V23990-K233-F-PM [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
V23990-K233-F-PM
型号: V23990-K233-F-PM
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总15页 (文件大小:1175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-K233-F-PM  
datasheet  
MiniSKiiP® 2 PACK  
Features  
600 V / 75 A  
MiniSKiiP® 2 housing  
● SixPack (inverter) topology  
● Solder less interconnection  
● Designed for motor drives up to 7 kW  
● Fully compatible with Semikron pedant 27AC066V1  
Temperature sensor  
● Standard (6,5mm) and thin (2,8mm) lids, 16 mm housing  
● Optional with pre-applied thermal grease  
Schematic  
Target Applications  
● Industrial Motor Drives  
● Power Generation  
● UPS  
Types  
● V23990-K233-F-PM  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter Switch  
V CE  
I C  
Collector-emitter break down voltage  
600  
70  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC collector current  
I CRM  
P tot  
V GE  
t p limited by T jmax  
T j = T jmax  
Repetitive peak collector current  
Power dissipation  
225  
127  
±20  
A
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
6
µs  
V
360  
T jmax  
Maximum Junction Temperature  
175  
°C  
Inverter Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
59  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
118  
78  
A
W
°C  
T jmax  
Maximum Junction Temperature  
175  
copyright Vincotech  
1
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Thermal Properties  
T stg  
T op  
Storage temperature  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Insulation Properties  
DC Test Voltage*  
t p = 2 s  
5500  
2500  
V
V
V isol  
Insulation voltage  
AC Voltage  
With std lid  
t p = 1 min  
Creepage distance  
Clearance  
6,3  
6,3  
mm  
mm  
for more information see handling instructions  
With std lid  
for more information see handling instructions  
Comparative Tracking Index  
*100% tested in production  
CTI  
>200  
copyright Vincotech  
2
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V CE [V] I F [A]  
V GS [V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Inverter Switch  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,0012  
75  
25  
5
5,8  
6,5  
V
V
25  
125  
1,54  
1,76  
15  
0
612  
0
25  
25  
0,2  
mA  
nA  
Ω
20  
700  
4
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
215  
222  
26  
Rise time  
30  
ns  
255  
274  
45  
t d(off)  
t f  
Turn-off delay time  
R goff = 8 Ω  
R gon = 8 Ω  
±15  
300  
75  
Fall time  
92  
1,82  
2,42  
1,72  
2,22  
E on  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
E off  
125  
C ies  
4700  
300  
C oss  
C rss  
Output capacitance  
f = 1 MHz  
0
25  
25  
pF  
Reverse transfer capacitance  
145  
λ paste = 0,8 W/mK  
(P12)  
R th(j-s)  
Thermal resistance chip to heatsink  
0,75  
K/W  
Inverter Diode  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
1,39  
1,43  
72  
82  
203  
V F  
I RRM  
Diode forward voltage  
75  
75  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
333  
5,70  
9,14  
2458  
1983  
1,15  
1,93  
Q rr  
R goff = 8 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
300  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
125  
λ paste = 0,8 W/mK  
(P12)  
R th(j-s)  
Thermal resistance chip to heatsink  
1,2  
K/W  
Thermistor  
Rated resistance  
Deviation of R 100  
R100  
R
25  
1000  
Ω
%
Δ R/R  
R 100 = 1670 Ω  
100  
100  
25  
-3  
3
E
P
1670  
Ω
7,635*10-3  
1,731*10-5  
B (25/50)  
B (25/100)  
A-value  
Tol. %  
Tol. %  
1/K  
1/K²  
B-value  
25  
Vincotech NTC Reference  
copyright Vincotech  
3
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Output Inverter  
figure 1.  
Typical output characteristics  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
I C = f(V CE  
)
I C = f(V CE)  
200  
200  
160  
120  
80  
160  
120  
80  
40  
40  
0
0
0
0
V
CE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
t p  
=
t p =  
250  
25  
μs  
°C  
250  
125  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
75  
200  
60  
45  
30  
15  
