
2000  
1500  
1000  
500  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
1
2
3
4
VF (V)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
t p / T  
t p  
=
250  
μs  
D =  
R th(j-s)  
=
0,054  
K/W  
figure 27.  
Power dissipation as a  
Boost Inverse Diode  
figure 28.  
Forward current as a  
Boost Inverse Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
800  
600  
400  
200  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
21  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Snubber Diode  
figure 1.  
Snubber Diode  
figure 2.  
Snubber Diode  
Typical thyristor forward current as  
a function of forward voltage  
I F= f(V F)  
Thyristor transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
1200  
1000  
800  
100  
10-1  
10-2  
10-3  
600  
400  
200  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
1
2
3
4
5
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
VF (V)  
t p (s)  
At  
At  
t p / T  
t p  
=
250  
μs  
D =  
R th(j-s)  
=
0,294  
K/W  
figure 3.  
Power dissipation as a  
Snubber Diode  
figure 4.  
Forward current as a  
Snubber Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
600  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
T s  
(
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
22  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Thermistor  
Ω
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R T = f(T )  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
23  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck switching definitions  
General conditions  
T j  
=
=
=
125 °C  
0,5 Ω  
0,5 Ω  
R gon  
R goff  
Test setup inductance: 9nH  
IGBT figure 2.  
Turn-off Switching Waveforms & definition of t doff, t Eoff Turn-on Switching Waveforms & definition of t don, t Eon  
figure 1.  
IGBT  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
%
250  
%
IC  
125  
tdoff  
200  
100  
VCE  
90%  
150  
75  
VGE 90%  
VGE  
IC  
VCE  
VGE  
100  
50  
25  
tEoff  
tdon  
50  
VCE  
IC  
1%  
0
VCE 3%  
VGE 10%  
0
-25  
tEon  
-50  
-50  
2,2  
2,3  
2,4  
2,5  
2,6  
2,7  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
time (us)  
0,6  
time(us)  
V GE (0%) =  
-8  
V
V
V
A
V GE (0%) =  
-8  
V
V
V
A
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
600  
804  
0,23  
0,61  
600  
804  
0,10  
0,29  
t doff  
=
=
μs  
μs  
t don  
=
=
μs  
μs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
150  
300  
%
%
VCE  
125  
250  
fitted  
Ic  
IC  
100  
200  
150  
Ic  
90%  
75  
Ic  
60%  
VCE  
50  
100  
IC  
90%  
Ic  
40%  
tr  
25  
50  
Ic 10%  
IC 10%  
0
tf  
0
-25  
-50  
0,0  
0,1  
0,2  
0,3  
0,4  
2,3  
2,4  
2,5  
2,6  
2,7  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
600  
V
V C (100%) =  
I C (100%) =  
t r =  
600  
804  
0,04  
V
804  
A
A
0,046  
μs  
μs  
copyright Vincotech  
24  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck switching definitions  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
%
125  
%
IC  
Eon  
1%  
Poff  
Eoff  
100  
100  
75  
50  
25  
0
Pon  
75  
50  
25  
Uge 90%  
Uce 3%  
Uge 10%  
0
tEoff  
tEon  
-25  
-25  
2,2  
2,3  
2,4  
2,5  
2,6  
2,7  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
0,7  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
483  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
483  
kW  
mJ  
μs  
38,21  
0,58  
13,39  
0,38  
t E off  
=
t E on =  
figure 7.  
FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Ud  
fitted  
IRRM 10%  
0
-50  
-100  
-150  
-200  
IRRM 90%  
IRRM 100%  
2,3  
2,4  
2,5  
2,6  
2,7  
2,8  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
600  
804  
V
A
-1215  
0,26  
A
t rr  
=
μs  
copyright Vincotech  
25  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Buck switching definitions  
figure 8.  
FWD  
figure 9.  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Qrr= integrating time for Q rr)  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
150  
%
%
Id  
Prec  
Qrr  
100  
125  
Erec  
tQint  
50  
100  
0
-50  
tErec  
75  
50  
25  
0
-100  
-150  
