V23990-P700-F40-PM [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
V23990-P700-F40-PM
型号: V23990-P700-F40-PM
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总17页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-P700-F40-PM  
preliminary datasheet  
flow90PACK 1 2nd gen  
1200V/35A  
Features  
Trench Fieldstop IGBT4 Technology  
Supports designs with 90° mounting angle between  
heatsink and PCB  
flow90PACK 1 2nd gen  
Clip-in PCB mounting  
Clip or screw hetasink mounting  
Target Applications  
Schematic  
Motor Drives  
Types  
V23990-P700-F40-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter IGBT  
VCE  
IC  
Collector-emitter break down voltage  
DC collector current  
1200  
V
A
Th=80°C  
35  
46  
Tj=Tjmax  
Tc=80°C  
ICpulse  
tp limited by Tjmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
105  
105  
A
VCE 1200V, Tj Top max  
A
Th=80°C  
Tc=80°C  
85  
Ptot  
Tj=Tjmax  
W
V
128  
VGE  
±20  
tSC  
Tj150°C  
10  
μs  
VCC  
VGE=15V  
800  
V
Tjmax  
Maximum Junction Temperature  
175  
°C  
Inverter FWD  
Tj=25°C  
VRRM  
IF  
IFRM  
Ptot  
Peak Repetitive Reverse Voltage  
DC forward current  
1200  
V
A
Th=80°C  
Tc=80°C  
31  
41  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
70  
A
Th=80°C  
Tc=80°C  
58  
89  
W
°C  
Tjmax  
175  
copyright Vincotech  
1
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Vis  
t=2s  
DC voltage  
4000  
min 12,7  
min 12,7  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative tracking index  
CTI  
copyright Vincotech  
2
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
VCE [V] or  
IF [A] or  
ID [A]  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
Inverter IGBT  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
2,5  
VGE(th) VCE=VGE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,0012  
35  
V
V
1,3  
1,96  
2,28  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0,01  
600  
0
1200  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
95  
104  
24  
Rise time  
26  
ns  
204  
273  
63  
129  
2,08  
3,13  
1,88  
3,24  
td(off)  
tf  
Turn-off delay time  
Rgoff=16  
Rgon=16 Ω  
±15  
300  
35  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
1950  
155  
115  
200  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
±15  
960  
35  
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
1,12  
K/W  
Inverter FWD  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,4  
1,77  
1,74  
39  
2,3  
VF  
IRRM  
trr  
Diode forward voltage  
35  
35  
V
A
Peak reverse recovery current  
Reverse recovery time  
46  
245  
403  
3,24  
6,46  
923  
233  
1,25  
2,79  
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgon=16 Ω  
±15  
300  
μC  
di(rec)max  
/dt  
A/μs  
mWs  
Erec  
Thermal grease  
thickness50um  
λ = 1 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
1,63  
K/W  
Thermistor  
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R
T=25°C  
T=100°C  
T=25°C  
T=25°C  
T=25°C  
T=25°C  
22000  
%
ΔR/R R100=1486 Ω  
-5  
5
P
200  
2
mW  
mW/K  
K
B(25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3996  
B(25/100)  
B-value  
K
Vincotech NTC Reference  
B
copyright Vincotech  
3
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Output Inverter  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Typical output characteristics  
Typical output characteristics  
I
C = f(VCE  
)
IC = f(VCE)  
125  
100  
75  
50  
25  
0
105  
90  
75  
60  
45  
30  
15  
0
0
V
CE (V)  
VCE (V)  
0
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
Tj =  
tp =  
250  
25  
μs  
250  
150  
μs  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
35  
30  
25  
20  
15  
10  
5
105  
88  
70  
53  
35  
Tj = Tjmax-25°C  
18  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = 25°C  
1,5  
0
0
0
VGE (V)  
VF (V)  
2
4
6
8
10  
12  
0
0,5  
1
2
2,5  
3
3,5  
At  
At  
tp =  
tp =  
250  
10  
μs  
250  
μs  
VCE  
=
V
copyright Vincotech  
4
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
8
6
4
2
0
8
6
4
2
0
Eon High T  