160  
Tj = Tjmax-25°C  
120  
Tj = 25°C  
80  
40  
0
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
VGE (V)  
VF (V)  
3,0  
2
4
6
8
10  
12  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
At  
At  
T j =  
°C  
μs  
V
25/125  
250  
t p  
=
t p  
=
250  
μs  
V CE  
=
10  
copyright Vincotech  
4
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Output Inverter  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Eon High T  
Eon High T  
Eon Low T  
Eon Low T  
Eoff High T  
Eoff High T  
Eoff Low T  
Eoff Low T  
I C (A)  
R G ( )  
0
30  
60  
90  
120  
150  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
300  
±15  
8
25/125  
300  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
75  
V
=
I C =  
Ω
Ω
A
=
8
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I C)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
3,0  
3,0  
Erec  
Tj = Tjmax -25°C  
2,5  
2,5  
2,0  
1,5  
2,0  
Tj = Tjmax -25°C  
Erec  
1,5  
Erec  
Tj = 25°C  
1,0  
0,5  
0,0  
1,0  
Erec  
Tj = 25°C  
0,5  
0,0  
I
C (A)  
R G ( )  
0
30  
60  
90  
120  
150  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
300  
±15  
8
°C  
V
25/125  
300  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
75  
V
=
I C =  
Ω
A
copyright Vincotech  
5
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Output Inverter  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdon  
tdoff  
tdon  
0,1  
0,1  
tr  
tf  
tr  
tf  
0,01  
0,01  
0,001  
0,001  
I
C (A)  
R
G ( )  
0
30  
60  
90  
120  
150  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
300  
±15  
8
°C  
V
125  
300  
±15  
75  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
8
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I C)  
t rr = f(R gon  
)
0,6  
0,6  
0,5  
0,5  
0,4  
0,3  
0,2  
0,1  
trr  
trr  
Tj = Tjmax -25°C  
0,4  
Tj = Tjmax -25°C  
trr  
trr  
0,3  
0,2  
Tj = 25°C  
Tj = 25°C  
0,1  
0,0  
0
0,0  
I
C (A)  
R gon ( )  
8
16  
24  
32  
40  
0
30  
60  
90  
120  
150  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
300  
±15  
8
°C  
V
25/125  
°C  
V
V CE  
V GE  
R gon  
=
300  
75  
=
V
A
=
V GE =  
Ω
±15  
V
copyright Vincotech  
6
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Output Inverter  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
15  
10  
Qrr  
Qrr  
Tj = Tjmax -25°C  
12  
8
6
4
2
Tj = Tjmax -25°C  
9
Qrr  
Qrr  
Tj = 25°C  
6
Tj = 25°C  
3
0
0
0
I
C (A)  
R gon ( )  
0
30  
60  
90  
120  
150  
8
16  
24  
32  
40  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
300  
±15  
8
°C  
V
25/125  
300  
°C  
V
V CE  
V GE  
R gon  
=
=
V
75  
A
=
V GE =  
Ω
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
150  
100  
IRRM  
IRRM  
Tj = Tjmax -25°C  
120  
90  
80  
Tj = 25°C  
60  
Tj = Tjmax - 25°C  
60  
40  
20  
0
IRRM  
IRRM  
Tj = 25°C  
30  
0
0
I C (A)  
R gon ( )  
40  
8
16  
24  
32  
0
30  
60  
90  
120  
150  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
300  
±15  
8
°C  
V
25/125  
300  
°C  
V CE  
V GE  
=
=
V
A
V
V
75  
R gon  
=
V GE =  
Ω
±15  
copyright Vincotech  
7
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Output Inverter  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I C)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
4000  
6000  
µ
µ
µ
µ
dI0/dt  
dI0/dt  
dIrec/dt  
dIrec/dt  
3200  
2400  
1600  
800  
0
dIo/dtLow T  
4500  
3000  
1500  
0
Tj = 25°C  
di0/dtHigh T  
Tj = Tjmax - 25°C  
dIrec/dtLow T  
dIrec/dtHigh T  
dIrec/dtHigh T  
I
C (A)  
R gon ( )  
0
30  
60  
90  
120  
150  
0
8
16  
24  
32  
40  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/125  
300  
±15  
8
°C  
V
25/125  
°C  
V
V CE  
V GE  
R gon  
=
300  
75  
=
V
A
=
V GE =  
Ω
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
101  
100  
10-1  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
10-1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,005  
0,000  
10-2  
10-5  
10-2  
102  
101  
102  
t p (s)  
t p (s)  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
At  