-200  
-25  
2,3  
2,4  
2,5  
2,6  
2,7  
2,8  
2,9  
3
2,4  
2,5  
2,6  
2,7  
2,8  
2,9  
3
time(us)  
time(us)  
I d (100%) =  
804  
A
P rec (100%) =  
E rec (100%) =  
482,56  
63,38  
0,33  
kW  
mJ  
μs  
Q rr (100%) =  
t Qint  
132,40  
0,33  
μC  
μs  
=
t E rec =  
copyright Vincotech  
26  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost switching definitions  
General conditions  
T j  
=
=
=
125 °C  
0,5 Ω  
0,5 Ω  
R gon  
R goff  
Test setup inductance: 9nH  
Boost IGBT figure 2.  
Turn-on Switching Waveforms & definition of t don, t Eon  
figure 1.  
Boost IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
150  
VCE  
IC  
%
%
125  
125  
tdoff  
VCE  
100  
100  
VGE  
VCE  
90%  
VGE 90%  
75  
75  
IC  
tdon  
VGE  
50  
25  
0
50  
tEoff  
25  
VGE 10%  
VCE 3%  
IC 10%  
IC  
1%  
0
tEon  
-25  
-25  
-0,1  
0,1  
0,3  
0,5  
0,7  
0,9  
time (us)  
2,8  
3
3,2  
3,4  
3,6  
3,8  
time(us)  
V GE (0%) =  
-8  
V
V
V
A
V GE (0%) =  
-8  
V
V
V
A
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
600  
827  
0,34  
0,70  
600  
827  
0,18  
0,47  
t doff  
=
=
μs  
μs  
t don  
=
=
μs  
μs  
t E off  
t E on  
figure 3.  
Boost IGBT  
figure 4.  
Boost IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
150  
150  
%
VCE  
%
125  
125  
fitted  
IC  
VCE  
100  
100  
Ic  
90%  
IC  
90%  
75  
75  
tr  
Ic  
60%  
50  
50  
25  
Ic  
40%  
25  
Ic 10%  
Ic  
IC 10%  
0
0
tf  
-25  
-25  
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
0,7  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
time (us)  
V C (100%) =  
I C (100%) =  
t f =  
600  
V
V C (100%) =  
I C (100%) =  
t r =  
600  
827  
V
827  
A
A
0,079  
μs  
0,072  
μs  
copyright Vincotech  
27  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost switching definitions  
figure 5.  
Boost IGBT  
figure 6.  
Boost IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
125  
Poff  
%
%
IC  
1%  
Uce 3%  
Eon  
Eoff  
100  
75  
100  
75  
50  
50  
Pon  
25  
25  
Uge 90%  
Uge 10%  
0
0
tEoff  
tEon  
-25  
-25  
2,8  
3
3,2  
3,4  
3,6  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
496  
75  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
496  
40  
kW  
mJ  
μs  
t E off  
=
0,70  
t E on  
=
0,47  
figure 7.  
Boost FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Ud  
fitted  
IRRM 10%  
0
IRRM 90%  
IRRM 100%  
-50  
-100  
-150  
3,1  
3,3  
3,5  
3,7  
3,9  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
600  
V
827  
A
-396  
0,47  
A
t rr  
=
μs  
copyright Vincotech  
28  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Boost switching definitions  
figure 8.  
Boost FWD  
figure 9.  
Boost FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Qrr= integrating time for Q rr)  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Erec  
Id  
100  
100  
tErec  
75  
50  
25  
0
tQint  
50  
Qrr  
0
Prec  
-50  
-100  
-25  
2,9  
3,3  
3,7  
4,1  
4,5  
3,2  
3,5  
3,8  
4,1  
4,4  
4,7  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
827  
A
P rec (100%) =  
E rec (100%) =  
496,41  
44,13  
1,17  
kW  
83,52  
1,17  
μC  
μs  
mJ  
μs  
t Qint  
=
t E rec =  
copyright Vincotech  
29  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Ordering Code & Marking  
Version  
Ordering Code  
without thermal paste  
with thermal paste  
70-W424NIA800SH-M800F  
70-W424NIA800SH-M800F-/3/  
Name  
Date code  
UL  
&
VIN  
Lot  
Serial  
Name  
Text  
Date code  
Lot  
Serial  
UL  
NN-NNNNNNNNNNNNNN-TTTTTTVV  
WWYY  
UL VIN  
Date code  
WWYY  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
Vincotech  
Outline  
Pin table [mm]  
Power connections  
Pin  
X
Y
Function  
M6 screw  
X2  
0
Y2  
0
Function  
Phase  
Phase  
Phase  
DC+  
1.1  
-2,15  
-2,15  
46,15  
46,15  
19,45  
24,55  
-7,65  
-7,65  
51,65  
51,65  
-5,45  
-2,55  
46,55  
49,45  
-4,8  
81,95  
84,85  
81,95  
84,85  
93,05  
93,05  
67,15  
70,05  
67,15  
70,05  
28  
S11-a-1  
G11-a-1  
S11-a-2  
G11-a-2  
DC+ (desat)  
DC+ (desat)  
S13-a-1  
G13-a-1  
S13-a-2  
G13-a-2  
S14-a-1  
G14-a-1  