Eon High T  
Eoff High T  
Eon Low T  
Eon Low T  
Eoff High T  
Eoff Low T  
Eoff Low T  
I C (A)  
R G ( Ω )  
0
18  
35  
53  
70  
0
16  
32  
48  
64  
80  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
25/150  
25/150  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
600  
±15  
16  
600  
±15  
35  
V
V
Rgon  
Rgoff  
=
=
A
16  
Figure 7  
Output inverter FWD  
Figure 8  
Output inverter FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
Erec = f(IC)  
5
5
4
3
4
Erec  
Tj = Tjmax -25°C  
3
Erec  
Erec  
Tj = Tjmax -25°C  
2
1
0
2
Tj = 25°C  
Erec  
1
0
Tj = 25°C  
I C (A)  
R G ( Ω )  
0
18  
35  
53  
70  
0
16  
32  
48  
64  
80  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V
=
=
=
=
±15  
V
±15  
V
Rgon  
=
16  
35  
A
copyright Vincotech  
5
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Output Inverter  
Figure 9  
Output inverter IGBT  
Figure 10  
Output inverter IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
1,00  
0,10  
0,01  
0,00  
tdoff  
tdon  
tf  
tdoff  
tf  
0,10  
tdon  
tr  
tr  
0,01  
0,00  
I
C (A)  
R G ( Ω )  
0
18  
35  
53  
70  
0
16  
32  
48  
64  
80  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
150  
600  
±15  
16  
°C  
V
150  
600  
±15  
35  
°C  
V
=
=
=
=
V
V
Rgon  
Rgoff  
=
=
A
16  
Figure 11  
Output inverter FWD  
Figure 12  
Output inverter FWD  
Typical reverse recovery time as a  
function of collector current  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(IC)  
trr = f(Rgon)  
0,8  
0,8  
trr  
0,6  
0,4  
0,6  
trr  
Tj = Tjmax -25°C  
trr  
0,4  
0,2  
0,0  
Tj = Tjmax -25°C  
trr  
0,2  
0,0  
Tj = 25°C  
Tj = 25°C  
I C (A)  
R g on ( Ω )  
0
18  
35  
53  
70  
0
16  
32  
48  
64  
80  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
°C  
V
25/150  
600  
°C  
V
=
=
600  
±15  
16  
V
35  
A
Rgon  
=
VGE =  
±15  
V
copyright Vincotech  
6
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Output Inverter  
Figure 13  
Output inverter FWD  
Figure 14  
Output inverter FWD  
Typical reverse recovery charge as a  
function of collector current  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q
rr = f(IC)  
Qrr = f(Rgon)  
10  
8
Qrr  
Tj = Tjmax -25°C  
Qrr  
8
6
4
2
6
4
2
Tj = Tjmax -25°C  
Qrr  
Qrr  
Tj = 25°C  
Tj = 25°C  
0
0
I C (A)  
R g on ( Ω)  
18  
35  
53  
70  
0  
At  
0
16  
32  
48  
64  
80  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
°C  
V
25/150  
600  
°C  
V
=
600  
±15  
16  
=
V
35  
A
Rgon  
=
VGE =  
±15  
V
Figure 15  
Output inverter FWD  
Figure 16  
Output inverter FWD  
Typical reverse recovery current as a  
function of collector current  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(IC)  
IRRM = f(Rgon)  
125  
60  
50  
40  
30  
20  
10  
0
IRRM  
100  
75  
IRRM  
Tj = Tjmax -25°C  
Tj = 25°C  
50  
Tj = Tjmax - 25°C  
25  
IRRM  
IRRM  
Tj = 25°C  
0
0
I C (A)  
R gon ( Ω )  
0
18  
35  
53  
70  
16  
32  
48  
64  
80  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
600  
°C  
25/150  
600  
°C  
V
=
V
V
=
±15  
35  
A
Rgon  
=
VGE =  
16  
±15  
V
copyright Vincotech  
7
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Output Inverter  
Figure 17  
Output inverter FWD  
Figure 18  
Output inverter FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(IC)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
2500  
8000  
dI0/dt  
μ
dI0/dt  
dIrec/dtLow T  
7000  
dIrec/dt  
dIrec/dt  
dIo/dtLow T  
2000  
6000  
5000  
4000  
3000  
2000  
1000  
di0/dtHigh T  
1500  
1000  
500  
0
dIrec/dtLow T  
dIrec/dtHigh T  
dIo/dtLow T  
di0/dtHigh T  
dIrec/dtHigh T  
0
0
16  
32  
48  
64  
80  
I C (A)  
R gon ( Ω )  
0
18  
35  
53  
70  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V
=
=
±15  
V
35  
A
Rgon  
=
VGE =  
16  
±15  
V
Figure 19  
Output inverter IGBT  
Figure 20  
Output inverter FWD  
IGBT transient thermal impedance  
as a function of pulse width  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-5  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