At  
t
p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,75  
K/W  
1,21  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
2,52E-02 8,15E+00  
1,46E-01 9,38E-01  
3,96E-01 1,88E-01  
1,14E-01 3,57E-02  
4,05E-02 6,16E-03  
2,47E-02 3,71E-04  
R (K/W) Tau (s)  
2,29E-02 9,22E+00  
1,66E-01 1,07E+00  
5,46E-01 2,04E-01  
2,82E-01 4,28E-02  
1,25E-01 7,24E-03  
6,92E-02 6,71E-04  
copyright Vincotech  
8
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Output Inverter  
figure 21.  
IGBT  
figure 22.  
IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
I C = f(V CE  
)
V GE = f(Q g)  
103  
15  
120 V  
10uS  
12  
9
102  
100uS  
480 V  
100mS  
10mS  
1mS  
DC  
101  
6
100  
3
0
10-1  
100  
0
60  
120  
180  
240  
Q g (nC)  
103  
101  
102  
VCE (V)  
At  
At  
D =  
single pulse  
I C  
=
75  
A
T s =  
80  
ºC  
V
V GE  
=
±15  
T jmax  
T j =  
Thermistor  
figure 1.  
Thermistor  
Typical PTC characteristic  
as a function of temperature  
R T = f(T )  
PTC-typical temperature characteristic  
2000  
1800  
1600  
1400  
1200  
1000  
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
9
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Switching Definitions Output Inverter  
General conditions  
T j  
=
=
=
125 °C  
8 Ω  
8 Ω  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
210  
%
140  
%
IC  
180  
150  
120  
100  
80  
tdoff  
VCE  
VCE 90%  
VGE 90%  
120  
90  
60  
30  
0
VCE  
IC  
60  
VGE  
tdon  
40  
tEoff  
IC 1%  
20  
IC10%  
VGE10%  
VCE 3%  
VGE  
0
tEon  
3,1  
-20  
-30  
-0,2  
-0,05  
0,1  
0,25  
0,4  
0,55  
0,7  
0,85  
time (us)  
2,5  
2,65  
2,8  
2,95  
3,25  
3,4  
time(us)  
V GE (0%) =  
-15  
15  
V
V GE (0%) =  
-15  
15  
V
V
V
A
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
300  
75  
V
300  
75  
A
t doff  
=
=
0,27  
0,55  
μs  
μs  
t don  
=
=
0,22  
0,49  
μs  
μs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
140  
210  
%
%
Ic  
120  
180  
150  
fitted  
VCE  
IC  
100  
IC 90%  
80  
120  
VCE  
IC  
IC90%  
60%  
60  
90  
tr  
IC 40%  
40  
20  
0
60  
30  
IC10%  
IC10%  
tf  
0
-30  
-20  
2,85  
2,91  
2,97  
3,03  
3,09  
3,15  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
0,45  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
300  
75  
V
V C (100%) =  
I C (100%) =  
t r =  
300  
75  
V
A
A
0,09  
μs  
0,03  
μs  
copyright Vincotech  
10  
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Switching Definitions Output Inverter  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
120  
150  
%
%
Pon  
Eoff  
Poff  
100  
80  
120  
Eon  
90  
60  
30  
0
60  
40  
20  
VGE 10%  
VCE  
VGE 90%  
3%  
0
tEoff  
IC 1%  
0,64  
tEon  
3,05  
-30  
-20  
2,6  
2,75  
2,9  
3,2  
3,35  
3,5  
-0,2  
-0,06  
0,08  
0,22  
0,36  
0,5  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
22,36  
2,22  
0,55  
kW  
P on (100%) =  
E on (100%) =  
22,36  
2,42  
0,49  
kW  
mJ  
μs  
mJ  
μs  
t E off  
=
t E on =  
figure 7.  
FWD  
Turn-off Switching Waveforms & definition of t rr  
120  
%
Id  
80  
trr  
40  
fitted  
0
-40  
Vd  
IRRM10%  
-80  
IRRM90%  
IRRM100%  
-120  
-160  
2,9  
3
3,1  
3,2  
3,3  
3,4  
time(us)  
V d (100%) =  
I d (100%) =  
300  
75  
V
A
I RRM (100%) =  
82  
A
t rr  
=
0,33  
μs  
copyright Vincotech  
11  
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Switching Definitions Output Inverter  
figure 8.  
FWD  
figure 9.  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
Turn-on Switching Waveforms & definition of t Erec  
(t Q rr = integrating time for Q rr  
)
(t Erec= integrating time for E rec)  
150  
120  
Erec  
%
%
Qrr  
100  
90  
60  
30  
0
Id  
50  
tQrr  
tErec  
0
-50  
Prec  
-100  
-150  
-30  
2,7  
2,9  
3,1  
3,3  
3,5  
3,7  
3,9  
2,7  
2,9  
3,1  
3,3  
3,5  
3,7  
3,9  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
75  
A
P rec (100%) =  
E rec (100%) =  
22,36  
1,93  
0,56  
kW  
mJ  
μs  
9,14  
0,56  
μC  
μs  
t Q rr  
=
t E rec =  
copyright Vincotech  
12  