G14-a-2  
S14-a-2  
G12-a-1  
S12-a-1  
S12-a-2  
G12-a-2  
GND (desat)  
GND (desat)  
Therm12  
Therm11  
S11-b-1  
G11-b-1  
S11-b-2  
G11-b-2  
DC+ (desat)  
DC+ (desat)  
S13-b-1  
G13-b-1  
S13-b-2  
G13-b-2  
S14-b-1  
G14-b-1  
G14-b-2  
S14-b-2  
G12-b-1  
S12-b-1  
S12-b-2  
G12-b-2  
GND (desat)  
GND (desat)  
Therm22  
Therm21  
2.1  
2.2  
1.2  
22  
0
1.3  
2.3  
44  
0
1.4  
2.4  
0
110,4  
110,4  
110,4  
0
1.5  
2.5  
22  
GND  
1.6  
2.6  
44  
DC-  
1.7  
2.7  
101  
123  
145  
101  
123  
145  
Phase  
Phase  
Phase  
DC+  
1.8  
2.8  
0
1.9  
2.9  
0,0  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
1.43  
1.44  
2.10  
2.11  
2.12  
110,4  
110,4  
110,4  
GND  
28  
DC-  
28  
Low current connections  
28  
M4 screw  
3.1  
X3  
Y3  
Function  
TR+  
TR+  
DC+  
DC+  
DC-  
50,85  
49,05  
49,05  
50,85  
75,35  
75,35  
86,7  
-39,1  
184,1  
-39,1  
184,1  
-39,1  
184,1  
-39,1  
184,1  
-39,1  
184,1  
-39,1  
184,1  
89,8  
89,8  
65,2  
65,2  
45,2  
45,2  
20,6  
20,6  
89,8  
89,8  
45,2  
45,2  
-1,6  
3.2  
45,6  
3.3  
48,8  
3.4  
16,75  
27,25  
67,65  
67,65  
98,85  
98,85  
147,15  
147,15  
120,45  
125,55  
93,35  
93,35  
152,65  
152,65  
95,55  
98,45  
147,55  
150,45  
96,2  
3.5  
3.6  
DC-  
3.7  
TR-  
89,8  
3.8  
TR-  
81,95  
84,85  
81,95  
84,85  
93,05  
93,05  
67,15  
70,05  
67,15  
70,05  
28  
3.9  
GND  
GND  
GND  
GND  
3.10  
3.11  
3.12  
28  
28  
28  
50,85  
49,05  
49,05  
50,85  
75,35  
75,35  
86,7  
99,4  
146,6  
149,8  
117,75  
128,25  
168,65  
168,65  
89,8  
Tolerance of pinpositions: ±0,5mm at the end of pins  
PCB holes and connection parameters of pins see in  
the handling instruction document  
copyright Vincotech  
30  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
Parallel devices with separate control.  
Values apply to complete device.  
Parallel devices with separate control.  
Values apply to complete device.  
Parallel devices with separate control.  
Values apply to complete device.  
Parallel devices with separate control.  
Values apply to complete device.  
Parallel devices with separate control.  
Values apply to complete device.  
Parallel devices with separate control.  
T11 , T12  
IGBT  
1200 V  
800 A  
800 A  
800 A  
600 A  
60 A  
Buck IGBT  
D11 , D12  
T13 , T14  
D13 , D14  
D15 , D16  
FWD  
IGBT  
FWD  
1200 V  
1200 V  
1200 V  
1200 V  
1200 V  
Buck Diode  
Boost IGBT  
Boost Diode  
Diode  
Boost Inverse Diode  
D61 , D62  
Rt-1 , Rt-2  
Diode  
NTC  
100 A  
Snubber Diode  
Thermistor  
Values apply to complete device.  
copyright Vincotech  
31  
10 Jul. 2019 / Revision 6  
70-W424NIA800SH-M800F  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
4
Handling instructions for VINco X8 packages see vincotech.com website.  
Package data  
Package data for VINco X8 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
Marketing application voltage modified  
10 Jul. 2019  
1
70-W424NIA800SH-M800F-D6-14  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
32  
10 Jul. 2019 / Revision 6  

相关型号:

70-W612M3A1K8SC02-L300FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W612NMA1K8M702-LC09FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W624N3A1K2SC-L400FP

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W624N3A1K2SC01-L400FP1

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W624NIA1K2M702-L400FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W624NIA1K8M701-LD00FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70.0000MHZMP2410/50/-10+60/8PF

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
EUROQUARTZ

70.0000MHZMP430/10/-10+60/SR

Series - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
EUROQUARTZ

70.000MHZ49USMX/30/30/-10+60/18PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELDED, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/10/10/-10+60/8PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/10/10/-10+60/SR/AT3

Series - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/10/15/-40+85/18PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