10-4  
10-3  
10-2  
10-1  
100  
1011  
t p (s)  
t p (s)  
At  
At  
tp / T  
1,12  
tp / T  
1,63  
D =  
RthJH  
D =  
RthJC=  
RthJC=  
=
RthJH =  
K/W  
0,91  
K/W  
1,32  
IGBT thermal model values  
Phase change interface  
FWD thermal model values  
Thermal grease Phase change interface  
Thermal grease  
R (C/W)  
0,17  
Tau (s)  
R (C/W)  
0,14  
Tau (s)  
8,4E-01  
1,2E-01  
1,8E-02  
2,3E-03  
2,5E-04  
R (C/W)  
0,05  
Tau (s)  
R (C/W)  
0,04  
Tau (s)  
4,1E+00  
6,5E-01  
1,1E-01  
2,7E-02  
5,0E-03  
4,5E-04  
1,0E+00  
1,5E-01  
2,3E-02  
2,8E-03  
3,1E-04  
5,1E+00  
8,0E-01  
1,3E-01  
3,4E-02  
6,2E-03  
5,5E-04  
0,66  
0,53  
0,14  
0,12  
0,21  
0,17  
0,85  
0,69  
0,05  
0,04  
0,33  
0,27  
0,04  
0,03  
0,15  
0,12  
0,10  
0,08  
copyright Vincotech  
8
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Output Inverter  
Figure 21  
Output inverter IGBT  
Figure 22  
Output inverter IGBT  
Power dissipation as a  
function of heatsink temperature  
Collector current as a  
function of heatsink temperature  
Ptot = f(Th)  
IC = f(Th)  
160  
60  
50  
40  
30  
20  
10  
0
120  
80  
40  
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
Tj =  
At  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
function of heatsink temperature  
tot = f(Th)  
Output inverter FWD  
Figure 24  
Forward current as a  
Output inverter FWD  
function of heatsink temperature  
P
IF = f(Th)  
120  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
Tj =  
At  
Tj =  
175  
°C  
175  
°C  
copyright Vincotech  
9
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Output Inverter  
Figure 25  
Output inverter IGBT  
Figure 26  
Output inverter IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(QGE  
)
20  
18  
16  
14  
12  
10  
8
103  
102  
101  
100  
10-1  
240V  
960V  
10uS  
100uS  
100mS  
1mS  
10mS  
DC  
6
4
2
0
0
30  
60  
90  
120  
150  
180  
210  
240 270  
Q g (nC)  
101  
103  
100  
102  
VCE (V)  
At  
At  
IC  
=
D =  
Th =  
35  
A
single pulse  
80  
ºC  
V
VGE  
Tj =  
=
±15  
Tjmax  
ºC  
Figure 27  
Output inverter IGBT  
Figure 28  
Output inverter IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
tsc = f(VGE  
)
VGE = f(QGE  
)
18  
400  
16  
14  
12  
10  
8
350  
300  
250  
200  
150  
100  
50  
6
4
2
0
0
12  
14  
16  
18  
20  
12  
13  
14  
15  
16  
VGE (V)  
17  
VGE (V)  
At  
At  
VCE  
=
VCE  
Tj =  
1200  
175  
V
1200  
175  
V
Tj ≤  
ºC  
ºC  
copyright Vincotech  
10  
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Figure 29  
IGBT  
Reverse bias safe operating area  
IC = f(VCE  
)
80  
IC MAX  
70  
60  
50  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
VCE (V)  
At  
Tj =  
Tjmax-25  
ºC  
3phase SPWM  
Uccminus=Uccplus  
Switching mode :  
copyright Vincotech  
11  
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Thermistor  
Figure 1  
Thermistor  
Figure 2  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
Typical NTC resistance values  
1
1
NTC-typical temperature characteristic  
B25/100  
24000  
22000  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
R(T) = R25 e  
[Ω]  
T
T25  
25  
45  
65  
85  
105  
T (°C) 125  
copyright Vincotech  
12  
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
150 °C  
16  
Rgon  
Rgoff  
16 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
140  
250  
IC  
120  
tdoff  
200  
150  
VCE  
100  
VGE 90%  
VCE 90%  
IC  
80  
%
%
VCE  
60  
40  
20  
0
100  
VGE  
IC 1%  
tEoff  
tdon  
50  
VCE 3%  
VGE10%  
IC10%  
VGE  
0
tEon  
-20  
-50  
-0,2  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
0,7  
2,7  
2,85  
3
3,15  
3,3  
3,45  
3,6  
3,75  
time (us)  
time(us)  
VGE (0%) =  
VGE (0%) =  
-15  
V
-15  
15  
V
V
V
A
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
600  
35  
V
600  
35  
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,27  
0,67  
μs  
μs  
0,10  
0,32  
μs  
μs  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
140  
250  
120  
fitted  
VCE  
200  
150  