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Ordering Code & Marking  
Version  
With std lid (6,5 mm height) + no thermal grease  
With thin lid (2,8 mm height) + no thermal grease  
Ordering Code  
V23990-K233-F-PM-/0A/  
V23990-K233-F-PM-/0B/  
V23990-K233-F-PM-/1A/  
V23990-K233-F-PM-/1B/  
V23990-K233-F-PM-/4A/  
V23990-K233-F-PM-/4B/  
V23990-K233-F-PM-/5A/  
V23990-K233-F-PM-/5B/  
With std lid (6,5 mm height) + thermal grease (0,8 W/mK, P12, silicone-based)  
With thin lid (2,8 mm height) + thermal grease (0,8 W/mK, P12, silicone-based)  
With std lid (6,5 mm height) + thermal grease (2,5 W/mK, TG20032, silicone-free)  
With thin lid (2,8 mm height) + thermal grease (2,5 W/mK, TG20032, silicone-free)  
With std lid (6,5 mm height) + thermal grease (2,5 W/mK, HPTP, silicone-based)  
With thin lid (2,8 mm height) + thermal grease (2,5 W/mK, HPTP, silicone-based)  
VIN  
Date code  
Name&Ver  
UL  
Lot  
Serial  
VIN WWYY  
NNNNNNNVV UL  
LLLLL SSSS  
Text  
VIN  
WWYY  
NNNNNNVV  
UL  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Date code  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
WWYY  
Outline  
Pin table [mm]  
Pin table [mm]  
Pin  
1
X
Y
Function  
+DC  
Pin  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
X
Y
Function  
24,38  
24,38  
24,38  
24,38  
24,38  
-21,8  
-18,6  
-15,4  
-12,2  
-9  
Not assembled  
2
+DC  
0,03  
0,03  
0,03  
0,03  
0,03  
-8,5  
9
U
U
U
U
U
W
3
+DC  
12,2  
15,4  
4
+DC  
5
+DC  
18,6  
6
Not assembled  
Not assembled  
12,2  
21,8  
7
-21,8  
8
24,38  
24,38  
+T  
-T  
Not assembled  
Not assembled  
Not assembled  
-9  
9
Not assembled  
Not assembled  
21,8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
-12,22  
-12,22  
V
V
Not assembled  
Not assembled  
Not assembled  
Not assembled  
-21,8  
-5,8  
Not assembled  
3,9  
-12,22  
-12,22  
-12,22  
V
V
V
7,1  
13,42  
G5  
10,3  
Not assembled  
Not assembled  
Not assembled  
Not assembled  
Not assembled  
2,6  
Not assembled  
Not assembled  
Not assembled  
-21,8  
-24,38  
-24,38  
-24,38  
-24,38  
-24,38  
-24,38  
G6  
E6  
-18,6  
8,38  
8,38  
E3  
-15,4  
-DC  
-DC  
-DC  
E4  
5,8  
G3  
-12,2  
Not assembled  
Not assembled  
-9  
-5,8  
8,38  
8,38  
2,46  
2,46  
2,46  
2,46  
2,46  
18,6  
21,8  
E1  
G1  
E5  
W
Not assembled  
0,7  
-24,38  
G4  
-21,8  
Not assembled  
7,1  
-18,6  
-24,38  
-24,38  
-24,38  
-24,38  
-DC  
-DC  
E2  
-15,4  
W
15,4  
-12,2  
W
18,6  
-9  
W
21,8  
G2  
Not assembled  
Pad positions refers to center point. For more informations on pad design please see package data  
copyright Vincotech  
13  
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T1,T2,T3,T4,T5,T6  
D1,D2,D3,D4,D5,D6  
PTC1  
IGBT  
FWD  
PTC  
600 V  
600 V  
75 A  
75 A  
Inverter Switch  
Inverter Diode  
Thermistor  
copyright Vincotech  
14  
06 Feb. 2018 / Revision 4  
V23990-K233-F-PM  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
72  
Handling instructions for MiniSkiiP ® 2 packages see vincotech.com website.  
Package data  
Package data for MiniSkiiP® 2 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
V23990-K233-F-D4-14  
06 Feb. 2018  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
15  
06 Feb. 2018 / Revision 4  

相关型号:

V23990-K237-F40-PM

High speed switching;Low collector emitter saturation voltage
VINCOTECH

V23990-K238-F40-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-K239-F40-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-K242-A-0A-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K242-A-0B-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K242-A-1A-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K242-A-1B-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K242-A-PM

Solderless spring contact mounting system
VINCOTECH

V23990-K243-A-0A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-0B-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-1A-PM

IGBT3 technology for low saturation losses
VINCOTECH

V23990-K243-A-1B-PM

IGBT3 technology for low saturation losses
VINCOTECH