IC  
100  
IC 90%  
80  
%
%
VCE  
60  
100  
IC  
60%  
IC90%  
tr  
40  
20  
0
IC 40%  
50  
Ic  
IC10%  
IC10%  
0
tf  
-20  
-50  
0,1  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
0,45  
time (us)  
3
3,05  
3,1  
3,15  
3,2  
3,25  
3,3  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
600  
V
600  
35  
V
35  
A
A
0,13  
μs  
0,03  
μs  
copyright Vincotech  
13  
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
240  
IC 1%  
Eoff  
Pon  
Poff  
100  
200  
80  
160  
120  
60  
%
Eon  
%
80  
40  
40  
20  
VGE 90%  
VGE 10%  
VCE  
3%  
0
0
tEon  
tEoff  
-40  
-20  
2,8  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
-0,3  
-0,15  
0
0,15  
0,3  
0,45  
0,6  
0,75  
0,9  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
21,02  
kW  
mJ  
μs  
21,02  
kW  
mJ  
μs  
3,24  
0,67  
3,13  
0,32  
tEoff  
=
tEon =  
Figure 7  
Output inverter FWD  
Figure 8  
Output inverter IGBT  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
150  
Id  
15  
10  
5
100  
trr  
50  
Vd  
fitted  
0
0
%
IRRM 10%  
-5  
-50  
-10  
-15  
-20  
-100  
IRRM 90%  
IRRM 100%  
-150  
-50  
0
50  
100  
150  
200  
250  
2,8  
3
3,2  
3,4  
3,6  
3,8  
time(us)  
Qg (nC)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
V
600  
35  
V
15  
V
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
600  
35  
V
-46  
0,40  
A
trr  
=
A
μs  
231,03  
nC  
copyright Vincotech  
14  
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Switching Definitions Output Inverter  
Figure 9  
Output inverter FWD  
Figure 10  
Output inverter FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
120  
Id  
Erec  
Qrr  
100  
100  
80  
tQrr  
50  
tErec  
0
60  
%
%
-50  
40  
-100  
-150  
-200  
20  
0
Prec  
-20  
2,8  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
time(us)  
4,4  
2,8  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
4,4  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
35  
A
21,02  
kW  
mJ  
μs  
Qrr (100%) =  
6,46  
1,00  
μC  
μs  
2,79  
1,00  
tQrr  
=
tErec =  
copyright Vincotech  
15  
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
P700-F40  
in packaging barcode as  
without thermal paste 12mm housing  
V23990-P700-F40  
P700-F40  
Outline  
Pinout  
copyright Vincotech  
16  
Revision: 1  
V23990-P700-F40-PM  
preliminary datasheet  
PRODUCT STATUS DEFINITIONS  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for  
product development. Specifications may change in any  
manner without notice. The data contained is exclusively  
intended for technically trained staff.  
Target  
Formative or In Design  
First Production  
This datasheet contains preliminary data, and  
supplementary data may be published at a later date.  
Vincotech reserves the right to make changes at any time  
without notice in order to improve design. The data  
contained is exclusively intended for technically trained  
staff.  
Preliminary  
This datasheet contains final specifications. Vincotech  
reserves the right to make changes at any time without  
notice in order to improve design. The data contained is  
exclusively intended for technically trained staff.  
Final  
Full Production  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
17  
Revision: 1  

相关型号:

V23990-P700-F44-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P704-F

power flow through for simple PCB routing
VINCOTECH

V23990-P704-F-PM

Low gate charge;Low collector emitter saturation voltage
VINCOTECH

V23990-P705-F

power flow through for simple PCB routing
VINCOTECH

V23990-P705-F-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P706-F

power flow through for simple PCB routing
VINCOTECH

V23990-P706-F-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P707-F40-P1-14

Trench Fieldstop IGBT4 Technology
VINCOTECH

V23990-P707-F40-PM

Clip-in PCB mounting
VINCOTECH

V23990-P708-F

power flow through for simple PCB routing
VINCOTECH

V23990-P708-F40-P1-14

flow90PACK 1 2nd gen
VINCOTECH

V23990-P708-F40-PM

Clip-in PCB mounting
VINCOTECH